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Abstract

Optical machine learning has emerged as an important research area that, by leveraging the advantages inherent to

optical signals, such as parallelism and high speed, paves the way for a future where optical hardware can process data

at the speed of light. In this work, we present such optical devices for data processing in the form of single-layer

nanoscale holographic perceptrons trained to perform optical inference tasks. We experimentally show the

functionality of these passive optical devices in the example of decryptors trained to perform optical inference of

single or whole classes of keys through symmetric and asymmetric decryption. The decryptors, designed for operation

in the near-infrared region, are nanoprinted on complementary metal-oxide–semiconductor chips by galvo-dithered

two-photon nanolithography with axial nanostepping of 10 nm1,2, achieving a neuron density of >500 million neurons

per square centimetre. This power-efficient commixture of machine learning and on-chip integration may have a

transformative impact on optical decryption3, sensing4, medical diagnostics5 and computing6,7.

Introduction

Communication technology is a cornerstone of modern

society, making the secure exchange of information more

important than ever. This demand to preserve the privacy of

information, systems and networks8,9 has led to the devel-

opment of rigid authentication schemes, which require a

specific decryption key, and flexible authentication schemes

using a multitude of keys. While in large-scale commu-

nication systems, data are transferred through optical sig-

nals, decryption is mostly performed in the electronic

domain, requiring costly conversion of the information.

Executing cryptography directly in the optical domain offers

several advantages inherent to optical signals, such as pro-

pagation at the speed of light, direct information processing

in two-dimensional space and parallelism. With this

motivation, considerable effort has been devoted to optical

security schemes through the use of phase masks10–13,

which can be used as physical encryption and decryption

keys. These phase masks are usually designed by optimi-

sation algorithms, such as the Gerchberg–Saxton itera-

tion10–12 or wavefront matching13. The resulting optically

enabled encryption/decryption systems require multiple

passes through different sets of bulky phase masks and

lenses to encrypt and retrieve a message. Moreover, with

their rigid constraints on inputs and keys, phase mask-based

systems fail to meet the requirements for flexible authen-

tication schemes, as used in biometric security.

By employing machine learning methods in optical cryp-

tographic protocols, the limitations faced in traditional bulky

optical security schemes10–13 can be overcome, paving the

way for a new generation of compact optically enabled

machine learning decryption systems for enhanced authen-

tication solutions. Through computer-based machine

learning training, the decryptors learn the ability to decode a

multitude of messages and map them into a desired output,

thus acquiring the capability of selectively recognising one
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specific decryption key among an infinite number of input

keys for symmetric decryption or identifying the class to

which a specific input key belongs for asymmetric decryp-

tion (Fig. 1a). Once computer-based training is completed,

the decryptors can be physically fabricated as single-layer

holographic perceptrons (Fig. 1b) able to recognise several

input keys through all-optical machine learning inference

and display the corresponding decrypted message or a

notification of rejection (Table 1).

The single-layer perceptrons optically implement

matrix multiplications14. Implementation of matrix mul-

tiplication in the optical domain has been a topic of

research for decades15, and has been shown in free space

through the use of beam splitters or Mach–Zehnder

interferometers16,17, as well as in integrated photonic

circuits18,19 through the same mechanisms, for applica-

tion in optical signal processing20 and reconfigurable

optical neural networks18. Recently, diffractive neural

network architectures have been proposed21, in which

these matrix multiplications are performed by diffractive

elements. This marked the beginning of optical data

processing through diffractive neural network inference,

although the fabrication methods applied are only suitable

for devices operating with a low neuron density. To utilise

the full potential of diffractive machine learning networks

at near-infrared (NIR) telecommunication wavelengths, it

is essential to develop fabrication protocols that enable

much more compact designs with optimised neuron
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Fig. 1 All-optical machine learning decryptor for integration on CMOS. a Through computer machine learning training, the optical machine

learning decryptor (MLD) acquires the capabilities of identifying a single decryption key (symmetric decryption, top) or entire classes of decryption

keys (asymmetric decryption, bottom), and decoding a multitude of messages using a single decryptor element. b The decryption system can be

considered a diffractive neural network for optical inference. Each layer of the network consists of N × N artificial neurons, secondary sources of waves

