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The ability to assemble nanoscopic components into larger

structures and materials depends crucially on the ability to

understand in quantitative detail and subsequently ‘‘engineer’’

the interparticle interactions. This Review provides a critical

examination of the various interparticle forces (van der Waals,

electrostatic, magnetic, molecular, and entropic) that can be used

in nanoscale self-assembly. For each type of interaction, the

magnitude and the length scale are discussed, as well as the

scaling with particle size and interparticle distance. In all cases,

the discussion emphasizes characteristics unique to the

nanoscale. These theoretical considerations are accompanied by

examples of recent experimental systems, in which specific

interaction types were used to drive nanoscopic self-assembly.

Overall, this Review aims to provide a comprehensive yet easily

accessible resource of nanoscale-specific interparticle forces that

can be implemented in models or simulations of self-assembly

processes at this scale.
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1. Introduction

The focus of nanoscience and nanotechnology is gradually

shifting from the synthesis of individual components to their

assembly into larger systems and nanostructured materials.

After over two decades of intense research, there are now

hundreds if not thousands of procedures available that allow

for crafting the sizes, shapes, material properties, or surface

chemistries of nanoscopic particles. Nanoscopic spheres,[1]

Platonic polyhedra,[2,3] rods,[2–5] ellipsoids,[6] plates,[7–10] trip-

dods or tetrapods,[11,12] core/shell[13,14] and voided core/shell

particles,[15,16] nanocages,[17–19] and dumbbells[20–22] can be

made in large quantities with ever improving monodispersity

(Figure 1). Nanosynthetic methods are applicable to a range of

metals,[13,23–26] semiconductors,[27,28] oxides,[29,30] inorganic

salts,[31,32] and polymers.[33,34] These nanoparticulate materials

canbe functionalizedflexiblyusingorganic ligands terminated in

functionalities imparting desired surface properties: solubility in

selected solvents, specificity towards small molecules or larger

biologicals,[35–37] resistance to nonspecific adsorption,[38] net

electric charge,[39–41] electrochemical activity,[42–45] and more.

Despite this enormous progress, however, nanoscience is

currently in a somewhat precarious position. Heralded as the

‘‘next technological revolution’’ (after the steam engine,

electricity, and information technology), it has been fueled by a

constantandgenerous streamof funding that is globallyestimated

ataround$12.4bnperyear.[46]Torealize thesegreatexpectations,

nanoscience must now deliver truly revolutionary solutions for

medical diagnostics,[47–49] drug delivery,[50,51] sensors,[52] electro-

nic devices,[53,54] or new materials of unique properties.[55]

Importantly, many of these applications are based not on

individual nano-objects but rather on assemblies in which these

nano-objects interactwithoneanotherandorganize inpurposeful

ways. Thus, the challenge that is facing nanoscience is to develop

efficient and robust ways of assembling nanocomponents.

Self-assembly (SA)[56,57] is arguably the most promising

candidate for this task as it can, at least in principle, evolve large

numbers of individual particles of appropriately chosen proper-

ties into higher-order structures (Figure 1b). There are several

outstanding examples of successful application of SA at the

nanoscale: from systems serving as ultrasensitive biosensors,[58]

through highly conductive nanowires of uniform-width,[59]

ordered two-dimensional (2D) nanoparticle arrays exhibiting

unique electronic properties,[32,60–62] to materials of overall

macroscopic dimensions and exhibiting unusual bulk properties

(e.g., plastic metals[63]). These and other demonstrations of

nanoscaleSA(nSA)dependcruciallyonourability tounderstand

and ‘‘engineer’’ the interactions between nanoscopic particles

and to evolve them into a desired structure(s). Without this

ability, no rational design of nSA is possible, and the quest for

tailored nanomaterials appears somewhat hopeless.

Since the fundamental interactions between atoms/mole-

cules and between colloids (i.e., particles of sizes above

�100 nm[64]) are by now well understood, extrapolating this

knowledge to the ‘‘intermediate’’ nanoscale regime should be

straightforward, and the expressions/formulas with which to

model nanoscopic forces should be easily accessible. Unfortu-

nately, this is not thenecessarily case. Theprevalent approach –

also in many of our own previous works – to nanoscopic forces

has been to use formulas derived previously for colloids[65–67]

and only change the dimensions of the interacting particles.
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Figure 1. a) The variety of nanoscale particles. Clockwise from top left: a

single gold nanoparticle illustrating the underlying atomic structure

(image courtesy of R. Klajn); gold nanorods capped with CTAB ligands

(image courtesy of D. A. Walker); plate-like gold prisms �10nm in

thickness (scale bar¼ 100nm). Reprinted from Reference [7]. Two-

domain Au/Fe3O4 (Au domains are smaller and darker) nanoparticles

crosslinked to form dimeric superstructures (image courtesy of Y. Wei).

b) Schematic illustration of nanoscale self-assembly. In addition to

‘‘body’’ forces between the material particles (e.g., vdW or magnetic

interactions), the interactions between nanoscale spheres and rods can

be tuned controllably through appropriate surface functionalization. For

different interparticle interaction potentials, the particles organize into

qualitatively different structures. Here, vdW attraction (Section 2) and

steric repulsion (Section 7) induce the phase separation of rods and

spheres into two close-packed arrangements (top). Alternatively, when

the rods are functionalized with positively charged ligands and the

spheres with negatively charge ligands (Section 4), the particles are

expected to organize via electrostatic interactions into a binary lattice.
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While this strategy might work in some cases, there is precious

little literature[67] to justify it and to prove/disprove its

applicability at the nanoscale. Therefore, the present Review

aims to re-examine critically the characteristics of various types

of interparticle interactions (van der Waals, electrostatic,

magnetic, molecular, and entropic) at the nanoscale. For each

type, we wish to determine the magnitude and the length scale

of the interaction, as well as its scaling with particle size and

interparticle distance. The overriding goals of these analyses

are then to establish: i) What effects or behaviors emerge that

are unique to the nanoscale (as compared to smaller molecular

systems or larger colloids); ii) which theoretical tools can be

used to model the interactions at various levels of approxima-

tion, and iii) what are the limits of any approximate forms.

These theoretical considerations are accompaniedby examples

of recent experimental systems, in which specific interaction

types were used to drive nanoscopic self-assembly.Overall, it is

our hope that this Review will provide a resource – easily

accessible to a general nanoscience audience – of nanoscale-

specific interparticle potentials that can be implemented

in models or simulations of self-assembly processes at this

scale.

2. General Aspects of Interaction Magnitudes and
Length Scales

Before examining the specific types of interactions useful

for nanoscale self-assembly, it is instructive to address some

general questions regarding the ‘‘generic’’ characteristics of

arbitrary interaction potentials. For example, how strong

should the interparticle interactions be to induce self-assembly

from solution? Can they be too strong as to prevent the

formation of an ordered, equilibrium structure? What is the

role of the interaction length scale in the assembly process? As

we discuss in this section, the ability of a given interaction

potential to induce self-assembly depends on both its

magnitude and length scale. Furthermore, the range of an

interaction relative to the sizes of interacting particles can

determine whether or not these particles will assemble into an

ordered structure or into an amorphous phase (Section 2.3).

2.1. Common Scalings of Interaction Length and
Strength

Interactions between nanoscale components differ sub-

stantially from the molecular interactions from which they

derive. Consider the ubiquitous Lennard–Jones (LJ) potential

used to approximate the interaction potential between

spherical atoms (e.g., argon) and accounting for both
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Figure 2. a) A prototypical colloidal potential, ULJ(r), derived by

integrating theatomic Lennard–Jones interactionsover the volumeof the

two spheres (cf. Equation (2) for an approximate form valid at small

separations and Reference [68] for a detailed derivation). Plots are

presented in dimensionless formwhereby energy ismeasured in units of

2ea/s anddistance in units of particle diameter, 2a. b,c) Phase diagrams

adapted fromReferences [74,75] for hard-sphere particles interacting by

attractiveYukawapotentials (Equation(5))witha lengthscalel. Thesolid

black curves denote the phase boundaries between fluid (F), gas (G),

liquid (L), and crystal (C) phases; the dashed curve is the spinodal. The

gray and blue areas denote regions of fluid–solid and gas–liquid

coexistence (note that the gas and liquid phases become metastable

below the fluid–solid phase boundary). The red curve denotes the

dynamical arrest curve, calculated by mode coupling theory

(MCT)[74,75,276] and separating the ergodic equilibrium phases from the

non-ergodic dynamically arrested states (e.g., gels and glasses). See

Reference [74] and references therein for more information.
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attractive van der Waals (vdW) forces and repulsive exchange

interactions due to overlap of electron orbitals (Figure 2a,

black curve).

uLJðrÞ ¼ 4"
s

r

� �12

� s

r

� �6
� �

(1)

Here, r is the distance between atom centers, e is the depth of the

potential well, and s is a characteristic atomic diameter (where

uLJ(s)¼ 0). For larger components comprising many atoms,

onemay derive an analogous interparticle potential by summing

the LJ interaction across all atom–atom pairs within the two

particles. This procedure can be carried out analytically[68] for

the case of two spherical particles of radii a1 and a2, and the

resulting potential is – for small separations – approximated as

ULJðLÞ ¼
2pa1a2

ða1 þ a2Þ
p"ðs6 � 210L6Þ

630L7

� �

for L � a1a2

a1 þ a2
(2)

where L ¼ r � ða1 þ a2Þ is the distance between particle

surfaces. Figure 2a illustrates how this potential (for equally

sized spheres) varies as the particle radius increases from

atomic (a¼ s/2, few Å) to nanoscopic dimensions (a¼ 5s,

few nm; a¼ 50s, tens of nm). Regardless of particle size, the

potential reaches its minimum value when the surfaces

are separated by �0.6s; it follows that the length scale of

the interaction is always of atomic dimensions. At the same

time, the magnitude of the interaction increases linearly with

particle size as �5ea/s.

Remarkably, these scaling results are quite general – that is,

theyapply toother typesof interactionpotential –provided that

the length scale of the interaction is much smaller than the

dimensions of the particles. The famousRussian scientist Boris

Derjaguin[69] was the first to show that in this limit, the

interaction energy between two curved surfaces, UDA,

separated by a distanceL can be derived from the correspond-

ing potential (per unit area) for two flat plates, UFP. For

instance, for two spheres of radii a1 and a2, the Derjaguin

approximation – one that we will encounter often in later

sections – is given by

UDAðLÞ �
2pa1a2

ða1 þ a2Þ

Z

1

L

UFPðzÞdz (3)

and similar formulas can be derived for interactions between

two non-spherical bodies.[70] As in the LJ example, the

magnitude of the interaction scales linearly with the size of the

particles (for similar-sized particles), while the length scale of

the interaction is independent of particle size. Consequently,

the ratio of the interaction length scale and particle size

decreases with the inverse of the latter, �a�1. As we will see

shortly (Section 2.3), this scaling can have profound effects on

our ability (or inability!) to form self-assembled structures

from increasingly large components.

2.2. Free Energy of Attraction

Given an interaction potential characterized by a length scale

l and magnitude e, we now investigate whether or not this

potential will cause the individual components (e.g., nanoparti-

cles) to assemble spontaneously from solution. If these compo-

nents are present in relatively dilute solutions, the attractive

interactions mediating their assembly must be strong enough to

overcome the entropic ‘‘penalty’’ associated with the loss of

translational/rotation degrees of freedom upon aggregation.

To illustrate these effects, let us consider a model example

of a system inwhich spherical particles interact via hard-sphere

repulsions and attractive square-well potentials of depth e and

range l. As the interaction magnitude e increases, the particles

begin to formsmall clustersbeforeultimatelyaggregating intoa

single bulk phase. The early stages of this process correspond to

equilibrium cluster formation, for which the necessary

statistical mechanical considerations are particularly simple.

In this regime, the so-called equilibrium theory of physical

clusters[71] can be used to relate the average numbers of n-sized

clusters,Nn, to the canonical partition functions,Qn, describing

these clusters by the relationship Nn
1=Nn ¼ Qn

1=Qn. In the

simplest case of a two particle cluster, the number of dimersN2

(concentration, c2) may be expressed as

N2 ¼ N2
1

V"

8pV

� �

exp
"

kT

� �

or equivalently

c2 ¼ c21
V"

8p

� �

exp
"

kT

� �

(4)

where, V" ¼ 4
3p½ð2aþ lÞ3 � ð2aÞ3� is the phase-space volume in

which a particle interacts favorably with another particle. For

small length scales, l � a, this relation may be well approxi-

mated as V" � 16pa2l. With these considerations, the free

energy (that is, a measure of both energetic and entropic effects)

of dimer formation can be written as DF2 ¼ �kT lnðQ2=Q
2
1Þ.

Importantly, this free energy depends on both the magnitude of

the potential (linearly, as DF2 � ") and on its length scale

(logarithmically, DF2 � � lnðlÞ for l � a).

To see how these scaling dependencies relate to the practice

of self-assembly, assumewe wish to assemble at least two-thirds

of the free particles into dimers (so that c2¼ c1). FromEquation

(4), thisoccurswhen themagnitudeof the interactionpotential is

" ¼ �kT lnðV"c0=8pÞ or " � �kT lnð2la2c0Þ for small interac-

tion length l. For example, for a 1mM solution of nanoparticles

with radius a¼ 20nm, the criterion for SAcan be achieved using

either short-ranged interactions (l¼ 5 Å – e.g., vdW) of

magnitude e� 8.3kT or longer range interactions (l¼ 50nm –

e.g., electrostatic) with a magnitude of only e� 2.7kT.

While the explicit expressions given above derive from

simplistic interparticle potentials applied to ‘‘assemblies’’ of

only two particles, the qualitative themes are general. First, the

magnitude of the component interactions must be at least few

times kT to induce assembly from solution (at high volume

fractions, however, entropy alone can drive SA – even in

the absence of attractive potentials; cf. Section 7.3). Second,

more dilute solutions or shorter-range interactions require

stronger potentials (i.e., larger e) to overcome the unfavorable

entropic effects accompanying the formation of a self-

assembled structure. In this respect, strong, short-range

interactions (large e, small l) may induce particle aggregation

just as well as weaker, long-range interactions (small e, large l).

Nanoscale Forces and Their Uses in Self-Assembly
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It must be remembered, however, that different potentials may

result in different types of equilibrium assemblies. Further-

more, in addition to such thermodynamic considerations, the

length scale of an attractive interaction (relative to the particle

size) can have a profound influence on the kinetics of the

assembly process, dictating the formation of either ordered

structures or amorphous glasses/gels.

2.3. Order Versus Disorder: Further Implications for
Nanoscale Self-Assembly

Most approaches to nanoscale self-assembly rely on the

premise that carefully designed components and interactions

should result in the formation of desired equilibrium structures

corresponding to minima of the appropriate thermodynamic

potentials suchasGibbsorHelmholtz freeenergies. Inpractice,

achieving the equilibrium configuration is often a difficult task

(e.g., in the caseofprotein crystallization[72,73])but, evenworse,

it may prove physically impossible due to the competing

formation of dynamically arrested glasses or gels.[74–76] Such

non-equilibrium ‘‘phases’’ are characterized by long-lived,

dynamically arrested states, in which the system’s components

become trapped in small regions of the overall phase space –

where, in physical parlance, the system becomes non-

ergodic.[77]Ofparticular interest in the context of self-assembly

is the concept of ‘‘attractive glasses’’ (often termed ‘‘gels’’ at

lower volume fractions), in which short-ranged attractive

interactions induce the formation of ‘‘frozen’’ amorphous

states rather than ordered equilibrium phases.[74,75] This

competition between dynamical arrest and relaxation to

equilibrium depends strongly on the length scale of the

attractive interactions relative to the particle size, whereby

particles interacting via short-range attractions are more

susceptible to glass formation.[75]

These effects are illustrated in Figure 2b and c, which shows

the theoretical phase diagrams for hard-sphere particles

interacting via short-range attractive Yukawa potentials,

UYK(r), with an attractive length scale, l (scaled by particle

diameter).[75]

UYKðrÞ ¼
1; r < 1

�"
e�ðr�1Þ=l

r
; r � 1

8

<

:

(5)

In addition to the equilibrium phase boundaries, these

diagrams show the dynamical arrest curves[74,76] to the right of

and below which the system undergoes a transition from

equilibrium/ergodic to trapped/non-ergodic behavior charac-

terizing glass/gel formation. Even in the case of l¼ 0.2 (typical

of nanoscale particles; Figure 2b), we find that the solid

crystalline regions of the phase diagram lie to the right of the

dynamical arrest curve, indicating that glass formation will

compete with crystallization (who wins this competition is a

difficult question of kinetic control). As the length scale of the

interaction decreases, the dynamical arrest curve shifts to even

smaller volume fractions, enveloping more and more of the

phase diagram (see Figure 2c corresponding to l¼ 0.03). Thus,

shorter-range interactions are increasingly likely to result in

disordered glasses rather than order equilibrium structures.

