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Abstract—Certain organic molecules, such as alkanethiols, can adsorb on metals to form 

monolayers. Sometimes domains appear in the monolayers.  For example, an incomplete 

monolayer may form islands, and a mixed-composition monolayer may separate into distinct 

phases.  During annealing, molecules diffuse on the metal surface.  The domain boundary energy 

drives the domains to coarsen.  The contact potential between dissimilar domains drives the 

domains to refine.  On the basis of existing experimental information, we suggest that the 

competition between coarsening and refining should stabilize certain domain patterns.  We 

formulate a free energy functional to include the effects of mixed species, domain boundary, and 

contact potential.  An approximate energy minimization estimates the equilibrium domain size.  

We derive a diffusion equation consistent with the free energy functional.  The numerical 

solution of the diffusion equation follows the evolution of the monolayers from a random initial 

concentration field to patterns of dots and stripes.  The patterns do not have any long-range order 

unless some form of anisotropy is introduced.  We also discuss the practical implications of the 

theory and, in particular, the possibility of guided self-assembly. 
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I.  Introduction 

 An alkanethiol molecule, HS(CH2)nX, consists of a thiol group HS at one end, an alkyl 

chain (CH2)n in the middle, and a tail group X at the other end.  As illustrated in Fig. 1, when a 

clean gold substrate is in contact with an alkanethiol solution, the molecules adsorb on the gold 

surface to form a self-assembled monolayer (SAM). 1-3  The thiol groups bond to the gold 

surface, the alkyl chains attract one another through the van der Waals force, and the tail groups 

are exposed at the surface.  Alkanethiol monolayers have been used as a model system to study 

many phenomena.  For instance, SAMs can control surface properties (e.g., adhesion and 

wetting). 4  Patterned SAMs (e.g., by microcontact printing) are used to fabricate devices, and to 

confine cells and biomolecules in desired regions on a substrate. 5-7 

 Under certain conditions, a SAM spontaneously forms domains.  For example, for an 

incomplete monolayer, patches of the monolayer coexist with patches of the bare metal. 8-10 (The 

“bare metal” can actually be covered by the lying-down phase. 1)  Also, when a monolayer of 

dissimilar alkanethiols fully covers the metal surface, different phases may coexist. 9-12  Unless 

the distinction is important, we will refer to the patches as domains, be they standing-up phase, 

lying-down phase, or bare metal.  The domains observed so far have sizes ranging from 

nanometers to micrometers, and do not form any regular pattern.  Is the domain size set by 

thermodynamic equilibrium, or by kinetics?  Can the domains be stimulated to form some 

regular patterns, such as an array of stripes or a lattice of dots?  Within the alkanethiol family, 

properties vary considerably with the alkyl chain length and the tail group, giving rise to a large 

parameter space which can be used to tailor experiments.  Regular domain patterns of a 

controllable size would open new applications of theses systems.  Consequently, it is significant 

to consider these questions theoretically, even though definitive experiments are lacking.  A 
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predictive theory will point to fruitful experiments with alkanethiols on gold, as well as with 

other molecule-substrate systems. 

 This study was also prompted by the observation of equilibrium domain pattern formation 

in monolayers of several types.  Examples include atomic monolayers on solid surfaces, 13-19 and 

molecular monolayer at the air-water interface (i.e. Langmuir films). 2,20-23  The adsorbed atoms 

or molecules are mobile.  Domains coarsen to reduce the total length of the domain boundaries.  

The residual stresses, or the presence of electric dipoles in a monolayer, induce an elastic or 

electrostatic field, so that the domains may refine to reduce the free energy associated with the 

field.  It is the competition between the domain boundary energy and the field energy that leads 

to the equilibrium domain patterns. 23-30  The observed domain sizes range from nanometers to 

hundreds of micrometers. 

 The object of this paper is to examine, in principle, if regular domain patterns can form in 

alkanethiol monolayers on gold.  Section II discusses phase separation, domain coarsening, and 

domain refining, drawing on existing experimental data that relate to alkanethiols on gold.  The 

theory follows closely those developed for Langmuir films.   We will look at two types of 

models.  In the first type, one assigns a constant dipole moment density to each domain, allows a 

step jump in the dipole moment density across a domain boundary, and represents the domain 

boundary by a curve with a line tension. 23-27  In the second type, one represents a multi-domain 

monolayer by a continuum concentration field, describes a domain boundary by a gradient in the 

concentration field, and prescribes the free energy as a functional of the concentration field. 28,29 

The two models have the same physical content, but different mathematical representations.  We 

will adopt the first model in Section II to discuss concepts, and adopt the second in the 

subsequent sections to simulate the emergence and evolution of complex domain patterns.   
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 The two systems—Langmuir films and SAMs—have similar thermodynamics.  Section III 

formulates a free energy functional to describe the effects of mixed species, domain boundaries, 

contact potential, and electrostatic field.  In Section IV, we minimize the free energy by 

assuming sinusoidal concentration fields, arriving at an estimate of the equilibrium domain size.  

