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Expansion microscopy (ExM), a method for improving the resolution of light microscopy by 

physically expanding the specimen, has not been applied to clinical tissue samples. Here we report 

a clinically optimized form of ExM that supports nanoscale imaging of human tissue specimens 

that have been fixed with formalin, embedded in paraffin, stained with hematoxylin and eosin 

(H&E), and/or fresh frozen. The method, which we call expansion pathology (ExPath), converts 

clinical samples into an ExM-compatible state, then applies an ExM protocol with protein 

anchoring and mechanical homogenization steps optimized for clinical samples. ExPath enables 

~70 nm resolution imaging of diverse biomolecules in intact tissues using conventional diffraction-

limited microscopes, and standard antibody and fluorescent DNA in situ hybridization reagents. 

We use ExPath for optical diagnosis of kidney minimal-change disease, which previously required 

electron microscopy (EM), and demonstrate high-fidelity computational discrimination between 

early breast neoplastic lesions that to date have challenged human judgment. ExPath may enable 

the routine use of nanoscale imaging in pathology and clinical research.

The examination of cellular structures and molecular composition using diffraction-limited 

microscopy has long been used to diagnose or investigate the pathogenesis of a wide variety 

of pre-disease and disease states. Biomolecules themselves, however, are nanoscale in 

dimension and configured with nanoscale precision throughout cells and tissues. In basic 

science, this organization has begun to be explored using pioneering super-resolution 

microscopy methods1–4, as well as EM5–7, but such strategies require complex hardware, 

can present a steep learning curve, and are difficult to apply to large-scale human tissues. 

Accordingly, super-resolution imaging and nanoscopy have not found routine utility in 

clinical practice, and are rarely applied to clinical samples, even in a research context

Recently, we developed a strategy for imaging large-scale cell and tissue samples by 

physically, rather than optically, magnifying them8. In this strategy, which we call expansion 

microscopy (ExM), we isotropically expand tissues by embedding them in a dense swellable 

polymer (e.g., a mesh of sodium polyacrylate synthesized evenly throughout a tissue), which 

binds key biomolecules or fluorescent labels to the polymer network. Samples are then 

mechanically homogenized and swelled, so that they can be imaged with nanoscale (e.g., 

~70 nm) resolution on conventional diffraction-limited microscopes. Although the original 

version of ExM required synthesis of a linker to couple fluorescent labels to the polymer, we 

recently developed a version of ExM, protein retention ExM (proExM), which uses a 

commercially available anchoring molecule to tie proteins – such as fluorophore-bearing 

antibodies – directly to the swellable polymer9.

Here, we report a clinically optimized form of proExM, which we call expansion pathology 

(ExPath), that is capable of processing most types of clinical samples currently used in 

pathology – including formalin-fixed paraffin-embedded (FFPE), hematoxylin and eosin 

(H&E)-stained and fresh frozen human tissue specimens on glass slides. We explore the 

ability of ExPath to enable nanoscale imaging on a wide variety of tissue samples of 

importance for pathology. We show in a small-scale study that diseases previously requiring 

EM for diagnosis, such as kidney minimal change disease10, can now be directly and 

accurately diagnosed with ExPath and conventional diffraction-limited light microscopy. As 

another example, we used ExPath to analyze nuclear atypia of early breast lesions that to 
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date have challenged human judgment11, and show that ExPath facilitates computational 

pathology differentiation of hard-to-diagnose subtypes of these lesions. We anticipate that 

ExPath will broadly find utility in enabling probing of nanoscale features at the genomic, 

protein, and cell-morphology levels, enhancing the diagnostic power available to 

pathologists without investment in novel hardware. We also expect the method will be useful 

for providing insights into the pathogenesis of various human diseases.

Results

Clinical Samples and Pathology-Optimized Expansion Microscopy

We first devised a series of steps so that clinical samples could be converted to a state 

optimized for ExM processing (Fig. 1A and Supplementary Fig. 1). We considered three 

starting states: FFPE, H&E stained, and fresh frozen tissues, assuming the tissue to be thin-

sliced and on a glass slide. We first investigated FFPE samples since we hypothesized that 

the steps required for the other categories would be subsets or permutations of the steps 

required for FFPE tissue processing. We evaluated whether xylene treatment to remove 

paraffin, followed by rehydration and a fairly standard antigen retrieval step (placing 

samples in 20 mM sodium citrate at pH 8 and 100°C, then immediately transferring the 

samples into a 60°C incubator for 30 mins; Supplementary Fig. 1), could sufficiently prepare 

FFPE samples for the proExM protocol9. In proExM, the succinimidyl ester of 6-

((Acryloyl)amino)hexanoic acid (Acryloyl-X, SE; here abbreviated AcX) is used to 

chemically modify amines on biomolecules with an acrylamide functional group, which 

enables proteins to be linked to the polymer network; then, polymerization followed by 

proteinase K digestion (to an extent that spares the proteins of interest, e.g. applied 

antibodies) and addition of water enables expansion.

