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We introduce the concept of a nanoradar based on the operation of a nonlinear plasmonic nanoantenna. The
nanoradar action originates from modulational instability occurring in a dimer nanoantenna consisting of two
subwavelength nonlinear nanoparticles. Modulation instability causes a dynamical energy exchange between
the nanoantenna eigenmodes resulting in periodic scanning of the nanoantenna scattering pattern. Such nanoradar
demonstrates a wide scanning sector, low operation threshold, and ultrafast time response being potentially useful
for many applications in nanophotonics circuitry. © 2012 Optical Society of America
OCIS codes: 250.5403, 230.6120, 190.3100, 320.2250.

The study of optical nanoantennas is a rapidly developing
area of research [1]. Nanoantennas keep promises for a
variety of applications in nanophotonics with advantages
of enhanced light–matter interaction. For many applica-
tions, an active control over the nanoantenna radiation
pattern is required. However, the nanoantenna operation
is usually based on one lasing mode that has better direc-
tivity and/or higher Purcell factor [2,3]. Nevertheless, for
nanoantennas with broken material and/or geometrical
symmetry, it was suggested to employ spectral tunability
and variable directionality based on switching between
different modes [4,5], which also can be realized through
nonlinear loads [6–9].
In this Letter, we suggest a novel way for the dynam-

ic control of the nanoantenna directivity by exploiting
modulational instability (MI) of a nonlinear dimer na-
noantenna. We demonstrate that the development of
MI in a nanodimer composed of two nonlinear silver na-
noparticles can lead to a periodic exchange of the power
between the eigenmodes and result in a periodic varia-
tion of the nanoantenna scattering pattern similar to clas-
sical phased-array radar systems [10], as illustrated
schematically in Fig. 1.
We consider a nanoantenna created by a pair of nano-

particles placed close to each other and embedded into
an SiO2 host medium with a permittivity εh � 2.15. We
assume that the nanoparticles are equivalent, and they
have the radius a � 10 nm with the center-to-center
spacing of d � 30 nm (see the insert in Fig. 1). Since
the condition a ∕d ≤ 1 ∕3 is satisfied, we can employ
the dipole approximation [11]. Assuming the nanoparti-
cles made of silver with a nonlinear Kerr-like response,
we take the dielectric constant in the form εNLAg � εLAg�
χ�3�jE�in�

1;2 j2, where the linear part is given by the Drude
formula, εLAg � ε∞ − ω2

p ∕�ω�ω − iν��, with ε∞ � 4.96,

ℏωp � 9.54 eV, and ℏν � 0.055 eV [12], and E�in�
1;2 are

the local fields inside the first and second particles.
For spherical silver nanoparticles with the radius
10 nm, we use the nonlinear coefficient with the value
χ�3� ≃ 3 × 10−9 esu from [13], which is much larger than
the cubic nonlinearity of SiO2 (∼10−15 esu [14]), the latter
being neglected. Our aim is to study the temporal evolu-
tion of the scattering pattern of this dimer nanoantenna

in the nonlinear regime when the response of this struc-
ture undergoes MI.

We study a nanoparticle dimer driven by a plane wave
(see the insert in Fig. 1) with the frequency close to the
frequency of the surface plasmon resonance of an indi-
vidual particle, and analyze the dynamical response of
the particles through the evolution of their polarizations,
p1;2. To derive the corresponding nonlinear equations for
the polarizations, we employ the model recently applied
for the study of strongly localized modes in a chain of
nanoparticles [15]. In the case when the external electric
field E�ex� is polarized along the dimer axis, this model
yields the following system of coupled equations for
the slowly varying amplitudes of the particle dipole
moments:

−i
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1

dτ
� �Ω − iγ � jP∥

1j2�P∥

1 � G∥P∥

2 � E;
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Fig. 1. (Color online) Schematic of the scattering pattern of a
dimer nanoantenna. Insert shows the structure, parameters,
and direction of an incident plane wave.
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where the effective coefficient G∥ � 3εh ∕�ε∞ � 2εh�
�a ∕d�3�ik0d� 1� exp�−ik0d� describes the strength of
the particle interaction, and we use the dimensionless
functions

P∥

1;2 �
��������
χ�3�

p
p∥1;2�������������������������

2�ε∞ � 2εh�
p

εha3
;

and E � −3εh�χ�3��1 ∕2E�ex� ∕�2�ε∞ � 2εh��3 ∕2 for the slow-
ly varying amplitudes of the particle dipole moments
and external electric field, respectively. The index ‘∥’

stands for the longitudinal components with respect to
the dimer axis, the parameter γ � ν ∕�2ω0� � �k0a�3εh ∕
�ε∞ � 2εh� describes thermal and radiation losses of
particles, ω0 � ωp ∕�ε∞ � 2εh�1 ∕2 is the frequency of
the surface plasmon resonance of an individual particle,
k0 � ω0 ∕c

�����
εh

p
, Ω � �ω − ω0� ∕ω0, and τ � ω0t. For the

chosen configuration, ℏω0 � 3.14 eV. Nonlinear terms
appeared after expressing E�in�

1;2 via p∥1;2 [15]. Equation (1)
describes the temporal nonlinear dynamics of a me-
tallic nanodimer driven by a plane wave with the
frequency ω ∼ ω0.
The stationary states of this system are described by

homogeneous solutions when the particle dipole mo-
ments coincide, P∥

1;2 � P∥

0; they can be found as solutions
of the nonlinear equation,

�−iγ � Ω� G∥ � jP∥

0j2�P∥

0 � E0; (2)

where E0 is the stationary amplitude of the external elec-
tric field. This equation has multiple solutions for
Ω < −ReG∥