Because the long-range interaction is mediated through the electrostatic field in the space above 

the monolayer, one can alter this interaction by introducing dielectrics or metals into the space.  

We will discuss the possibility to change domain patterns this way.  The effect of surface stress 

is also discussed, using available experimental data.    

 During annealing, the rate processes in the two systems are different.  Domains in a 

Langmuir film change by viscous flow in the monolayer and water, although molecules may also 

diffuse on the surface. 21,31,32  Domains in a SAM on metal change by molecular diffusion alone.   

Electronic transport in the metal is much faster than molecular diffusion on the surface.  

Consequently, as molecules diffuse on the surface, electrons flow in the metal rapidly, the 

electric potential in the metal equalizes, and the electrostatic field in the space above the 

monolayer adjusts accordingly.  In Section V, we derive a diffusion equation compatible with the 

free energy functional, and numerically simulate the annealing process.  The simulation shows 

that long-range ordering of the patterns is extremely slow, unless symmetry is suitably broken. 

 

II.  Phase separation, domain coarsening, and domain refining 

 When a gold substrate is in contact with an alkanethiol solution, two kinds of mass 

transport, i.e. adsorption-desorption and diffusion, proceed simultaneously.  First consider the 

case that the solution contains a single species of alkanethiol.  Initially molecules adsorbed on 

the surface form islands.  As more molecules adsorb, the islands connect, and the remaining bare 
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gold surface appears as monolayer-deep vacancy islands.  Further adsorption causes the vacancy 

islands to shrink and disappear.  Finally a monolayer completely covers the gold surface.  If 

surface diffusion is negligible during adsorption, the islands (if they form at all) in an incomplete 

monolayer clearly cannot reach any equilibrium pattern.  Consequently, a necessary condition to 

form an equilibrium domain pattern is to break the contact between the solution and the metal 

before the monolayer completes.  In subsequent annealing, molecules diffuse on the surface to 

change the domain patterns.   

 Similar considerations apply to the case that the solution contains two alkanethiol species, 

A and B.  As pointed out by Folkers et al., 32 if gold is kept in contact with the solution, allowing 

the molecules on gold to exchange with those in the solution, in equilibrium the monolayer will 

have a single phase.  Again, a necessary condition to stabilize two phases in a monolayer is to 

break the contact between the solution and the metal at some point.  The monolayer covers the 

entire surface, and the amount of the two components in the monolayer has a suitable ratio.  For 

the two phases to equilibrate in annealing, the enthalpy of mixing has to overcome the entropy of 

mixing.  Let C be the concentration of the monolayer, namely, the fraction of surface sites on 

gold occupied by B-alkanethiols.  During annealing, the molecules can diffuse on the surface, 

but the amount of either species remains constant, so that the average concentration of the 

monolayer, C0 , remains invariant. Figure 2 illustrates the free energy of mixing g C  for a 

homogeneous monolayer.  The two wells at 

( )

Cα  and Cβ  correspond to the two phases.  When 

Cα < C0 < Cβ , the monolayer separates into the two phases in equilibrium. 

 In the above discussion, we have neglected the effect of contact potential and surface stress 

in stabilizing domains when the monolayer is in contact with the solution, or when the free 
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energy of mixing has a single well.  The phenomena may occur in a small concentration or 

temperature range, and have been discussed in Refs. 27 and 28.   

 Alkanethiol molecules form strong bonds to gold surface, and are not very mobile at room 

temperature.  The diffusivity of alkanethiols on gold is estimated to be D . = 10−21m2 /s

~ L

33  For the 

concentration field to change over a length scale L, the time needed scales as t .  For 

example, if the domain size is 10 nm, the time scale is ~10 .  It has been observed that 

nanoscale islands in an incomplete monolayer under atmospheric conditions coarsen at room 

temperature in days. 

2 / D

5s

8  To accelerate pattern formation, the monolayer can be annealed above 

room temperature, as long as the molecules do not evaporate appreciably, and the phases are still 

stable. 

  The excess free energy of the domain boundaries, i.e., the line tension, drives coarsening.  

For domains to be stable, a refining action must exist to prevent domains from growing too large.  

