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Polymer materials are ubiquitous in daily life. While polymers are o�en convenient and helpful, their properties o�en obscure the 
fire hazards they may pose. �erefore, it is of great significance in terms of safety to study the flame retardant properties of polymers 
while still maintaining their optimal performance. Current literature shows that although traditional flame retardants can satisfy 
the requirements of polymer flame retardancy, due to increases in product requirements in industry, including requirements for 
durability, mechanical properties, and environmental friendliness, it is imperative to develop a new generation of flame retardants. 
In recent years, the preparation of modified two-dimensional nanomaterials as flame retardants has attracted wide attention in 
the field. Due to their unique layered structures, two-dimensional nanomaterials can generally improve the mechanical properties 
of polymers via uniform dispersion, and they can form effective physical barriers in a matrix to improve the thermal stability of 
polymers. For polymer applications in specialized fields, different two-dimensional nanomaterials have potential conductivity, high 
thermal conductivity, catalytic activity, and antiultraviolet abilities, which can meet the flame retardant requirements of polymers 
and allow their use in specific applications. In this review, the current research status of two-dimensional nanomaterials as flame 
retardants is discussed, as well as a mechanism of how they can be applied for reducing the flammability of polymers.

1. Introduction

Polymer materials, due to the continuous development of sci-
ence and technology, have been widely used in all aspects of 
humankind’s basic life necessities [1]. Due to the environmen-
tal adaptability of polymer materials, they have been widely 
used in construction, transportation, agriculture, electronics 
and electrical systems, textile, and other major economic areas. 
However, most of polymer materials are highly flammable, 
with fast combustion propagation rates and are not easily 
extinguished. A large portion of annual fires worldwide are 
related to polymer materials. According to statistics, 237,000 
fires were reported in China in 2018, resulting in 1407 deaths, 
798 injuries, and direct property losses amounting to 3.675 
billion RMB [2]. �erefore, it is critical to research and develop 
effective flame retardants so as to reduce the risks of accidental 
fires, costly damage to buildings materials, and to widespread 
health and safety [3].

Polymer flame retardants are mainly divided into 
halogen and halogen-free categories. However, halogen flame 

retardants have limited use because they release toxic gases 
and corrosive smoke during combustion. �erefore, halo-
gen-free compounds are currently being considered as prom-
ising flame retardants, based on their more environmentally 
friendly properties [4]. Numerous efforts have been made to 
find suitable halogen-free flame retardants polymers. 
Traditional inorganic flame retardants, including aluminium 
hydroxide [5, 6] and ammonium polyphosphate [7, 8], are 
usually added to polymers in large quantities, which can o�en 
lead to a decline in the processability and mechanical proper-
ties of these doped materials. Organic phosphorus flame 
retardants [9, 10] have high flame retardant efficiency, but most 
of these are liquids with poor heat resistance. In recent years, 
in addition to graphene, two-dimensional nanomaterials, such 
as hexagonal boron nitride (h-BN) [11–16], molybdenum 
disulfide (MoS2) [17–20] and black phosphorus [21] (Figure 
1), have also been developed, which has greatly expanded the 
properties and applications of two-dimensional materials in 
this realm. Notably, two-dimensional materials and their 
derivatives have been extensively studied as photocatalysts  
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[22, 23], sensors [24], drug delivery vehicles [25], transistors 
[26], lithium ion batteries [27], water treatment agents [28], 
ion exchange [29], fuel cells [30], nanofiltration membranes 
[31], conductive inks [32], quantum dots [33], adsorbents [34] 
and supercapacitors [35]. Moreover, two-dimensional nano-
materials/polymer composites have also been investigated. Lin 
et al. [36] realized the intercalation of polythiophene into MoS2

could be achieved by means of in situ polymerization of inter-
calated monomers. �is method has contributed to enhancing 
the conductivity of composites at ambient temperature. Wang 
et al. [37] prepared a high-performance thermal interface 
material based on exfoliated boron nitride nanosheets 
(BNNSs) and polystyrene (PS) microspheres. Yan et al. [38] 
reported that g-C3N4-poly(3-hexylthiophene) polymer com-
posites achieve enhanced hydrogen production using water as 
a substrate under visible light. Particularly, two-dimensional 
nanomaterials have attracted extensive attention in the field 
of flame retardant and smoke suppression due to their unique 
structure and properties [39].

Compared with zero-dimensional nanomaterials and 
one-dimensional nanomaterials, two-dimensional nanoma-
terials have emerged as a superior flame retardant option due 
to their layered structures, which have high thermal stability 
and can form a physical barrier in a polymer matrix [17, 40]. 
Additionally, homogeneous dispersion of a small amount of 
two-dimensional nanomaterials in polymers can effectively 
improve the mechanical properties of polymers [41, 42]. A 
well-dispersed layered structure in a polymer can not only 
greatly improve the thermal stability of a polymer [43, 44] but 
it can also further enhance the action of char residual in the 
inhibition of heat and mass transfer [39, 45]. It is believed that 

the biggest obstacle to the application of two-dimensional 
nanomaterials as flame retardant additives is the high cost and 
the low yield of the peeled sheet structures [46]. Recently, as 
the number of publications related to these emerging two- 
dimensional nanomaterials has increased dramatically, a large 
number of studies on the large-scale production of two- 
dimensional nanosheets have paved the way for flame-retard-
ant applications [47, 48]. Yao et al. [49] reported a facile and 
scalable method for the preparation of monolayer and few-
layer of BN, MoS2, and graphene using a combination of 
low-energy ball milling and sonication. �ese prepared 2D 
nanosheets could be well dispersed in high concentrations of 
aqueous solutions as 1.2 mg/ml (for BN), 0.8 mg/ml (for Mos2) 
and 0.9 mg/ml (for graphene). �ese advantages make it pos-
sible to apply high performance 2D nanomaterials/polymers 
at low cost with great potential, which is beneficial to the appli-
cation of such new 2D nanomaterials in the flame retardant 
field. If suitable two-dimensional nanomaterials are selected 
for the application of specific polymers and the functionally 
controllable two-dimensional nano flame retardants associ-
ated are prepared via a simple and versatile method, the mul-
ti-functional application challenges of polymers can be 
overcome. It is well known that nano-fillers can easily achieve 
good flame retardant effects (below 6 wt%) at low load, mean-
ing that they have potential industrial prospects [50, 51].