In thecontextof self-assembly it is thereforedesirable touse

interactions that are of long range relative to the size of the

assembling components. Unfortunately, many common attrac-

tive interactions (e.g., vdW forces) act appreciably over only

molecular dimensions (cf. Section 2.1 and 6). In order to apply

these molecular-scale forces in self-assembly, it is necessary to

use small components – more precisely, nanoscopic compo-

nents (e.g.,�2–30 nm) atmost a few to tens of times larger than

molecular length scales (3–10 Å). Larger particles such as

micrometer-scale colloids interacting through similar short-

range attractive potentials will invariably aggregate to form

disordered precipitates or gels. Indeed, nearly all examples of

colloidal crystallization relyonclevermethods toovercome this

potential limitation by using long-range interactions (electro-

static and depletion; cf. Sections 4 and 7.2, respectively) or by

abandoning attractive forces in favor of entropic crystallization

at high volume fractions (cf. Section 7.3). Of course, even at the

nanoscale, self-assembly into ordered, equilibrium structures is

by no means trivial, and the phase diagrams of Figure 2 offer

further qualitative insights.

In addition to interaction length scale, the magnitude of

attractive interactions mediating SA must also be chosen

carefully. In Section 2.3, we discussed how strong such

interactions must be to induce any form of aggregation

(ordered or otherwise); however, there is also an upper bound

on the interaction strength, above which SA gives way to

precipitation, gelation, or glass formation (all forms of

dynamical arrest). This is illustrated in Figure 2c, where an

increase in the magnitude of the interaction e, (or decrease in

the temperature) at constant volume fraction first induces

crystallization upon entering the fluid-crystal coexistence

region but ultimately leads to formation of dynamically

arrested states upon crossing the ergodic–non-ergodic transi-

tion curve. The ‘‘optimal’’ interaction magnitude for self-

assembly is found between these transitions (region I) – this

conclusion has been validated experimentally for protein

crystallization[78] and is further discussed in Reference [75].

3. Van der Waals Forces

With these general considerations, let us first consider

arguably themost ubiquitous form of nanoscale interaction. Van

derWaals forces originate from the electromagnetic fluctuations

due to the incessant movements of positive and negative charges

within all types of atoms,molecules, andbulkmaterials.They are

thereforepresentbetweenanytwomaterialbodies,usuallyacting

in an attractive fashion to bring the bodies together. The

magnitude of these attractive interactions can be considerable –

few to hundreds of times greater than kT – between even

nanoscopic components. Because of this, vdW forces are often

considered an untoward effect, causing the undesired precipita-

tionofnanoparticles fromsolution.Through theuseof stabilizing

ligands or appropriate solvents, however, vdW interactions can

be controlled to provide a useful tool with which to guide self-

assembly processes – for example, that of 2- and 3D super-

structures composed of nanoparticles[79,80] and/or nanorods[81,82]

(Figure 3). Whether ones seeks to eliminate or to harness these

ever-present forces, it is necessary to understand the various

reviews B. A. Grzybowski et al.
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theoretical approaches used to describe them and how to apply

these methods towards the rational design of interparticle

potentials mediating self-assembly at the nanoscale.

3.1. Hamaker Integral Approximation

The vdW interaction between atoms and/or molecules may

be expressed by the well-known formula uvdWðrÞ ¼ �CvdW=r6

where r is the distance between atoms/molecules, andCvdW is a

constant characterizing the interacting species and the

surrounding medium. Specifically, this constant derives from

the sum of three distinct interactions, all of which scale with

separation as r�6: i) Thermally averaged dipole–dipole

interactions (Keesom interaction),[65] ii) dipole-induced dipole

interactions (Debye interaction),[65] and iii) the ever-present

interactions between transient dipoles of polarizable bodies

(London dispersion interactions).[83,84] The simplest approach

to estimate the ‘‘macroscopic’’ vdW interactions between

objects composed of many such atoms/molecules is a pairwise

summation (or integration) of these molecular interactions

throughout the volumes of the two bodies. This approach is

identical to that described in Section 2.1 and results in the

following approximate form for two spheres of radii a1 and a2
separated by a distance center-to-center distance r.

UvdWðrÞ ¼ A

3

a1a2

r2 � ða1 þ a2Þ2
þ a1a2

r2 � ða1 � a2Þ2

"

þ 1

2
ln

r2 � ða1 þ a2Þ2

r2 � ða1 � a2Þ2

 !#

(6)

Here, A is the Hamaker coefficient, which, according to the

Hamaker integral approximation,[85] corresponds to

A ¼ CvdWp2=v1v2 where vi is the molar volume of material

i. For example, for hydrocarbons represented as a collection of

CH2 groups with CvdW� 50� 10�79 Jm�6 and v� 30 Å3, the

Hamaker coefficient is estimated to be A� 5� 10�20 J (or

�13 kT at room temperature) across vacuum, which is very

close to estimates derived from more rigorous treatments.[65]

While this approach provides a reasonable first-order

approximation of both the magnitude and the distance

dependence of vdW interactions across vacuum, it neglects

i)many-bodyeffects betweenatoms comprising the twobodies,

ii) retardation effects due to the finite speed of light (important

at large separations), and iii) discrete atomeffects (important at

small separations). The last assumption canbe easily relaxedby

performing a direct pairwise summation (instead of integra-

tion) between atom pairs; however, accounting for many-body

effects and retardation require the use of more advanced

theories of dispersion interactions. For these higher levels of

approximation, we outline briefly two distinct approaches: the

continuum Dzyaloshinskii–Lifshitz–Pitaevskii (DLP)[86,87]

theory and the discrete coupled-dipole method (CDM).[88,89]

The former provides an exact treatment of vdW interactions

between continuum domains and incorporates many-body

effects implicitly through the bulk dielectric response of the

interacting materials and the surrounding medium. The CDM

method follows a discrete approach akin to the Hamaker

pairwise summation but accounting for all many-body effects.

These effects become increasingly important at the nanoscale

where the shape and sizeof aparticle and the arrangement of its

constituent atoms can dramatically influence the vdW inter-

action both at large separations[88] and near contact.[88,89]

3.2. Dzyaloshinskii–Lifshitz–Pitaevskii Theory

Although the theory of dispersion forces has been well

established foralmost 50years,[86] theuseof approximate forms

(e.g., Hamaker integral approximation) persists largely due to

Nanoscale Forces and Their Uses in Self-Assembly

Figure 3. Different nanoparticle assemblies, the formation of which is

driven primarily by vdW interactions. a) Two-dimensional hexagonally

close packed structure of 5-nm Ag nanoparticles. Reprinted with

permission from Reference [79]. Copyright 1996, American Chemical

Society. b) Dark-field optical micrograph of faceted, three-dimensional

crystals up to 50mm in size, formed from 2-nm CdSe nanoparticles

assembled intoanfcc lattice.Reproducedwithpermission fromReference

[80]. Copyright 1995, AAAS. c) Two-dimensional, size-segregated

assembly of polydisperse gold nanoparticles stabilized by dodecylamine

(DDA).TheNPsadoptthisconfigurationtominimizethetotalvdWenergyof

the aggregate (photo courtesy of R. Klajn). d) Another example of

vdW-driven particle segregation based on both size and shape – here,

separation of gold nanoparticles from smaller nanorods. Reprinted with

permission from Reference [81]. Copyright 2005, American Chemical

Society. e) Side-by-side organization of gold nanorods (15nmby200nm)

leading tocontinuous ‘‘ribbons’’ ofparticles. Thisbehavior isobserved for

rods with aspect ratio larger than five. Reprinted with permission from

Reference [81]. Copyright 2005, American Chemical Society. f) Isotropic

assemblyofgoldnanorodsthesameasthosein(e)butwithanaspect ratio

of 3.2. Reprinted with permission from Reference [81]. Copyright 2005,

American Chemical Society.

small 2009, 5, No. 14, 1600–1630 � 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.small-journal.com 1605



their simplicity relative to more rigorous treatments. The

general treatment of vdW interactions in continuous media –

originally due to Dzyaloshinskii, Lifshitz, and Pitaevskii

(DLP)[86] – describes how correlations between the transient

electromagnetic fluctuations within each material body give

rise to attractive or repulsive interactions between them

(repulsive vdW forces can arise between bodies of different

materials interactingacross amediumwithdielectricproperties

intermediate to those of the two bodies; see References [90]

and [91] for more detailed discussion of this intriguing

phenomenon).As the frequency spectrumof these fluctuations

is directly related (by the fluctuation–dissipation theorem) to

the dielectric response of the bulk materials, these forces may

be calculated directly from independent measurements of

the electromagnetic adsorption spectrum for the materials

involved. In this way, all many-body effects neglected by the

Hamaker pairwise summation approach are completely

accounted for within the empirical dielectric response of the

relevant materials. The DLP theory thus enables direct

calculation of the magnitude and distance dependence of the

vdWs interaction between continuum bodies.

To illustrate how this approach compares with the simple

Hamaker approximation, we first consider the model case

of two coplanar semi-infinite media separated by a distance

L. The Hamaker integral approximation estimates the

interaction energy per unit area to be UHamðLÞ ¼ �A=12pL2

with a constant Hamaker coefficient A. For comparison, the

DLP result can be expressed in ‘‘Hamaker form’’,

UDLPðLÞ ¼ �AðLÞ=12pL2, in which the Hamaker coefficient

is no longer constant but depends explicitly on the separationL,

as illustrated in Figure 4a. Specifically,A(L) decreases rapidly

with distance for L> 10 nm, and the vdW interactions become

muchweaker thanwould be predicted by theHamaker integral

approximation. These so-called retardation effects originate

from the finite speed of light, which fails to maintain the

correlations between electromagnetic fluctuations at large

separations. In the context of nanoscale self-assembly, this

means that vdWs forces become largely irrelevant when

the surface separation exceeds �10 nm. For smaller separa-

tions, the Hamaker coefficient may safely be treated as

constant; however, the DLP theory remains invaluable for

estimating its magnitude[92] (e.g., for gold across water,

A¼A(L¼ 0)� 9� 10�20 J [93]).

Although for non-planar bodies, the DLP-type approach

becomes increasingly complex, it provides an accurate bench-

mark against which the approximations of Derjaguin[69] or

Hamaker[85] may be tested. Figure 4b illustrates the perfor-

mance of these approximations against the DLP solution[87,94]

in thecaseof twoequally sized(radiusa) spherical goldparticles

in water. As the particles approach contact, both approxima-

tions approach the ‘‘exact’’ DLP result; however, significant

deviations are observed at larger separations. For the

Derjaguin approximation, UDerðLÞ ¼ �Aa=12L, the separa-

tion between the surfaces, L ¼ r � 2a, must be �50 times

smaller than the particle radius to obtain evenmodest accuracy

of�10%. Considering that theminimum possible separation is

of molecular dimensions (e.g., �1 nm for NPs covered with

octanoic acid[95]), the Derjaguin method should be used with

caution in the context of nanoscale self-assembly (e.g., for

a¼ 5 nm particles, the minimum separation is only �5 times

smaller than particle radius). The Hamaker approximation is

more accurate, resulting in errors of less than 10% for surface

separations below 0.1 a and below 30% for large separations

(quoted errors are for the specific gold-across-water example;

cf. Figure 4a,b).

Common to all continuum treatments of vdWs forces is the

absence of a characteristic length scale (with the exception of

retardation effects) and the divergence of the interaction

energyatcontact.Physically, the interactionenergyat contact is

finite due to repulsions between the finite-sized atoms

comprising the interacting bodies, and the distance of closest

approach is of atomic dimensions (cf. Section 2.1). When the

surface separation approaches these atomic length scales,

the continuum assumptions of smooth geometric surfaces and

bulk dielectric properties come into question.Unfortunately, it

is often the vdWs energy at ‘‘contact’’ that is most relevant to

self-assembly, and the atomic/molecular structure[96] and

dielectric properties[97] of nanoscopic components can deviate

significantly from that of bulk materials – especially at the

reviews B. A. Grzybowski et al.

Figure 4. vdW potentials. a) Hamaker coefficient as a function of

surfaceseparationL, calculatedusing theDLPtheory for twosemi-infinite

gold surfaces interacting across water.[93] b) Comparison of three

continuum approaches to computing the vdW interaction between

spherical gold particles interacting in water: the Hamaker integral

approximation (red squares; Equation (6)), Derjaguin approximation

(blue triangles), and the non-retarded DLP solution of Langbein[87,94]

(black circles). c) Comparison of the continuum models of (b) with two

discrete approaches: Hamaker pairwise summation (blue triangles) and

the coupled-dipole method (horizontal dashed line). Adapted from

Reference [89] for the case of dielectric nanoclusters.

1606 www.small-journal.com � 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim small 2009, 5, No. 14, 1600–1630



particle’s surface. To account for these effects at small

separations, we must return to a discrete description that

accounts for all the many body effects neglected in the simple

pairwise summation.

3.3. Coupled-Dipole Method

In this approach, the material body (e.g., a nanoparticle) is

modeled as a discrete array of polarizable atoms represented

by point electric dipoles at fixed locations (neglectingmagnetic

contributions and retardation). The dipole moment of

each atom is related to the local electric field by the linear

relation, pi ¼ aiEðxiÞ, where ai(iv) is the frequency-dependent
polarizability of atom i. Here, the local field is due to all

neighboring dipoles, each of which contributes

EjðxiÞ ¼ ½3ðpi 	 r̂ijÞr̂ij � pi�=ð4p"0r3ijÞ to the total electric field

at xi. From the above relations, one can write a set of self-

consistent equations for the N dipole moments and find the

frequencies, v, for which these equations are satisfied (i.e., the

normal modes of the system). The free energy of the system is

then readily calculated from these mode frequencies.[88,98,99]

This approach has recently been applied to calculate vdW

forces between nanoclusters of various shapes using theDrude

model (i.e., treating atoms as classical, damped oscillators) for

the atomic polarizability.

Figure 4c compares the results of the discrete CDMapproach

to those of the continuumDLPandHamakermodels for the case

of two spherical particles 5.9nm in diameter, each of which is

composedof 1170 atomspositionedona face-centered cubic (fcc)

lattice.[89] Importantly, the two discrete approaches – the

Hamaker pairwise summation and the CDM result – remain

bounded as the particles approach contact and give realistic vdWs

interactions at such small separations. In fact, the discrete

Hamaker summation approach works surprisingly well (within

20%) at all separations. By contrast, the two continuum

approaches – DLP sphere solution (Section 3.2) and Hamaker

integral approximation (Section 3.1) – result in large errors at

small separation due to their neglect of the discrete placement of

atoms.At large distances, however, themore rigorous continuum

treatment (DLP sphere solution) asymptotes to the correct value,

while the Hamaker integral approximation does not.[100] Inter-

estingly, the many-body corrections used in CDM and DLP

methods become increasingly important for particles of aniso-

tropic shapes.Forexample,many-bodyeffects contributeasmuch

as 50% to the overall interaction between highly anisotropic

nanorods, for which the dielectric response of the particles

themselves isanisotropic.[88]Thissituation isnotuncommonatthe

nanoscale, where the size and shape of the particle can strongly

influence the dielectric response of the material.[97] Thus, a

practicing nanotechnologist working with small, anisotropic

nanoparticles should consider using the CDM approach to

accurately estimate the relevant vdW interactions. For more

symmetric particles, however, higher-order corrections to the

pairwise summationapproachare typically small andcanoftenbe

neglected in favor of the simpler pairwise summation.

In summary, continuum approaches cannot accurately

predict the magnitude of vdW interactions at contact. Discrete

CDM approach offers an attractive – albeit, computationally

more demanding – alternative combining the advantages of

the discrete Hamaker pairwise summation with a more

rigorous treatment of many-body effects, characteristic of

DLP-type calculations. In practice, many manifestations of

nanoscale self-assembly (especially those in which particle

surfaces are well-separated by stabilizing ligands) can be

adequately described by simple analytical forms based on

continuum theories such as the simplest Hamaker integral

approximations or theDLP theories.However, for very small or

highly anisotropic particles, in which the dielectric response

deviates significantly from that of the bulk material, one should

consider using themore accurateCDM-type approach to ensure

that the model captures the physics of interacting nano-objects.