We now examine how the contact potential drives domains to refine.  Regard the monolayer and 

a few top layers of gold atoms as an interfacial system.  Across the thickness of this system, the 

positive and the negative electric charges are unevenly distributed, resulting in an electric dipole 

normal to the surface.  Now consider two gold substrates, one covered with a monolayer of phase 

α , and the other with a monolayer of phase β .   When the two substrates are connected, 

electrons flow from one substrate to the other, until the chemical potentials of electrons in the 

two substrates are equilibrated.  Due to the difference in the two monolayers, the electric 

potential in space near α  differs from that near β , say φα  < φβ .  The difference, U = φβ −φα , is 

known as the contact potential, and can be measured by the Kelvin method. 34-36  The contact 

potential sets up an electrostatic field in the space, and a charge density field on the metal 

surface. 37 
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 Figure 3 illustrates a monolayer composed of two kinds of domains, α  and β .  The period 

λ represents the domain size.  The metal occupies the lower half space x3 < 0 , and the 

monolayer coincides with the (  plane.  The space above the monolayer is occupied by air.  

The electrostatic energy stored in the space depends on the magnitude of the contact potential, 

but not on how it is set up.  Imagine that the contact potential can be varied from zero to its final 

magnitude U.  This can be accomplished, for example, by starting with a pure 

x1,x2)

α -phase 

monolayer, and gradually converting some patches into the β -phase.  When the contact potential 

is zero, the charge on the metal surface is zero.  As the contact potential increases, electrons flow 

in the metal, setting up a net positive charge +  on the metal surface under the Q β  domains, and 

a net negative charge −  under the Q α  domains.  Because the electrostatic field equations in the 

space are all linear, Q is linear in U (Fig. 4a).  The slope of the line is the inverse of the 

capacitance of the system. When the contact potential changes from 0 to U, the external agent 

that effects the change does the work 
1
2

QU .  This work is stored as the electrostatic energy in 

the space above the monolayer.  It is always a positive quantity.  

 In reality, the contact potential U is held constant by the molecular difference between the 

two domains.  The contact potential acts like a battery, and the β  and α  domains act like two 

electrodes.  The metal substrate serves as a wire connecting the electrodes.  When transporting 

an amount of charge Q from the α  domains to the β  domains, the constant voltage U does work 

QU.  Having done this work, the “battery” reduces the free energy.  Consequently, the electric 

free energy is the electrostatic energy in space minus the work done by the constant contact 

potential, namely, 
1
2

QU − QU
1
2

= − QU .  The electric free energy is always a negative quantity.  

At a constant voltage, the higher the capacitance, the larger the charge, and the lower the free 
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energy.  That is, to reduce the electric free energy, the system evolves toward a configuration of 

high capacitance.    

 We can now understand the refining action due to the contact potential.  In the discussion 

above, we kept the domain pattern fixed.  Now allow the domain pattern to change by molecular 

diffusion.  In this process, U is constant, but both the charge Q on the metal surface and the 

electrostatic field in space change.  As the domain size decreases from λ2  to λ1, the capacitance 

increases (Fig. 4b).  The trend is analogous to a parallel-electrode capacitor (Fig. 4c).  The 

charge Q increases as the domain size decreases.  The electric free energy is reduced if the 

domain size decreases, so that the contact potential drives the domains to refine.   

 The above understanding has an important practical consequence.  If a dielectric or a metal 

is introduced in the space above the monolayer, the capacitance of the system changes and so do 

the equilibrium domain patterns.  This provides a means for guided self-assembly.  The 

significance of this will be discussed in Section V. 

 For the parallel-electrode capacitor (Fig. 4c), the free energy variation with the separation 

gives rise to the familiar attractive force between the two electrodes, which must be balanced by 

a pair of some other forces pulling the electrodes apart.  In a poly-domain monolayer, the free 

energy variation with the domain size gives rise to a driving force for molecular diffusion.  We 

will derive an explicit expression for this driving force in Section V.  

 

III.  Free energy as a functional of the concentration field 

 In this section, we represent a poly-domain monolayer by a continuum concentration field, 

, and a domain boundary by a gradient in the concentration field.  First consider a 

surface of gold covered with a homogenous monolayer of concentration C.  Denote φ as the 

C x1, x2( )
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contact potential between this surface and a reference surface, say, a gold surface covered with a 

monolayer of pure A.  We assume that the contact potential is linear in the concentration: 

  φ =ζC . (1) 

That is, the dipole moment of an individual molecule, either A or B, is assumed to be unaffected 

by the presence of other molecules on the substrate.  The metal is covered by pure A at C = 0, 

and by pure B at C = 1  Consequently, the slope ζ  in (1) equals the contact potential between a 

substrate covered by pure B and another substrate covered by pure A.  This contact potential can 

be measured by connecting these two substrates in the Kelvin method.  