(details in Supplementary Methods). c Schematic of an MLD integrated with a CMOS chip. The nanoscale MLD is physically 3D printed by GD-TPN (d),

a nanofabrication method that gives precise control over the MLD neuron dimensions in the lateral and axial directions (e), achieving axial

nanostepping of 10 nm
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densities (Fig. S1). Nanolithographic methods22–27 are an

excellent candidate to fulfil this design requirement, as

they can—unlike PolyJet 3D printing—precisely realise

optical elements with nanometre feature sizes. Among the

nanolithographic methods, galvo-dithered two-photon

nanolithography (GD-TPN)8 stands out as the only

method that allows direct fabrication of three-

dimensional (3D), free-form structures in a single fabri-

cation step with lateral and azimuthal resolution sufficient

for devices, with applications in the NIR and visible

wavelength regimes. In addition to the high resolution

and design freedom, GD-TPN provides the flexibility to

print on arbitrary substrates without concern for charged

particle irradiation of off-the-shelf optoelectronic devices,

such as complementary metal-oxide–semiconductor

(CMOS) imaging sensors—fast, energy efficient and low-

cost microelectronic circuits widely used in modern

consumer products. The integration of optical machine

learning decryption systems with CMOS imaging can

enable unpowered optical decryption at the speed of light,

with the advantage that the decrypted images can be

directly transmitted, displayed and stored over standard

electronic communication channels.

In this work, we present a novel concept for compact

optical decryptors that can be integrated on common

CMOS chips (Fig. 1c–e). Using computer machine learning

based on error back-propagation methods, single-layer

holographic perceptrons are trained to perform critical

decryption of single or whole classes of images. By nano-

printing the machine learning decryptors (MLDs), which

are designed for operation in the NIR wavelength region,

with GD-TPN, we achieve a neuron density of over 500

million neurons per square centimetre, while controlling

the neuron height with a precision down to 10 nm.

The ability of the MLDs to execute the optical inference

tasks and perform unpowered decryption of several mes-

sages at the speed of light with a working distance as small

as 62.8 μm—an advantage for on-chip integration—is

experimentally shown. By printing the MLDs directly on a

CMOS chip, we achieve compact and highly integrated

devices, which not only outperform current optical

decryption methods, but also show the potential for appli-

cation of full optical inference devices in a wide range of

fields from computer vision to medical diagnostics.

Results

Design, training and optimisation

The MLD presented in this article is a single diffractive

element capable of scattering and directionally focusing

each of a multitude of images given as input and of

mapping them into a specific output. Once printed, the

MLD can optically perform the inference tasks of a single-

layer perceptron, mapping a variety of images on a sensor,

effectively realising the functionalities of decryption.

Computer-based machine learning training

The compact decryption system can be considered a dif-

fractive neural network21,28 working in transmission mode.

We modelled the MLD system on a computer to perform

the training. In our model, the neural network is composed

of three layers (input, MLD and output), each consisting of

N ×N resolvable pixels that act as artificial neurons, which

receive, modulate and transmit a light field (Fig. 1b). The

neurons of each layer are linked to the neurons of the

neighbouring layers through Rayleigh–Sommerfeld29 dif-

fraction. While the neurons of the input and output layers

are unbiased (i.e., uniform), each neuron of the diffractive

layer adds a bias in the form of a phase delay to the trans-

mitted signal. A cross-entropy loss function is defined to

evaluate the performance of the MLD with respect to the

desired target, and a machine learning algorithm iteratively

optimises the phase delay of each neuron in the diffractive

layer to minimise the loss function (Fig. S2). The ‘Methods’

and Supplementary Materials sections contain the details of

this TensorFlow-based design and training processes.

Compact multilayer training

The MLD perceptron30 is a basic neural network

building block that is shallow and can only learn linearly

separable functions. In a system composed of multiple

diffractive layers with a sufficient physical separation

between them, the artificial neurons of neighbouring

Table 1 Abbreviations.