3.4. Illustrative Examples of Self-Assembly

The assembly of spherical, monodisperse NPs driven

by vdW forces invariably results in the formation of close-

packed structures such as hexagonal arrays in two dimen-

sions[1,79,101,102] and close-packed crystals (hcp and fcc) in three

dimensions[80,103] (Figure 3a,b). In many of these examples,

ordering is achieved by gradually increasing the NP volume

fraction (e.g., through solvent evaporation) until reaching a

solubility threshold (determined by the magnitude of the

attractions), upon which the NPs nucleate and grow to form

ordered equilibrium structures. In such systems, however, it is

often difficult to assess the role of vdW forces in the assembly

process considering that similar behavior is also observed for

non-interacting (or even, repulsively interacting) particleswhen

theparticle concentrationexceedsa critical value (cf. Section7.3

for more on entropy-driven self-assembly). Interestingly,

close-packed structures are also obtained from polydisperse

NPs,[104–106] in which vdW forces can order the resulting

assemblies through a size-selective sorting effect. This effect is

easily visualized in two dimensions (cf. Figure 3c) and results

from the size-dependent magnitude of the vdW interaction

(scaling as UvdW� a at small separations and as UvdW� a6 at

large separations). Specifically, for finite-size, 2D superlattices,

the overall potential energy of the system isminimizedwhen the

largest particles (strongest interactions) are in the center of

the array and the smallest particles (weakest interactions) at

the periphery.[104] NP segregation based on size-dependent

interaction strength has also been used to separate nano-objects

of different shapes (e.g., rods and spheres; cf. Figure 3d)[81] or to

prepare increasinglymonodisperseNPsby controlled precipita-

tion of larger particles by addition of nonsolvent.[32,107,108]

Beyond the simplest case of spherical particles, vdW forces

can result inhighlydirectional interactionsbetweenanisotropic

particles such as nanorods[81,82] and rectangular NPs.[81] For

example, nanorods with large aspect ratios (h/2a> 5) assemble

sideby side to create large ‘‘ribbons’’, as illustrated inFigure 3e.

The side-by-side configuration is strongly preferred due to the

larger vdW forces as compared to those of alternative end-to-

end assemblies.Applying theHamaker integral approximation

for small surface separations (L � a and L � h), the vdW

potentials for side-by-side and end-to-end configurations are

given by

USbS � �Aha1=2

24L3=2
ðcylinders; side by sideÞ (7)

Nanoscale Forces and Their Uses in Self-Assembly

small 2009, 5, No. 14, 1600–1630 � 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.small-journal.com 1607



UEtE � � Aa2

12L2
ðcylinders; end to endÞ (8)

When the ratio of these two interactions,

USbS=UEtE � hL1=2=2a3=2, is larger than unity, side-by-side

assembly is preferred to end-to-end. For example, for gold

nanorods (a¼ 15 nm and h¼ 100 nm) coated with cetyltri-

methylammonium bromide (CTAB) ligands of length �2 nm,

the ratio at contact is USbS=UEtE � 2, and ‘‘ribbons’’ are

observed.[81] In contrast, forUSbS=UEtE � 1 (e.g., a¼ 15 nm and

h¼ 50 nm), the assembly becomes more complicated with

competing side-by-side and end-to-end arrangements

observed in the same assembly (see Figure 3f).

4. Electrostatic Forces

Almost as ubiquitous as vdW forces, electrostatic forces

provide a basis for the formation of ionic, colloidal,[109] and

evenmacroparticle[110] crystals, andhave recently beenapplied

at the nanoscale[39,62,111] to form a variety of unique structures

such as diamond-like NP crystals[39] and robust monolayer[112]

ormultilayer[113–115] surface coatings.UnlikevdWinteractions,

which are primarily attractive in nature, electrostatic interac-

tions can be either attractive (between like-charged particles)

or repulsive (between oppositely charged particles) and even

directional, as in the case of particles with asymmetric surface-

charge distributions[116] or permanent electric polariza-

tion.[117,118] Furthermore, the magnitude and length scale of

these electrostatic interactions can be tuned controllably

through the choice of solvent (e.g., dielectric constant) as well

as the concentration and chemical nature (e.g., size and

valence) of the surrounding counterions. Due to these unique

attributes, electrostatic interactions are useful both for

stabilizing particles in solution and for guiding their self-

assembly into binary superstructures.

4.1. Electrostatics in Electrolyte Solutions

Before addressing the question of electrostatic interactions

between charged particles, it is necessary to understand how

the presence of dissolved ions influences the electrostatic

potential, w, within the fluid surrounding these particles.

This problem is commonly addressed using the mean field

Poisson–Boltzmann theory, which assumes pointlike ions

(no volume) andneglects ion correlation effects.[119,120]Briefly,

the chemical potential of positive and negatively charged

ions is given by m
 ¼ mo

 
 e’þ kT ln c
, where e is the

elementary charge, and c
 is the local ion concentration. At

equilibrium, the chemical potential of ions is everywhere

constant and equal to that of ions far from any charged

surface, m
 ¼ m1

 � mo


 þ kT ln cs, where the electrostatic

potential is zero, and cs is the bulk salt concentration.

The local concentration of ions may then be written as

c
 ¼ cs expð�e’=kTÞ, and the local charge density as

r ¼ eðcþ � c�Þ or r ¼ �2ecs sinhðe’=kTÞ. Substitution of this

equation into Poisson’s equation, r2’ ¼ �r="0", yields the

nonlinear Poisson–Boltzmann[65,121] equation (originally due

to Gouy,[122] Chapman,[123] and Debye and Huckel[124]) for a

monovalent electrolyte.

r2’ ¼ 2ecs

"0"
sinh

e’

kT

� �

(9)

Introduction of the dimensionless electrostatic potential,

c ¼ e’=kT (where kT/e� 25mV at room temperature), gives

the following representation characterized by a single para-

meter k2.

r2c ¼ 2e2cs

"0"kT

� �

sinhc ¼ k2 sinhc (10)

Here, k�1 ¼ ð2e2cs="0"kTÞ�1=2 is the so-called screening

length, and it characterizes all parts of the system (i.e., near

and far from charged surfaces) among which ions are

equilibrated. Physically, k�1 is the length scale characterizing

the approximately exponential decay of the electrostatic

potential upon moving away from charged bodies in solution.

For example, in a 0.1M aqueous electrolyte, the screening

length is k�1� 1 nm.

4.2. Origins of Surface Charge

While Section 4.1 describes the equations governing the

potential in electrolyte solutions, boundary conditions char-

acterizing the surface of the charged objects are still needed to

fully specify theelectrostatics of the system. Ingeneral, surfaces

become charged due to either the adsorption of charged (ionic)

species onto a charge-neutral surface or the dissociation of

ionizable surface groups (e.g., acidic groups under basic

conditions). In either case, this adsorption/dissociation process

is characterized by an equilibrium criterion (Figure 5a). In a

simple case of acid dissociationAH$A�þHþ, this criterion is

GA�cHþ=GAH ¼ Kd, where GAH and GA� are, respectively, the

surface densities (i.e., number per unit area) of protonated and

deprotonated surfacegroups, cHþ is theHþ concentrationat the

surface, and Kd is the equilibrium dissociation constant. Here,

cHþ is related to the concentration in the bulk solution, co
Hþ , as

cHþ ¼ co
Hþ expð�e’=kTÞ, such that cHþ > co

Hþ near the

negatively charged surface created by the deprotonated A�

groups. The surface charge density s is directly related to the

density of charged groups on the surface as s ¼ �eGA� and is

therefore related to the electrostatic potential at the surface as

s ¼ �eG0

1þ ðcHþ=KdÞ expð�e’S=kTÞ
(11)

where G0 ¼ GA� þ GAH is the total density of surface groups.

The derivation of a positively charged particle or charging via

ion adsorptionmay be derived in similar fashion. Additionally,

the charge density is related (through Gauss’s law) to the

electric field at the particle’s surface, S, as

s ¼ "0ð"Pr’P � "r’ÞS 	 n
*

(12)
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where eP is the dielectric constant of the particle, wP is the

potential within the particle, and n
*

is the outward surface

normal.

Equating Equations (11) and (12) for the charge density

gives the appropriate boundary conditions needed to solve the

Poisson–Boltzmann equation derived in the previous section.

This boundary condition is sometimes termed ‘‘charge-

regulating’’[125,126] due to the competing effects of the dis-

sociationequilibrium(Equation (11)) and the ionic equilibrium

characterized by the PB equation with the electrostatic

boundary condition (Equation (12)). For the dissociation

equilibrium, charge density should decrease with increasing

surface potential; however, the PB equation requires that the

charge should increase with increasing surface potential

(Figure 5b). At equilibrium, both relations must be satisfied,

and the dissociation/adsorption of ions fromor onto the surface

acts to maintain the surface potential at its equilibrium value –

hence, ‘‘charge-regulation’’.

In the limit of Kd!1, when all surface groups are

dissociated/ionized, the charge-regulating condition becomes

the more familiar constant charge boundary condition

(Equation (12)) for which surface charge density s is constant.

Alternatively, in the limit of Kd! 0 and G!1 but with finite

GKd! constant, the charge-regulating condition becomes

increasingly similar to the constant potential boundary

condition (however, the two never formally converge; see

Figure 5b). It is interesting to note that despite its ubiquity in

the literature, the condition of constant surface potential has

no physical basis in the surface equilibria responsible for

charging. Nevertheless, these limiting behaviors – both

constant charge and constant potential – remain useful both

as approximations under appropriate conditions or as bounds

on the more general charge-regulating model.

4.3. Free Energy of Interaction

Given the model of a charged surface described by the

PBequation and the charge-regulatingboundary conditions, the

free energy can be calculated directly from the thermodynamic

work required to charge the system by a reversible pro-

cess.[121,126] Starting from a reference state, in which all surface

groups are fully associated (i.e., charge neutral), the free energy

of double-layer formation (per unit area) fmay be calculated by

the hypothetical charging process, in which Geq ions (per unit

area) are transferred from the surface into solution.

f ¼
Z

Geq

0

ðmb � msÞdG (13)

Here, mb and ms are the chemical potentials of ions in the

bulk electrolyte and on the particle’s surface, respectively.

It is assumed that ms is of the form, ms ¼ m�
s ðGÞ þ ze’s, where

z is the valence of the desorbing ions (e.g., z¼ 1 for the

acidic groups discussed in Section 4.2); therefore,

mb � m�
s ðGeqÞ ¼ ze’s at equilibrium. For the surface equili-

brium model described in Section 4.2, Equation (13) may be

rewritten as[126]

f ¼ �
Z

’eq

0

sd’s þ kTG0 ln 1� aeq

� �

(14)

where, aeq is the fraction of dissociated surface groups at

equilibrium. This quantity may then be integrated over the

entire surface, S, of the particle(s) to give the total free energy

F associated with double layer formation.

F ¼
Z

S

fdS ð15Þ

Nanoscale Forces and Their Uses in Self-Assembly

Figure 5. a) ‘‘Nanoions’’ composedof goldnanoparticles functionalized

with negative (blue) and positively (red) charged ligands (right). Each

ligand can be charged/dissociated (blue or red) or neutral (gray) due to

the adsorption of an oppositely charged counterion; the equilibrium

betweenthesetwostates ischaracterizedbyanequilibriumconstantKeq,

which depends on the specific ion/ligand pair. b) Illustration of the

variousboundary conditions in thecaseof twooppositely chargedplates

withsurfacepotential,c0 (inunitsofkT/e), separatedbyadistanceL. The

nonlinear Poisson–Boltzmann equation prescribes the surface charge

density, s0 (in units of kkT"0"=e), as a function of c0 and L (dashed

curves). Additionally, s0 and c0 are related through the appropriate

boundary conditions: constant charge (blue), constant potential (red),

and charge-regulating (black). The intersection between the dashed

curves and the solid curves corresponds to the surface potential and

charge density at equilibrium. c) Electrostatic interaction potentials

between spherical nanoions illustrated in (a). Both repulsive and

attractive interactions are illustrated using four different models. The

dashed curve is the asymptotic approximation of Equation (16). The

solid curves are calculated using the nonlinear Poisson–Boltzmann

equation for different boundary conditions characterizing the particles’

surfaces: constant charge (blue), constant potential (red), and

charge regulating (black). Note that at any separation the magnitudes

of ‘‘þ/þ’’ and ‘‘þ/�’’ interactions are not of equal magnitude (see

Section 4.5 for the explanation).
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Finally, the interaction potential, Ues(r), of two (or more)

particles is simply the difference between the free energy of the

‘‘interacting’’ particles at finite separation and the free energy

of the isolated particles: Ues ¼ F2ðrÞ � 2F1.

For spherical particles (radii a1 and a2) separated by

distance r larger than the screening length, k�1, the interaction

potential, Ues, is well approximated by the familiar DLVO

(after Derjaguin, Landau, Verwey, and Overbeek) potential

for screened electrostatic interactions.[121]

Ues ¼
Q1

1 Q1
2

4p"0"ð1þ ka1Þð1þ ka2Þ
exp½�kðr � a1 � a2Þ�

r
(16)

where Q1
i is the effective ‘‘renormalized’’ charge[120,127] on

particle i, which characterizes the far-field potential about the

isolated particle,

’ðrÞ � Q1

4p"0"ð1þ kaÞ
exp½�kðr � aÞ�

r
for r � a 
 k�1 (17)

In the linear regime (ew/kT< 1), this renormalized charge is

linearly related to the surface charge density, s1
i ¼ Q1

i =4pa2i ,

and the surface potential, ’1
i ¼ Q1

i =4p"0"aið1þ kaiÞ, of an

isolated particle. For highly charged objects (i.e., beyond the

linear regime), however, the renormalized charge,Qi, increases

slower than linearly with the surface charge, s1
i , saturating at

the valueQ1
i ¼ 4p"0"aið1þ kaiÞð4kT=eÞ, corresponding to an

‘‘effective’’ surface potential of 4kT/e� 100mV.[120]

While the above analysis is useful for particles separated by

a large distance, it fails to describe the interactions between

strongly interacting chargedobjects separated bydistances that

are small relative to the screening length, r � a1 � a2 � k�1.

Given that the screening length can be as large as�100 nm (for

10mM aqueous electrolytes), these ‘‘small’’ separations are

oftennotvery small at all –especially in thecontextofnanoscale

self-assembly. In this case, it is necessary to resort either to

numerical methods or to make additional simplifying assump-

tions in order to keep the problem analytically tractable. For

example, when the screening length is much smaller than the

particle size, ka 
 1, we can apply the Derjaguin approxima-

tion (Section2.1) anduse thevarious analytical solutions forflat

plates.[121,128] Furthermore, in the case of two weakly charged

spheres (linear regime, ew/kT< 1), there exist analytical

solutions describing the free energy of interaction for various

linear boundary conditions (constant charge, constant poten-

tial, and linearized charge regulation).[125]

4.4. Limitations and Extensions of the DLVO Potential

While the approximate form given byEquation (16) is used

widely, it is important to understand its limitations, which arise

due to the neglect of nonlinear effects in the Poisson–

Boltzmann Equation (10) and of the boundary conditions at

theparticles’ surfaces,which strongly influence theelectrostatic

interaction energy at contact. To illustrate these effects,

consider a prototypical charged nanoparticle – the so-called

‘‘nanoion’’[129] used in the self-assembly of binary nanoparticle

crystals[39] – comprising a 6-nm gold core functionalized with a

self-assembled monolayer (SAM) of an ionic ligand, such as

positively charged N,N,N-trimethyl(11-mercaptoundecyl)am-

monium chloride (TMA) or negatively charged mercaptoun-

decanoic acid (MUA,pKa inNP/SAMca. 6–8) at highpH.Such

particles have �500 charge groups on their surface, consistent

with the surface density of thiolate monolayers on gold

(G¼ 4.7 nm�2 [130]). Figure 5c illustrates the electrostatic

interaction potentials between like-charged and oppositely

charged nanoions assuming charge-regulating boundary con-

ditions with an equilibrium constant of Kd¼ 10mM
�1 and salt

concentration 10mM (such that ka¼ 1). At large separations

(kr 
 1), the interactions are well approximated by Equation

(16) using an effective charge of Q1 ¼ 26e, which is

considerably smaller than the ‘‘bare’’ charge of 500 e due to

both the charge-regulating boundary conditions and the use of

the nonlinear PB equation (necessary because of the large

surface potential, ’S ¼ 70mV > kT=e). For smaller separa-

tions, however, theapproximate formdeviates fromthecharge-

regulating interaction by �20% for the case of like-charged

particles andasmuch as 50%for oppositely chargedparticles at

contact. The failure of the DLVO potential (Equation (16)) at

small separations –well known to its original creators[121] –may

result in qualitative discrepancies between self-assembled

structures observed experimentally and those predicted

theoretically on the basis of overly simplified interaction

potentials (as in the case of diamond-like nanoparticle

crystals[39] discussed in Section 4.5).

