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Nanoscale Electrolytic Switching in Phase-Change Chalcogenide
Films**

By Ramanathaswamy Pandian, Bart J. Kooi,* George Palasantzas, Jeff T. M. De Hosson,

and Andrew Pauza

This Communication presents the important finding that

certain chalcogenide materials, well-known from rewritable

optical recording, allow resistive memory states that are a

combination of two electrically-induced (reversible) switching

processes, i.e., an actual amorphous-crystalline phase transfor-

mation and a (electrolytic) polarity-dependent resistance

change. Nanometer-sized crystalline marks were written elec-

trically in amorphous Ge2Sb2+xTe5 films using atomic force

microscopy (AFM), and their resistance was found to depend

on the polarity of the applied voltage with a resistance differ-

ence of three orders of magnitude. However, no contrast in

current has been detected between the crystalline higher-

resistance state and the surrounding amorphous phase. This

resistance switching is reversible for bias voltages well below

the threshold voltage required to induce the phase transfor-

mation. The switching mechanism is attributed to the solid-

state electrolytic behavior due to the presence of excess Sb in

the films. Our results render exciting technological opportu-

nities for data storage and encryption by combining both

switching concepts.

Following his seminal work in 1968,[1] Ovshinsky demon-

strated in chalcogenide alloys a fast reversible transformation

between amorphous and crystalline phases induced by electri-

cal or optical (laser) pulses.[2–4] The two phases exhibited clear

contrast in electrical and optical properties and, hence, these

materials were suggested for binary data-storage applications.

However, it took considerable time before rewritable optical

compact discs (CD) and digital versatile discs (DVD) based

on these findings came to the market. In recent years, the

main focus of phase-change data-storage research returned to

resistance switching. So-called chalcogenide or phase-change

random access memory (CRAM/PRAM) and ovonic unified

memory (OUM) based on the phase-dependent resistance

switching are currently under intense investigations,[5–13] be-

cause they show great promise as next-generation nonvolatile

solid-state memory replacing flash memory.

In certain chalcogenides a special phenomenon of polarity-

dependent resistance switching (induced by an electric field)

has been identified.[14–19] This is related to the solid-state elec-

trolytic character and high ionic conductivities of chalcogen-

ides, and hence is called ionic/electrolytic switching. For one

polarity, the chalcogenide medium is electrically conductive

by forming conducting filamentary pathways between elec-

trodes, whereas for the reverse polarity it becomes relatively

insulative or at least less conductive because of rupture of the

previously formed electrical pathways. Memory elements (or

structures) based on this switching have been demonstrated in

some Ag-saturated chalcogenides including Ag–S,[14,15] Ag–

Ge–Se,[16,17] Ag–Ge–Te,[18] and Ag–In–Sb–Te.[19] This switch-

ing seems more attractive for applications than phase-depen-

dent switching, because i) it can be performed at lower volt-

ages (e.g., < 0.5 V); and ii) does not involve major structural

changes and, hence, effects like phase separation are limited,

providing enhanced device life.

Data writing at the nanometer scale is essential for in-

creased storage density fulfilling future requirements. Impetus

to data-storage technologies has been given by AFM since

data writing down to 20 nm is readily possible, and AFM has

potential to read/erase the data.[20–27] AFM data writing can

occur via thermal or electrothermal means. The former tech-

nique so far led to a potential data density of 3.3 Tb inch–2

although it is not yet functional.[27] To the best of our knowl-

edge, data writing and erasing operations in chalcogenides

have not been successfully demonstrated for multiple cycles

using AFM only. Generally, crystalline marks in an amor-

phous surrounding were written and read, but mark erasing

with AFM represents a formidable barrier for further ad-

vancement of this technique. Moreover, electrolytic switching

in chalcogenides has been shown only for memory cell struc-

tures produced using lithography, but not yet studied with

AFM at the nanometer scale.

Although the two resistance switching mechanisms (phase-

and polarity-dependent) were up to now treated separately, it

was recently conjectured that they were “different faces of a

chameleon” that should be brought together and studied in a

unified approach.[28] To the best of our knowledge, this is the

first study exploiting these two mechanisms simultaneously.
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We demonstrate that in Ge2Sb2+xTe5 (GST) films the contrast

between crystalline marks and the amorphous background

can be written and erased for a significant number of cycles

using AFM only.