We found that heavily formalin-fixed human tissues (e.g., lymph nodes, skin, liver) did not 

expand evenly under the proExM protocol, even after paraffin removal, but if digestion was 

performed with 25 mM ethylenediaminetetraacetic acid (EDTA), vs. 1 mM as used in the 

original proExM protocol, we obtained excellent isotropic expansion with low 

autofluorescence (Supplementary Note, Supplementary Tables 1–2, and Supplementary Fig. 

2A–2J). We validated the low distortion of this protocol on cultured cells using structured 

illumination super-resolution (SR-SIM) microscopy pre-expansion and confocal microscopy 

post-expansion (Supplementary Fig. 3). We next validated that this FFPE pipeline, with 

xylene treatment and increased EDTA, could prepare samples for proExM, by assessing the 

entire pipeline on normal human breast tissues prepared with FFPE preservation. We found 

that pre-expansion imaging with either a widefield (Fig. 1B) or SR-SIM (Fig. 1F) 

microscope, followed by post-expansion imaging on widefield (Fig. 1C) or confocal (Fig. 

1G) microscopes respectively, yielded low distortion levels of a few percent (Fig. 1D, 1E, 

1H, and 1I), similar to earlier ExM protocols8,9. Thus, this expansion pathology (ExPath) 

protocol was able to expand paraffin embedded, highly aldehyde-fixed samples.

We next sought to enable H&E-stained samples to be prepared for our enhanced proExM 

protocol. For mounted samples, we had to remove the cover slip and mounting medium; 

since we had established that xylene treatment was acceptable as a pre-treatment for ExM, 

we used xylene to remove the coverslip and dissolve away the mounting medium 
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(Supplementary Fig. 1). H&E stained tissues exhibited high background fluorescence 

(Supplementary Fig. 4), suggesting that removal of eosin and hematoxylin would be 

important for fluorescent antibody staining. We found that eosin and hematoxylin staining 

were both removed by ExPath processing (Supplementary Fig. 1 and 4). We visualized 

nuclear DNA in post-expansion H&E stained samples by DAPI staining (Fig. 1J, 1K), and 

applied antibody stains against the mitochondrial protein Hsp60 and stromal marker 

vimentin, using an H&E slide of human breast tissue with atypical ductal hyperplasia 

(ADH). Finally, we evaluated fresh frozen sections preserved with acetone fixation; we 

found that lowering the concentration of AcX from 0.1 mg/mL to 0.03 mg/mL enabled 

better processing (Supplementary Fig. 2K, 2L), perhaps because of the greater number of 

free amines in tissues not processed with aldehyde.

DNA fluorescent in situ hybridization (FISH) is commonly used to assess ERBB2/HER2 

gene amplification in breast cancer. We recently developed a method for expanding RNAs 

away from each other in biological samples and then accurately imaging their identity and 

location with RNA FISH12; here we examined whether post-expansion DNA FISH was 

possible. The large size of traditional bacterial artificial chromosome (BAC)-based FISH 

probes (e.g., the length of BAC-based FISH probes targeting HER2 is approximately 220 

kb) precludes efficient delivery to expanded samples, so we used commercially available 

SureFISH probes, which are libraries of single-stranded oligonucleotides with an average 

size of ~150 bases13, targeting HER2 and (as a control) the centrosome of chromosome 17. 

We observed that SureFISH probes diffused into breast ExPath samples and hybridized with 

chromosomal DNA, for specimens of breast cancers with no amplification of HER2 (Fig. 

1L) and for cancer with HER2 amplification (Fig. 1M), with more DNA hybridization 

apparent in the HER2-amplified case. As DNA FISH is performed in the final step of the 

process, it does not interfere with immunostaining earlier in the protocol. We co-stained the 

breast samples with an antibody against HER2 protein, and confirmed the correlation of 

HER2 protein expression with HER2 gene amplification (Fig. 1L, 1M).