MLD Machine learning decryptor MLD-T MLD trained to recognise the correct key and to visually communicate the

acceptance with a tick

CMLP Compact multilayer perceptron MLD-B MLD trained to act as a secure display, showing the image of a butterfly

9-MLD MLD able to decrypt nine classes of

handwritten letters

MLD-TIPS MLD-T optimised for IPS photoresist

3-MLD MLD able to decrypt three classes of

handwritten letters

MLD-BIPS MLD-B optimised for IPS photoresist

List of acronyms and abbreviations used in the text
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layers are linked through Rayleigh–Sommerfeld diffrac-

tion31 and can optically execute the function they are

trained for. For these systems, increasing the number of

layers always improves the classification accuracy (Fig.

S3)32. The introduction of multiple diffractive layers

separated in space does, however, come at the cost of

losing compactness. To create a more powerful mechan-

ism for learning that still achieves compactness, we

investigate the use of a compact multilayer perceptron

(CMLP; Fig. 2a), where the layers adjoin. However, unlike

in the case of multiple well-separated diffractive layers, we

find that an increase in the number of layers in a CMLP

does not generally lead to an improvement in classifica-

tion accuracy. This outcome implies that the operation

implemented through multiple compact layers can be

combined into a single matrix operation, which can be

called a tailored linear multiplexor. The results in Fig. 2b

show that a CMLP composed of two adjoining layers

achieves an improvement in classification accuracy com-

pared to a single-layer MLD.

Symmetric and asymmetric decryption

To demonstrate the functionalities that MLDs can

achieve, we implement decryption using a specific key or

classes of keys, achieving symmetric and asymmetric

decryption, respectively (Fig. 1a, and Figs. S4 and S5). In

symmetric or single-key cryptography, data can be

encrypted and decrypted using a specific decryption key3

to selectively display a message. In our optical imple-

mentation of a symmetric decryption scheme, the

decryption key (an image of the letter A) is the only key

that, if propagated through the decryptor, retrieves the

message. On the other hand, asymmetric cryptography

provides security using classes of keys during the

encryption process3. In this way, any key belonging to the

key class can decrypt the corresponding message. In our

optical machine learning implementation of asymmetric

decryption, any key belonging to a specific key class (e.g.,

any image of a handwritten letter A) can decrypt the

message assigned to this key class. This ability can be

applied in multi-authentication schemes, such as
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Fig. 2 Neuron density effect on the MLD optical inference ability. a Schematic of MLD designs consisting of one, two and multiple compact

layers. b Blind test classification accuracy of the 9-MLD as a function of the number of compact layers. The pixel diameter is 419 nm, and the distances

from the input plane to the compact layers and from the compact layer to the output plane are 70.7 and 31.4 μm, respectively. Classification accuracy

achieved by the 9-MLD as a function of the number of neurons (c), neuron density (d), and distance from the input plane to the MLD (D1) and from

the MLD to the output plane (D2) (e). f–h Calculated phase delay in the diffractive layer with the neuron density values as indicated by the coloured

markers in d, showing the effect of the neuron density on the MLD design
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biometric security, given that it can recognise images of

the same subject under different conditions.

Decryptor design

To evaluate the ability of MLDs to perform symmetric

decryption, we design two distinct optical decryptors. The

first decryptor, MLD-T, is trained to recognise the correct

key against other random keys belonging to three different

classes of handwritten letters, and to visually communicate

the acceptance or rejection of the input key (Figs. S6a and

S7a). The second decryptor, MLD-B, acts as a secure

display, showing the image of a butterfly in the output

plane only if the correct input key is given. Other input

keys are diffracted to the edge, leaving the output layer

dark (Figs. S6b and S7b). The ability to perform asym-

metric decryption is evaluated through the design of two

MLDs able to decrypt nine (9-MLD) and three (3-MLD)

classes of handwritten letters (Figs. S6c, d and S7c, d). Each

class of input letters is decrypted into a distinct rectan-

gular indicator on the output plane. All the decryptors are

designed to operate at a wavelength of 785 nm, which was

selected to match the transmission characteristics of the

photoresist used during fabrication. The details of the

training and test datasets are contained in the ‘Methods’

and Supplementary Materials sections.