 Figure 5 illustrates the interface between the air and the metal.  We assume that the 

thickness of the interfacial system is small compared to the domain size, and is negligible in 

calculating the electrostatic field.  Denote the electric potential in the space by Ψ . The 

electric potential in the bulk of the metal is constant, taken to be zero.  In the space, at a point 

immediately above the monolayer, , the electric potential equals the contact potential: 

x1, x2 ,x3( )

x3 = 0+

  Ψ x1, x2 ,0( )= φ x1, x2( )= ζC x1,x2( ). (2) 

Let the electric charge per unit area on the metal surface be σ x1, x2( ).  Applying Gauss’ law to a 

small volume containing an element of the interfacial system, one confirms that the electric 

displacement component in the space immediately above the monolayer is 

D3 x1,x2,0( )= σ x1, x2( ).  Consequently, the surface charge density relates to the electric potential 

in space as  

  σ x1, x2( )= −ε0
∂Ψ
∂x3

, x3 = 0 . (3) 

 The field equations are standard.  The electric field relates to the gradient of the electric 

potential as E .  The electric displacement is linear in the electric field, namely, D= −∇ Ψ = ε0E .  
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We assume that the upper half space is free of charges, so that the electric displacement is 

divergence-free, .  Consequently, the electric potential in the air satisfies the Laplace 

equation: 

∇ ⋅ D = 0

C

  . (4) ∇ 2Ψ = 0

 The electrostatic energy stored in the space is the same as the work done in building up the 

contact potential from zero to φ, namely, 

  
1
2

E ⋅DdV =∫
1
2

φσdA∫ . (5) 

The integral on the left-hand side extends over the volume of the half space above the surface, 

and the integral on the right-hand side extends over the area of the surface.  Equation (5) can also 

be confirmed by using the field equations and the divergence theorem.  We assume that the 

system as a whole is neutral, ∫ .  Equation (5) shows that the electrostatic energy in the 

space above the monolayer vanishes when the contact potential is uniform over the surface, as 

expected. 

σdA = 0

 Next we examine the free energy of the interfacial system.  The interfacial energy density, 

Γ , takes an unusual from.  Assume that Γ  is a function of the concentration C , the 

concentration gradient ∇ , and the surface charge density σ .  Expanding the function into the 

Taylor series to the leading order terms in ∇ C  and σ , we have   

  Γ = g + h ∇ C 2 −φσ , (6) 

where g, h and φ are in general functions of C.  The term g C  is the surface energy density 

when the concentration is uniform and the surface charge vanishes.  Indeed, the function g C  is 

the free energy of mixing (Fig. 2), taken to be an input of the model.  Because the interfacial 

energy density is independent of the direction of the concentration gradient, the leading term in 

( )

( )
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∇ C  is quadratic.  Following Cahn and Hilliard38, we interpret this term as a continuum 

representation of the domain boundary energy, with  being a positive constant.  In the 

expansion (6), we keep the third term linear in σ, but neglect terms which are higher order in σ.  

As discussed in Section II, when 

h

φ is held a constant for the interfacial element, the work done 

by φ to add charge σ to the element isσφ, which reduces the free energy. 

G = φσ
∫

  The excess free energy of the interfacial object is the integral of Γ over the area of the 

surface.  The free energy G of the system—the SAM on metal and the space above—is the sum 

of the electrostatic energy stored in the space, Eq. (5), and the excess free energy of the 

interfacial object, namely, 

     g + h ∇ C 2 −
1
2

 
 

 
 dA. (7) 

 In summary, this section defines a thermodynamic system by prescribing a procedure to 

calculate its free energy.  The free energy is a functional of the concentration field.  Given a 

concentration field C x , one determines the electric potential Ψ  by solving the 

Laplace equation (4) subject to the boundary condition (2), and then calculates the surface charge 

density 

1, x2( ) )x1, x2 ,x3(

σ x1, x2( ) according to (3).  Equation (7) gives the free energy of the system.  The 

concentration field evolves to minimize this free energy.  This paper will assume that the space 

above the monolayer is occupied by air.  If a dielectric or a metal is present in the space during 

annealing, the effect can be included in the boundary value problem.      

 

IV.  An approximate analysis of equilibrium domain sizes  

 An equilibrium domain pattern corresponds to a concentration field that minimizes the free 

energy functional (7).  By definition C varies between 0 and 1.  During annealing, the metal is no 
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longer in contact with the alkanethiol solution, so that the average concentration of the 

monolayer, , is fixed.  To estimate the equilibrium domain size, we minimize the free energy 

over a particular family of concentration fields:   

0C

  C x1, x2( )= C0 + C1 sin
2πx1

λ
 
 



 
 . (8) 

This family represents an array of periodic stripes oriented along the x2  direction.  The average 

concentration is indeed C .  The amplitude of fluctuation, 0 C1 , and the period, λ , are varied to 

minimize the free energy.  