ExPath, because it spaces apart molecules and also results in elimination of unanchored or 

digested molecules (such as non-antibody proteins that are digested by proteinase K 

treatment), has several advantages over conventional immunostaining. For example, tissue 

autofluorescence remains challenging for clinical applications of immunofluorescence and 

FISH in pathology analysis, despite existing autofluorescence reduction methods14–16. 

Specimens processed with ExPath are >99% water, and thus transparent and refractive 

index-matched to water. We observed substantially reduced autofluorescence from lung (Fig. 

2A–J, wide-field fluorescent images) and breast (Fig. 2K–P, confocal fluorescent images) 

ExPath-processed specimens, when we compared signal to background (from regions 

selected by a pathologist’s visual inspection), in spectral channels ranging from UV to red 

(Fig. 2Q, n=3 normal breast samples from different patients). Thus, the molecular clearing 

of ExPath, which eliminates unanchored biomolecules (including potentially both proteins 

as well as small molecules) that contribute to autofluorescence, can reduce autofluorescence 

by an order of magnitude in some spectral channels.

We applied ExPath to tissue microarrays containing specimens from various organs, 

including normal and cancer-containing tissues from breast, prostate, lung, colon, pancreas, 
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kidney, liver and ovary (Fig. 3), in all cases obtaining expansions of ~4–5x, with average 

expansion factor 4.7 (standard deviation (SD) 0.2; Supplementary Table 3). The expansion 

variation is smaller than 10%, indicating consistent performance of expansion across 

different types of human tissue. ExPath revealed sub-diffraction limit sized features of the 

intermediate filaments keratin and vimentin, critical in the epithelial-mesenchymal 

transition17, cancer progression, and initiation of metastasis18 (Fig. 3). An interesting future 

direction will be the examination of the nanoscale architecture of these and other proteins in 

the cellular and tissue context of cancer. We anticipate that ExPath will provide a simple and 

convenient way to observe nanoscale morphology of not only nucleic acids, but also protein 

biomarkers, in clinical biopsy samples from a wide range of human organs.

ExPath enables visualization of human podocyte tertiary foot processes

Many potential uses of ExPath are likely to be discovered by future exploration of normal 

vs. abnormal samples, followed by traditional or automated inspection of key features, both 

for pinpointing novel pathological mechanisms, as well as for disease classification and 

refined diagnosis. However, there are some scenarios where nanoscopic resolution is already 

necessary. For example, nephrotic kidney diseases such as minimal change disease (MCD) 

and focal segmental glomerulosclerosis (FSGS) are typically diagnosed or confirmed via 

EM19,20. In MCD, kidney tertiary podocyte foot processes, which normally cover the surface 

of glomerular capillary loops like interdigitating fingers, lose their characteristic 

morphology and appear continuous under EM – a phenomenon called foot process 

effacement10. The width of individual foot processes is around 200 nm, beyond the 

resolution of conventional optical microscopy21.

Here, we explored whether ExPath could enable imaging of podocyte foot processes. We 

identified an anti-actinin-422 and an anti-synaptopodin23 antibody that each could 

specifically label tertiary podocyte foot processes in acetone-fixed frozen kidney samples 

that were heat-treated prior to immunostaining (Supplementary Figs. 5 and 6). The quality of 

immunostaining of anti-actinin-4 slightly decreased for kidney samples that were FFPE-

preserved (Supplementary Fig. 7), compared to that of acetone-fixed frozen kidney samples, 

presumably due to degraded antigenicity caused by formalin. We stained human kidney 

samples with anti-actinin-4, as well as antibodies against vimentin (a glomerular marker), 

and collagen IV (a capillary basement membrane marker), and successfully observed the 

microanatomy of glomeruli (Fig. 4A vs. B) post-expansion, revealing ultrafine structures of 

tertiary podocyte foot processes (Figs. 4B, 4C) not visible in confocal imaging (Fig. 4A), in 

normal human kidney samples. We acquired ExPath images of fresh-frozen kidney sections 

from individuals with normal kidneys, as well as from patients with MCD and FSGS. We 

observed the ultrafine structure of tertiary foot processes in kidneys from normal cases (Fig. 

4E), as well as foot process effacement in MCD cases (Fig. 4G), consistent with the 

morphologies seen in EM images from the same samples (Fig. 4D and 4F). Thus, nanoscale 

differences between clinical samples of nephrotic diseases could be visualized with 

diffraction-limited optical microscopes with ExPath.