−

���
3

p
�γ − ImG∥�, so that the system of two

nonlinear nanoparticles is expected to have a bistable
regime.
Next, we analyze linear stability of the homogeneous

stationary states with respect to weak perturbations
taken in the form of an asymmetric longitudinal eigen-
mode. By applying a standard technique [16], we derive
the expression for the instability growth rate,

λ � −ImG∥
− γ �

n
jP∥

0j4 −
�
2jP∥

0j2 � Ω − ReG∥
�
2
o
1 ∕2

:

The homogenous state (2) becomes unstable provided
λ�Ω; E2

0� > 0, and the condition λ � 0 defines the bound-
ary of the MI region on the plane �Ω; E2

0�, as shown in
Fig. 2. Remarkably, MI occurs for the whole upper
branch in the bistable region, and it extends much further
(see the inset in Fig. 2).
To study the evolution of this nonlinear system after

the onset of instability, we perform numerical simula-
tions of Eq. (1) at zero initial conditions and fixed driving
frequency Ω � −0.12 (ℏω ≅ 2.76 eV), when the external
field E grows slowly approaching the threshold value
Esat � 0.014 corresponding to the region of MI. The re-
sults are presented in Figs. 3(a) and 3(b), where we ob-
serve that instability results in the spontaneous
excitation of an asymmetric eigenmode of the dimer lead-
ing to an energy exchange between the symmetric and
asymmetric eigenmodes. For weak external fields, the
particle polarizations coincide being described by the
phase-space trajectories corresponding to the focus.

When E grows reaching the region of MI, this state be-
comes unstable, and the phase trajectories get attracted
by two different limiting circles, as shown in Fig. 3(b).

MI breaks the phase locking between the particle di-
pole moments and the external field. Consequently,
self-modulation dynamical response of a nanodimer re-
sults in temporal modulation of the nanoantenna scatter-
ing cross section and rotation of the scattering pattern, as
shown in Figs. 4(a)–4(e). The period of self-oscillations
and the contrast of scattering are 90 fs and 18, respec-
tively. This modulation is much faster than that typi-
cally observed using plasmonic antennas with nonlinear
semiconductor loading [8].

We notice a relatively wide angular scanning sector
Δθml ≃ 50° of the nanodimer’s radiation pattern. How-
ever, using a nanoradar in practice may require much bet-
ter directivity than the directivity of a dimer antenna, for
which one may utilize, e.g., a high-permittivity dielectric
sphere as a director [2].

The saturation amplitude of the external field Esat �
0.014 corresponds to the intensity of 21.6 MW ∕cm2. Such
a high illuminating power can lead to thermal damage

Fig. 2. (Color online) Bifurcation diagram on the parameter
plane of E2

0 and Ω � �ω − ω0� ∕ω0, with the regions of bistability
and modulation instability. Inset: dependence of the polariza-
tion jP∥

0j2 on E2
0 at Ω � −0.1 (along the dashed vertical line

on the main plot). Red dots mark the region of modulation
instability.

Fig. 3. (Color online) (a) Temporal evolution of the polariza-
tions jP∥

1j (red) and jP∥

2j (blue), when the external field E
(black) approaches and crosses the instability threshold. In-
stability leads to an energy exchange between symmetric
and asymmetric eigenmodes. (b) Phase trajectories associated
with the dynamics shown in (a).

3922 OPTICS LETTERS / Vol. 37, No. 18 / September 15, 2012



unless we operate with short pulses. To estimate the
maximal pulse duration, we use the value of the ablation
threshold of 3.96 J ∕cm2 obtained for silver particles in an
SiO2 host matrix in the picosecond regime of illumination
[17]. Taking into account the amplification of the electric
field inside the Ag nanoparticle due to surface plasmon
resonance and the required intensity, we evaluate the
maximal pulse duration as 0.5 ns, which is much longer
than the characteristic period of self-oscillations. Thus,
the predicted scattering pattern rotation can be readily
observed in experiment.
In conclusion, we have suggested a novel approach for

realizing an active control over the optical nanoantenna
directivity. We have shown that MI in a nonlinear plasmo-
nic dimer can lead to a dynamical energy exchange
between the nanoantenna eigenmodes resulting in a per-
iodical variation of the nanoantenna scattering pattern.
Such actively tunable nanoantennas may operate in a
wide scanning sector with a low operation threshold

and ultrafast modulation. Further optimization may be
possible by considering other designs of nanoantennas
with higher directionality, such as Yagi–Uda [1] or metal-
dielectric [2] configurations. Another possibility for tun-
ability of the nanoradar is a variation in the plane wave
incidence, intensity, and frequency. In this case, different
scenarios of the development of MI include transitions to
other steady states, bifurcations, period doubling, and
even a transition to chaos. We have studied some of such
regimes, and results will be published elsewhere.
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Fig. 4. (Color online) Temporal evolution of (a) scattering
cross section and (b) oscillation angle θml corresponding to
the major scattering lobe. (c)–(e) Snapshots of the scattering
intensities (in watts) corresponding to maximal deviations from
the initial state (red and blue) and an intermediate position
(green).
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