Additionally, theDLVOpotential, which relies on the linear

superposition of the electrostatic potential due to isolated

particles,[131] does not account for changes in the electrostatic

potential or the charge density at the surface of a particle in

the presence (i.e., interacting with) a neighboring particle. To

account for these changes, it is necessary to solve the Poisson–

Boltzmann equation explicitly in the two-particle geometry and

account for the specific boundary conditions characterizing the

particles’ surfaces. As illustrated in Figure 5c, the specific

boundary conditions employed – e.g., constant charge, constant

potential, or charge-regulating – can have a profound impact on

the magnitude of the electrostatic interactions, especially at

small separations.Here, the limiting casesof constantchargeand

constant potential provide upper and lower bounds on the

charge-regulating interaction. For like-charged particles, the

energy at contact is �6.4� 10�20 J (�16kT at room tempera-

ture) for constant charge and �4.8� 10�20 J (�12kT) for

constant potential; these values provide reasonably accurate

bounds on the charge regulating result (e.g., 5.6� 10�20 J or

14kT for Keq¼ 10mM). In the case of oppositely charged

particles, however, these limiting cases are less useful as the

constant potential result diverges to negative infinity while the

constant charge result predicts a finite interaction energy of

8� 10�20 J (�20kT) at contact – in other words, all we can say is

that the ‘‘real’’ interaction energy must be something greater

than 20kT! Thus, reasonable estimates of the interactions

between oppositely charged particles require the use of more

exact treatment of the particles’ surface equilibria.

The above example also highlights another, somewhat

counterintuitive consequence of charge regulation – that is, the

asymmetrybetweenattractionandrepulsionofoppositeandlike-

charged particles. This effect is due to the desorption of bound

ions from theNPs’ surfaces in the regions of reducedelectrostatic

reviews B. A. Grzybowski et al.
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potential (cf. Equation (11)). Specifically, when oppositely

charged NPs approach one another, the magnitude of the

potential in the region between them decreases causing

counterions to desorb. This desorption, in turn, increases

the local charge density and the electrostatic interaction energy.

In contrast, the magnitude of the electrostatic potential between

proximal, like-charged NPs is enhanced, causing further adsorp-

tion of counterions, decrease in the local charge density, and

reduction of the electrostatic interaction energy (see Reference
[129] for more details). The differences in the like-charged and

oppositely charged interaction potentials are of central impor-

tance in rationalizing the ionic-like behaviors of oppositely

charged nanoparticles, such as their precipitation from solution

only at the point of overall electroneutrality,[41,129]
P

Qþ
i þ

P

Q�
i ¼ 0 (reminiscent of the precipitation of inorganic salts at

the solubility product).

4.5. Consequences for Self-Assembly

The charge-regulating potentials also have consequences

for the self-assembly of nanoparticle superstructures driven by

attractive electrostatic interactions. While few examples of

electrostatic crystallization have been reported in the litera-

ture,[62,109] most explore crystallization at relatively high

volume fraction (f¼ 0.1–0.7 upon evaporation of solvent[62])

with weak electrostatic forces (Q¼
1e for 3–13-nm parti-

cles[62]). Although, under such conditions, crystal structures

have been observed that are distinct from the close-packed

arrangements driven by entropic effects (cf. Section 7.3), it is

difficult to single out and assess the role of electrostatics among

other competing effects driving the crystallization process. By

contrast, Kalsin et al. observed the assembly of highly charged

nanoparticles from very dilute solutions (f� 0.01) into open-

lattice, diamond-like crystals (packing fraction of 0.34; cf.

Figure 6). The formation of such ‘‘open’’ structures can be

rationalized by electrostatic arguments using the appropriate

charge regulating boundary conditions.

Specifically, while the positively and the negatively charged

particles are exactly charge balanced (as verified by titration

experiments[41,132]), the affinities of the charged ligands for

their respective counterions may differ significantly – i.e.,

Kþ
d 6¼ K�

d . This is especially the case for charged nanoparticles

surrounded by monovalent counterions of appreciably differ-

ent sizes – for example, in the systemdescribed inReference[39]

(like-sized NPs decorated with deprotonated MUA, or TMA

alkane thiols), the NMe4
þ and OH� counterions have

hydrodynamic radii of 1.8 Å and 0.4 Å, respectively. These

differences in size result in different free energies of desorp-

tion, DGd, which are determined primarily by electrostatic

interactions between the charged ligand and the adsorbing

counterion, DGd � e2=4p"0"D, where D is the ionic dia-

meter.[133] For NMe4
þ and OH�, the free energies of

desorption are estimated to be DGd � 1:0� 10�20 J and

DGd � 4:4� 10�20 J, respectively (with e� 65 corresponding

to the DMSO-water mixture). Therefore, the desorption

equilibrium constants, Kd � expð�DGd=kTÞ, are expected to

differ by as much as four orders of magnitude, and the NPs

have different effective charges (despite having the same

numbers of thiols on their surfaces!).

Nanoscale Forces and Their Uses in Self-Assembly

Figure 6. Electrostatic self-assembly of charge nanoparticles

(cf. Figure 5a). a,b) Equally sized, oppositely charged nanoparticles –

‘‘nanoions’’ – assemble from solution to form the non-close-packed,

diamond-like ZnS crystallites with octahedron (a) and truncated

tetrahedron (b) morphologies. Reproduced with permission from

Reference [39]. Copyright 2006, AAAS. c) Schematic illustration of the

three1:1 ionic lattices.TheZnSstructure is foundexperimentally,despite

its small packing fraction (f¼ 0.340) and low co-ordination number

(n¼ 4) as compared to NaCl (f¼ 0.524, n¼6) and CsCl (f¼0.680,

n¼8). d) Electrostatic free energy per particle for oppositely charged

(Q¼
500e), 6-nmNPsorganizedontooneof the three1:1 ionic lattices

illustrated in (c). The equilibrium constants for ion desorption (scaled by

thesalt concentration)areKþ
d =cS ¼ 100andK�

d =cS ¼ 0:01, respectively.

For small screening length (ka > 1), the ZnS lattice is favored over NaCl

and CsCl structures (note that the electrostatic free energy is actually

positive under some conditions due to the strong asymmetry in the ionic

equilibria).
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This ‘‘asymmetry’’ in the surface equilibria can drive the

formation of non-close-packed crystals, such as the diamond-

like, ZnS structure. Indeed, for conditions similar to those used

experimentally (cf. Figure 6d), the ZnS structure is more

energetically favorable than the other 1:1 ionic lattices, NaCl

and CsCl, which one would ‘‘intuitively’’ expect for like-sized,

oppositely charged particles. In this context, it is interesting to

note that formation of diamond-like crystals is possible only for

small values of the screening length relative to the radius of the

particles, ka> 1. For larger screening lengths (ka< 1), CsCl and

NaCl are preferred due to their higher packing fractions –

f¼ 0.680 and f¼ 0.524, respectively – resulting in the typical

ordering of the electrostatic energies of ionic lattices,

UCsCl < UNaCl < UZnS. At small screening lengths, however,

only interactions between oppositely charged nearest neigh-

bors and like-charged next nearest neighbors are important. In

the ZnS lattice, the distance between next nearest neighbors is

considerably larger than that in either CsCl or NaCl structures.

Thus, upon decreasing the range of the electrostatic interac-

tions, the decrease in the next nearest neighbor repulsions is

most significant for the ZnS structure, while the attractive

nearest neighbor interactions remain largely unaffected (cf.

Reference [39] for more details).

The formalism for treating electrostatic interactions

developed in the preceding sections can be extended to

non-spherical particles. Nanorods provide one interesting

example whereby the preferred orientation of interacting

particles may depend on the screening length (e.g., on the

electrolyte concentration; Figure 7). Consider first the limit

in which the screening length is much smaller than the

dimensions of the particles, such that the Derjaguin approx-

imation (Section 2.1) is valid, and the interaction depends

only on the curvature of the interacting bodies near the

point of contact. For example, a charged nanoparticle

interacting with a longer, oppositely charged nanorod prefers

to attachonto the ‘‘side’’ of the rod thanat either of its twoends.

In this case, the Derjaguin approximation predicts that the

electrostatic interaction between a sphere (radius as) and a

cylindrical rod (radius ar, length h) with spherical ends scales as

USide � asar
1=2=ðas þ arÞ1=2 for the ‘‘side’’ arrangement and as

UEnd � asar=ðas þ arÞ for the ‘‘end’’ arrangement, such that the

former is always preferred. For larger screening lengths,

however, for which the Derjaguin approximation no longer

holds, the ‘‘end’’ arrangement may actually be the preferred

configuration. As an example, consider a charged sphere

interacting with a weakly charged but highly polarizable rod

(e.g., a gold nanorod). Polarization of the rod by the sphere

results in charge–dipole attraction, which at small separations

can actually become stronger than the charge–charge interac-

tion (c.f. Figure 7b). Due to the asymmetric shape of the rod,

these polarization effects are most significant along the rod’s

longitudinal axis.[134]

To quantify these effects, consider the case of very large

screening length, for which the sphere-rod interaction may be

approximated as the sumof charge–charge and charge-induced

dipole contributions neglecting ionic screening.

UðrÞ ¼ QSQR

4p"0"r
� Q2

SVRa

8p"0"r4
(18)

Here,QS andQR are the charges on the sphere and on the rod,

respectively, VR is the volume of the rod, r is the center-to-

center distance, and a is the rod’s dimensionless polarizability,

which depends on the orientation of the rod (a¼ 18 when

the rod is parallel to the line of centers and a¼ 2.1 when it

is perpendicular to the line of centers.[134]). When the

sphere is at the ‘‘side’’ of rod (r¼ 2a; see Figure 7b),

the magnitude of the charge–charge interaction is stronger

than for the sphere at the rod’s ‘‘tip’’ (r¼ 3.5 a for the system

in Figure 7b). For charge-induced dipole interaction,

however, the preference is reversed and this term might

favor the ‘‘tip’’ configuration. This mechanism may be the

cause behind the selective electrostatic adsorption of 5 nm Au

nanoparticles onto the ends of larger Au nanorods observed

experimentally.[135]

4.6. Beyond the Poisson–Boltzmann Equation

Despite the proven usefulness of the Poisson–Boltzmann

theory of electrostatic interactions, some interesting effects are

not captured by the above description. For example, the charge

of a colloidal particle can actually change sign (so-called

‘‘charge inversion’’[136] or ‘‘overcharging’’[120]) in the presence

reviews B. A. Grzybowski et al.

Figure 7. Electrostatic self-assembly of non-spherical particles.

a)Schematic imageofachargedAuNPinteractingwithanAunanorod.The

sphere and the rod have charge densities, ss and sr, respectively, with

ss¼ 20 sr. Owing to the large (infinite for ideal conductors) static

polarizability of the gold particles, the dominant interaction is a charge-

induced dipole interaction. b) Interaction potential as a function of

distance for the ‘‘side’’ configurationand the ‘‘end’’ configuration for two

different screening lengths. c) Ratio of the interaction energies at contact

for the two configurations shown as a function of the screening length,

k�1. Depending on the range of the electrostatic interactions, one of the

two possible arrangements is preferred.
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of multivalent counter ions (see Reference [136] and

references therein for experimental examples), and like-

charged surfaces can attract one another at small separations

due to electrostatic interactions mediated by divalent

counterions[137,138] (see also Reference [139] and references

therein). Neither of these phenomena can be explained within

the mean-field approach described in Sections 4.1–4.3. The

limitations of the Poisson–Boltzmann theory in these

situations arise due to its neglect of correlations between the

counterions, which become increasingly important for muti-

valent ions or low-dielectric (organic) solvents.[120] To account

for these effects, it is necessary to resort to more advanced

tools of statistical mechanics, such as integral equations[140,141]

(often using hypernetted chain-like closures[141–143]), density

functional theory,[144] or direct numerical simulation (often,

Monte Carlo simulations[119,144,145] of the so-called primitive

model, whereby ions are treated as charged hard spheres and

the solvent as a dielectric continuum). As these approaches

have been reviewed elsewhere in detail,[120,136,139,141] we

highlight only briefly the interesting phenomena of

charge inversion and like-charged attraction to illustrate the

potential consequences of ion correlation effects at

the nanoscale.

4.6.1. Charge Inversion

Consider an isolated, charged sphere with uniform surface

charge density s and radius a, such that the total charge on the

particle is Q ¼ 4pa2s (valence Z ¼ Q=e). In the presence of

oppositely chargeda–valent counterions, onemight expect that

N ions will adsorb (or ‘‘condense’’ [144,146]) onto the surface of

the particle until the total particle–ion complex is charge

neutral – that is, until N0 ¼ Z=a. Under some circumstances,

however, the number of condensed a-ions will be considerably

larger thanN0, such that the net charge of the particle actually

changes sign! To rationalize this counterintuitive result, let us

consider the electrostatic energy of the particle-counterion

system, UN, in the zero-temperature limit (i.e., the minimal

energy configuration).[120,147]

UN ¼ 2ps2a3

"0"
� aeasN

"0"
þ Uaa

N (19)

Here, the first term is the self-energy of the charged particle,

the second term is the electrostatic energy of the condensedm

a-ions in the field of the particle, and the third term is the

repulsive energy between the like charged a-ions. The latter

depends on the relative positions of the a-ions on the surface

of the sphere. For example, if the positions of the a-ions are

completely uncorrelated, they may be treated as a uniform

shell of charge, such that Uaa
N ¼ a2e2N2=8p"0"a. With this

assumption, the total energy, UN, is minimal when

N ¼ 4pa2s=ea ¼ N0. In other words, in the absence of

counterion correlations, the energy is minimal when the total

charge of the particle is neutralized by the oppositely charged

a-ions.

In reality, the positions of the a-ions are correlated due to

repulsive electrostatic interactions between them. Therefore,

at zero temperature, the a-ions organize on the surface of the

particle to forma triangular lattice (with fewtopological defects

necessary to ‘‘wrap’’ around the sphere) in order to maximize

the distance between their neighbors (Figure 8a). With this

configuration, theunfavorableelectrostatic energybetween the

a-ions can be calculated as[120]

Uaa
N ¼ a2e2N2

8p"0"a
1� M

ffiffiffiffi

N
p

� �

(20)

where M¼ 1.106 is the Madelung constant for the planar

Wigner crystal (i.e., charges on a triangular lattice), which

provides a good approximation as long as the characteristic

distance between charges is much smaller than the radius of

the sphere,[120,147] ð4pa2=NÞ1=2 � a. Substituting Equation

(20) into Equation (19), the total electrostatic energy is

minimal when

N ¼ Z

a
þ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4g2Z
p

2g2a
with g ¼ 4

3M
ffiffiffi

a
p (21)

Thus, the effective charge of the particle, Zeff ¼ Z � aN,

is actually of opposite sign with respect to the bare

charge.

Zeff ¼ � 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4g2Z
p

2g2
(22)

Furthermore, Equation (22) predicts that the degree of

‘‘overcharging’’ increases with the bare charge of the

particle (as �
ffiffiffiffi

Z
p

) and with the valence of the counterions

(as � ffiffiffi

a
p

).

While the above considerations allow the rationalization of

charge inversion in principle, its quantitative description for

charge particles in electrolyte solutions at finite temperatures

remains challenging.[120,136] More quantitative treatments of

this phenomena have been proposed using a variety of

theoretical and computation methods (see Reference [136]

for more details).

4.6.2. Like-Charge Attraction

Another potential consequence of ion correlation effects is

the short-range attraction between like-charged surfaces/

particles – especially in the presence of multivalent counter

Nanoscale Forces and Their Uses in Self-Assembly

Figure 8. Ion correlation effects.Model geometries described in the text

for the rationalizationof a) charge inversionandb) like-chargeattraction.
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ions.[141] While the Poisson–Boltzmann equation invariably

predicts repulsive interactions between like-charged parti-

cles,[148,149] attractive interactions in such systems have been

demonstrated experimentally.[137–139,143] This phenomenon is

most manifest in systems characterized by highly charged

surfaces, multivalent counterions, and low-dielectric solvents,

and occurs only when the two surfaces approach sufficiently

close such that their ion condensation ‘‘shells’’ overlap.[141]

Physically, this attraction arises due to correlations between

ions condensed onto one surface with those on the neighboring

surface. This can be illustrated for the case of two charged

surfaces near contact, for which the condensed counterions are

shared equally between the two surfaces. The number density

(per unit area), G, of condensed a-valent counterions is

determined by the charge-neutrality condition, eaG ¼ 2s,

where s is the charge density on each of the surfaces. When

thedistancebetweena-ions,d ¼ ðpGÞ�1=2, is significantly larger

than the distance between the plates (cf. Figure 8b), this model

system becomes directly analogous to the one component

plasma in 2-dimensions, where the charge surfaces play the role

ofauniform,neutralizingbackgroundcharge.[120]As in thecase

of charge-inversion described in Section 4.6.1, we can estimate

theelectrostatic energy(perunitarea)of this systemin thezero-

temperature limit

U ¼ �Me2a2

4p"0"d
G (23)

where M¼ 1.106 is the Madelung constant for the planar

Wignercrystal.Theelectrostatic energy is favorable resulting in

attractive interaction,whereby like charge surfaces are ‘‘glued’’

together via condensed counterions. In contrast, if the

condensed ions were completely uncorrelated, the total

electrostatic energy would be identically zero as the attraction

between counterions and the surfaces is fully compensated by

the repulsions between the two surfaces and between the

counterions. In this case, the free energyof interactionwouldbe

repulsive due to the entropic penalty associated with ion

condensation from solution. The distinction between these two

scenarios (i.e., correlated vs. uncorrelated ions) is determined

by the electrostatic coupling parameter, g , where strong ion

correlations arise only when

g � e2a2

4p"0"d

 kT or equivalently lBa

3=2ðs=eÞ1=2 
 1 (24)

Thus, strongly electrostatic coupling is achieved for large

surface charges s, ionic valence a, and/or Bjerrum lengths

lB � e2=4p"0"kT (lB� 0.7 nm in water). In practice, multi-

valent ions are almost always needed to satisfy this condition

even for the largest possible surface charge densities (typically,

s � 0:5Cm�2). While the above description is overly

simplistic (neglecting entropic effects, the finite sizes of the

ions, image interactions due to dielectric boundaries, and the

dependence on surface separation), the qualitative conclusions

are general.Morequantitativedescriptions of thephenomenon

of like-charge attraction have been derived using various

theoretical methods[119,141,142,145,150] – typically, in the context

of the primitive model (see Reference [141] and references

therein).