To examine in a blinded study whether ExPath could enable accurate identification of foot 

process effacement in MCD and FSGS cases, seven observers, including four pathologists 
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and three non-pathologists, first studied a training set of immunofluorescent images of 

kidney glomeruli in both pre-expansion and post-expansion states (see full image set in 

Supplementary Fig. 8), then examined 10 pre-expansion and 10 post-expansion 

immunofluorescence images of kidney glomeruli from 3 specimens from normal subjects, 2 

specimens from MCD patients and 1 specimen from an FSGS patient (Supplementary Fig. 8 

and Supplementary Table 4). For unexpanded samples, classification accuracy was only 

65.7% (standard deviation (SD) 17%), but increased significantly to 90% (SD 8%) when 

ExPath samples were used (p=0.0088, two tailed t-test; raw data in Supplementary Table 5). 

To assess inter-observer agreement, we calculated Fleiss’s kappa values for observers’ 

categorical ratings on pre- vs. post-expansion images. Observers’ ratings of post-expansion 

data were consistent, with kappa value 0.68±0.14 at the 95% confidence level, whereas inter-

observer agreement was poor on pre-expansion data (0.35±0.13, 95% confidence level; this 

value was borderline, given the clinically acceptable threshold of 0.40)24. ExPath enabled 

accurate and consistent evaluation among observers on whether the image was from a 

sample in a normal or abnormal state, from a single post-expansion image (in clinical 

practice, kidney pathologists normally examine multiple EM images for diagnosis). Our 

results suggest that large-scale blinded studies using ExPath, although beyond the scope of 

the current technology-oriented paper, may be relevant for streamlining the diagnosis or 

confirmation of nephrotic kidney disease, and potentially other diseases that involve known 

nanoscale pathology, as well as helping detect diseases earlier when the changes are too 

small to be resolved with ordinary microscopes.

ExPath improves computational diagnosis in early breast lesions

To further explore the utility of ExPath, we examined the pathological classification of early 

breast lesions, which represents one of the most challenging problem areas in breast 

pathology11. For example, one study has shown that there is only ~50% agreement for 

nuclear atypia diagnosis in early breast lesions11. The classification of these lesions provides 

critical diagnostic information to prevent over- and under-treatment, and to guide clinical 

management25,26.

We hypothesized that the problems with the current classification schemes are due to two 

issues: first, the diagnostic criteria are largely qualitative and subjective; second, the 

information contained in the images is limited by the optical diffraction limit of conventional 

optical microscopes. To start addressing the first issue, we previously developed 

computational pathology models that can discriminate benign from malignant intraductal 

proliferative breast lesions27. However, the efficacy of these models is limited by the 

information extractable from diffraction-limited images. Because ExPath substantially 

increases image resolution, we anticipated that the extra information enabled by ExPath 

could lead to a higher quality of extracted features, and thus improve the classification of 

pre-invasive breast lesions.

We applied our previously developed image classification framework27 on ordinary H&E-

stained samples, as well as an image classification framework updated with nucleus 

detection and segmentation algorithms optimized for post-expansion DAPI-stained images 

(Fig. 5A). Our image classification framework for post-expansion DAPI-stained images 
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includes foreground detection, nucleus seed detection, and nuclear segmentation (Fig. 5A). 

Following application of this framework, we extract three kinds of features from each 

segmented nucleus from both the pre-expanded and post-expanded images: nuclear 

morphology features, nuclear intensity features, and nuclear texture features.

Each of the two datasets (pre- and post-expansion) consists of 105 images: 36 normal breast 

tissue images, 31 proliferative lesion (benign) images (15 usual ductal hyperplasia (UDH), 

16 atypical ductal hyperplasia (ADH)) and 38 ductal carcinoma in situ (DCIS). The average 

expansion factor was 4.8 (SD: 0.3). We first assessed the impact of ExPath on nuclear 

detection and segmentation, for a subset of 31 images (6 normal, 9 UDH, 9 ADH and 7 

DCIS; Fig. 5B). Computational detection of nuclei was significantly more accurate in 

expanded samples (Fig. 5B), with an 11% increase in true positive rate, 22% increase in 

positive predictive value, and 16% increase in f-score, over non-expanded samples 

(Supplementary Tables 6 and 7; Supplementary Fig. 9), and segmentation was significantly 

improved as well, with a 14% increase in f-score, 77% increase in Cohen’s kappa and 66% 

decrease in global consistency error (GCE) (Supplementary Table 8). This improved 

accuracy of nuclear detection and segmentation could in principle support improved 

computational pathology analyses. To this end, we found that expansion substantially 

improved the performance of diagnosis classification models over pre-expansion data (Fig. 