The performance of the MLD, which is evaluated

through numerical testing, is strongly influenced by the

task the MLD is trained for (Fig. S8) and by the decryptor

physical parameters. This is due to the impact that the

size and density of the neurons have on the diffraction,

and therefore on the connection between the neurons in

neighbouring layers. The number of pixels (Fig. 2c and

Fig. S9), neuron density (Fig. 2d and Fig. S10) and distance

from the input plane to the MLD (D1) and from the MLD

to the output plane (D2; Fig. 2e and Fig. S11) must

therefore be finely tuned and optimised. The ‘Methods’

and Supplementary Materials sections contain the details

of this optimisation process.

MLD nanoprinting

The MLDs are realised by converting the calculated

phase delay of each neuron in the diffractive layer into a

relative height map (Fig. S12), that is, 3D nanoprinted

using the GD-TPN method1,2 (Fig. S13) in hybrid zinc

oxide photoresist (Fig. S14). Table ST1 and the ‘Methods’

and Supplementary Materials sections contain the details

of the GD-TPN method.

The use of GD-TPN allows us to precisely fabricate

neurons with an arbitrary diameter in the range of 200

−1000 nm (ref. 33), which results in a maximum neuron

density in the diffractive layer of 2.5 billion neurons per

square centimetre. For the particular MLDs considered in

this work, the optimal neuron diameter was determined

to be 413 and 419 nm, resulting in a neuron density of

over 500 million neurons per square centimetre. This is

six orders of magnitude higher than the neuron density of

current diffractive neural networks21. At the same time,

the use of galvo-dithering correction combined with an

acousto-optic modulator and a precise piezoelectric

nanotranslation stage gives us control over the axial

position of the focal spot with a precision down to 10 nm,

therefore, allowing precise regulation of the phase mod-

ulation in the diffractive layer (Fig. 3). Images of the 3D-

printed designs are shown in Fig. 3a and Fig. S15. To

demonstrate the ability of the GD-TPN method to print

high-quality MLDs, the neuron size and height are char-

acterised using atomic force microscopy (AFM; Fig. 3b–e

and Fig. S16). The AFM measurements clearly demon-

strate that the pixel size (419 nm for 9-MLD and 413 nm

for 3-MLD) and the height modulation (1.78 µm for 9-

MLD and 1.48 µm for 3-MLD) of the printed MLDs are as

designed through the learning process.

Full optical inference

To characterise the optical inference ability and quantify

the performance of the MLDs, we use the characterisation

setup depicted in Fig. S18. The input images of the

handwritten letters are generated by spatially modulating

the light from a 785 nm laser source using a spatial light

modulator (SLM) and projected on the input plane of the

MLD, using two 4f systems. The output plane of the MLD

is imaged through a lens system and detected using a

charge-coupled device (CCD) camera (Fig. S17, ‘Methods’

and Supplementary Materials).

To measure the experimental classification accuracy, we

compare the numerical and experimental output of the

MLD for five different images per letter class. In Fig. 4a, b,

and Figs. S18 and S19, we report the characterisation of

symmetric decryptors, MLD-T and MLD-B, as shown in

Fig. S6a, b. The experimental results quantitatively match

the theoretical expectation of 100% accuracy, proving that

the GD-TPN nanoprinted MLDs can act as reliable sym-

metric decryptors and secure displays. For the asymmetric

3-MLD and 9-MLD decryptors, the results in Fig. 4c, d

and Figs. S20–S22 clearly show the ability to direct the

input images to the detector region assigned to the cor-

responding letter class. To further evaluate the perfor-

mance of the 3D-printed MLD and understand the role of

noise in our experimental results, we calculate the dif-

fraction efficiencies (see Table ST2 and Supplementary

Methods) and the accuracy of our MLDs, with varying

degrees of normalised noise added to the camera readout

(Fig. S23). The experimental diffraction results are thereby

comparable with the results reported in the literature for

single-layer diffractive neural networks32. The match

between the experimental and numerical accuracies is

found to be 86.67% for the 3-MLD and 80% for the 9-

MLD. While the output pattern in Fig. 4d is grainier than
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that in Fig. 4c due to the more complex diffractive element