Recent progress and future development trends in 
flame-retardant materials using two-dimensional materials 
were summarized above. �is also highlighted the effects of 
two-dimensional nanomaterials and the unique flame retard-
ant mechanisms of sulfur, phosphorus, nitrogen, silicon, lay-
ered double hydroxide, and carbon skeleton.
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Figure 1: Structure of some two-dimensional nanomaterials. (a) Molybdenum disulfide [52]. (b) α-zirconium phosphate [53]. (c) Hexagonal 
boron nitride [54]. (d) Layered double hydroxide [55]. (e) Black phosphorus [56]. (f) Graphene with (I) Zigzag and armchair edges, (II) 
Monovacancy, (III) Local structure of a curved graphene sheet [57].
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2. The Flame-Retardant Mechanism of  
Two-Dimensional Nanomaterials

�e combustion of polymer materials involves the evolution 
of combustible volatiles through decomposition in an oxy-
gen-rich atmosphere. No matter which flame retardant is used, 
its flame-retardant mechanism is through one of the following 
two processes (or occasionally a combination of the two): (i) 
condensed phase or (ii) gas phase [58]. Figure 2 shows three 
possible processes of flame retardant mechanisms.

2.1. Condensed-Phase Mechanism

2.1.1. Physical Barrier. Two-dimensional nano-layered flame 
retardants can function as an effective insulating barrier, to 
inhibit mass loss during the thermal degradation process.

Shi et al. [61] reported a ternary PS/g-C3N4/aMWCNT 
assembled system using LBL technology, which led to the 
improved thermal stability of the PS matrix, including T−10%, 
T−max, and char residue increased by 11°C, 20.0°C and 6.5%, 
respectively. �e generation of total gaseous products was also 
distinctly inhibited by the ternary assembled systems. 
Moreover, the ternary assembled systems showed outstanding 
improvements in flame retardancy; i.e., HRR and THR 
decreased by around 45% and 47%, respectively. �ese 
enhancements were attributed to the LBL assembly strategy 
being conducive to building extremely tight barriers.

Hu et al. [62] synthesized a functionalized graphene oxide 
(FGO) that was gra�ed by hyper-branching as a flame retard-
ant to reduce the combustion and toxicity of PS. �e addition 
of 0.1% FGO significantly increased the T−5% of PS-FGO0.1 
nanocomposites compared to that of pure PS. �is effect was 
attributed to the combined effect of the physical barrier and 
the capture of oxygen molecules and free radicals by FGO 
layers under atmospheric air. �is enhanced barrier effect was 
also demonstrated by a suppressed mass loss rate, implying 
the retardation of mass transfer from nanocomposites to the 
flame zone.

2.1.2. Formation of a Continuous Char Layer. During the 
combustion process, a compact and stable char layer is formed 
on the surface of a polymer, which acts as a thermal insulating 
barrier to heat and separates oxygen from burning materials, 
thus preventing mass and heat transfer, reducing the heat 
release rate and total amount of flammable volatile gases a�er 
the char layer is established.

Xie et al. [63] synthesized a ZrP-decorated macromolecu-
lar charring agent (ZrP-d-MCA), which was then introduced 
into polypropylene. A mechanistic study showed that ZrP-d-
MCA/APP effectively involved PP incorporation into the 
charring reaction, forming a compact and firm intumescent 
char layer with outstanding barrier properties. ZrP first cata-
lyzed the carbonization of MCA on its surface, forming closed 
micro-nano char-cages, which then trapped the degradation 
products of PP and further catalyzed them into a thermostable 
graphitized char.

Feng et al. [64] proposed a ternary thermal interface mate-
rial based on epoxy resin (EP), silver nanowires (AgNWs), 
and a small amount of flame-retardant functionalized 
graphene (GP-DOPO). Char analysis confirmed that the char’s 

yield and quality (integrality and compact degree) were 
increased dramatically by incorporating GP-DOPO into EP/
AgNWs, due to the strong catalytic charring effect. �e 
increased organic chars not only protected the AgNWs from 
melting and wicking action but also connected the AgNWs 
network to form a protective char layer with a compact and 
robust structure, which acted as a barrier to prevent the trans-
fer of heat, oxygen, and flammable volatile products between 
the inside and outside of the polymer melt, thus improving 
the flame retardancy of the EP/AgNWs/GP-DOPO 
composite.

2.2. Gas-Phase Mechanism

2.2.1. Dilution of Oxygen by Inert Gases. �e gas dilution 
flame retardant mechanism is typified by a large amount of 
nonflammable gases being produced during the decomposition 
process of a flame retardant at high temperatures, and these 
nonflammable gases can prevent the combustion of a polymer 
by diluting the oxygen concentration.

Wang et al. [65] reported Cardanol-BS modified layered 
double hydroxide (M-LDH) being synthesized by a coprecip-
itation method, and its subsequent incorporation into EP at 
different loadings. �e degradation gaseous products could 
be mainly divided into two categories: one was inflammable 
gases, such as water vapor and CO2, and the other was flam-
mable gases, such as carbonyl, aromatic compounds, and 
esters. �e maximum absorbance intensity of inflammable 
volatiles for EP/LDH-6% and EP/m-LDH-6% composites was 
much higher than that for pure EP, which effectively diluted 
the concentration of flammable volatiles.