5C; Supplementary Table 9). When we examined the area under the receiver operator curve 

(AUC) of true positives vs. false positives - a perfect classifier should achieve an AUC of 1, 

and a random classifier would achieve an AUC of 0.5- our pipeline was able to discriminate 

lesions such as UDH from atypical lesions such as ADH with an AUC of 0.93 on expanded 

samples, compared with only 0.71 on pre-expanded samples. The most significant features 

selected by these classification models are shown in Supplementary Tables 10 and 11. 

Features extracted from individual post-expansion images were normalized by their 

expansion factors, before running our digital pathology pipeline; however, such 

normalization did not affect the results greatly (Supplementary Table 12). These findings 

suggest that the improved nuclear segmentation achieved on post-expansion images results 

in more informative features and in turn higher-performing classification models.

Discussion

We herein describe ExPath, a simple and versatile method for optical interrogation of 

clinical biopsy samples with nanoscale precision and molecular information. ExPath is an 

extension of our proExM protocol9 that is optimized for clinical samples -FFPE, H&E 

stained, and fresh frozen tissues. ExPath thus enables nanoscale imaging on common 

imaging hardware. We found that ExPath functions well on a wide diversity of tissue types, 

and that it has immediate clinical application in the diagnosis of diseases known to exhibit 

nanoscale pathology (e.g., kidney MCD). Although EM has far superior resolution 

compared to ExPath, the processing time for ExPath is significantly shorter than that for 

EM, and the requirement for skills and equipment to perform ExPath is much less 

demanding vs. those required for EM (Supplementary Table 13). Moreover, ExPath enables 

multiplexed localization and identification of biomolecules in situ, which is challenging with 

EM. Of course, without larger-scale studies it is unclear whether ExM would eliminate the 

need for EM in diagnostic renal pathology of podocytopathies. We highlight the potential of 
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ExPath to improve diagnostics by providing greater information content to inform sample 

classification. We found that ExPath enhances the ability to detect and segment nuclei, and 

the increased information content of expanded breast tissue samples improves the 

performance of computational pathology classifiers for the analysis of proliferative breast 

lesions.

ExM protocols are robust: in parallel to our development of proExM, two other groups 

developed similar protocols28,29, highlighting the ability of multiple groups to implement 

such technologies. Another key advantage of ExPath is its versatility: we demonstrate here 

that we can not only address a wide variety of samples, but adopt ExPath to multimodal 

investigation of clinical samples, e.g. incorporating DNA FISH into the pipeline easily, using 

only commercially available probes. In the future, it will be of interest to combine ExPath 

with ongoing developments in multiplexed imaging of RNA30–32 and protein33. Although 

embedding biological specimens in hydrogels such as polyacrylamide to support imaging 

goes back decades34, the use of polyelectrolyte hydrogels to move biomolecules and labels 

apart evenly may help support chemical analysis of biomolecules in situ, since expansion 

microscopy separates biomolecules and surrounds them by pure environments of our 

choosing.

ExPath, in the current iteration, enables ~4.5x physical magnification in each dimension. 

Although it expands the volume to be imaged, and thus requires more voxels to be imaged, 

the ability to use fast diffraction limited optics enables the voxel sizes of a super-resolution 

imaging modality to be acquired at the voxel acquisition rates of fast diffraction limited 

optics. ExPath is compatible with a wide variety of stains and antibodies used throughout 

biology and pathology. Similar to ExM and proExM, ExPath samples are transparent with a 

refractive index matched to water, and thus can support fast volumetric imaging on 

lightsheet microscopes (as has been previously shown for expanded samples35). In the 

current implementation of ExPath, most proteins are digested away to enable even 

expansion, preventing post-expansion interrogation. In the future, protein retention forms of 

ExM that enable most proteins to be retained9,34 may support more information-preserving 

forms of ExPath. To date, these “full protein retention” forms of ExM have not been fully 

validated by direct comparison to a classical super-resolution modality. Another property of 

ExPath is that the expansion process dilutes the concentration of fluorophores. For low 

abundance targets, it may be desirable to implement signal amplification prior to imaging. 