 A combination of (1) and (8) gives the contact potential 

  φ =ζC1 sin
2πx1

λ
 
 



 
 . (9) 

Matching this boundary condition, the solution to the Laplace equation gives the electric 

potential in the upper half space: 

  Ψ =ζC1 sin
2πx1

λ
 
 

 
 exp −

2πx3

λ
 
 



 
 . (10) 

The electric potential decays exponentially as x3 → ∞ , the decay length being λ / 2π .  The 

surface charge is calculated according to (3), giving 

  σ = ε0ζC1
2π
λ

 
 

 
 sin

2πx1

λ
 
 



 
 . (11) 

The surface charge is in phase with the contact potential (9), as expected. 

 The average energy per unit area is the integral (7) over one period, divided by the period.  

The calculation gives  

  G = g +
C1

2

4
2h

2π
λ

 
 

 
 

2

− ε0ζ
2 2π

λ
 
 

 
 

 

  
 

  
. (12) 
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The average energy of mixing, g , is independent of the wavelength.  The two terms in the 

bracket result from, respectively, the domain boundary and electrostatics.  The trends discussed 

in Section II can now be seen clearly in (12).  The domain boundary energy reduces when the 

wavelength increases, and drives the domains to coarsen.  The electrostatic energy reduces when 

the wavelength decreases, and drives the domains to refine.    

 The free energy is quadratic in 2π / λ( , and reaches its minimum at the wavelength )

  λ0 =
8πh
ε0ζ

2 . (13) 

Using ε0 = 8.85 ×10−12F/m ,  and h = 10−21J ζ = 0.5V , we find that λ0 =11nm .  Before taking 

this estimate seriously, we should discuss the validity of the analysis, and the field of variability 

of the parameters.   

 In reaching (13), we have sought the energy minimizer among candidates of a very small 

family of concentration fields, Eq. (8).  The sinusoidal concentration profile is a reasonable 

approximation when the domain size is not too large compared to the domain boundary width.  

This happens when the refining action is strong, or when the coarsening action is weak (e.g., 

when the binary monolayer is held just below the critical temperature).  When the domain size is, 

say, more than ten times the domain boundary width, however, the concentration profile is close 

to a square wave, which should be represented by a Fourier series of many wavelengths.  An 

analysis following this line of thought shows that the equilibrium domain size is larger than that 

given by (13). 42  In the limit that the domain size is much larger than the domain boundary 

width, the line tension model is appropriate, giving another estimate of the equilibrium domain 

size: 25,26 

  λ∞ = 2πa exp
2πγ
ε0U

2 +1
 
 
 

 
  ,  (14) 
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where a is a cutoff radius (close to molecular dimensions, a ~ 1nm ), γ  the line tension, and U 

the contact potential between the two domains.  The step jump of the contact potential at the 

domain boundary makes the electrostatic energy unbounded, and the cutoff radius is introduced 

to regularize the problem.  Taking γ = 10−12 N and U , we find that = 0.5V λ∞ = 292nm .      

 Next we discuss the variability field of the parameters that determine the equilibrium 

domain size.  We have assumed that the space above the monolayer is occupied by air.  If a high-

permittivity dielectric fluid lies above the monolayer during annealing, the equilibrium domain 

size will reduce accordingly.  Of course, the presence of a dielectric fluid, rather than the air, 

may modify the contact potential and the domain boundary energy somewhat.  Independent 

measurements of these quantities have to be made.  Similarly, if one places a high-permittivity 

dielectric solid at a small gap above the monolayer during annealing, one can, in principle, even 

tune the equilibrium domain size by adjusting the gap. 

 Contact potentials have been measured for alkanethiols on gold. 35,36  The potential 

increases linearly with the alkyl chain length by 0.0093V per CH2 unit.  The potential changes 

also when the tail group changes; variation between –0.75 V to +0.60 V has been reported. One 

can even incorporate polar groups in the middle of the alkyl chain to increase the contact 

potential without compromising the functionality of the tail group. 

 We are unaware of any measurement of the domain boundary energy in alkanethiol 

monolayers.  The line tension of the phase boundary in Langmuir films has been measured 

experimentally, a representative order of magnitude being γ = 10−12 N. 22 Considering the 

similarity of the inter-molecular forces involved in Langmuir films and in SAMs, we expect that 

the magnitude of the line tension should be comparable in the two systems.  Note that the line 

tension decreases as the temperature increases, and vanishes above the critical temperature.  
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Because the inter-molecular forces are weak, the critical temperature is not too high, and is 

typically within experimental reach. 

 Given the large variability in the parameters, one should expect very different equilibrium 

domain sizes in different systems.  That is, the equilibrium domain size should be tunable.  