The electrical resistance of the chalcogenide material de-

creases several orders of magnitude when the amorphous

phase is crystallized.[29,30] This large resistance change en-

ables the bistable memory states of the OUM[8,31] or line

cell concepts.[29] When the applied electric field (of either

polarity) within the entire amorphous volume exceeds the

threshold level, the amorphous phase becomes in a dynamic

state with highly conductive paths for electrons. When cur-

rent flow is maintained along these paths, Joule heating

occurs and the structural change can be induced. This

(initial) threshold switching in the amorphous phase is fast

and seems to be a pure electronic process. The structural

(or phase) transformation is generally accompanied by a

density change; a density increase due to crystallization from

6 to 9% has been reported for amorphous Ge2Sb2Te5

films.[30,32]

In our study, we analyzed 20 or 40 nm thick

sputtered amorphous Ge2Sb2+xTe5 films. A con-

ductive-AFM (C-AFM) was used for data writing

and reading. Crystalline marks (i.e., data) were

written on the amorphous film by passing electrical

current via the AFM tip into the film (along the

thickness), and reading was done by sensing the

conductance and topography of the marks in com-

parison with the amorphous background. A sche-

matic illustration of the experimental setup for

write and read operations and sample structure is

shown in Figure 1.

As an example, an array of crystalline marks

written in an amorphous background (at a density

of ∼50 Gb inch–2) is shown in Figure 2a. These

nanocrystalline marks were written by injecting dc

voltage pulses with +5 V amplitude and 500 ms

temporal width from the tip into the electrically

grounded film. Figure 2b and c indicates the den-

sity and resistivity variations of the film due to the

structural change from amorphous to crystalline

phase after the writing operation. The pits visible

in Figure 2b are the nanocrystalline marks/bits. A

line profile drawn along a row of crystalline pits in

the topography image (Fig. 2c) shows a thickness

decrease (due to crystallization) of about 2.5 nm,

which corresponds to an increase in density of

about 6%. This increase is in agreement with a

density change of 6–7% observed by X-ray reflec-

tometry (XRR) and AFM measurements in Ref.

[32] for the transformation from amorphous to the

rocksalt (face-centered cubic; fcc) phase in

Ge2Sb2Te5 films. Moreover, according to Ref. [32],

it is likely that AFM crystallization favors for-

mation of crystalline metastable fcc phase rather

than the stable “hexagonal” one.
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Figure 1. Schematic illustration of the C-AFM experimental setup, show-
ing the sample structure and electronic circuit with various components.
This setup simultaneously provides information on topography and elec-
trical conductance of the sample.
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Figure 2. Electro-thermal data writing. a) A contact mode AFM topography image
showing a written crystalline bit pattern in a 20 nm amorphous GST film. b,c) Simulta-
neously recorded topographic (or) height and current images, respectively, showing
crystalline bits in a 40 nm amorphous GST film. d) Line profile, drawn over a row of
crystalline bits of (b) showing the written bits as small nanovalleys. e) Line profile
drawn on a row of highly conductive spots of (c). These spots are well distinguishable
from the amorphous background with a current contrast of about three orders of mag-
nitude, even though the current flow through them is only a few nanoamperes.



In the current image of Figure 2c, which was recorded

simultaneously with the topography image of Figure 2b, the

crystalline pits are identified as current peaks because of their

lower electrical resistance compared to the amorphous sur-

rounding. This current image was taken by keeping the tip

grounded and the film at +1 V dc bias. The nanocrystalline

marks in the current image are clearly distinct from the amor-

phous background with a current contrast of three orders as

shown in Figure 2e. Our C-AFM experimental setup allows

current measurement down to 5 pA. Scanning the amorphous

area with lower dc bias voltages (1 to 2 V) did not show any

significant current flow above this lower limit.