Since proteins are lost after proteinase K treatment,non-protein-reliant amplification 

methods, such as hybridization chain reaction amplification of gel-anchored labels, may be 

helpful, as has been demonstrated for single-molecule RNA imaging in expanded 

specimens35.

Standardization and automation of ExPath are important future steps toward clinical 

adoption. Comparing pre- and post-expansion images taken at low magnifications enables 

simple calculation of the expansion factor, so that the physical size of the post-expansion 

image can be mapped onto biologically relevant units, and nulling out the small (<10%) 

sample-to-sample variation of expansion factor.
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ExPath is particularly poised to enhance the computational analysis of pathological 

specimens. Here, we analyzed nuclear morphology and explored the classification of early 

breast lesions. We found that nuclear segmentation algorithms, which historically have 

shown only moderate performance on standard histopathological images36, show excellent 

performance on ExPath images. We also find that diagnosis classification models that focus 

on nuclear morphologic phenotypes perform better on ExPath images than on pre-expansion 

images. The accurate classification of pre-invasive breast diseases represents a difficult area 

in diagnostic pathology with significant discordance observed between individual 

pathologists11. Accurate classification is importantbecause it determines clinical treatment 

which can range from observation (for a benign non-atypical lesion) to surgery (for a 

diagnosis of atypia or malignancy). Further validation of our findings on larger sets of 

samples will be critical towards understanding the potential of this technology in the clinic. 

We envision that it will be possible to integrate ExPath with computational pathology for 

computer assisted interpretation of biopsies. In general, as cancer screening procedures for 

common malignancies continue to improve (e.g. skin, lung, prostate, esophagus, colon), a 

larger proportion of pathology specimens will contain small, non-invasive lesions, and 

accurate pathological classification of these specimens will play an important role in clinical 

management.

METHODS

Methods and any associated references are available in the online version of the paper.

ONLINE METHODS

Human samples

The breast pathological specimens used in Figure 1J and K and 9 cases from the study on 

ExPath-based analysis of early breast lesions (Fig. 5) were from the pathology archives of 

the Beth Israel Deaconess Medical Center, obtained under BIDMC IRB protocol 

#2013p000410 to A.H.B (In addition, we used 11 cases from US Biomax and 21 cases from 

Abcam.). The frozen kidney pathological samples used in Figure 4D–G and Supplementary 

Figure 8 were provided by the Brigham and Women’s Hospital archives under the BWH 

IRB protocol #2011P002692 to A.W. The rest of the breast and kidney samples used in this 

study were bought from either US Biomax or Abcam (Supplementary Table 14). Other 

human tissue samples and tissue microarrays were purchased from commercial sources (see 

Supplementary Table 14). The use of unused, unidentified archival specimens does not 

require informed consent from the subjects.

Tissue section recovery

For formalin-fixed paraffin-embedded (FFPE) clinical samples, samples were placed in a 

series of solutions sequentially, 3 mins for each step: 2× xylene, 2× 100% ethanol, 95% 

ethanol, 70% ethanol, 50% ethanol, and finally doubly deionized water. All the steps were 

performed at room temperature (RT), 3 mins each.

For stained and mounted permanent slides, samples were briefly placed in xylene at RT. 

Then coverslips were carefully removed with appropriate tools, such as a razor blade. If the 
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coverslip was difficult to remove, the slides were further incubated in xylene at RT until the 

coverslip was loosened. Slides were then treated as FFPE samples.

Unfixed frozen tissue slides in optimum cutting temperature (OCT) solution (Tissue-Tek) 

were initially fixed for 10 min in acetone at −20°C before three PBS washes for 10 min each 

at RT. For already-fixed frozen clinical tissue sections, the slides were left at RT for 2 min to 

let the OCT melt, and washed 3x with PBS solution at RT for 5 min each.

Sample heat treatment

All human tissue samples used in this study were heat treated prior to immunostaining. 

Briefly, tissue slides were placed in 20 mM sodium citrate solution (pH 8 at ~100°C, in a 

heat-resistant container, and then the container was immediately transferred to a 60°C 

incubator for 30 min.