 When both the surface stress and contact potential are present, a combination of the above 

analysis and that in Suo and Lu28 gives the equilibrium domain size: 

  λ0 =
8πh

ε0ζ 2 + 1 −ν( )ξ 2

µ

, (15) 

where µ is the shear modulus, ν is Poisson’s ratio, and ξ is the slope of the surface stress as a 

function of the concentration.  The relative importance of the electrostatic and elastic interaction 

is quantified by a dimensionless ratio 

  R =
µε0ζ 2

1− ν( )ξ 2 . (16) 

The surface stress has been measured for alkanethiols on gold, giving 0.017 N/m per CH2 unit. 39  

The available data indicate that the effect of the surface stress and that of the contact potential 

are comparable for alkanethiols on gold.  However, if one introduces high-permittivity dielectrics 

in the space above the monolayer, and incorporates polar groups into the molecules, the 

electrostatic interaction can be altered by orders of magnitude. 

 

V.  Diffusion equation and the need to break symmetry 

 In this section, we consider the diffusion process, in which the monolayer starts from an 

arbitrary initial concentration field, and evolves to a stable domain pattern.  We derive a 

diffusion equation, following a standard procedure in nonequilibrium thermodynamics. 28,38  

Imagine a curve on the substrate surface.  When some number of A-molecules crosses this curve, 

1/29/02 15  



to maintain the integrity of the monolayer, an equal number of B-molecules must cross the curve 

in the opposite direction.  Denote the unit vector lying in the surface normal to the curve by m. 

Let I be a vector field in the surface, such that I  is the number of B-molecules across a unit 

length of the curve.    

⋅ m

 When the concentration on an element of the surface varies by δC , the same number of B-

molecules must move into the element from the neighboring regions on the surface, namely,  

  ΛδC = −∇ ⋅ δI( ) , (17) 

where Λ is the number of surface sites per unit area.  Combining (7) and (17), we find the 

variation of the free energy:  

  δG =
1
Λ

δI( )⋅∇
∂g
∂C

− 2h∇ 2C −ζσ 
 

 
 dA∫ . (18) 

In deriving (18), we have used the fact that the term φσ  in (7) is quadratic in C.  We have also 

discarded integrals along curves on the surface, assuming periodic boundary conditions. 

 Define the diffusion driving force f as the free energy reduction associated with a molecule 

relocating by a unit distance.  Comparing this definition and (18), we obtain an expression for the 

diffusion driving force: 

  f = −
1
Λ

∇
∂g
∂C

− 2h∇ 2C −ζσ 
 



 
 . (19) 

When the diffusion driving force vanishes, the free energy variation vanishes, and the 

concentration field reaches equilibrium.  The quantity in the parenthesis is a chemical potential.  

A concentration field is in equilibrium when the chemical potential is constant over the surface.  

Obviously, a homogeneous monolayer is an equilibrium state, which can be unstable.  We are 

interested in stable, inhomogeneous equilibrium states. 
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 In general, for an arbitrary concentration field, the driving force does not vanish—it drives 

the diffusion flux.  Assume that the diffusion flux, J , is linearly proportional to the driving force, 

namely, J = Mf , where M is the mobility of the molecules on the surface.  The conservation of 

molecules requires that Λ∂C /∂t = −∇ ⋅ J .  These considerations lead to the diffusion equation 

  
∂C
∂t

=
M
Λ2 ∇ 2 ∂g

∂C
− 2h∇ 2C −ζσ 

 


 
 . (20) 

 To evolve the concentration field numerically, we need to specify the free energy of mixing 

.  Any function with two wells, as shown in Fig. 2, will serve the purpose.  To be specific, 

we assume that the binary monolayer is a regular solution, with the free energy of mixing given 

by 

g C( )

  g C( ) = ΛkBT C logC + 1 − C( )log 1− C( )[ ]+ ΛωC 1− C( ), (21) 

where  is Boltzmann’s constant, and T the absolute temperature. The parameter kB ω measures 

the magnitude of the enthalpy of mixing.  When ω / kBT < 2 , the entropy of mixing prevails, and 

 has a single well.  When g C( ) ω / kBT > 2 , the enthalpy of mixing prevails, and g C  has two 

wells.  