4.6.3. Experimental Evidence and Challenges at the
Nanoscale

Interestingly, while there exists considerable experimental

evidence for like-charge attraction between planar sur-

faces,[137,138] rigid cylindrical macromolecules,[151] and flexible

polyelectrolytes,[152] similar effects between spherical particles

(most relevant to the present Review) remain somewhat

controversial.[141] With some exceptions,[141,143] experimental

studies focus on interactions between like-charge micrometer-

sized colloids in monovalent electrolytes for which counterion

correlations arenegligible, andwhere the interactionpotentials

are found to be completely consistent with those derived from

the Poisson–Boltzmann equation.[131,153] It is only for highly

charged particles or macromolecules (e.g., DNA[151]) in the

presence of multivalent counterions, for which deviations from

the Poisson–Boltzmann theory may be expected. Exploring

these effects in the context of charged nanoparticles should

provide an important step towards validating existing theore-

tical predictions and elucidating the role of ion-correlations at

the nanoscale.

In concluding our discussion of electrostatic interactions,

we emphasize that the electrostatic charge on a nanoscale

particle ispredominately a surfaceeffect – for example, through

the adsorption or desorption of ionic species. Therefore, it does

not preclude the presence of additional interparticle forces

acting between the particles’ volumes. In addition to vdW

forces, other ‘‘body’’ forces arise between materials with a

permanent electric ormagnetic polarization.However, despite

several interesting examples of electrically polarized particles

(e.g., CdSe particles or other semiconductors),[118] these forces

are typically weak and subject to screening in electrolyte

solutions. More important in the context of self-assembly are

interactions between magnetic components described in

the next section.

5. Magnetic Interactions

Magnetic nanoparticles and their assemblies are sought

in high-density storage of data[154] andmagnetic energy,[155,156]

magnetic separations,[157,158] drug delivery,[159,160] and

hyperthermia treatments,[161,162] as well as in magnetic

relaxation switches for sensing biological interactions between

proteins, DNA,[163] and viruses.[164] When magnetic nanopar-

ticles self-assemble, they tend to align their magnetic moments

in the direction of the local magnetic field due to neighboring

particles or applied fields. This gives rise to a specific

directionality of interaction, enabling magnetic NPs to form

micron-sized, one-dimensional chains/wires[165–168] or

rings.[169,170] More recently, these NPs have also been shown

to form two-dimensional aggregates[95,171,172] and even three-

dimensional superlattices.[172–176]Controlling these self-assem-

bly processes requires the understanding of the relationship

between the magnetic properties and other particle character-

istics such as size or shape. We first discuss some nanoscale-

specific properties of isolated magnetic NPs.
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5.1. Isolated Magnetic Particles: Effects of Size and
Shape

Magnetic particles come in many shapes and sizes ranging

fromnanoscale spheres[177,178] tomicrometer-scale rods[179,180]

and can be synthesized from a variety of magnetic materials

including Co,[177,180] Fe3O4,
[181] Fe2O3,

[182] FePt,[183] Ni,[177]

Mn3O4,
[184] and MnO[184] (ordered by decreasing magnetic

saturation). Magnetic nanoparticles are also synthesized by

biological systems, for instance, by magnetotactic bacteria

containing linear arrays of�50-nmmagnetite crystals[185] or in

higher organisms where a protein called ferritin[186] is used for

intracellular storage of iron and exhibits superparamagnetic

properties characteristic of nanoscale magnets.

The properties of a magnetic material depend strongly on

theparticle size.Macroscopic ferromagneticmaterials (e.g., Fe,

Co, Ni) are composed of many micrometer-scale domains, in

which the magnetic moments of the constituent atoms/

molecules are aligned to yield a coherent magnetization below

the so-called Curie temperature.[187] The net magnetization,

however, may still be zero as the domain magnetizations are

randomly oriented. For magnetic bodies smaller than the

characteristic domain size (ranging from �10 nm to 1mm

depending on the material[188,189]), this multidomain structure

isno longerenergetically favorable, and thematerial transitions

to a single-domain ferromagnet. This single domain is

characterized by a preferred or ‘‘easy’’ axis of magnetization

that depends on both the crystal structure of the material and

the shape of the particle. For example, in cylindrical Co

nanoparticles of height h and radius a, the preferred

magnetization is parallel to the axis of the particles for large

aspect ratios (h/2a> 1) but orients along the radial direction for

disk-likeparticles (h/2a< 1).[190]Tothefirst approximation, the

energyassociatedwithdeviationsof themagnetization fromthe

preferred direction is given by EðuÞ ¼ KV sin2ðuÞ, where K is

the anisotropy constant, V is the volume of the particle, and u

is the angle between the easy axis and themagnetization. Thus,

the ‘‘up’’ and ‘‘down’’ magnetizations (u¼ 0 and u¼p) are

equally favorable and separated by an energy barrierKV. The

magnitude of this barrier depends on the size of the particle and

distinguishes between two distinct magnetic regimes – that of

ferromagnetism and superparamagnetism.

To illustrate this distinction, consider the time scale, t, on

which the particle magnetization flips spontaneously due to

thermal fluctuations. This timescale is approximated[191] by the

Arrhenius equation, t ¼ t0expðEB=kTÞ,whereEB is theenergy

barrier (EB ¼ KV in the absence of applied fields), and t0 is a

material-specific timescale (e.g., t0� 10�9 s for 10 nm magne-

tite particles[192]). When the timescale for flipping, t, is long

compared to the relevant experimental timescales, the

magnetic moment of the particle remains fixed (or ‘‘blocked’’)

exhibiting ferromagnetic behavior with characteristic hyster-

esis in themagnetizationcurveuponchanges in theappliedfield

(it must be remembered, however, that even in this regime

superparamagnetic behavior is possible if the particles are free

to relax by a different mechanism – e.g., rotational diffusion of

the entire particle, not just its moment, characterized by a time

scale t ¼ 3Vh=kT, where h is the viscosity of the surrounding

fluid). In contrast, when the experimental timescales are

much larger than t, the particle’s magnetic moment fluctuates

rapidly such that its time average,m, is zero. Like paramagnetic

atoms andmolecules, such superparamagnetic particles exhibit

a net magnetic moment only under an applied field, H, as

characterized by theLangevin function,m=m ¼ cothðhÞ � 1=h,

where h ¼ mH=kT, andm is the intrinsic magnetic moment of

the particle. The approximate dividing line between ferromag-

netic and superparamagnetic behavior is often set by the

experimental timescale texp, which can be used to define a

‘‘blocking temperature’’,Tb ¼ KV=klnðtexp=t0Þ, abovewhicha
ferromagnetic material transitions to the superparamagnetic

regime. For example, the blocking temperature of 26-nm iron

oxide (Fe3O4 with K � 1:1� 104 J=m [193]) nanoparticles is

�300K; therefore, at room temperature, particles larger than

�26 nm are ferromagnetic while smaller particles exhibit

superparamagnetism.[92] Interestingly, close-packed arrays of

magnetite NPs may exhibit ferromagnetic behavior even for

particles smaller than 26 nm due to dipole–dipole interac-

tions.[178]

In either regime, the magnitude of the intrinsic magnetic

moment scales with the particle volume asm ¼ m0MSV, where

m0 is the permeability of vacuum, and MS is the saturation

magnetization often equated with that of the bulk material,

Mbulk
S . For magnetic particles in the nanometer size range,

however, the magnetic saturation is typically smaller than the

corresponding bulk value due to surface effects. Within the

material, spins interactwithoneanother toorient collectively in

a single direction. Near the boundary, however, spins are

increasingly disordered due to weaker coupling with the more

ordered interior spins. This effect acts to decrease the

saturation magnetization and may be approximated[194] as

MS ¼ Mbulk
S ½ða� dÞ=aÞ�3, where a is the radius of the particle,

andd is a characteristic thicknessof thedisordered surface layer

(typically �1 nm[195,196]). For example, for 9-nm NiFe2O4

particles, the saturation magnetization is estimated to be

�1.6� 105Am�1, which is significantly smaller than the bulk

saturation of 2.9� 105Am�1 and agrees well with the

experimental value of 1.8� 105Am�1.[197]

5.2 Magnetic Interactions

The various size-dependent properties of single magnetic

particles described above can have significant effects on the

magnetic interactions driving self-assembly. The dominant

contribution is themagnetic dipole–dipole interaction, derived

here for spherical particles.A singlemagnetic sphereof radiusa

and constant, spatially homogeneous magnetization, M,

generates a magnetic field identical to that of a point dipole

with magnetic moment, m ¼ m0VM with V ¼ 4
3pa

3.

H ¼ 3ðm 	 r̂Þr̂�m

4pm0r
3

(25)

where r̂ ¼ r=r denotes the unit vector parallel to r. The

magnetic energy of such a dipolar particle in an external field,

H (e.g., that due to a neighboring dipole), is given by

Um ¼ �m 	H, such that the dipole experiences a force,

F ¼ rðm 	HÞ. The dipole–dipole energy, Udd, is simply the

work required to bring two dipoles with moments, m1 andm2,

Nanoscale Forces and Their Uses in Self-Assembly
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from infinity to a finite separation, r.

Udd ¼
m1 	m2 � 3ðm1 	 r̂Þðm2 	 r̂Þ

4pm0r
3

(26)

Unlike the previous interactions discussed above, the dipole-

dipole interaction is directional in nature and can be either

attractive or repulsive (Figure 9a). For example, for ‘‘in line’’

dipoles (i.e., m1 	m2 ¼ m2, m1 	 r̂ ¼ m1 	 r̂ ¼ m) the interac-

tion is attractive with a magnitude �m2=2pm0r
3; for dipoles

aligned antiparallel (i.e., m1 	m2 ¼ �m2, m1 	 r̂ ¼ m2 	 r̂ ¼ 0),

it is repulsive with a magnitude m2=4pm0r
3.

The magnitude of the interaction is characterized by the

maximum magnetic energy at contact, m2=16pm0a
3 or

1
9pm0a

3M2, which can be considerable relative to the thermal

energy, kT. For magnetite (Fe3O4) with a bulk magnetic

saturationofMbulk
S ¼ 4.8� 105Am�1, the characteristic dipole-

dipole energy at room temperature for a 15-nm particle

(a¼ 7.5 nm) is 4.3� 10�20 J or �10kT at room temperature.

Notice that this energy scales linearly with the volume of the

particle, such that interactions between iron oxide particles

smaller than �7 nm, for which Udd< 1kT, are too weak to

induce self-assembly. For larger particles, however, magnetic

dipole interactions can become too strong causing rapid

flocculation in the absence of additional stabilizing forces

(e.g., electrostatic or steric repulsions). Furthermore, these

interactions are relatively long-range decaying as r�3 with no

characteristic length scale. For superparamagnetic particles,

however, the dipole–dipole interactions between fluctuating

magnetic moments become weaker than those of ‘‘fixed’’

moments at large separations and are well approximated as

UddðrÞ ¼
�1

3kT

m1m2

4pm0r
3

� �2

for
m1m2

2pm0r
3
� 6kT

ðKeesom InteractionÞ
(27)

Figure 9b shows distance dependence of the dipole

interaction between superparamagnetic particles[198] and

illustrates the transition from r�3 dependence for strongly

correlated in-line dipoles to r�6 dependence for decoherent

dipoles once the dipole energy falls below �6kT.

Formagnetic particles ofmore complex, anisotropic shapes

the simple dipole–dipole expression becomes only a first

approximation, which neglects interactions between the

higher-order multipoles characterizing the fields surrounding

each particle. For example, the magnetic field due to a

cylindrical particle (heighth, radius a)magnetized along its axis

is characterized by a dipole moment, m ¼ m0Mpha2, an

octopole moment,Q30 ¼ 1
4m0Mpha2ðh2 � 3a2Þ, as well as other

higher-order moments.[199] For two such cylinders, the second-

order correction to the dipole–dipole interaction of Equation

(26) is a dipole–octopole interaction, Udo, given by

Udo ¼ mQ30

4pm0r
5
½15
2
ðe1 	 r̂Þ þ 15

2
ðe2 	 r̂Þ � 3�ðe1 	 e2Þ




�½35
2
ðe1 	 r̂Þ2 þ 35

2
ðe2 	 r̂Þ2 � 15�ðe1 	 r̂Þðe2 	 r̂Þ

i
(28)

where ei ¼ mi=m describes the orientation of cylinder i.

The total interaction potential is then given by

U ¼ Udd þUdo þOðr�7Þ. The effects of this second order

correction are illustrated in Figure 9c for cylindrical particles

of aspect ratio h/2a¼ 10 in both the ‘‘in-line’’ and ‘‘parallel’’

arrangements. For separations larger than� 3
2h (in general, the

longest linear dimension of the particle), the first multipole

correction provides an accurate approximation (within�10%)

reviews B. A. Grzybowski et al.

Figure 9. Interactions between magnetic nanoparticles. a) Schematic

illustrationof thebehaviorofweakly interactingmagneticparticles. In the

absenceof anappliedfield, theparticles’ dipolemoments (blackarrows)

are randomly oriented, and the particles remain largely unaggregated

(top left). An applied field acts to orient the particles’ moments in the

direction of the field enabling the formation of chain-like aggregates

(bottomleft). The interactionbetweenaligneddipolescanbeattractiveor

repulsive, depending on the relative positions of the particles (right) –

here, the blue regions denote attraction and the red regions repulsion.

b) Interaction potential between superparamagnetic particles[198]–here

15-nmcobalt nanoparticleswithmagnetizationMbulk
S ¼1.4� 106Am�1.

At small separations, the magnetic field due to one particle is strong

enoughtoorientthatof itsneighbor,andtheinteractionis thatof themost

favorable ‘‘in-line’’ dipoles. At larger separations, however, theparticles’

moments become increasingly disoriented with respect to neighboring

particles, and the potential approaches the Keesom interaction (dashed

curve) decaying as r�6 as opposed to r�3 for ‘‘fixed’’ dipoles. This

transition does not occur in a strongmagnetic field, whichmaintains the

relative orientations of the dipoles at any separation. c) Interactions

betweennanorodsmagnetized along their long axis and interacting end-

to-end (left) or side-by-side (right). The three curves represent the exact

potential (black; Equation (29)), the dipole–dipole approximation

(red;Equation(26)),andthemoreaccuratemultipoleapproximationwith

the dipole-octapole correction (blue; Equation (28)).
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to the exact interaction and is significantly better that the

dipole–dipole approximation. Both approximations fail at

small separations, at which increasingly many multipole

moments are needed to make an accurate estimate.

In general, such higher-order correctionsmay be computed

using methods developed for electrostatic problems and

commonly used in physical chemistry to describe electrostatic

interactions between molecules.[200,201] There, the multipole

moments are calculated from the charge distribution of a given

particle/molecule, and the interactions between such moments

may be calculated using tabulated formulas.[200,201] In the case

of magnetic particles, the ‘‘magnetic charge’’ distribution is

analogous to the surface charge density of a polarized dielectric

and is described by the quantity, sm ¼ M 	 n, where M is the

magnetization, and n is the outward surface normal. While

convenient andaccurate for far-field interactions, themultipole

approach becomes increasingly cumbersome for particles near

contact due to the large number of terms needed in the

expansion to obtain accurate results. Alternatively, one can

calculate the magnetic interactions directly via numerical

integration over the surface of the two particles as

Um ¼
Z

S1

Z

S2

sm1ðr1Þsm2ðr2Þ
4pm0r12

dS1dS2 (29)

This procedure is used to obtain the ‘‘exact’’ interaction

potentials between magnetic cylinders illustrated in Figure 9c.

From these curves, we find that the end-to-end arrangement

remains more favorable than the side-by-side configuration at

all separations, in sharp contrast to the simple dipole-dipole

form (Equation (26), which predicts the side-to-side config-

uration to be more favorable for rods at contact).