pattern, the diminished performances of the experimental

MLDs compared with the numerical results can be

explained by 3D printing errors, unaccounted absorption-

related losses due to the inhomogeneous material and

other experimental error sources in the characterisation

setup.

CMOS integration

Recently, photonics has been leveraging on-chip tech-

nology to cope with the growing demand for optical

communications in networking and industrial applica-

tions. To deploy our new principle in an on-chip appli-

cation, we print MLDs on CMOS chips. Compared with

other technologies, such as CCD sensors, CMOS chips are

faster, more energy efficient, cheaper and already widely

used in modern consumer products. The combination of

all-optical MLDs with CMOS technology can enable

harnessing of their complementary physics through inte-

grated solutions on a single chip34, meeting the demand

for a large bandwidth combined with low-energy con-

sumption and cost (Supplementary Movie S1).

We demonstrate the direct manufacturing and imaging

of MLDs on a CMOS sensor (Fig. 5a–c and Fig. S23). For

GD-TPN fabrication, we use a dip-in approach35 and a

liquid photoresist as opposed to the zirconium-based

photoresist used in the previous experiments. This is due

to the zirconium-based photoresist deposition and

development methods being incompatible with fabrica-

tion on the packaged CMOS chip. To ensure the proper

distance between the MLD and the CMOS chip surface,

we printed the MLDs on pillars. Further information on

the pretreatments, design and nanoprinting can be found

in Figs. S24 and S25, and the ‘Methods’ and Supplemen-

tary Materials sections.

To show the mechanical stability and repeatability of

printing MLDs on a CMOS chip, we fabricate an array of

MLDs (Fig. S24). The SEM (Fig. 5 and Fig. S27) and AFM

(Fig. S28) characterisations prove that MLDs with the

required geometry can successfully be printed on CMOS

chips with the GD-TPN method. The images acquired by

the CMOS sensor reported in Fig. 5d, e and Fig. S29

confirm the optical quality of the MLDs and their ability

to decrypt the key image, with an accuracy of 100%.

Compared with the performance of MLDs printed using

hybrid zinc oxide photoresist, this experiment yields a

poorer match between the experimental and numerical

test results in terms of the energy distribution and

intensity contrast for the tick and cross output in the case

of MLD-T printed with IPS (MLD-TIPS), and for the

butterfly and frame output in the case of MLD-B printed

with IPS (MLD-BIPS; Fig. S30). These results can be

explained by unaccounted optical losses, structural dis-

tortions due to material shrinkage, asymmetries in the
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pixel shapes and lower resolution images, all factors that

affect the quality of the output image.

Discussion

In this work, we have presented high-neuron-density

MLDs for optical decryption through all-optical inference in

the NIR wavelength region. We realise compact and highly

integrated decryptors by nanoprinting the MLDs directly on

a CMOS chip, using GD-TPN. Our experimental results

demonstrate the application of MLDs as power-efficient

optical decryptors and secure functional displays. By com-

bining unpowered, pretrained smart optical devices with

optical imaging sensors, we enable the sensors to perform

complex functions as simply as putting glasses on them.
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MLD-T (a), MLD-B (b), 3-MLD (c) and 9-MLD (d). The complete results and performance analysis are reported in Figs. S19–S23. The images of the input

and output fields consist of 236 × 236 pixels (1.3 × 1.3 mm2) in the case of 3-MLD, 274 × 274 pixels (1.5 × 1.5 mm2) in the case of 9-MLD and 340 × 340

pixels (1.88 × 1.88 mm2) in the case of MLD-T and MLD-B. Each MLD output image was multiplied with the mask related to that specific MLD design

before quantifying the intensity distribution (see Supplementary Materials)