( )

 A comparison of the first two terms in (20) leads to a length: 

  b =
h

ΛkBT
 
 
  

 
 

1 / 2

. (22) 

This length scales the distance over which the concentration changes from the level of one phase 

to that of the other.  From (20) and (21), we note that the diffusivity scales as D ~ MkBT / Λ .  To 

resolve events occurring over the length scale b, the time scale is b .  This consideration 

defines a time scale 

2 / D

  τ =
h

M kBT( )2 . (23) 
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 To evolve the concentration field according to (20), at each time step, for a given 

concentration field, we need to solve the electrostatic boundary value problem, and calculate the 

surface charge field.  This can be done by an area integral of a Green’s function.  The integral is 

singular, and extends over the entire surface.  This approach would take a great deal of 

computation time.  Rather, we will solve the electrostatic boundary value problem in the Fourier 

space.  Consider the Fourier transform 

  . (24) C x1, x2 , t( )= ˆ C k1,k2 , t( )exp ik1x1 + ik2 x2( )dk1dk2
−∞

+∞

∫
−∞

+∞

∫

To ensure that C x  is real-valued, the two Fourier components C k  and 

 must be complex conjugate.  Because the electrostatic field is governed by linear 

equations, we only need to determine the electrostatic field for an individual Fourier component, 

and then superimpose all the components.  For a pair of components, C k  

andC , the concentration field is 

1, x2 , t(

)

) )

)

)

ˆ 
1,k2, t(

ˆ 
1,

ˆ C −k1, −k2 , t(

ˆ −k1, −k2(

k2, t( )

, t

  C = 2Re ˆ C k1,k2 , t( )exp ik1x1 + ik2 x2([ ], (25) 

where Re stands for the real part of a complex number.  The contact potential is 

  φ = 2ζ Re ˆ C exp ik1x1 + ik2x2([ )]. (26) 

This prescribes the boundary condition at x3 = 0  for the electrostatic field in the upper half 

space.  One can readily confirm that the solution to the Laplace equation is 

  Ψ = 2ζ Re ˆ C exp ik1x1 +ik2 x2 − kx3( )[ ] , (27) 

where k = k1
2 + k2

2 .  This electric potential matches the boundary condition (26), and vanishes 

as x3 → +∞ .  The surface charge density is 

  σ = 2ε0kζ Re ˆ C exp ik1x1 + ik2 x2([ )]. (28) 
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 Normalizing the time by τ and the spatial coordinates by b in (20), and taking the Fourier 

transform on both sides, we obtain that 

  
∂ ˆ C 
∂t

= −k2 ˆ P − 2k 4 ˆ C + ρk3 ˆ C , (29) 

where ρ = 8πb / λ0  is a dimensionless parameter, and  is a Fourier component of the 

function 

ˆ P k1,k2( )

  P C( )= log
C

1 − C
 
 

 
 +

ω
kBT

1 − 2C( )

) )

)

)

, (30) 

which comes from the derivative of the free energy of mixing (21).   

 Remarkably, Eq. (29) is identical to that of a monolayer on an isotropic elastic substrate, 

where the surface stress drives domain refining. 29  We will the use the same numerical method 

to evolve the concentration field.  The function  is nonlinear in C, so that   at a given point 

in the ( plane depends on C  at all points in the (  plane.  Consequently, (29) evolves 

  at all points in the (  planes simultaneously, in a coupled manner.  Numerical simulation 

proceeds as follows. Start with a known concentration field C x  at time .  Calculate P 

according to (30), and  by using the Fast Fourier Transform (FFT).  Also obtain C  by FFT.  

Equation (29) updates the field C  for a small time step.  Take an inverse FFT to obtain the 

updated C field. Repeat the procedure for many time steps to evolve the concentration field over 

a long period of time.  More details of numerical implementation can be found in Refs. 29 and 

40. 

P C( ) ˆ P

k1,k2
ˆ k1,k2

ˆ C k1,k2

ˆ P 

1, x2 ,t0( t0

ˆ 

ˆ 

 In numerical simulations, we take ω / kBT = 2.2 , so that g C  has two wells at ( ) Cα =  0.249 

and Cβ = 0.751.    We take ρ = 2 , so that λ0 = 4πb , and the equilibrium domain size is about 

one order of magnitude larger than the domain wall width.  We restrict the calculation within a 

1/29/02 19  



256b × 256b  square cell.  Periodic boundary conditions are used to replicate the cell to the entire 

monolayer.  Figure 6 shows two simulation results taken from Lu and Suo, 29 which was 

originally intended for patterns stabilized by surface stress.  Now if we interpret λ0

5

 by (15), the 

same simulation describes pattern evolution under combined actions of surface stress and contact 

potential.   

τ

t = 102τ

 Figure 6a shows the concentration field after the annealing time t = 10 .  The initial 

concentration field randomly fluctuates around the average value C0 = 0.5.  At around t = 102τ , 

the concentration field has already separated into two phases of meandering stripes. The pattern 

and the feature size hardly change between 102τ  to 105τ .   

 Figure 6b shows a pattern at time t = 4 ×106τ , initiated from a concentration field 

randomly fluctuated around the average value C0 = 0.4 .  The dots are established around 

.  Further  annealing does not change the size of the dots appreciably, but improves the 

spatial ordering of the dots.  At t = 4 ×106τ  shown in Fig. 7b, the pattern consists of grains, each 

grain being a triangular lattice consisting of fewer than ten dots across. 