Xu et al. [66] reported a hybrid RGO-LDH/Mo system 
through RGO-LDH modified by heptaheptamolybdate 
(Mo7O24

6−) via ion exchange method, and introduced it into 
polyurethane elastomer (PUE). Compared with pristine PUE, 
the pHRR of PUE1 was decreased by 36.4% because the LDH 
layer and carbon residue inhibited the volatilization of com-
bustible gases produced during polymer decomposition, iso-
lated oxygen, and reduced the thermal radiation of materials. 
At the same time, due to the generated water vapor, the tem-
perature was lowered and the combustion process of the com-
posites was delayed, so the heat was absorbed in the 
endothermic decomposition process of LDH.

2.2.2. Gas Phase Free Radical Inhibition. Flame retardants can 
also capture and annihilate active free radicals, thus preventing 
and inhibiting free radical chain reactions, reducing the flame 
burning rate and extinguishing a flame.

Yang et al. [67] used organophilic α-zirconium phosphate 
(α-ZRP, OZRP) as a synergistic agent with aluminium hydrox-
ide (ATH), and introduced it into low-density polyethylene 
and ethylene-vinyl acetate (LDPE/EVA) blends. As LDPE/
EVA/(ATH, OZrP) hybrids burned, ATH first decomposed 
rapidly with the release of hydration water. �is endothermic 
decomposition lowers the temperature of the reaction, and 
the released water vapor dilutes flammable volatile gasses. 
Second, a small amount of phosphorus monoxide (PO•) pro-
duced by the combustion of OZrP can quench active radicals 
produced by the burning of the gas phase, while the exfoliated 
OZrP layers can efficiently promote the formation of compact 
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Figure 2: Flame retardant mechanisms of partial two-dimensional materials. (a) �e free radicals of PP chain scission are inhibited, and 
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the surface of PS spheres. �is method proved to be an efficient 
and facile approach to fabricate polymer/MoS2 nanocompos-
ites with good dispersion and improved properties [75].

On the other hand, MoS2 and its derivatives have been 
used for smoke suppression of various polymers, including 
polystyrene [17, 84], polyvinyl alcohol [85], epoxy [86–89], 
polyurethane [90], and polyamide 6 [91]. For example, Zhou 
et al. [86] reported LDH/MoS2 hybrids were facilely prepared 
by self-assembly of exfoliated MoS2 nanosheets and LDH via 
electrostatic forces. �is approach endowed excellent fire 
resistance to an epoxy matrix, which was reflected by the sig-
nificantly reduced peak heat release rate, total heat release, and 
total smoke production (Figure 3). Qiu et al. [88] showed that 
polyphosphazene nanoparticles (PPN) functionalized with 
MoS2 nanosheets have been successfully fabricated, followed 
by high temperature polymerization. �e incorporation of P 
and N atoms efficiently reduced the stacking of MoS2 nano-
layers and formed a large number of active sites. It was also 
demonstrated that the introduction of MoS2@PPN nanohy-
brids significantly improved the flame retardancy of EP. Feng 
et al. [91] used supramolecular self-assembly to prepare sand-
wich-like melamine cyanurate/MoS2 sheets as hybrid flame 
retardants for PA6. �e introduction of MoS2 sheets func-
tioned not only as a template to induce the formation of 
two-dimensional melamine cyanurate capping layers, but also 
as a synergist to generate integrated flame-retarding effects in 
the hybrid sheets, in addition to a high-performance smoke 
suppressor to reduce the fire hazards of PA6 materials.

WS2 is one of the most commonly used compounds in 
semiconductor TMS’s. In recent years, materials such as WS2 
have attracted increased attention in the field of nanocom-
posite fillers, due to their high thermal and mechanical 
properties [69, 92]. Díez-Pascual et al. prepared an inorganic 
fullerene-like tungsten disulfide (IF-WS2) lubricant, and 
then used this to manufacture PPS/IF-WS2/CF laminates via 
melt-blending and hot-press processing. �ese multiscale 
laminates exhibited higher ignition points and notably 
reduced pHRR compared to PPS/CF alone. �e coexistence 
of micro- and nano-scale fillers resulted in synergistic effects 
that enhanced the stiffness, strength, thermal conductivity, 
and flame retardancy of the matrix [70]. Wenelska et al. 
reported WS2 functionalized with metal oxides (iron oxide 
and nickel oxide) as a filler for PEs. �is showed that com-
posites can provide a certain physical barrier and inhibit the 
diffusion of heat and gaseous products during combustion 
[69].

3.2. Phosphorus-Containing Compounds. Phosphorus-containing 
compounds, including α-zirconium phosphate (α-ZrP), black 
phosphorus (BP), and vanadium dehydrated phosphate (VOPO4), 
may replace halogenated variants that are still widely used in flame 
retardants. Phosphorous flame retardants can play a role in both 
the gas phase and condensed phase extinguishing mechanisms 
during a fire [3]. In the following, different P-containing flame 
retardants are explored in detail.

3.2.1. α-Zirconium Phosphate. α-ZrP is a type of solid acid, 
which represents a wide range of chemical substances that 
are able to accept electrons and create coordinate bonds. �e 

charred layers in the condensed phase and hinder the diffusion 
of oxygen and flammable volatile products.

Ren et al. [68] prepared black phosphorene/graphene 
(BP/G) composites by high-pressure nano-homogenizer 
machine (HNHM) and distributed them uniformly in WPU. 
�e addition of graphene could reduce pHRR by 21.2%, and 
the addition of BP/G could reduce pHRR by 48.18% when 
compared with the pristine WPU. �is was because the special 
layered structure of graphene and BP had barrier effects during 
degradation process, which could prevent materials from oxy-
gen and heat transfer. In addition, BP could form PO• free 
radicals, diffuse in surrounding gases, and react with H• or 
OH• free radicals produced by polymer under combustion, 
hence reducing the flame.