5.3 Illustrative Examples in Self-Assembly

Owing to the directionality of the dipole–dipole interac-

tions, the typesof self-assembled structures formedbyspherical

magnetic colloids are far richer than the simple hcp or fcc

crystals whose formation is driven by all-attractive, spherically

symmetric potentials (e.g., vdW forces; cf. Section 3). As the

dipolar attraction is strongest between dipoles in the ‘‘in-line’’

configuration, magnetic particles assemble from dilute solu-

tions to form linear chains[165–168] or rings[169,170] (Figure 10a,c)

when the magnitude of the interaction exceeds �8kT (i.e.,

m2=16pm0a
3 � 8kT).[202–204] For example, iron nanoparti-

cles[205] coatedwith polyisobutene exhibit such ‘‘string’’ phases

for 12-nm particles (m2=16pm0a
3 � 15kT) but not for 10 nm

particles (m2=16pm0a
3 � 5kT). Upon further increase in the

magnitude of the dipolar interactions (e.g., with increasing

particle size), these linear chains begin tobranch andultimately

percolate to form a connected, gel-like network.[202,206] For

very strong dipolar interactions – typically induced by applied

fields – magnetic NPs organize into superlattices characterized

by body-centered tetragonal (bct) structures,[202] which have

also been predicted by simulations of hard, dipolar spheres.[64]

The above behaviors are observed at low to moderate NP

concentrations; however, at higher volume fractions, organiza-

tionofmagneticparticles isdrivenmorebyentropiceffects than

by dipolar interactions resulting in fcc or hcp structures similar

to those formed by ideal ‘‘hard-sphere’’ particles (cf. Section

7.3).

When subject to a uniform magnetic field,H, the magnetic

moments of the particles align with the applied field provided

thatmH 
 kT (e.g.,H� 0.2 T for 10-nm magnetite particles).

In this case, interactions between oriented magnetic moments

scale as r�3 at all separations (cf. Figure 9b), resulting in

stronger dipole–dipole interactions as compared to those

between superparamagnetic particles in the absence of the

field. Thus, the applied field has two major effects on self-

assembly: i) It induces the formation of aggregate phases

from particles with smaller dipole moments than would be

possible in the absence of the field (specifically, for

m2=16pm0a
3 � 2kT),[95,207] and ii) the phases that form are

oriented with respect to the field (e.g., string phases shown in

Figure 10b). In this way, using appropriately tuned magnetic

particles, for which the characteristic dipole energy is between

�2kT and �8kT, it is even possible to induce assembly/

disassembly on demand through the application/removal of an

applied field[95,208] (a similar effect provides the basis for

magnetorheological fluids[209]). Furthermore, because the

Nanoscale Forces and Their Uses in Self-Assembly

Figure 10. Self-assembly of magnetic nanoparticles by dipole–dipole

interactions. a) Owing to their strong dipolar interactions, 20-nm cobalt

nanoparticles form linear chains even in the absence of an external

magnetic field. Reprinted with permission from Reference [165].

Copyright 1966, American Institute of Physics. b) TEM images of

10-nm g-Fe2O3 nanoparticles, which organize into parallel chains

(‘‘nanowires’’) under a magnetic field of 0.59 T applied parallel to the

substrate. [95] The average length of the nanowires is on the order of

10mm with a diameter of �300nm. Reprinted with permission from

Reference [95]. Copyright 2004, Nature Publishing Group. c) TEM images

of27-nmcobalt nanoparticles forming rings[169]underamagneticfieldof

0.225 T. Inset shows a ring with almost single-particle thickness. Scale

bar is100 nm.Reprintedwithpermission fromReference [169].Copyright

2008, American Chemical Society. d) TEM images of 12-nm cobalt

particles under a magnetic field of 1 T parallel to the substrate.[172] The

particles formtwo-dimensionalhcparrayswithaninterparticlespacingof

12.2 nm. Reprinted with permission from Reference [172]. Copyright

2001, CSIRO Publishing.
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magnetic moments of all the particles are aligned coherently,

magnetic self-assembly under an applied field can significantly

improve the long-range order of the resulting struc-

tures.[172,174,210] For example, the domain size of two-dimen-

sional superlattices of 12-nm CoNPs increases more than

twofold (to 0.5mm2) in the presence of an applied magnetic

field aligned parallel to the substrate. Aside from these

distinctions, however, the structures formed under applied

fields[172,203,207,210] are similar to those that form in the absence

of fields.

In thederivationsandexamples so far, itwas tacitlyassumed

that the magnetic dipole–dipole interactions were the sole

forces responsible for particle assembly. In reality, magnetic

interactions always compete with vdW forces (and possibly

other types of forces) which become increasingly important

with decreasing particle size. To see this, consider a pair of

spherical particles coated with a SAM of thickness, d, which

prevents theparticle surfaces fromapproaching closer than�2d

(cf. Section 7.1 for a discussion of such steric repulsions). At

contact, the magnitude of the vdW interaction is roughly

UvdW � �Aa=24d (Derjaguin approximation, d � a), and the

magnetic dipolar interaction is Udd � �1
9pm0a

3M2. Thus, the

vdW interaction scales linearly with the particle’s radius, while

the magnetic interaction scales with its volume. It follows that

for sufficiently small particles and/or surface separations, d,

vdW interactions are expected to be the dominant contribution

to the total interparticle potential. For example, in the absence

of an external field, the experimentally observed[95] aggrega-

tion of 10-nm maghemite (g-Fe2O3) nanoparticles can be

attributed predominantly to vdW rather than magnetic forces.

Only with the help of the strong external magnetic fields

(�0.6 T), can the magnetic forces dominate self-assembly of

such particles.[95]

6. Molecular Surface Forces

At the molecular scale, one finds a variety of short-range

attractive forces – including covalent bonds, dipolar interac-

tions, hydrogen bonding, donor–acceptor interactions, and so

on – used to build complex molecules, crystals,[211,212] and

supramolecular architectures.[213,214] Such interactions may

also be employed at the nanoscale by decorating the surfaces of

nanoscale components with various chemical functionalities.

For instance, hydrogen bonds organize nanorods into linear

chains,[215,216] divalent ‘‘linkers’’ such as DNA bring particles

together selectively and reversibly,[217,218] and dipole–dipole

interactions between photoisomerizable surface groups

enable rapid assembly anddisassembly of orderednanoparticle

structures.[219] In eachof these examples, the specificmolecular

interactions give rise to significant and often specific inter-

particle potentials between much larger components and

enable their spontaneous organization into a variety of order

structures.

The magnitude of these surface forces is roughly equal to

the number of individual bonds made (covalent or non-

covalent) multiplied by an effective bond-strength character-

istic of the molecular interaction. Thus, while the constituent

interactions may be relatively weak (i.e., �kT), the forces

between suitably functionalized surfaces can be quite strong

due to the polyvalent interaction of several molecular groups.

The length scale, l, of these interactions is of molecular

dimensions (angstroms to nanometers) and depends on the

specific features of the interacting molecules (e.g., DNA

mediated interactions are of longer range than hydrogen bonds

between short chain ligands). At such short length scales,

however, the distance dependence of the interaction is often of

little importance, and the interactions may be treated as either

‘‘on’’ or ‘‘off’’ corresponding to particle surfaces separated by

less or more than l, respectively. Below we highlight four

different molecular surface forces useful in nanoscale self-

assembly: molecular dipole interactions, hydrogen bonding,

DNA base-pair interactions, and reversible crosslinking

interactions.

6.1. Molecular-Dipole Interactions

Molecules with a permanent electric dipole moment

interact with one another via dipole–dipole interactions

analogous to those between magnetic particles (cf. Equation

(26)). The characteristic magnitude of these interactions is

"dd � p2=2p"0"s
3, where p is the dipolemoment (typically, 0–4

debye), and s is the minimal distance between dipoles. For

example, for two cis-azobenzenes in contact with one another

(s� 5 Å, p� 4 debye), the dipole–dipole energy is edd� 2.7 kT

in toluene but only edd� 0.08 kT in water due its large dielectric

constant. In general, these molecular dipole interactions

are only relevant in low-dielectric solvents; in water, charges

(not dipoles) are needed to induce significant electrostatic

interactions. Even in low-dielectric solvents, however, the

dipole–dipole interactionsare tooweaktodrive theiralignment

into the minimal energy, in-line configuration, and it is more

appropriate to model them as thermally averaged interactions

between freely rotating dipoles (Keesom interactions; cf.

Figure 9b and Section 5.2), udd � �ðp2=4p"0"s3Þ2=3kT at

contact – e.g., udd� 0.9 kT for cis-azobenzene in toluene.

Although of relatively small magnitude, these molecular

dipole interactions can become strong enough to induce self-

assembly when several of them are tethered onto a particle’s

surface with density, G. In this case, the number of interacting

dipole–dipole pairs between the twoparticles at contactmaybe

approximated as Ndd ¼ GAeff , in which Aeff � 2pas is the

effective areaof contact between spherical nanoparticles (NPs)

of radius a. Thus, the total interaction energy due to molecular

dipoles is approximately, Udd � uddNdd. For example, for

a¼ 3 nm AuNPs functionalized with alkane thiols terminated

with cis-azobenze, the surface density of these thiols is

G¼ 4.7 nm�2 (i.e., one thiol per 21.4 Å2 of Au surface[130]),

and Ndd can be as large as �40 resulting in a total interaction

energy of approximately 40kT, which is �20 times larger than

the vdW interaction for a surface separation of 1 nm. Clearly,

when acting in concert, these molecular dipole interactions

have the strength to induce self-assembly.

This particular example has already been realized experi-

mentally using gold nanoparticles functionalized with mixed

monolayers of azobenzene-terminated thiols and dodecyla-

mine (DDA; Figure 11).[219] Interestingly, the conformation

(cis or trans) of the azobenzene moieties may be controlled
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using light of different wavelengths: UV light induces trans-to-

cis isomerization and visible light causes cis-to-trans re-

isomerization. As only the cis isomer has an electric dipole

moment, the molecular dipole interactions between the

nanoparticles can be switched on and off by irradiation with

light of differentwavelengths. This approachhas been shown to

produce large, three-dimensional crystals (hcp structure) as

well as disordered spherical aggregates.

6.2. Hydrogen-Bonding Interactions

As with dipolar interactions, hydrogen bonds are largely

electrostatic in nature,[193,220] whereby a proton mediates the

attraction of two larger atoms with partial negative charges. In

addition to their widespread use in supramolecular sys-

tems,[213,214] these molecular interactions have also been

applied to the self-assembly of larger nanoscale building

blocks such as nanoparticles[221–224] and nanorods.[215,216,225]

Magnitudes of individual hydrogen bonds range from 10 to

40 kJ mol�1 and depend strongly on the solvent conditions.[220]

In general, the free energy of hydrogen-bond formation is

significantly weaker in protic solvents (e.g., water, alcohols), in

which molecule–solvent bonds are possible.

As in Section 6.1, the interaction energy between surfaces

functionalized with hydrogen bonding groups may be approxi-

mated asUhb � uhbNhb at contact, where uhb is the free energy

of forming one hydrogen bond and Nhb is the number of such

bonds made between the surfaces. This simple approximation

neglects the effects of co-operativity between neighboring

groups, however, these effects are often poorly character-

ized[226] and typically of little importance.[227,228]

At the nanoscale, hydrogen bonding has been shown to

induce the aggregation of metal nanoparticles functionalized

with hydrogen bonding ligands (e.g., HS–C6H4–X on gold with

where X¼OH, COOH, NH2)
[221] where the degree of

aggregation and ordering depends on the strength of the

individual hydrogen bonds formed. For example, very strong

bonds between divalent hydrogen bonding molecules tethered

to AuNPs induce rapid formation of fibrous NP gels[223]

characteristic of strong, short ranged potentials. Hydrogen

bonding can also be used in a more controlled fashion by site-

selective functionalization of the particles[215,216] or by pH-

responsive hydrogen bonding moieties.[221,225] The first

approach has been used to create end-to-end assembles of

gold nanorods mediated by hydrogen bonding functionalities

tethered selectively to the ends of the rods.[215,216] When these

groups are also acidic (e.g., carboxylic), the interactions are

dependent on the pH of the surrounding solution, exhibiting

strong hydrogen bond interactions at low pH and repulsive

electrostatic interactions at high pH.[216] In this way, nanorods

assemble end-to-end at low pH and disassemble at high pH; in

between, however, the balance between hydrogen bond

attraction and electrostatic repulsion gives way to side-to-side

assemblies governed predominantly by vdW interactions.

These relative simple examples illustrate the potential of using

various interparticle interactions simultaneously to achieve a

desired self-assembled nanostructure.

6.3. DNA Base-Pair Interactions

One very important type of hydrogen bond interaction is

that between complementary DNA base pairs (adenine with

Nanoscale Forces and Their Uses in Self-Assembly

Figure 11. Self-assembly mediated by light-induced molecular dipole

forces. a) Azobenzene thiol (AT) isomerizes from the trans- to the

cis-conformationuponexposuretoUVlight. Importantly, thecis-isomer is

characterized by a strong molecular dipole.[63,219] b) AT-functionalized

nanoparticles self-assemble into various ordered structures in the

presence of UV light due to molecular dipole interactions between the

azobenzene groups tethered to their surfaces. Exposure to intense

visible light induces the re-isomerization of the AT groups to the trans-

conformation, and the loss of dipole–dipole interactions results in the

dissolution of the NP structures.[63,219]

Figure 12. Nanoscale self-assembly via surface-grafted DNA.

a) Schematic illustration of the DNA base-pair interactions between

two nanoparticles (left) and one possible resulting self-assembled

structure (right). b) The experimentally measured interparticle potential

between DNA-functionalized AuNPs (circles) as well as the fit using

the model described in the main text (note that interparticle separation

isgivenrelativetotheminimumenergyseparation).Thethreecurves(left)

correspond to the three temperatures shown. Reprintedwith permission

from Reference [241]. Copyright 2005, American Physical Society. TEM

image (right) of AuNPs self-assembled using the method shown in (a).

Reprintedwith permission fromReference [218]. Copyright 1996, Nature

Publishing Group.

small 2009, 5, No. 14, 1600–1630 � 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.small-journal.com 1619



thymine; guanine with cytosine). These interactions are highly

specific such that short DNA strands bind strongly only with

complementary strands. Furthermore, by modulating the

temperature below and above the melting temperature

(typically, Tm� 40 8C to 80 8C for oligomers of �20 bases in

a solution with 50mM cations[229]), the interactions may be

turned ‘‘on’’ and ‘‘off’’, respectively, enabling precise control

over the magnitude of the attraction. These features make

DNA-mediated interactions highly desirable for the self-

assembly of nanoscale components.

This approach was first realized by the Mirkin group using

gold nanoparticles covered with non-complementary DNA

strands, which self-assemble upon the addition of a comple-

mentary DNA ‘‘linker’’ (Figure 12).[218] In similar pioneering

work, Alivisatos et al.[217] exploited the directionality of DNA

whereby Au NPs attached to either the 30 or 50 termini of

complementary strands hybridize into head-to-tail or head-to-

head dimers. Only a decade after these early demonstrations,

DNA-based self-assembly has become the focus of entire

symposiums[230] and has enabled the formation of complex

assemblies such as nanoscale circuits from metals[59,231] and

conductive polymers,[232,233] ordered arrays of nanorods[234]

and proteins,[59,235] as well as nanoparticle chains,[235,236] rings,

spirals, and, appropriately, double helices.[237] In the context of

templated self-assembly, surfaces patterned with DNA (using

an atomic force microscopy (AFM) tip) enable one to

create arbitrary two-dimensional superstructures through the

selective deposition of nanoscale objects bearing complemen-

tary DNA sequences.[238]

Many of these examples capitalize on the sensitive

temperature dependence of DNA, which dissociates from its

double-stranded helix into single strands over a narrow

temperature range (typically �30 degrees from completely

dissociated to completely hybridized) centered about a

‘‘melting’’ temperature, Tm. This temperature is defined as

one for which half of the DNA strands in solution are in the

single-strand state and half are in the double-helix state.[239] In

general, Tm depends on the strand concentration, the length of

the strands, and even the specific nucleotide sequence (e.g., not

only are G–C bonds stronger than A–T bonds but the bond

energy is influenced also by the neighboring base pairs[239]). A

widely accepted simplification in calculating bond energies and

themelting temperature is the so-callednearest-neighbor (NN)

model,[240] according to which the bond energy of any two base

pairs is determined completely by the base-pairs immediately

next to them.This results inonly tenbase-pair sets, forwhich the

interaction strength – specifically, the enthalpy, DHo
i , and

entropy, DSoi , of forming a base-pair of type i – has been

measured and tabulated extensively.[239] Furthermore, the NN

model enables estimation of the melting temperature as

TM ¼ DHo=ðDSo þ R lnCTÞ, where DHo and DSo are, respec-

tively, the total enthalpy and entropy of DNA hybridization,

and CT is the molar concentration of DNA in solution (cf.

Reference [239] for details).