Further investigations on the electrical pulse induced crys-

tallization indicated that our samples exhibit a polarity-de-

pendent resistance switching, i.e., the resistance of the crystal-

line written marks switched between a

lower- and higher-resistance state when

the polarity of the applied electric field

across the sample was reversed. Fig-

ure 3a is a contact-mode AFM topog-

raphy image showing an array of nano-

crystalline marks in an amorphous

background. The marks were written

with voltage pulses of amplitude –5 V

and width 500 ms. Continuous scanning

of an area around the marks with a

positive bias voltage, referred as a SET

operation, brought them into a relative

lower-resistance, or ON, state. On the

other hand, a negative bias scanning,

referred as a RESET operation, takes

the marks to a higher-resistance, or

OFF, state. The resistance of the amor-

phous phase remains below the current

detection limit (5 pA) during these

SET–RESET operations.

An example for SET and RESET

operations, in a nanocrystalline mark,

is shown in Figure 3. Figure 3b is the

topograph of one of the crystalline

marks considered for examination,

from the bit pattern shown in Fig-

ure 3a. SET operation with +1.5 V

brings the mark to a lower-resistance

state, and hence it is visible as a highly

conductive (bright) spot in the current

image shown in Figure 3e. For a RE-

SET operation with –1.5 V, the crystal-

line mark became equally insulating as

the background. Therefore in the cur-

rent image, Figure 3f, and the current

profile, Figure 3i, no significant differ-

ence between the mark and the amor-

phous background is noticed. When

the SET operation is repeatedly per-

formed with +1.5 V, the mark switches

back to the lower-resistance state and hence it is visible in the

current image shown in Figure 3g. During SET and RESET

operations the topography of the nanosized mark did not alter

markedly (Fig. 3b–d), indicating that polarity-dependent

resistance switching did not involve a phase-change. The

ON-state current profiles shown in Figure 3h and j reveal

that the mark has an electrical contrast of three orders of

magnitude with its surrounding. The operating voltage re-

quired for this switching (±1.5 V) is clearly lower than the

threshold voltage (> ±4 V) needed for inducing the amor-

phous–crystalline phase transition, indicating that the former

type of switching is more advantageous for future device ap-

plications. Since the switching causes no detectable density

changes, it should also be advantageous from a cyclability

point of view.
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Figure 3. Polarity-dependent resistance switching at the nanometer scale. a) AFM topography
image showing a crystalline bit pattern in a 40 nm amorphous GST film. b–d) Topography images
of a bit during the SET, RESET, and SET operations, respectively. e–g) Current images recorded with
±1.5 V biasing showing ON, OFF, and ON states of the bit, respectively. h–j) ON, OFF, and ON
state current profiles, corresponding to the images (e–g), respectively. Images (b–d) indicate that
there is no detectable topographical change upon SET–RESET operations. ON-state current pro-
files, (h,j), show three orders current contrast between the high-conductivity written bit and the
amorphous background. The current image (f) and current profile (i) of the bit at OFF state indi-
cate that the OFF state conductivity of the bit is as low as the background amorphous phase.



In the current images shown in Figure 3e and g, the ON-

state (high-conductive) mark does not appear as a single spot,

but discontinuously spreads over a small area around the cen-

ter position of the mark, which is considered as the center of

the pit in the topographs shown in Figure 3b and d. Note that

such a discontinuous spot is also seen in the current image

shown in Figure 2c. This is probably due to various issues that

stem from the high current density in the nanosized tip-sur-

face contact area and/or friction between the tip and sample

during the writing and reading operations. These include: i)

nonuniform tip–surface contact force, ii) increase in tip radius,

iii) increase in roughness at the tip and sample sur-

faces, and iv) damage of the conductive coating on

the tip.

Previous experimental work that shows resem-

blance with our work was performed on a

Ge1Sb2Te4 film.[21] Conductive marks in an insulat-

ing surrounding were written using an AFM. It was

shown that a conductive mark could also be (once)

erased by applying a low dc voltage (–1 V) to the

tip, but for rewriting a higher voltage (3 V) was

used. This voltage appeared to be above the

threshold voltage for phase transformation in their

setup. This observation poses restrictions on appli-

cations, since polarity-dependent memory switch-

ing could work at lower threshold voltages (e.g.,

±1 V, as is demonstrated in this work). Polarity-de-

pendent resistance switching was not reported in

Ref. [21] and information on cyclability and data

retention was not presented. Only current images

were shown, but no topographic images. Further,

the writing–erasing process was not attributed to

either structural change or to electrolytic behavior

of the phase-change material.