3. Research Progress on Polymer/Two-
Dimensional Nanomaterial Flame Retardant 
Composites

3.1. Sulfur-Containing Compounds. Various 2D nanosheets, 
such as molybdenum disulfide (MoS2) and tungsten disulfide 
(WS2), have attracted tremendous attention due to the unusual 
properties associated with their ultrathin nanosheet structures. 
MoS2 is composed of three stacked atomic layers (S-Mo-S) held 
together by van der Waals forces [17]. Mechanically exfoliated 
atomically thin sheets of WS2 have been shown to exhibit 
high in-plane carrier mobility and electrostatic modulation 
of conductance similar to MoS2 [69]. �ese have been 
extensively studied in the field of polymer flame retardation 
because of their outstanding mechanical properties, which 
can be attributed to their small size, typically in the range of 
40–180 nm, and their chemical inertness [70].

On the one hand, MoS2 has been used for enhancing the 
thermal, flame-retardant, and mechanical properties of poly-
mer composites [18–20, 71–83] due to its small size and high 
thermal stability. For instance, cellulose nanofibers (CNFs) 
were nano-wrapped with ultrathin 1T phase MoS2 nanosheets 
via chemical crosslinking to produce an aerogel. �ermal and 
combustion characterization revealed highly desirable prop-
erties (thermal conductivity k = 28.09 mW m−1 K−1, insulation 
R value = 5.2, limit oxygen index (LOI) = 34.7%, total heat 
release = 0.4 MJ m−2). Considering the inherently low density 
of this material, there was significant opportunity for its use 
in a number of insulating applications [72]. Wang et al. 
reported the synthesis of MoS2 nanosheets via a “thiol-ene” 
click reaction between defect-rich MoS2 nanosheets with sul-
fydryl groups and ene-terminated hyperbranched polyphos-
phate acrylate (HPA), and characterized these nanosheets by 
FTIR and XPS to confirm their covalent functionalization 
through C–S bonds. �e combustion behavior of unsaturated 
polyester resin (UPR) composites was also investigated, 
demonstrating an obvious reduction of 43.2% and 39.6% in 
Peak Heat Release Rate (pHRR) and Total Heat Release (THR), 
respectively [74]. To solve the problem of homogeneous dis-
persion of MoS2 nanosheets in a polymer matrix and exact 
interface control, hierarchical polystyrene@MoS2 core-shell 
structures were constructed by combining latex technology 
and self-assembly of oppositely charged MoS2 nanosheets onto 
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was obviously suppressed a�er incorporating BP-PZN 
nanosheets. Digital photos, SEM, and Raman spectra of char 
residue from such an EP are shown in Figure 4.

VOPO4 is a new two-dimensional graphene material with 
a typical layered structure where VOPO4 has been formed by 
connecting VO6 octahedra with vertex-sharing with phos-
phate PO4 tetrahedra. An ultrathin VOPO4 nanosheet is 
expected to improve the thermal stability, flame retardancy, 
and mechanical properties of a polymer. In addition, VOPO4 
nanosheets can also catalyze the dehydrogenation of a polymer 
and promote the carbonization of a polymer [116]. For exam-
ple, a VOPO4 ultrathin nanosheet was synthesized by a simple 
refluxing method and then modified with typical organic sur-
factants (VOP) [117]. A�erwards, this nanosheet was incor-
porated into PS for reducing fire hazards. With a loading of 1 
wt% of modified VOP, T5%, T10%, T50%, and Tmax values 
increased 15, 22, 29, and 33°C, respectively. Furthermore, the 
presence of VOP nano-sheet reduced the decomposition rate 
of PS and increased the char residue.

3.3. Nitrogen-Containing Compounds. As a structural analogue 
of graphene, monolayer 2D hexagonal boron nitride (h-BN), 
with the alternate use of boron and nitrogen atoms instead 
of carbon atoms in the 2D conjugate layers, has attracted 
increased attention due to its high-temperature stability, 
excellent thermal conductivity, superior chemical inertness, 
and low friction coefficients [16, 118]. Considering the ionic 
properties of the B–N bond in the boron nitride layer, which 
is different from the covalent C–C bond of graphene, boron 
nitride nanosheets have outstanding resistance to oxidation 
(the degradation temperature in air is 840°C) and corrosion 
[119]. Most notably, boron nitride with a 2D morphology 
and high thermal resistance can be used as an effective nano 
flame retardant to improve the thermal stability, thermal 
conductivity, and flame retardancy of a polymer.

It is believed that H–BN can be used as a rigid barrier for 
the transfer of decomposed fragments due to its highly ther-
mal stability via its layered structure, thus improving the fire 
safety of polymers [11–16, 42, 51, 118–133]. Zhang et al. [16] 
reported a multifunctional CPBN that was successfully pre-
pared via the wrapping of a phytic acid doped polypyrrole 
shell, followed by the adsorption of copper ions. �e signifi-
cant suppression of CO and HCN release could be observed 
from a TG-IR test. Tensile tests showed that the addition of 
CPBN was beneficial to the mechanical properties of TPU.

Additionally, super paramagnetic zinc ferrite (ZF) has 
been used to modify the surface of boron nitride nanosheets 
(BNN) via a typical solvothermal method [133]. �e prepared 
ZF-BNNS nanofiller was then loaded in an EP and placed in 
a weak magnetic field (0.05 T) to achieve an orderly orientation 
of the EP matrix. Results showed that this weak magnetic field 
could adjust the orderly arrangement of ZF-BNNS nanofillers 
in an EP matrix, and well-ordered ZF-BNNS nanofillers were 
superior to randomly distributed ZF-BNNS nano-fillers in 
enhancing EP fire resistance.