Immunostaining

Samples were first blocked with MAXblock™ Blocking Medium (Active Motif) for 1 hour 

at 37 °C, followed by incubation with primary antibodies in MAXbind™ Staining Medium 

(Active Motif) at a concentration of 10 μg/mL for at least 3 h at RT or 37 °C (in our hands, it 

did not matter which), and then washed 3 times with MAXwash™ Washing Medium (Active 

Motif) for 10 minutes each at RT. Samples were incubated with appropriate secondary 

antibodies at a concentration of approximately 10 μg/mL together with 300 nM DAPI (if 

DAPI was used; DAPI was from Thermo Fisher Scientific) in MAXbind™ Staining Medium 

for at least 1 h at 37 °C, for 5 μm thick tissue (further optimization of incubation duration or 

temperature may be needed for thicker tissues), then washed in MAXwash™ Washing 

Medium 3 times for 10 min each at RT. All the primary antibodies used in this work are 

listed in Supplementary Table 15. Secondary antibodies used were: goat anti-chicken Alexa 

488 (Life Technologies), goat anti-rabbit Alexa 546 (Life Technologies) and goat anti-mouse 

CF633 (Biotium), except that goat anti-guinea pig Alexa 488 (Life Technologies) was used 

in Supplementary Figure 6, goat anti-mouse Atto 647N (Life Technologies) was used in 

Figure 3, and goat anti-chicken Alexa 546 (Life Technologies) and goat anti-rabbit Alexa 

488 (Life Technologies) were used in Figure 4.

Chemical treatment for protein preservation

The expansion microscopy method used is a variation of our previously reported proExM 

protocol9. Acryloyl-X, SE (6-((acryloyl)amino)hexanoic acid, succinimidyl ester, here 

abbreviated AcX, fromThermo Fisher Scientific) was dissolved in anhydrous DMSO at a 

concentration of 10 mg/mL, then aliquotted and stored frozen in a desiccated environment at 

−20 °C. Tissue slides were incubated with 0.03–0.1 mg/ml AcX (0.03 mg/ml for samples 

fixed with non-aldehyde fixatives, 0.1 mg/ml for samples fixed with aldehyde fixatives), 

diluted in PBS buffer, for at least 3 hours at RT. Note that thicker samples require longer 

incubation times.

In situ polymer synthesis

The method for in situ polymer synthesis in ExPath is slightly modified from our original 

proExM protocol8. Briefly, a monomer solution made of 1x PBS, 2 M NaCl, 8.625% (w/w) 
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sodium acrylate, 2.5% (w/w) acrylamide, 0.10% (w/w) N,N′-methylenebisacrylamide (or 

BIS for short) (all from Sigma Aldrich), was prepared and aliquotted and stored at −20 °C 

prior to in situ polymer synthesis. The slightly lower BIS concentration caused slightly more 

expansion than previous protocols, at the expense of slightly lower gel sturdiness. The 

chemicals 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (4HT, Sigma Aldrich) as an 

inhibitor, tetramethylethylenediamine (TEMED, Sigma Aldrich) as an accelerator and 

ammonium persulfate (APS, Sigma Aldrich) as an initiator, were added sequentially to the 

monomer solution each to prepare the gelling solution (final concentration: 0.01% (w/w) for 

4HT and 0.2% (w/w) for both APS and TEMED). Tissue slides were incubated with the 

monomer solution for 30 mins at 4°C to allow diffusion of monomer solution into the 

tissues, while preventing premature gelation. Then, a gel chamber was constructed by 

putting a coverslip on top of the tissue, with spacers on either side of the tissue section to 

prevent compression of tissue. The gel chamber was filled with the fresh gelling solution. 

Finally, slice samples were incubated for 1.5–2 hours at 37 °C in a humidified atmosphere, 

to complete gelation.

Sample digestion and expansion

After gelation, samples were incubated in 8 U/ml proteinase K (New England Biolabs) in a 

digestion buffer (modified from the original proExM recipe) consisting of 50 mM Tris (pH 

8), 25 mM EDTA, 0.5% Triton X-100, 0.8 M NaCl, and the tissues were incubated for 3 

hours at 60°C or until the completion of digestion (i.e., the gelled tissue is detached from the 

glass slide and becomes transparent, and the gelled tissue remains flat without bending or 

twisting in the solution). Digested samples were washed once with 1x PBS buffer for 10 min 

at RT and stained with 300 nM DAPI in PBS buffer for 20 mins at RT, then washed once 

with 1x PBS for 10 min at RT. Finally, gels were placed in doubly deionized water at RT for 

10 min to expand. This step was repeated 3–5 times in fresh water until the size of the 

expanded sample stabilized. To prevent bacterial growth, we sometimes added sodium azide 

(final concentration 0.002% – 0.01%) to the water used for expansion. Note that additional 

of sodium azide may reduce the expansion factor, however, by around 10%.