We also tested the resistance switching governed

by the polarity of the applied field over a larger

area of 500 nm × 500 nm, which was electrically

treated with a negative bias voltage of 5 V at a

scanning speed of 5 lm s–1. The pretreated area

was considered for SET–RESET operations by

scanning an area of 1 lm x 1 lm, incorporating the

treated (crystallized) area, with lower dc voltages

(±1 V) as shown in Figure 4.

The experimental setup for SET–RESET opera-

tions is schematically illustrated in Figure 4a. Dur-

ing the SET operation, the sample was biased with

+1 V with respect to the scanning tip that is electri-

cally grounded, and the pretreated area was at a

lower-resistance (ON) state (see Fig. 4b). In the

current profile, shown in Figure 4c, the ON state of

the mark shows approximately three orders higher

electrical conductance than the background. When

the polarity is reversed for the RESET operation

(i.e., now the sample is at –1 V and tip at ground

potential), the pretreated area reached the OFF-

state, which made it completely indistinguishable

from the amorphous surrounding, as shown in Figure 4d and

e. Repeating the SET operation with a bias voltage of +1 re-

produces the highly conductive ON state with almost the

same contrast with respect to the untreated background (see

Fig. 4f and g).

Figure 4b or f shows that the electrical conductivity inside

the treated area (dashed square) is not uniform. A consider-

able fraction of treated area is still at a lower conductance

state, which otherwise is expected to be homogeneously con-

ductive during the SET operation. This inhomogeneous elec-

trical conductivity is predominantly caused by an incomplete
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Figure 4. Polarity-dependent resistance switching at the sub-micrometer scale. a) Ex-
perimental setup for SET–RESET operations. b) Current image recorded with +1 V
biasing showing a high-conductive area, which is previously treated with -5 V dc, in a
low-conductive amorphous surroundings. c) Current profile of (b) showing the ON-
state current, which is three orders higher than the untreated background current. d)
Current image recorded during the RESET operation with –1 V biasing. e) Current pro-
file of (d), indicating that the RESET operation brings back the resistance of the treat-
ed area to a higher value (OFF state) that is not distinguishable from the amorphous
resistance. f,g) The current image and current profile, respectively, showing the repro-
ducibility of the ON-state upon a repetitive SET operation with +1 V biasing.



crystallization within the square area as can be deduced from

the topography image (data not shown) and from the repro-

ducibility of Figure 4b and f. The incomplete crystallization is

most likely caused by an improper tip–sample electrical con-

tact due to a relative fast tip scanning, surface roughness of

the sample and/or tip damage, i.e., removal of the conductive

coating from the tip.

Unlike the memory-cell structures, measuring write–erase

cyclability with C-AFM is highly limited by the tip–sample

electrical contact problems. Successive write–erase operations

reduce the written mark contrast with its background owing

to the wear followed by damage or removal of the conductive

tip-coating despite the fact that our measurements were per-

formed at optimum tip–sample contact forces. Indeed, melting

damage of the conductive coating, resulting from very high

current densities at the tip-edge, was difficult to control. Re-

placing the damaged tip with a new one did recover the cur-

rent contrast, but this added the difficulty of relocating the

written marks. Despite these practical limitations, we exam-

ined the cyclability up to ten times without significant loss of

the mark conductivity contrast. In addition, testing the reten-

tion time of the data is also limited by several factors, includ-

ing i) relocating the written mark became difficult after a pro-

longed period owing the thermal drift; and ii) keeping the

sample in air, after writing the marks, for an extended period

leads to formation of insulating layers on the sample/tip sur-

faces. Nevertheless, we succeeded to detect the written marks

still after two days, indicating that it is a relatively stable (non-

volatile) memory state. Further investigations concentrating

on cyclability and data stability (retention times) are in prog-

ress. In our recent investigations with simple capacitor-like

cells, where the conductive AFM tip is replaced by a static

metallic contact, the voltage pulses (of amplitudes ≤ 1.25 V)

showed write–erase operations within time scales of microsec-

onds for up to a few hundred cycles. These results will be pub-

lished in detail elsewhere.[33]