 Both meandering stripes and disordered dots have been observed in alkanethiol 

monolayers. 8-12  Some of these experiments were carried out with the monolayers in contact 

with the alkanethiol solution at room temperature, so that the adsorption process affected the 

domain patterns.  Alkanethiol molecules diffuse slowly on gold at room temperature, so that the 

observed domains may not be of the equilibrium size. 

 Figure 6 also clearly shows the effect of symmetry on pattern formation.  The model is 

isotropic, with no preferred orientation in the plane of the monolayer.  Consequently, stripes of 

all orientations are equally possible, so are lattices of all orientations.  Improving the long-range 

order by annealing alone takes a long time.  A powerful way to form patterns with long-range 
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ordering is to break the symmetry.  In a series of papers, 41-43 we have studied the effect of 

symmetry breaking of various modes on domain patterns, assuming surface stress stabilizes the 

domains.  Domains stabilized by contact potential offer additional opportunities.  For example, 

during annealing, one can place an anisotropic dielectric crystal at a small distance above the 

monolayer.  The presence of the crystal affects the electrostatic field, and can set a preferred 

orientation to guide the pattern.  Similarly, one can make a metal pattern on a solid using 

lithography, and then place the patterned solid over the monolayer. During annealing, this 

lithographic pattern can guide the pattern formation in the monolayer.  The concept is analogous 

to the Lithographically-Induced Self-Assembly (LISA). 44-46  We will report details of these 

intriguing possibilities in subsequent work. 

 

VI.  Concluding remarks 

 On the basis of available experimental data and theories, we suggest that alkanethiol SAMs 

on gold should form domain patterns under certain conditions.  Upon annealing, alkanethiol 

molecules diffuse on the gold surface, and the domain pattern may evolve into an equilibrium 

state.  The domain boundary energy drives the domains to coarsen, and the contact potential 

drives the domains to refine.  The competition sets an equilibrium domain size, which can be 

varied by varying the alkyl chain length, by incorporating polar groups into the molecules, by 

placing a high-permittivity dielectric liquid above the monolayer, and by changing the 

temperature.  In an isotropic system, the domain patterns are not organized at long-range.  

Various modes of symmetry breaking may guide domains into periodic lattices.  SAMs with 

ordered domains of controllable sizes would open new possibilities for applications.  Further 

experiments and theoretical work need to be carried out to ascertain the premises, and to explore 
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new opportunities, particularly those of guided self-assembly. The concepts are also applicable to 

monolayers of other molecules, notably biomolecules adsorbed on solid surfaces.  Provided 

molecules on surfaces are mobile, the combined effects of surface stress and contact potential 

may be strong enough to stabilize domains of desired sizes. 
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  Figure Captions 

Figure 1 When a metal is in contact with an alkanethiol solution, the alkanethiol molecules 

adsorb on the metal surface to form a monolayer.  The structure of a HS(CH2)4OH 

molecule is illustrated. 

 

Figure 2 The free energy of mixing for a monolayer composed of two molecular species, A 

and B.  The pair has a large enthalpy of mixing, so that the free energy of mixing 

has two wells at Cα  and Cβ , corresponding to two phases.  When the average 

concentration of the monolayer, C0 , is between the two wells, to reduce the free 

energy, the monolayer separates into the two phases. 

 

Figure 3 The contact potential U = φβ −φα  causes an electrostatic field in the air, a positive 

charge on the metal surface under domain β , and a negative charge under domain 

α .  Represent the domain size by the period λ. 

 

Figure 4 (a) The charge Q accumulated under either domain increases linearly with the 

contact potential between the two domains, U = φβ −φα .  The area of the triangle is 

the electrostatic energy stored in the space occupied by the air.  The slope of the 

line is inverse of the capacitance of the system.  (b) The Q-U lines for two domain 

sizes, λ1 < λ2 .  At a constant voltage, the smaller the domain size, the larger the 

charge, namely, Q .  (c) In a parallel-electrode capacitor, the electric 

interaction causes the attraction between two electrodes.  To keep the two 

electrodes in place, one has to apply a pair of forces to pull the electrodes apart. 

1 > Q2

1/29/02 26  



 

Figure 5 The boundary conditions at the interfacial object between the air and the bulk of the 

metal. 

 

Figure 6 (a) The concentration field initially fluctuates with small amplitude around the 

average concentration C0 = 0.5, and evolves into a pattern of meandering stripes.  

(b) The concentration field initially fluctuates with small amplitude around the 

average concentration C0 = 0.4 , and evolves into a pattern of dots.  
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