For nanoparticles functionalized with complementary

DNA chains grafted on their surfaces, the interaction energy

at contactmaybeestimatedcrudelyby simply summing the free

energies of base-pair formation across all pairs as prescribed by

the NN model (�1–2 kcal/mol per base pair). Such an

approximation, however, neglects steric repulsions between

the grafted chains, confinement-induced changes in the

hybridization energy, and still leaves the problem of estimating

how many DNA strands/base pairs actually bind together

effectively. To remedy the situation, a more accurate inter-

particle potential has been developed to describe the interac-

tion between colloidal spheres grafted with non-complemen-

tary DNA strands interacting in a solution of complementary

DNA linkers (cf. Figure 12a).[241] The model includes an

attractive force due to the dynamic forming and breaking of

DNA ‘‘bridges’’ as well as steric repulsions due to compression

of the DNA strands. Most importantly, the improved potential

has been validated against experimental measurements.[241]

Assuming that the formation of each DNA bridge is

statistically independent (i.e., neglecting intermolecular co-

operativity between grafted DNA strands), the average

attractive interaction is simply equal to the number of

equilibrium DNA bridges formed, Nb, multiplied by kT.[241]

UDNA � �kTNb (30)

At equilibrium, at a distance, x, from NP surface, the local

concentration of bridges, cb(x), is related to the local

concentrations of the linker, cl(x), and of the DNA’s, cDNA1(x)

and cDNA2(x), tethered to surfaces 1 and 2, respectively. The

mass-action law[241,242] dictates that cb ¼ KclcDNA1cDNA2 where

K ¼ expð�DG=kTÞ=c20 is the equilibrium constant for bridge

formation, DG is the free energy of bridge formation, and

c0¼ 1M is a reference concentration (of the order of the solvent

concentration). Here, the local concentrations of cDNA1(x) and

cDNA2(x) are characterized by a probability distribution,

pDNA(x), which depends on the specific model[243] used to

describe the surface boundDNA (e.g., flexible chain, rigid rod,

etc.).For twosurfaces separatedbyadistanceL (cf.Figure12a),

the concentrations, cDNA1 and cDNA2 are given by

cDNA1ðxÞ ¼ cDNA2ðxÞ ¼
GpDNAðxÞ
R

L

0

pDNAðxÞdx
(31)

in which G is the surface density of DNA ligands, and the

normalization factors ensure that the total number of DNA

ligands per unit area is independent of surface separation. The

total free energy per unit area of two interacting surfaces is

then given by

Df ðLÞ ¼ � kTNbðLÞ
SA

¼ � kTG2cl

c20
exp

�DG

kT

� �
Z

L

0

cDNA1ðxÞcDNA2ðL� xÞdx (32)

where SA is the area of the interacting surfaces. Assuming

uniform distributions, pDNAðxÞ ¼ 1=h for x � h where h is the

‘‘height’’ of the grafted DNA, and applying the Derjaguin

approximation, Equation (32) leads to the following interac-
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tion potential between spherical particles.

UDNAðLÞ � � kTG2cl

c20
exp

�DG

kT

� � ð2h� LÞ2
h2

for

h < L < 2h

(33)

The total interparticle potential for DNA-mediated inter-

actions is illustrated in Figure 12b and combines the attractive

interaction,UDNA, with a repulsive steric potential described in

detail in Section 7.1. This potential was found to be in

quantitative agreement with experiment, even using the

simplest nearest neighbor model for estimating the free energy

of bridge formation, DG.

6.4. Crosslinking Interactions

In previous Sections, the molecular functionalities mediat-

ing attractive interactions were tethered permanently onto the

surfaces of the assembling components. In addition, nanopar-

ticlesmay also be assembledby the binding of divalent ‘‘linker’’

molecules dissolved in the surrounding medium – for example,

gold NPs crosslinked by alkane dithiols[63,219] (Figure 13).

Regardless of the specific nature of the linker molecule, the

magnitude of crosslinking depends on the concentration of

linkers in solutionandon theenergyof thebonds formedduring

crosslinking.These effects are capturedbya simple equilibrium

model of the crosslinking interaction between two planar

surfaces described below.

When a single planar surface is immersed in a solution of

divalent linkers, some will bind monovalently to the surface

while others will remain in solution. The chemical potentials of

the linker molecules in solution and on the surface are then

approximated as, respectively,

ms ¼ mo
s þ kT lnx (34)

m1 ¼ mo
1 þ kT ln

u

1� u

� �

(35)

where mo is the standard chemical potential, x is the mole

fraction of linkers in solution, and u is the fractional coverage

of linkers adsorbed on the surface. These expressions assume

ideal solutions and Langmuir-type adsorption equilibrium (no

co-operative effects). At equilibrium, the chemical potentials

for linker molecules on the surface and in solution are equal,

ms ¼ m1, such that

u
eq
1

xð1� u
eq
1 Þ ¼ exp

�"

kT

� �

(36)

where " ¼ mo
1 � mo

s is the energy of adsorption – assumed

equal to the strength of one bond between the linker molecule

and the substrate (e.g., for thiols on gold, " � �3:2� 10�20 J
[244]). The free energy per unit area, f1, of this model system

may be calculated by thermodynamic integration from the

reference state (u¼ 0) to the equilibrium state (u¼ ueq).

f1 ¼ G

Z

u
eq

1

0

ðms � m1Þdu ¼ �GkT lnð1� u
eq
1 Þ (37)

where G is the maximum surface density of linkers adsorbed

onto the surface (e.g., G� 4.7 nm�2 for thiols on gold[130]).

To derive the free energy of crosslinking of two surfaces, we

assume that the bound linker molecules are attached to both

surfaces, such that thechemicalpotential ofbound linkers,m2, is

given by equation (35) with mo
2 � 2mo

1 (i.e., two bonds for each

bound linkermolecule).Thus, the freeenergyof formation (per

unit area) for two cross-linked surfaces is given by

f2 ¼ �GkT lnð1� u
eq
2 Þ, and the free energy of crosslinking,

Df, may be expressed as

Df ¼ 2f1 � f2 ¼ GkT ln
1� u

eq
2

ð1� u
eq
1 Þ2

 !

¼ GkT ln
½1þ x expð�"=kTÞ�2
1þ x expð�2"=kTÞ

 !

(38)

Here, the second equality is derived directly from Equation

(36). In the limit of very dilute linkers, such that

x � expð2"=kTÞ, this expression simplifies to Df � �GkTu
eq
2

– in other words, the free energy is proportional to the number

Nanoscale Forces and Their Uses in Self-Assembly

Figure 13. Crosslinking interaction. a) Divalent linker molecules free in

solution adsorb onto individual surfaces (left) until equilibrium is

achieved. Similarly, for two surfaces in close proximity, the linker

molecules can bind to both surfaces (right), thereby crosslinking them

together.b)Theenergyof thiscrosslinking interaction,Uc, for twospheres

atcontactdependsonthemolefraction,x,of linkermoleculesinsolution.

The plot here illustrates the interaction between 10-nm gold particles

bound by short dithiol linkers (e¼8kT, G¼4.7 nm�2, and l¼0.1 nm).

Interestingly, the magnitude of the interaction is maximal at a particular

concentration–approximately,x � expð�"=kTÞ for"=kT 
 1.Abovethis

concentration, the coverage of dithiols linkers on the individual surfaces

(a-left) approaches saturation, and the energetic difference between the

individual surfaces (a-left) and the crosslinked surfaces (a-right)

becomes increasingly negligible. Entropically, the crosslinked

configuration remains preferred (the interaction is always attractive) as

fewer linkermoleculesare required toadsorb fromsolution;however, the

magnitude of this effect decreases with increasing linker concentration.
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of crosslinker bridges formed at equilibrium. This was the

approximation used in the DNA section (Equation (30)),

however, in general the dependence is more complicated as

illustrated in Figure 13.

Equation (38)may then be used to estimate the free energy

of the crosslinking,Uc, between two spherical particles (radii a1
and a2) using the Derjaguin approximation discussed in

Section 2.1.

Uc ¼
2pa1a2l

ða1 þ a2Þ
Df (39)

As before, l is a characteristic length scale of molecular

dimensions over which the crosslinking molecule can stretch

(or compress) when bridging the two curved surfaces. Note

that the explicit distance dependence has been neglected due

to the short range of the interaction. In practice, such

crosslinking interactions have been used to build three-

dimensional NP crystals,[219] NP supraspheres ranging in size

from 30–300 nm,[63,219] and even molecule-like clusters of

asymmetric Au�Fe3O4 NPs.[245]

7. Entropic Effects in Self-Assembly

All the interactions we have described so far have their

origins in the static or transient electromagnetic forces between

atoms and molecules, working together to create various

interparticle potentials between nanoscale components. Yet,

even in the absence of attractive potential, self-assembly is still

possible due to the so-called depletion forces or confinement

effects. Common to these phenomena is the role of entropy,

which can give rise to both attractive and repulsive interactions

between components in dilute systems (Sections 7.1 and 7.2) or

provide a driving force for order in concentrated systems

(Sections 7.3). In this section, we survey how these purely

entropic effects translate into effective interparticle potentials

and how they can be harnessed for nanoscale self-assembly.

7.1. Steric Repulsion via Polymer Brushes

Given the potentially strong attractions between compo-

nents due to, for example, vdW (Section 3) or surface forces

(Section 6), these components may aggregate or precipitate

uncontrollably thereby inhibiting the formation of ordered

structures. Therefore, it is often desirable to complement the

variousattractive forceswith ‘‘softer’’ repulsive interactions for

which both the magnitude and length scale can be tuned

appropriately to create effective interparticle potentials more

amenable to controlled self-assembly. One approach is the use

of electrostatic repulsions between like-charged components,

which can be tuned by adjusting the ionic strength of the

surrounding solution.Alternatively, particlesmay be stabilized

by tethering long-chain molecules onto their surface to create

repulsive steric forces upon compression of neighboring

polymer ‘‘brushes’’.[246,247] This approach has long been used

as a route to stabilizing colloidal particles;[66] however, it may

also be used to engineer the potentials mediating nanoscale

self-assembly (Figure 14).[95,248]

The theory of polymer brushes has been treated through

various approaches including scaling theory,[249] self-consistent

field (SCF) theory,[250–252] and Monte Carlo simulations[253]

applied to both planar[249,251] and curved substrates.[250,252]

Assuming that the polymer chains are well soluble in the

surrounding solvent, a surface-tethered polymer brush is

characterized by two length scales: the Flory radius of the

polymer in its ‘‘random coil’’ configuration (RF � N3=5bwhere

N is the so-called degree of polymerization or, equivalently,

the number of ‘‘Kuhn monomers’’ each with a characteristic

lengthb [254]) and theaveragedistancebetweengrafting siteson

the substrate, G�1/2, where G is the surface density (Figure 15).

Most relevant to nanoscale particles is the case of high grafting

densities,G 
 RF
�2, for which the polymers are stretched to an

equilibrium length, h0, which scales linearly[249,251] with the

number of monomers as h0 � Nb5=3G1=3 (e.g., h� 5 nm for 25-

monomer polyethylene glycol grafted at a density of 1 chain per

nm2; b¼ 1.1 nm,N� 4 [254]). Specifically, in the so-called strong

stretching[251] limit (for which the SCF treatment becomes

analytically tractable), the equilibrium thickness, h0, of the

polymerbrushaswell as its free energy, f, (perunit area)maybe

approximated as

h0 ¼ N
12Gb5v

p2

� �1=3

(40)

reviews B. A. Grzybowski et al.

Figure 14. Visual glossary of polymer physics a) in solution and b) on

surfaces. In solution, a polymer (n monomers; gray dots) with limited

flexibility is idealized as a completely flexible freely jointed-chain, made

ofNsegmentsofso-calledKuhnmonomers,eachof lengthb.Boththereal

and the idealized polymer have the same completely stretched length,

Rmax. The space that a polymer occupies in solution depends on its

conformation;however, the rootmeansquareof theend-to-enddistance,

R, is often used as a characteristic size – the so-called Flory radius, RF.

When grafted onto a surface, polymerswill stretch out into solution to an

equilibrium height h0, that depends on the grafting density, G, and the

number and length of the Kuhn monomers. When the distance between

the grafted polymers, d, is much less than the Flory radius, then the

polymers become ‘‘strongly stretched’’ such that brush thickness scales

linearly with the number of monomers.
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f ðhÞ ¼ p2kTGh20
6Nb2

1

2

h0

h

� �

þ 1

2

h

h0

� �2

� 1

10

h

h0

� �5
" #

(41)

Here, v is the excluded volume parameter, which charac-

terizes the strength of the repulsive interactions between the

chains (v> 0 in a ‘‘good’’ solvent). Inspection of Equation (41)

reveals that the free energy increases monotonically upon

compression (h< h0) due to the increase in osmotic pressure

within the brush. Qualitatively, this entropic repulsion derives

from the osmotic pressure difference between the brush region

and the solvent caused by the presence of flexible polymer

chains, which behave like a semidilute ‘‘solution’’ of

monomers within the brush. Thus compression requires work

against the increasing osmotic pressure, and the resulting

interaction is always repulsive. The magnitude of this

interaction between two neighboring brushes can be estimated

using equation (41) as Df ðLÞ ¼ 2½f ðL=2Þ � f ðh0Þ�, where

0 < L � 2h0 is the distance between the underlying substrates.

While this model neglects polymer ‘‘interdigitation’’ as well as

fluctuations about the polymer’s minimum energy configura-

tions, it has proven quite accurate in practice.[255]

For curved geometries, such as nanoparticles, Equation

(41) may be used to derive the repulsive interparticle potential

via the Derjaguin approximation (Section 2.1 and References

[256,257]). Specifically, steric repulsion, Us, between two

spherical particles densely coated with long-chain ligands is

given by

USðuÞ �
2pa1a2

ða1 þ a2Þ

� p2kTGh30
6Nb2

� ln u� 9
5
ð1� uÞ þ 1

3
ð1� u3Þ � 1

30
ð1� u6Þ


 �

(42)

where u � ðr � a1 � a2Þ=2h0. While this equation provides a

good approximation for short brushes, h0 � a, it significantly

overestimates the magnitude of steric repulsions for increas-

ingly long brush lengths (cf. Reference [250] for a detailed

comparison against full numerical solution for spheres).

Importantly, steric repulsion via long-chain ligands can be

tuned to engineer interparticle potentials to yield desired

structures. Consider the case of large, 50-nmgold nanoparticles

functionalized with a polyethylene glycol brush grafted at a

density G¼ 1 nm�2 onto the surface. Here, the total inter-

particle potential consists of an attractive vdW interaction

(Equation (6)) and the repulsive steric interaction (Equation

(42)), which depends on the length and surface density of the

stabilizing ligands. Figure 14 illustrates this potential for

polymers of either 10 or 20 monomers, for which the

equilibrium brush thicknesses are 1.8 nm and 3.6 nm, respec-

tively. From the plot, we can see that the steric repulsion is

actually quite ‘‘hard,’’ such that the minimum energy separa-

tion between particle surfaces – 2.9 nmand 6.8 nm, respectively

– is only slightly less than two times the equilibrium brush

thickness. Hence, for the practicing nanoscientist using dense

SAMsorpolymerbrushes, onemayapproximate the stabilizing

ligands as hard shells and estimate the attractive vdWpotential

at a surface separation of �2h. Corrections to this first-order

approximation result in an increase in the magnitude of the

vdWattractionat contact due to the compressionof theSAMs–

in other words, the true separation is smaller than 2h. The

magnitude of this effect increases with decreasing surface

separation, for which the vdW attraction is stronger (e.g., the

2.9-nm brush is compressed more than the 3.6-nm brush).

For the total interaction potentials described above, the

minimum energies are �8 kT and �2kT, respectively, for the

short and long ligands (versus �400kT for ‘‘bare’’ gold NPs

withoutbrushes). In thisway,onecan tune the interaction to the

magnitude most appropriate for obtaining a desired self-

assembled structure. This approach has been implemented in

practice to control the relative strengths of vdW and magnetic

dipole interactions mediating assembly of 10-nm maghemite

(g – Fe2O3) nanoparticles stabilized with ligands of varying

lengths (e.g., 1.2-nm octanoic versus 1.6-nm dodecanoic

acid).[95]

7.2. Attractive Depletion Forces

In addition to repulsive interactions, entropic effects can

also lead to attractive forces between components as mediated

by the presence of smaller particles or solvent molecules. This

so-call depletion interaction was first explained by Asakura

etal. usingamodelofhard-sphereparticles immersed inadilute

‘‘solute’’ comprising smaller hard spheres.[258] In this model,

attraction occurs when the larger particles are so close together

that no solute molecules can fit in between them, in which case

the particles experience a net osmotic pressure acting to push

them together. In the context of self-assembly, this depletion

effect has been used to assemble linear end-to-end chains of

cylindrical particles,[259] diblock-copolymer micelles,[260] and

chains and/or dimers of platelet particles.[261] More generally,

just as we were able to tune a purely entropic repulsive

interaction in Section 7.1 by varying the length of the polymer/

Nanoscale Forces and Their Uses in Self-Assembly

Figure 15. Engineering interparticle interactions with steric repulsion.