The electrical-resistance switching driven by the polarity of

the applied electric field can be related to the solid-state elec-

trolytic behavior of the chalcogenide material. When a solid

electrolyte is subjected to an electric field, electrochemical re-

actions (near the electrodes) lead to ionic conduction. If the

electric field strength is sufficiently large, electrically conduc-

tive filamentary pathways appear between the electrodes

within the electrolyte media leading to a lower-resistance

(ON) state. When the polarity of the electric field is reversed,

the pre-existing electrical pathways become discontinuous

due to ion migration in the opposite direction and lead to a

higher-resistance (OFF) state. Figure 5a and b schematically

illustrate the formation and rupture, respectively, of such a

conducting filaments driven by the polarity of the applied

electric field in a solid-state electrolyte.

Systems showing polarity-dependent resistance switching of

chalcogenide materials include Ag–S,[14,15] Ag–Ge–Se,[16,17]

Ag–Ge–Te,[18] Ag–In–Sb–Te,[19] and Cd–Pb–S.[34] Lower- and

higher-resistance states are a result of the formation and rup-

ture of conducting Ag dendrite filaments, respectively, due to

ion migrations driven by the electric field. Switching voltages

ranged from 0.2 to 6 V, and the resistance difference between

ON and OFF states was up to four orders of magnitude. This

type of switching has not been observed in Ag-free chalcogen-

ides (e.g., Ge–Sb–Te) used in optical phase-change recording

or in the OUM concept. Ag–In–Sb–Te is the only phase-

change chalcogenide for which this electrolytic behavior was

recently reported.[19] However, this system showed a higher

threshold voltage (> 6 V), which is a significant drawback for

this material.

A similar electrolytic switching mechanism probably holds

for our Sb rich GST chalcogenide material, where conductive

Sb instead of Ag filaments can be formed and dissolved in

amorphous phase that still persists with a small volume frac-

tion when the GST crystallites are formed. Points in favor of

this mechanism are i) (fast) crystallization of this type of ma-

terial leads, as shown in Ref. [35], to phase separation, where

the stoichiometric Ge2Sb2Te5 nanocrystals form with the ex-

cess Sb as amorphous phase at the grain boundaries; and ii)

cross-sectional TEM studies showed that in Ge–Sb–Te films a

strong tendency exists to form crystallites near the film sur-
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Figure 5. Schematic representation of the polarity-dependent resistance
switching mechanism in a solid-state electrolyte. a) Filament formation
due to SET operation. During SET operation, metal ions are produced at
the bottom (+ ive) electrode and migrate towards the top (– ive) elec-
trode, where the neutral metal atoms accumulate. Due to these solid-
state electrochemical reactions, one or more (dendritelike) conductive
filamentary pathways form in the solid electrolyte material. This conduc-
tive filament formation leads the material to a lower-resistance or ON
state. b) Filament rupture due to RESET operation. During the RESET
operation, the ions produced at the top (+ ive) electrode start to migrate
towards the bottom (– ive) electrode, resulting in rupture of the existing
conductive pathway(s), especially to a larger extend near the top elec-
trode. At this stage new dendrites start to grow from the bottom elec-
trode. The filament breakage brings the material into a higher-resistance
or OFF state. c) Schematic diagram representing the formation of electri-
cally conductive pathways in Sb rich Ge2Sb2+xTe5 solid-state electrolyte
layer. During SET operation, excess Sb at Ge2Sb2Te5 grain boundaries
form filaments electrically connecting the grains surrounded by amor-
phous phase with the electrodes. These Sb filaments remain until they
are dissolved by a sufficiently high electric field with a reverse polarity.



face leaving some amorphous volume near the film-substrate

interface.[36,37] Note that (metallic) Sb is also several orders of

magnitude more conductive than Ge and Te within the GST

system. Therefore, when a sufficiently strong electric field is

applied, conducting (dendritelike) Sb filaments form (see

Fig. 5c) and can bridge the Ge2Sb2Te5 grains through the

amorphous matrix with the electrodes. The conducting Sb

bridges persist until they are dissolved or ruptured by applica-

tion of a reverse polarity electric field. Instead of Sb filaments

also a similar (electrolytic) mechanism where grain bound-

aries can switch between a conductive and insulating state can

explain the observations. Cross-section TEM studies are in

progress to investigate the filament formation or the conduc-

tive or insulating grain boundaries in this GST system.