With the rapid development of electronic devices, there is 
an increasing demand for high heat-dissipation polymers [13, 
118, 126, 129]. We found that a high thermal conductivity 
(TC) is also an important factor for the high flame retardancy 

dehydrogenation of a polymer occurs and these unsaturated 
sites then lead to crosslinking and ultimately graphitization. 
�erefore, solid acid-type α-ZrP can play an effective role as 
a crosslinking catalyst through the catalysis of carbonization 
of the polymer itself during thermal decomposition [93]. 
However, two main subjects have to be addressed before 
their further applications as flame retardants: the inherent 
agglomeration of nano-sized α-ZrP and their incompatibility 
with polymers [59, 63, 67, 93–114].

Planar-like α-ZrP particles have been modified with a kind 
of cyclophosphazene derivative (named HAC) by a three-step 
hybridization method [113]. �e combination of (intumescent 
flame retardant) IFR and HAC can significantly improve the 
yield and graphitization of these residues, make them more 
stable, compact, and continuous, and allowing the inhibition 
of the thermo-oxygen contact of the underlying poly (vinyl 
alcohol) (PVA). In addition, the mechanical properties of such 
composites could be enhanced and toughened by specific HAC 
content.

Xie et al. [63] reported a macromolecular charring agent 
(MCA) decorated with zirconium phosphate nanosheets. �is 
was then combined with ammonium polyphosphate (APP) to 
reduce the flammability of polypropylene. �e limiting oxygen 
index (LOI) of PP/ZrP-d-MCA/APP reached 32.5% and a 
UL-94-V0 rating when the content of ZrP-d-MCA and APP 
was 5%wt and 15%wt, respectively. �e flame-retardant mech-
anism of ZrP-d-MCA/APP was further studied. It was shown 
that a ZrP nanosheet could effectively catalyze the carboniza-
tion reaction of MCA to form a closed micro-nano carbon 
cage during the combustion process.

Fu et al. [114] reported the synthesis of a hybrid 
cardanol-derived zirconium phosphate (CZrP) from the 
renewable resource cardanol. �eir results showed that the 
enlarged interlayer spacing of CZrP facilitated the homoge-
neous dispersion of the nano-additive in an epoxy resin. �e 
suppressed fire hazards of EP were attributed to the physical 
barrier effect induced by the 2D-CZrP. In addition, the tensile 
strength and the elongation at break were enhanced simulta-
neously due to the reinforcing effect of the inorganic platelet 
and the plasticizing effect of the long alkyl chains in this 
unique hybrid.

3.2.2. Black Phosphorus and Dehydrated Vanadyl 

Phosphate. Mono or multi-layer BP is a two-dimensional 
nanomaterial with distinct physical/chemical properties due to 
dimensionality effects [21, 68]. BP can catalyze the formation 
of char and capture free radicals, and its unique layered 
structure can also serve as a physical barrier for insulation 
from heat and oxygen during the combustion process [115]. 
For example, Qiu et al. [115] reported a stable cross-linked 
polyphosphazene-functionalized BP (BP-PZN) synthesized 
in the presence of air. �e BP-PZN was developed with 
abundant -NH2 groups via a one-pot polycondensation of 4,4′- 
diaminodiphenyl ether and hexachlorocyclotriphosphazene 
on the surface of BP nanosheets. Results demonstrated that 
the introduction of 2 wt% BP-PZN distinctly improved the 
flame-retardant properties of EP. For instance, there was a 
59.4% decrease in pHRR and a 63.6% reduction in THR. �e 
diffusion of pyrolysis products from an EP during combustion 
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of external and interior char residues for (I) EP, (II) EP/BP-Bulk2.0, and (III) EP/BP-PZN2.0 nanocomposites. Adapted from [115].
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fabricating EP-based nanocomposites with both superior TC 
and flame retardancy [118]. �ese ILFR-fBNNS trigger resin 
crosslinking at a given temperature, while conferring 

of boron nitride nanosheets. Non covalent ionic liquid flame 
retardant-functionalized boron nitride nanosheets (ILFR-
fBNNSs) were used as a multifunctional nano-additive for 
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Figure 5:  (a) Schematic illustration of thermal conduction and flame retardation mechanisms of EP/ILFR-fBNNS nanocomposites. (b) 
�ermal conductivity of EP/h-BN, EP/BNNS, and EP/ILFR-fBNNS composites. (c) �e HRR, THR, TSP, and mass loss versus time curves of 
neat EP, EP/ILFR, EP/BNNS 12.1% vol and EP/ILFR-fBNNS 12.1% vol samples obtained from cone calorimeter tests. Adapted from [118].
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heat release, peak smoke production rate, and total smoke 
production of polyurethane foam were decreased by 84.1%, 
89.4%, 84.4%, and 95.2%, respectively. A polyimide (PI) com-
posite aerogel was also prepared by freeze-drying with 
graphene and MMT as additives [141]. �rough the strong 
interaction between the two components, GO/MMT com-
plexes could be synergistically dispersed in water and have 
good dispersion in a PI matrix, thus endowing the composite 
aerogel with enhanced mechanical, thermal, and flame-retard-
ant properties. In order to improve the flame retardant per-
formance of IFR/PP composites, OMMT intercalation cobalt 
compounds (Co-OMt) have been prepared and modified using 
acidified chitosan to further expand the interlayer spacing of 
MMT [143]. CO-OMT/IFR/PP nanocomposites have been 
prepared by a melt blending method. With addition of 4% 
mass Co-OMt, 4% mass Co-OMt/IFR/PP nanocomposites 
have surpassed a UL-94 V-0 rating, with an LOI value as high 
as 32.1%.

�e use of MMT as a synergic additive to flame retardants 
for designing polymers with better flame-retardant properties 
has already been extensively studied [45, 153–166]. �e effect 
of APP/zinc borate (ZB) for making highly efficient flame 
retardants and ceramics of ethylene-vinyl acetate/mica pow-
der/organic modified montmorillonite (EVA/MP/OMMT) 
composites has been shown [166]. In a fire test, the EVA/MP/
OMMT/APP/ZB system displayed obvious flame-retardant 
features, showing a much lower THR and TSR than pure EVA. 
Zhang et al., [45] reported a flame retardant (ACS) prepared 
by crosslinking chitosan with bis-(4-formylphenyl)-phe-
nyl-phosphonate. Flame-retardant TPU composites were then 
prepared by melt blending of ACS, APP, and OMMT. For TPU 

improvements in the dispersion and interfacial adhesion, 
thereby forming a thermally conductive network with reduced 
interfacial phonon scattering and a high-efficiency nano-bar-
rier network acting synergistically with ILFR-induced char 
residues during thermal degradation. Figure 5 shows the rela-
tionship between thermal conductivity and flame 
retardancy.