Goi et al. Light: Science & Applications           (2021) 10:40 Page 7 of 11



The nanoscale neuron size within the NIR MLDs not

only provides the advantage of a high neuron density, but

also results in a short distance (the MLD operative dis-

tance, i.e., the distance between the input and output

planes, is one to three orders of magnitude smaller than

that in other implementations16,18,19,21) and more con-

nections between the neurons due to the increased dif-

fraction angles. These features lead to a three orders of

magnitude increase in the operational frequency, and thus

in the operations per second (FLOPS) compared with the

devices in the THz region (see Table ST3 and Supple-

mentary Methods). In this regard, with superresolution36

and chemical etching37 methods, smaller feature sizes can

be achieved (<10 nm), potentially creating a completely

new platform for smart holographic machine learning

systems.

The performance of the presented decryptors has to be

critically evaluated with respect to the intended applica-

tion. The security the decryptors presented in this work

can provide is limited by the number of key classes they

are trained to recognise, which results in a theoretical

false match rate, i.e., the probability that a generic input is

interpreted as a correct key, of 33% and 11% for the MLD-

3 and MLD-9 decryptors, respectively.

As a machine-learning-based classification device, the

decryptors presented in this work will always show a

certain false match rate—a challenge inherent to the field

of machine learning classification38–40. A number of

techniques have therefore been developed to decrease the

false match rate in a given classification setting, which can

be equally applied to the decryptors presented in this

work. For example, the training dataset can be increased

to include generic inputs or random keys, which are then

mapped to either the frame of the output plane or a

rejection detector, as shown for MLD-B or MLD-T,

respectively. In addition, a classification threshold can be

applied to the output plane, in which the intensity of a

given detector needs to be at a certain level above the

intensity of the other detectors to be classified, as the

correct decryption key. In addition, the cointegration of

our MLDs directly on CMOS chips opens the possibility

of further analysis of the output image collected at the
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Fig. 5 Machine learning integrated on CMOS. a Photograph of the Sony IMX219 NoIR CMOS sensor with an array of 3 × 2 MLDs 3D printed via the

GD-TPN method. b SEM image of the CMOS sensor surface with the MLD array. c Single MLD built on the CMOS sensor imaged with SEM (top) and

directly with the CMOS sensor (bottom, scale bar 50 µm= 45 pixels). SEM image of the MLD diffractive layer, example of the experimental input field,

and corresponding output pattern and energy distribution percentage for the MLD-TIPS (d) and MLD-BIPS (e) designs. The complete results and

performance analysis are reported in Figs. S30 and S31. The images of the input and output fields consist of 37 × 37 pixels (41.9 × 41.9 µm2)
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detector plane in the electronic domain, which has been

shown to be an energy-efficient method of hybrid

optoelectronic image classification41,42, achieving accura-

cies up to 98.71% (ref. 39).

Our approach is based on static elements realised with

linear materials. Dynamicity and optical non-linearities

are elements essential for the in situ training of optical

neural networks18,43. While reconfigurability can be

incorporated into MLDs using compact reconfigurable

optical elements44–48 and metamaterials49–51, non-linear

materials, e.g., chalcogenide glasses32 or ferroelectric thin

films33, can be used to include non-linearities, thus

enabling closed-loop machine learning with the equiva-

lent of a non-linear activation function to further improve

the MLD performance52. The wavelength region targeted

by our MLDs, the compactness and the possibility of

performing a multitude of tasks, combined with the

intrinsic compatibility with electronic chip manufactur-

ing, including but not limited to CMOS chips, pave the

way for a completely new generation of fast and power-

efficient functional optical elements to be applied in

security schemes8,9, medical diagnostics5 and comput-

ing7,52–55 offering a smaller footprint, a lower-energy

consumption14 and a lower cost than present solutions.