Theplotshowsthetotal interparticlepotential (black)betweentwo50nm

gold NPs derived as the sum of both van der Waals interactions (blue)

and steric repulsions (red) due to polyethylene glycol ligands of two

different lengths. The specific parameters used correspond to those

described in the main text: G¼1nm�2, b¼1.1 nm, v¼ 1, and the

number of Kuhn monomers, N, is related to the number of chemical

monomers, n, as N¼ 0.15 n for n¼ 10 and 20, as illustrated in the

figure.[254] Due to the compression of the ligands, the minimum energy

separation is smaller than that of the extended ligands, r � 2a < 2h.
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ligand layer, here we may tune a purely entropic attractive

interaction by adding solutes of particular sizes and concentra-

tions to our system. Below we outline Asakura’s original

model[262] and discuss how it can be used to engineer self-

assembly processes at the nanoscale.

Consider two ‘‘hard’’ particles of radius a immersed in a

dilute solution of smaller hard spheres (e.g., representing

dissolvedpolymer species)withdiameters,which is assumed to

be significantly larger than that of the solvent molecules. With

this assumption, the solvent may be treated as a uniform

continuum in which the particles and the solute interact.

Specifically, as the particle surfaces approach a separation

smaller than the diameter of the solute, the total volume

available to the solute increases due to overlap of the excluded

volume ‘‘shells’’ surrounding each particle (Figure 16). The

increase in available volume results in a decrease in the free

energyof theoverall system,definedasF ¼ �kT lnQ,whereQ

is the canonical partition function. For dilute solutions, the

partition function is well approximated asQ ¼ VN , whereN is

thenumberof solute species, andV ¼ V0 þ DVðrÞ is thevolume

accessible to the solute expressed in terms of the total volume,

V0, and thevolumegained,DV(r), as the separationbetween the

particles decreases. Thus, the free energy of the system is given

by

F ¼ �NkT ln½V þ DVðrÞ� � �NkT lnV0 þ
DVðrÞ
V0

� �

(43)

and the free energy of interaction by

DFðrÞ ¼ FðrÞ � Fð1Þ ¼ �NkTDVðrÞ=V0. Notice that the

interaction is directly proportional to the osmotic pressure,

p0 ¼ NkT=V0, of the solution, such that the magnitude may be

tuned by varying the concentration of dissolved species. In the

case of spherical particles and solute species, the distance

dependence of the interaction potential becomes a simple

geometric problem resulting in the interaction potential

UdepðrÞ ¼ �pp0

12
½2ð2aþ sÞ3 � 3ð2aþ sÞ2r þ r3� for

2a < r < 2aþ s

(44)

The length scale of the depletion potential is clearly s, and it

reaches its maximum value ofUdepðrÞ ¼ �p
6p0s

2ð3aþ sÞ when
r¼ 2a. For spherical particles, themagnitude of this interaction

increases with increasing size and concentration of the solute

species, but is typically less than the thermal energy, kT.

For example, the depletion interaction between polystyrene

spheres, a¼ 300 nm, mediated by a smaller polystyrene

‘‘solute’’, s¼ 65 nm, present in a volume fraction of 0.2 yields

an interaction energy at contact of only Udep��0.2 kT,

insufficient to induce aggregation.[263]

This interaction is much stronger, however, when spherical

particles are immersed in solutionsofhighlyasymmetric solutes

(e.g., rigid long-chain macromolecules), or when they interact

with planar or concave surfaces. In the case of asymmetrical

solutes, the interaction potential is determined through

geometrical arguments similar to those derived above but

accounting for the possible orientations of a solute in between

the larger particles.[262,264] Specifically, for long ellipsoidal

solutes (sA long and sB wide with volume v), the depletion

potential for two spheres at contact is given by

Udepð2aÞ ¼ � p0av

sA

sA

sB

� �2

þ2

" #

(45)

This expression assumes that a 
 sA and, as expected,

converges to the symmetrical case of equation (44) when

sA ¼ sB. For example, the energy of attraction between 50 nm

spheres dispersed in a solution of macromolecular ‘‘ellipses’’,

20 nm long and 1 nm wide, is �5 kT at even small solute

volume fractions of 0.01. The range of this interaction is

characterized by the longest dimension of the solute particle,

and the theoretically predicted increase in the magnitude of

the interactions is strongly supported by experiments using

rigid, long-chain macromolecules.[262,264]

A fundamentally different, but equally effective variation

on the sphere–sphere depletion potential is the interaction

betweenspheresandplanarorconcavesurfaces. Intuitively, it is

clear that the interaction between a sphere and a concave

surface will result in a much larger increase in solute free

volume than that between a sphere and a convex surface.

Indeed, spherical particles adsorb strongly into concave wells

patterned on two-dimensional substrates in the presence of

smaller polymer solutes. The depletion interactions mediating

this form of templated self-assembly are an order ofmagnitude

larger than those between the spherical particles them-

selves.[265] Interestingly, such particle–template interactions

driven by entropy have recently been suggested as a driving

force for the ‘‘lock-and-key’’behaviorof someenzymes[266]and

provideaattractiveapproach towards templated self-assembly.
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Figure 16. Depletion interaction. a) Illustration of gold nanoparticles

immersed in a solution of smaller spherical macromolecules (gray

spheres). The dashed lines illustrate the excluded volume regions into

which the center of the solute particles cannot enter. b) As two particles

approach, overlap of the excluded volume shells increases the volume

available to the solute, decreasing the free energy of the system.

Consequently, there is a mean force (black arrows) acting to push the

particles together.
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7.3 Entropic Ordering at High Volume Fractions

In Section 7.2, we attributed the depletion interactions to

the increase in free volume available to solute particles upon

reconfiguration of larger particles. In this analysis, we

considered only dilute solutions for which it was safe to assume

that each solute species interacts independently of the others to

give an additive contribution to the overall interaction. In

concentrated systems, however, large particles may conspire

(by chance, of course) to create hollow, multiparticle

‘‘enclosures’’ into which other particles cannot fit. Since such

reduction in the available volume is entropically unfavorable,

the system maximizes its entropy (thereby minimizing its free

energy) by phase transitioning into an ordered phase, in which

the particles maximize the ‘‘free’’ volume available to them.

In general, entropy-driven formation of ordered phases

requires volume fractions, f, that are high enough such that the

average interparticle distance – d � ð2Vp=fÞ1=3 whereVp is the

particle volume – is smaller than the largest linear dimension of

the particles. Hard-sphere ‘‘liquids’’, for example, are well

known to undergo a phase transition to form a crystalline fcc

structure at a volume fraction of �0.494 as demonstrated

through experiments and simulations dating back to 1957.[267–

269]On the other hand, hard rods (e.g., often studied as amodel

system of Tobacco mosaic viruses, TMV[270]) form ordered

phases at volume fractions in solution as low as f� 0.05, since

the excluded volume between two rods is much larger than the

volume of the rods themselves (Figure 17; for TMV,

d � hðp=2fR2Þ1=3 � 0:3h where R � h=2a ¼ 37 is the aspect

ratio). Interestingly, while ordering in the hard-sphere systems

is very difficult to model[271,272] ordering transitions of

apparently more complex hard rods (specifically, spherocy-

linders) were treated analytically by Lars Onsager some fifty

years ago.[264]

For hard rods in a sufficiently dilute solution, the entropy is

maximized when the rods are free to take on any orientation

and position – this is the isotropic phase. As the solution

becomes more concentrated, the rods become both transla-

tionally and rotationally constrained in such a way that the

freedom to rotate restricts the freedom to translate and

vice versa. In doing so, the total entropy becomes maximal

when the rods sacrifice some of their orientational freedom in

exchange for increasing translational freedom. As depicted in

Figure 17a, the relative orientation between rods can make a

dramaticdifference in the total excludedvolume; consequently,

there is a significant entropic gain associated with the mutual

orientation of rods at sufficiently high volume fractions.

This qualitative description is validated by rigorous

statistical mechanical arguments. For a canonical ensemble

of hard-rods, the Helmholtz free-energy, F, is related to the

canonical partition function, Q, as F ¼ �kT lnQ, from which

the pressuremaybe derived asP ¼ �ð@F=@VÞT . Expanding the
pressure in a power series of the number density, r¼N/V, and

integrating with respect to volume yields

F ¼ kTNð� lnðrÞ þ B2rþ ð1=2ÞB3r
2 þ . . .Þ (46)

While this expression for the free energy is completely general,

it is only useful if it can be shown that the so-called virial

coefficients (B2,B3,B4,. . .) become negligible at high orders of

expansion. The key difference between systems of hard-

spheres (and cubes or plates, for that matter) and that of hard

rods is that the virial coefficients of the former are all of the

same order.[264] In sharp contrast, the third and higher-order

virial coefficients of the hard-rod fluid vanish as the rods

become increasingly narrow (i.e., B�3 ¼ 0 for h=a ! 1).[264]

Using the so-called cluster integrals,[71,264] the second virial

coefficients can be calculated directly to give

B2 ¼ �ð1=2Þvexl ¼ 2h2D sin u þ 2pD2hþ ð4=3ÞpD3 (47)

whereD¼ 2a is the diameter of the spherocylinder, and h is its

length (more specifically, the distance between the hemi-

spherical caps, cf. Figure 17). For large aspect ratios h/D,

Nanoscale Forces and Their Uses in Self-Assembly

Figure 17. Excluded volume between hard rods (so-called

spherocylinders) and the isotropic-nematic phase transition. In a dilute

solution of hard rods, the free energy of the system depends entirely on

the degrees of freedom (translational and rotational) available to the

rods. The degrees of freedom available to any one rod, however, depend

on the position and orientation of all of the others. If the positions are

assumedtobeuniformlydistributed, then thedegreesof freedomper rod

depend only on the density and relative orientation between rods. Three

relative orientations (a) are shown along with a red-shaded area

corresponding to the volumeof space excluded to other rods (centers-of-

mass indicated by black dots). For rods with high aspect ratios, the

excludedvolume is significantly reducedwhen they areparallel. b)When

the density of rods is sufficiently high, the desire for the system to

maximize the space available to each rod – and hence the entropy of the

system–results in themacroscopicallyobservablephase transition from

the isotropic into a nematic phase (where all rods become parallel with

respecttoeachother).c)Smecticphasesformedbymutantsof the fdvirus

of different length (0.64mm, left; 1.2mm, right) at high volume fractions.

Reprinted from Reference [277].

small 2009, 5, No. 14, 1600–1630 � 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.small-journal.com 1625



equation (47) simplifies to B2 � �h2D sin u, and all higher-

order coefficients are negligibly small. With this simplification

and following the reasoning detailed in Reference [264], the

free energy becomes

F ¼ p

4
kTh2D r ln

p

4
h2Dr

� �

þ sðaÞrþ jðaÞp
4
h2Dr2

� �

with sðaÞ ¼ ln
a coshðaÞ
4p sinhðaÞ

� �

� 1þ arctanðeaÞ � arctanðe�aÞ
sinhðaÞ

and jðaÞ ¼ 2I2ðaÞ
sinh2ðaÞ

(48)

Here, I2() is the modified Bessel function of the first kind, and

a has themeaning of an order parameter – i.e., when it is nearly

zero, the orientations of the rods are random; when it is large,

the rods are highly oriented. Importantly, the free energy is

found to be unstable with respect to orientational fluctuations

in the case of an isotropic distribution when the density

exceeds rc ¼ 1=ðph2DÞ, at which point a phase transition

occurs, and the rods orient to form the so-called nematic

phase. Although more challenging to describe theoretically,

another well-known phase transition is observed empirically at

even higher densities – namely, the nematic-to-smectic

transition (see Figure 17c for experimental images).

In general, entropic ordering effects will always favor the

formation of order structures fromofmonodisperse particles at

sufficiently high volume fractions provided that the system

remains ergodic.[77]Asseen inSection2.3, this ergodic criterion

may be difficult to achieve at the highest volume fractions;

however, nanoscale systems are particularly well suited for this

challenge, as they rapidly sample their accessible phase

space.[273] These effects are often encountered (although not

always acknowledged) in nanoparticle systems during the

evaporation of the surrounding solvent. Provided this process

occurs quasistatically (i.e., sufficiently slowly as to maintain

equilibrium), the volume fraction of nanoparticles increases

steadily with decreasing solvent volume until they crystallize at

a critical volume fraction determined by the shapes of the

particles. Further evaporation of the solvent ultimately

‘‘freezes’’ the particles in a close-packed geometry, for which

the system is no longer ergodic but retains the order induced by

entropic crystallization.

For the practicing nanoscientist, these purely entropic

effects can be combined with additional attractive interactions

to yield a rich variety of minimal free-energy structures. For

example, oppositely charged particles in dilute solutions may

assemble into aNaCl lattice tominimize thepotential energyof

the system. In contrast, uncharged particles crystallize into

close-packed fcc structures at sufficiently high volume fractions

via entropic ordering. By varying the magnitude of the

electrostatic interactions, competition between energetic and

entropic ordering may result in a range of structures distinct

from these limiting scenarios.[274] Indeed, the combination of

electrostatic and vdW interactions with entropic ordering in

binary nanoparticle mixtures can lead to at least 15 possible

crystal structuresdependingon the relativemagnitudesof these

competing effects.[62,275] It is probably with such multiple-

interaction systems such as this one, where the full potential of

self-assembly can be harnessed to tailor the nanostructured

materials of the future.
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Table 1. Interaction potentials.

Interaction Type Geometry Formula Range

Any Spherical particles
UDAðLÞ �

2pa1a2
ða1 þ a2Þ

Z

1

h

UFPðzÞdz
L � a1a2

a1þa2

Van der Waals Spherical particles
UvdWðrÞ ¼ A

3

a1a2

r2 � ða1 þ a2Þ2
þ a1a2

r2 � ða1 � a2Þ2
þ 1

2
ln

r2 � ða1 þ a2Þ2

r2 � ða1 � a2Þ2

 !" #

all r

Van der Waals Spherical particles UvdW � �Aa=24L L � a

Van der Waals Flat plates UHam ¼ �A=12pL2 all L

Van der Waals Cylinders side by side UHam ¼ �Aha1=2=24L3=2 L � a

Van der Waals Cylinders end to end
UHam ¼ � Aa2

12

1

L2
� 1

Lþ hð Þ2
� 2

Lþ 2hð Þ2

 !

L � a

Electrostatic Sphere-like particles
Ues ¼

Q1
1 Q1

2

4p"0"ð1þ ka1Þð1þ ka2Þ
exp½�kðr � a1 � a2Þ�

r

r 
 k�1

Magnetic

dipole–dipole

Spherical particles
Udd ¼ m1 	m2 � 3ðm1 	 r̂Þðm2 	 r̂Þ

4pm0r
3

all r

Fluctuating

dipole–dipole

Spherical particles
UddðrÞ ¼

�1

3kT

m1m2

4pm0r
3

� �2 m1m2
2pm0r

3 � 6kT

DNA bridging Spherical particles
UdnaðLÞ � � kTG2cl

c20
exp

�DG

kT

� � ð2h� LÞ2
h2

L < h < 2L

Crosslinking Spherical particles
Uc ¼

pa1a2l

ða1 þ a2Þ
GkT ln

½1þ xexpð�Dmo
1=kTÞ�

2

1þ xexpð�2Dmo
1=kTÞ

 !

At contact

Steric repulsion Spherical particles
USðuÞ �

2pa1a2
ða1 þ a2Þ

p2kTGL30
6Nb2

�lnu� 9
5ð1� uÞ þ 1

3ð1� u3Þ � 1
3ð1� u6Þ


 � Lh � a

Depletion Spherical particles UdepðrÞ ¼ �pp0

12
½2ð2aþ sÞ3 � 3ð2aþ sÞ2r þ r3� r < 2aþ s
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8. Conclusions and Outlook

In summary, the examples covered in this Review illustrate

themultitude of forces acting between nanoscopic components

and underlying their self-assembly into larger structures.While

there is certainly more fundamental work to be done to

characterize these interactions – both experimentally and

theoretically – thepractical challengeof nanoscience is to apply

these interactions in self-assembly of new, nanostructured

materials. Currently, the formation of most assemblies can be

modeled and justified only a posteriori, and there are few

examples of systems in which the course of nanoscale self-

assembly was predicted a priori from the knowledge of

individual interactions. There are at least two reasons for this:

i) Models for various interparticle potentials are inaccurate or

inappropriately used or ii) exploring the consequences of even

accuratemodels for largenumbersofnanocomponents remains

beyond the currently available computational resources. We

hope this Review can help with the first of these issues by

systematizing and cataloguing (see Table 1) interparticle

potentials that are most appropriate for the nanoscale.

Incorporation of these potentials into efficient simulations

algorithms appears the next logical step en route to the rational

engineering of nanoscale self-assembly.
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