Liu et al. [13] demonstrated the use of exfoliated h-BN 
nanosheets as a high-performance, binder-free fire-resistant 
coating for wood. �e surface of a wood substrate remained 
intact a�er exposure to fire. �e anisotropic thermal conduc-
tivity and low thermal diffusivity and effusivity of h-BN make 
it an excellent wood protection coating.

3.4. Silicon-Containing Compounds. Among nanofillers, 
layered silicates are the most widely used for preparing polymer 
nanocomposites because they are readily available and well 
characterized. Montmorillonite (MMT) is a crystalline 2 : 1 
layered clay mineral where a central alumina octahedral sheet 
is sandwiched between two silica tetrahedral sheets, and it 
has been shown to be safe in animals or humans [134, 135].

�ere are various methods that have been used to realize 
flame-retardant polymer/montmorillonite nanocomposites, 
including intercalation, synergy, organic modification, hybrid-
ization, layer-by-layer assembly, and self-assembly [134–152]. 
Inspired by nacre, Xie et al. [151] developed a super-efficient 
fire-safe nanocoating based on carboxymethyl chitosan and 
modified MMT via one-step self-assembly. �e nanocoating 
possessed a well-arranged nacre-like hierarchical microstruc-
ture, exhibiting high transparency and specific nacre-like iri-
descence. Most importantly, the peak heat release rate, total 

Table 1: Formulations and flammability test results of TPU composites [45].

Sample TPU [g] APP [g] CS [g] ACS [g] OMMT [g] LOI [%] UL-94 rating

TPU 100 0 0 0 0 20.8 ± 0.3 None

TPU/APP/CS 90 5 5 0 0 26.6 ± 0.2 None

TPU/APP/ACS 90 5 0 5 0 28.6 ± 0.1 V-2

TPU/APP/ACS/
OMMT 90 4.5 0 4.5 1 29.0 ± 0.1 V-0

Table 2: Burning parameters of two-dimensional nanomaterials/polymer composites.

Polymer matrix Recipes pHRR THR TSR Year and reference

EP 2 wt% MoS2 @PPN −30.7% −23.6% −43.0% 2018 [88]

PE 2 wt% WS2/Ni2O3 −34.9% −17.0% / 2018 [69]

EP 6 wt% MCPA-ZrP −42.2% −21.4% / 2018 [114]

EP 2 wt% BP-PZN −59.4% −63.6% −32.0% 2019 [115]

PS 3 wt% C-VOP −48.3% −43.6% / 2017 [117]

EP 3 wt% ZF-BNNS −48.5% / −6.5% 2019 [133]

PP 4 wt% Co-OMt/19 wt%IFR −63.8% −17.6% / 2017 [143]

EP 7 wt% fCD-DBS-Ph-LDH −72.3% / −63.7% 2016 [180]

EP 2 wt% RGO-LDH/CuMoO4 −47.6% −28.5% −38.0% 2018 [191]

PS 4 wt% g-C3N4/DAHPi −42.8% −20.8% / 2017 [233]

EP 2 wt% ZIF-67/RGO-B −65.1% −41.4% −37.6% 2019 [223]

EP 2 wt% MoS2-CNTs −26.4% −31.3% / 2015 [19]
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formula [M1−x
2+ Mx

3+(OH)2]
x+·[Ax/n

n−·yH2O]x−, where M2+, 
M3+, and An− represent divalent metal cations, trivalent metal 
cations, and an inorganic or organic anion with negative 
charge n, respectively [168]. When used as flame retardant for 
polymer materials, it has been shown that the flame-retardant 
mechanism of LDHs are via the “barrier effect” of nano-layers, 
inert gas dilution of oxygen and the formation of ceramic-like 
materials [169].

LDHs can be directly used as flame retardant additives 
because of their unique chemical properties and layered struc-
tures [170–177]. For example, flexible polyurethane foam with 

samples containing 10% flame retardant, the LOI increased 
from 20.8 to 29.0, the UL-94 rating increased from no to V-0, 
and the pHRR decreased from 1090 to 284 kW/m2, respec-
tively. �e test results for added OMMT and non-added sam-
ples are shown in Figure 6 and Table 1.

3.5. Layered Double Hydroxides. Layered double hydroxides 
(LDH) are a kind of synthetic anionic clay with host and guest 
nano-layered materials, which contain positively charged 
metal hydroxide nanosheets, intercalated anions, and water 
molecules [167]. LDHs can be represented by the chemical 
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Figure 6: (a) SEM images of the surfaces residues of (I) neat TPU, (II) TPU/APP/CS, (III) TPU/APP/ACS, and (IV) TPU/APP/ACS/OMMT. (b) 
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containing 18.0 wt% IFR and 2.0 wt% PWA-LDH was 48.3%, 
passed the UL-94 V-0 rating, and the pHRR of pure PLA was 
significantly reduced from 306.3 kw/m2 to 40.1 kw/m2 [167]. 
As shown in Figure 7, the introduction of LDH into PLA/IFR 
composites significantly improved the flame retardancy of the 
condensed phase. By designing composite multi-modifiers 
with varied functions, multifunctional intercalation of LDHs 
has been developed, including functionalized hydroxypro-
pyl-sulfobutyl-beta-cyclodextrin (sCD), phytic acid (Ph), 
sodium dodecylbenzenesulfonate (SDBS), and chalcone, and 
these functions have been transferred to epoxy materials using 
nanocarriers [180]. Studies have shown that at only 7 wt% 
fCD-DBS-Ph-LDH, the resultant EP nanocomposites passed 
the UL-94 V-0 rating. Compared with a pure epoxy resin, the 
pHRR (−72%) in a cone calorimeter test decreased 
significantly.