In Ref. [38], it is stated that laser-induced crystallization of

a stoichiometric Ge2Sb2Te5 film leads to formation of Sb-rich

nano-grains with compositions closer to GeSb2Te4 in a Sb-de-

ficient amorphous matrix. Even though this seems to point

against the Sb filament or bridge-formation mechanism, there

exist however significant differences in film composition, film

thickness and crystallization method when comparing Ref.

[38] with our present study. When the starting material is

Sb-rich (as in our case), upon crystallization, it is very likely

to have stoichiometric Ge2Sb2Te5 grains with Sb-rich sur-

roundings as reported in Ref. [35] for a Sb-rich Ge2Sb2+xTe5

material.

In conclusion, the electrical resistance switching behavior of

Sb rich amorphous Ge2Sb2+xTe5 films is attributed to the sol-

id-state electrolytic (ionic conducting) behavior of the films,

where the formation and rupture of electrically conductive Sb

bridges between the crystallites and the electrodes are driven

by the polarity of the applied electric field. This reversible

switching was possible with dc voltages of magnitude ≤ 1.5 V,

whereas in our experimental setup, the threshold voltage of

the amorphous–crystalline phase transformation is at least

4 V. The ON-state current, which is in the order of few na-

noamperes, shows three orders of magnitude contrast with the

OFF-state current. No detectable contrast occurred between

the OFF state of the crystalline marks and the amorphous sur-

rounding. At present, the write–erase cyclability is limited by

various practical factors, but more than ten cycles and two

days retention time were at least feasible. We stress that it is

shown for the first time that a material from the Ge–Sb–Te

family allows resistive memory states that are a combination

of the (reversible) structural change and a polarity-dependent

resistance change. Therefore, the present findings render

powerful opportunities for data storage and data encryption

technologies by proper combinations of these two switching

concepts in phase-change chalcogenide films.

Experimental

20 or 40 nm thick amorphous Ge2Sb2+xTe5 films and 100 nm Mo
bottom electrode layers were deposited (at room temperature) by
employing dc and rf magnetron sputtering techniques, respectively. A
digital instruments atomic force microscope (Veeco metrology group,

model: Dimension 3100) operating under atmospheric pressure at
room temperature was used for write, read, and erase operations. For
these operations, a sufficiently good electrical contact between the
AFM tip and sample surface was essential. A number of factors
affecting the tip–sample electrical contact (e.g., tip–sample contact
force, tip scanning speed, wear of the conductive coating on the tip,
stiffness of the cantilever, and surface roughness of the sample) were
properly optimized. Data writing at the nano- and sub-micrometer
scale in our experimental setup (see Fig. 1) was done with pulsed and
continuous dc voltages. Write pulses of either polarity generated by a
pulse generator were injected via the AFM tip into the electrically
grounded sample. Write–erase operations with continuous voltages
were performed by biasing the sample with a dc voltage and scanning
areas containing the written marks with an electrically grounded
AFM tip. Commercially available high-conductive Pt/Ir coated
(n-type Sb doped) Si AFM tips were used. The spring constant of the
cantilever was ∼0.2 N m–1 and the initial tip radius of curvature was
20–25 nm. Our experimental setup provides information simulta-
neously on both the surface topography and electrical conductance of
the phase-change layer. The cantilever deflection using a laser and
split-photodiode setup gives topographical information. Biasing the
sample with smaller dc voltages (well below the threshold limit for
crystallization) and measuring the electrical current passing across the
thickness of the sample with a conductive AFM tip that is virtually
grounded, gives the conductance image. A high-gain current amplifier
connected electrically in series with the tip detects currents down to
5 pA. In our experimental setup, scanning the amorphous area with
lower dc bias voltages (1–2 V) did not show any significant current
flow above this lower limit.
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