Materials and methods

TensorFlow simulations

We achieve the MLD design using the TensorFlow

(Google Inc.)56 framework, used to implement a forward

propagation model, as illustrated in Fig. S2. For the free

space propagation of light between different planes of the

system, we employ the Rayleigh–Sommerfeld diffraction

theory in the far-field regime29. To build a realistic model

and match the experimental conditions, we consider the

absorption of the material in the calculations (see Sup-

plementary Materials) and the circular shape of the pixels.

The refractive indexes and extinction coefficients are

confirmed by ellipsometry (Fig. S14). We use the cross-

entropy against the target image as a loss function32, with

the aim of maximising the normalised signal of each

target’s corresponding detector region, while minimising

the total signal outside of all the detector regions. We

employ the stochastic gradient descent algorithm Adam57

to back-propagate58 the errors and update the MLD phase

parameters to minimise the loss function. The desired

mapping functions between the input and output planes

are achieved after ten epochs. The model is implemented

using Python version 3.5.0 and TensorFlow framework

version 1.4.0 (Google Inc.).

Training dataset processing

The handwritten letter images are taken from the ‘A–Z

Handwritten Alphabets’ dataset available on www.kaggle.

com (ref. 59), which combines the NIST60 and MNIST61

datasets. The butterfly and key images are designed by us.

For each letter, we use 6000 images for training, and 1000

images are used for blind testing. All the images are

converted into greyscale and resized to match our designs.

Sample nanoprinting

Polymeric62 MLDs are printed by the GD-TPN1,2

method (Fig. S12), a method based on femtosecond laser

pulses and two-photon absorption. A femtosecond fibre

laser (Coherent Fidelity II) combined with a frequency

doubler (APE HarmoniXX) provides laser light at a

wavelength of 535 nm. The laser pulses with a width of

55 fs and a repetition rate of 70MHz are steered by a

combination of a two-dimensional galvo mirror (Thor-

labs), and a 4f imaging system into a 1.4 NA 100× oil

immersion objective (Olympus). Compared with the

classic TPN, the circular motion of the mirrors exposes a

larger lateral volume of material while simultaneously

reducing the total exposure in the axial direction and

improving the axial resolution1. A piezoelectric nano-

translation stage (Physik Instrumente) is used to trace out

the microstructures in the photoresist, while the galvo

mirrors trace the laser focus in a circle. A zirconium-

based hybrid organic–inorganic photoresist is used to

create the templates due to its excellent resistance to

shrinkage62. After the GD-TPN procedure, the sample is

rinsed in a 1-propanol:2-propanol (30:70) solvent mixture

for 30min and then dried at room temperature.

We manufacture MLDs on a Sony IMX219 NoIR

CMOS image sensor from a Raspberry Pi Camera Mod-

ule. We develop a dip-in GD-TPN approach, using

commercial IPS (Nanoscribe GmbH) photoresist. Before

manufacturing, we remove the microlenses and clean the

sensor surface with isopropanol. To precisely regulate the

distance between the structures and the imaging plane,

the MLDs are mounted on supports with a height of

47.1 µm. After the GD-TPN procedure, the sample is

developed in SU-8 developer, rinsed with isopropanol and

then dried at room temperature.

IR testing setup

A schematic diagram of the experimental setup is given

in Fig. S17. The light beam is generated through a Thorlabs

OBIS 785 nm laser source. The polarised beam is directed

on a Hamamatsu SLM X13138-07 (620–1100 nm). After

this, two 4f systems resize the image of the handwritten

letter to match the MLD dimensions and focus it on the

input imaging plane. The use of a high-magnification

objective (Olympus UPLANFL N, 60× 0.9 NA) in the 4f

system is necessary to obtain an input image, with a size

compatible with the MLD. After passing through the MLD,

the signal is collected by an objective (Olympus UPLANFL

N, 60× 0.9 NA), focused on the output plane and detected

by a CCD camera (Basler ace acA2040-90uc, frame rate
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90 Hz). In the case of the MLDs printed on the CMOS

sensor, the output image is collected directly by the CMOS

sensor (Sony IMX219 NoIR, frame rate 60 Hz).
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