Lastly, the modification of LDHs via the covering surfaces 
with hydrophobic flame-retardant molecules is also generally 
believed to be very effective in improving their compatibility 
with other polymer matrices for flame retardation [40, 44, 66, 
179, 186–194]. DBS intercalated LDH (LDH-DBS) nanosheets 
have been surface-assembled by an ultrafine Ni(OH)2 nano-
catalyst via circular coordination-induced growth, with the 
aim of imbuing EP with high-efficient fire retardant properties 
[193]. An LDH-DBS@Ni(OH)2 material was designed to 

a density of 40 ± 2 kg m−3 was prepared by combining LDH 
and kra� lignin (a byproduct of the pulp and paper industry) 
with phosphorous polyol (E560) [175]. �e effects of fillers on 
the mechanical properties and combustion properties of fibers 
were then studied. �e presence of such low amounts of lignin 
by itself did not increase the flame retardancy of FPF, but the 
addition of E560 increased the charring efficiency, while the 
addition of LDH contributed to reinforcing the char layer, 
yielding a more cohesive protective layer that decreased the 
pHRR to 47% as compared with an unfilled foam 0E. Wang 
et al. [176] investigated the synergistic effects of trace amounts 
of chloride on char formation and flame retardancy of linear 
low density polyethylene (LLDPE) filled with NiAl-LDHs. 
�eir results showed that the char yield of 20% LDH/LLDPE 
(20 wt% NiAl-LDH) increased from 10.4% to 49.6% with the 
addition of 0.5 wt% NH4Cl.

Moreover, the modification of LDHs via the intercalation 
of some flame-retardant molecules has been shown to be very 
effective in improving their compatibility with polymer matri-
ces and flame retardants[44, 60, 65, 66, 167, 168, 178–185]. 
Zhang et al., prepared MgAl-LDH intercalated with phos-
photungstic acid (PWA-LDH) by a reconstruction method 
and melted it with IFR and poly (lactic acid) (PLA) to prepare 
a flame-retardant biodegradable resin. �eir studies showed 
that the maximum LOI value of composite materials 

(a) (b) (c)

(d) (e) (f)

Figure 10: Digital photos of char residues of (a) PS, (b) PS/APP, (c) PS/CNAPP5, (d) PS/CNAPP10, (e) PS/CNAPP20, and (f) PS/CNAPP30 
a�er the cone calorimetry measurement. Adapted from [232].
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exploit a spatial-dependent catalytic strategy to improve the 
interfacial structure between LDH nanosheets and an EP 
matrix during dynamic charring. �e results showed that  
3 wt% LDH-DBS@Ni(OH)2 led to an EP matrix with a 
UL-94 V-0 rating. Xu et al. [191] synthesized a hybrid com-
pound containing MgAl-LDH loaded graphene (RGO-LDH) 
by a co-precipitation method. An RGO-LDH/CuMoO4 hybrid 
was then prepared by introducing CuMoO4 onto the surface 
of RGO-LDH. �eir results illustrated that the pHRR and THR 
of an EP composite with RGO-LDH/CuMoO4 added were 
decreased significantly. �e reason was that the Cu2O and 
MoO3 generated from RGO-LDH/CuMoO4 in the combustion 
process helped to increase the yield of char residue and the 
compactness of the char layer.

3.6. Carbon Skeleton. Graphene is one of the most classic 
flame retardant C-skeleton two-dimensional nanosheets. In 
recent years, g-C3N4 and organic frameworks have also been 
studied in the field of flame retardant polymers.

3.6.1. Graphene. Graphene is a single-layer carbon plate with 
high thermal conductivity, excellent mechanical strength, and 
superior electronic conductivity [195–199]. It has been shown 
that modified graphene has excellent fire resistance even 
when exposed to flame [200]. In order to obtain improved 
flame retardant performance, functionalization of graphene 
or loading of synergistic flame retardants should effectively 
improve the flame retardant efficiency of graphene.

Various functional treatments or synergistic addition of 
flame retardants have been performed on graphene surfaces, 
including the incorporation of P, N, or Si [201–212]. Hu et al., 
[62] synthesized a functionalized graphene oxide (FGO) 
gra�ed to a hyper-branched flame retardant based on 
N-aminoethyl piperazine and a phosphonate derivative to 
reduce the flammability and toxic gas release of polystyrene 
(PS). �e authors attributed the function of this to the homo-
geneous dispersion of FGO in a PS matrix and enhanced phys-
ical barrier effects. Yu et al. [212] successfully prepared 
functionalized reduced graphene oxide (FRGO) wrapped with 
P-N flame retardants by a one-pot method, and then covalently 
incorporated them into EP. �e glass transition temperature 
of FRGO/EP nanocomposites remarkably increased by 29.6°C 
under 4 wt% loading. �e pHRR of EP nanocomposites con-
taining 2 wt% FRGO decreased by 43.0%. Jing et al., [213] 
reported UL-94 V-0 rating flame retardant PLA composites 
with a total content of only 3 wt% using bio-based polyphos-
phonate (BPPT) and polyethyleneimine-modified graphene 
oxide (M-GO) as flame retardants. Feng et al., [64] used a 
“branch-like” strategy with a graphene polymer as the back-
bone and a flame retardant as the branch to functionalize 
reduced graphene oxide (RGO) to improve the flame retardant 
gra�ing rate and compatibility of RGO in a polymer matrix, 
and then introduced the resulting GP-DOPO into EP/AgNW 
composites in situ. Phosphorus-nitrogen co-doped rGO 
(PN-rGO) was also prepared by a scalable hydrothermal and 
microwave process to improve the flame retardancy of an EP 
[214]. Figure 8 shows the schematic illustration of the flame 
retardation mechanism for EP/PN-rGO. Pethsangave et al. 
[215] reported that functionalized polyaniline (PANI)- and 

polypyrrole (PPy)-supported graphene nanocomposites were 
effective flame retardants. �ese synthesized nanocomposites 
showed excellent flame-retardant properties when coated on 
cotton fabric and wood. Li et al. [216] synthesized a hybrid 
flame retardant (GO-MD-MP) containing methacryloisobutyl 
polyhedral oligomeric silsesquioxane (POSSMA), reactive gly-
cidyl methacrylate (GMA), bis-9, 10-dihydro-9-oxa-10-phos-
phaphenanthrene-10-oxide methacrylate (bisDOPOMA) and 
its derivative functionalized graphene oxide (GO) via a one-
step gra�ing method. �eir results showed that the LOI of EP 
increased to 31.1% a�er adding 4 wt% GO-MD-MP, and it 
easily reached a UL-94 V-0 rating.

Graphene incorporated with metal oxides have also been 
realized for use as flame retardants [217]. CeO2/RGO [218] 
hybrids and graphene-zinc stannate (G-ZS) [219] hybrids have 
been synthesized by hydrothermal methods. �ey can effec-
tively reduce toxic gases released from the combustion process 
of polymers. Yuan et al. [220] used an ingenious method to 
decorate Ni (OH)2 nanosheets onto the surface of GO via the 
strong affinity of Ni2+ with NH2 groups. �eir experiments 
showed that the addition of functionalized graphene oxide 
(FGO) reduced the pHRR, THR, and TSP of polypropylene 
(PP) during combustion. Wang et al. [221] synthesized a series 
of nitrogenous resorcinol formaldehyde/graphene oxide com-
posite aerogels by using a self-assembly copolymerization 
strategy. �e materials featured with multiple functions, e.g., 
thermal insulation, ultra light, anti-corrosion, mechanical 
resilient, high flame-retardant capability.

Graphene has also been incorporated with other inorganic 
fillers [50, 222–226]. Chen et al. [226] ingeniously prepared a 
smart fire alarm wallpaper based on ultralong hydroxyapatite 
nanowires (HNs) and GO thermosensitive sensors. �e ther-
mosensitive sensor exhibited a low responsive temperature 
(126.9°C), fast response (2 s), long working time in flame (at 
least 5 min), and could be processed into various shapes, dyed 
with different colors, and printed with the commercial printer. 
It had broad application prospects in high-security interior 
decoration of houses. Nanosilica/graphene oxide (m-SGO) 
hybrids have been prepared by sol-gel and surface treatment 
processes on a large number of non-flammable silicas on the 
surface of graphene oxide [41]. �ese hybrids significantly 
improved the flame retardancy, mechanical properties, and 
thermal stability of an EP, endowing the EP resin with high 
thermal conductivity, low dielectric loss, and high dielectric 
constants. Zuo et al. [227] prepared polyimide (PI) composite 
aerogels with enhanced flame retardancy via an eco-friendly 
freeze-drying method, followed by a thermal imidization pro-
cess with graphene and MMT as additives. Guo et al. [228] 
studied the mechanical and flame retardant properties of four 
composites, EVA with aluminum hydroxide (ATH), EVA with 
ATH and MoS2, EVA with ATH and graphene nanoplatelets 
(GNPs), and EVA with all three components.

3.6.2. g-C3N4 and Organic Framework Nanosheets.  
Analogous to graphene, g-C3N4 also has stacked two-
dimensional structure [229]. Because of its excellent thermal 
stability, chemical stability, and catalytic performance 
[230], it has attracted increased attention in the field of 
flame retardant and smoke suppression. For example, it 
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4. Conclusion

Clarifying the special properties of various two-dimensional 
nanomaterials is pivotal for being able to fully exploit their 
flame-retardant properties. With increased awareness of the 
structure and properties of two-dimensional nanomaterials, 
researchers will be able to realize the potential of two-dimen-
sional nanomaterials for fulfilling required flame-retardant 
effects under low load conditions. Based on the specific prop-
erties of different two-dimensional nanomaterials, they can be 
reasonably used as additives or reactive components in the 
design of polymer flame-retardant materials. With additional 
research, two-dimensional nanomaterials/polymers will be 
more suitable for specific applications. Although two-dimen-
sional nanomaterials are widely used to prepare fireproofing 
materials in the laboratory because of their high efficiency and 
environmental friendliness, many challenges still remain. First 
is the challenge of the large-scale application of two-dimen-
sional nanomaterials. New two-dimensional nanomaterials, 
including g-C3N4 and black phosphorus, have not been pre-
pared at industrial as of yet. Moreover, the uniform dispersion 
of many two-dimensional nanomaterials in a polymer matrix 
depends on their efficient exfoliation and surface modification. 
�e application of hydrophobic technology of two-dimensional 
nanomaterials in industry is promising. Second is finding suit-
able flame retardant applications for two-dimensional nanoma-
terials. In specific applications, polymer materials not only need 
to meet flame retardant requirements, but also need to face meet 
requirements for heat dissipation, dielectric properties, etc. In 
some special cases, appropriate multifunctional nanosheets can 
be designed to meet specific design challenges according to the 
molecular components and structure of the two-dimensional 
nanomaterial. For example, in highly integrated small electronic 
devices, h-BN nanosheets are a reasonable choice.

�e authors are confident that the above-mentioned chal-
lenges will be gradually overcome through the continuous 
development and innovation of two-dimensional nanomaterials 
due to their intrinsic advantages over other materials. �e thor-
ough survey of the current literature presented here offers useful 
information for realizing the potential of two-dimensional 
nanomaterials/polymer and should help in guiding the design 
of novel high-performance flame-retardant composites.
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