Structured illumination microscopy pre-expansion imaging

For Supplementary Fig. 3, HeLa cells (ATCC CCL2) were fixed with 4% paraformaldehyde 

for 10 min, washed 3 times for 5 minutes each with PBS, and permeabilized with 0.1% 

Triton X-100 for 15 min. Microtubules in fixed HeLa cells were stained with primary 

antibodies (rabbit anti-α-tubulin, Abcam) in MAXbind™ Staining Medium (Active Motif) 

at a concentration of 10 μg/mL for 1–4 hours at 37 °C and then washed in MAXwash™ 

Washing Medium (Active Motif) three times for 5 min each. Specimens were then incubated 

with secondary antibodies and 300 nM DAPI in MAXbind™ Staining Medium for 1–4 

hours at 37°C and then washed in PBS 3 times for 5 min each These cells were used as a 

technology testbed, not to make scientific conclusions, so no detailed scientific justification 

for the choice of cell line is needed. Cells were authenticated and tested for mycoplasma 

contamination via standard procedures of the ATCC. Unless specifically stated, all the steps 

were performed at RT.
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For Figure 1F, a customized 5 μm thickness breast TMA was prepared and stained with 

primary (rabbit anti-KRT19, chicken anti-vimentin) as well as secondary antibodies and 

DAPI as described in the “Immunostaining” section. Super-resolution structured 

illumination microscopy imaging was performed on a Deltavision OMX Blaze (GE 

Healthcare) SIM microscope with a 100x 1.40 NA (Olympus) oil objective. Stained samples 

were imaged with SlowFade Gold (Invitrogen) antifade reagent for suppression of 

photobleaching and refractive index matching for pre-expansion imaging.

Fluorescent microscopy after expansion

Low-magnification images of specimens (Fig. 1B, 1C, “Core” images of Fig. 3, 

Supplementary Figs. 2E–H, 4, and 5) were imaged on a Nikon Ti-E epifluorescence 

microscope with a SPECTRA X light engine (Lumencor) and a 5.5 Zyla sCMOS camera 

(Andor), controlled by NIS-Elements AR software, with a 4× 0.13 NA air objective or 10× 

0.2 NA air objective (Nikon). For Figures 1K–M, Figure 2A–J, Figure 5, Supplementary 

Figures 2Aii, Aiii, Av, Avi, Bii, Biii, Bv, Bvi, 2I–J, 6 and 8, the images were acquired on the 

same microscope with a 40× 1.15 NA water immersion objective (Nikon). The following 

filter cubes (Semrock, Rochester, NY) were used: DAPI, DAPI-11LP-A-000; Alexa Fluor 

488, GFP-1828A-NTE-ZERO; Alexa Fluor 546, FITC/TXRED-2X-B-NTE; Atto 647N or 

CF 633, Cy5-4040C-000.

All other fluorescent images were taken on an Andor spinning disk (CSU-X1 Yokogawa) 

confocal system on a Nikon TI-E microscope body, with a 40× 1.15 NA water immersion 

objective. DAPI was excited with a 405 nm laser, and imaged with a 450/50 emission filter. 

Alexa Fluor 488 was excited with a 488 nm laser, and imaged with a 525/40 emission filter. 

Alexa Fluor 546 was excited with a 561 nm laser and imaged with a 607/36 emission filter. 

Atto 647N and CF633 were excited with a 640 nm laser and imaged with a 685/40 emission 

filter.

To prevent the gels from drifting during imaging following expansion, they were placed in 

glass bottom 6-well plates with all excess liquid removed. If immobilization was needed, 

liquid low melt agarose (2% w/w) was pipetted around the gel and allowed to solidify, to 

encase the gels before imaging.

Figure 1G, Figure 2, Figure 3 (except core images), Figure 4, Supplementary Figure 7 and 

Supplementary Figure 9 are maximum intensity projections (MIPs) of 0.25 μm thickness (in 

pre-ExM distance units). Figure 1K–M, Figure 5 and Supplementary Figure 8 are MIPs of 2 

μm thickness.

Brightfield microscopy

Low magnification images (Supplementary Fig. 4) were acquired on a Nikon Ti-E 

microscope with a DS-Ri2 sCMOS 16mp Color Camera (Nikon) and white LED illuminator, 

with a 4× 0.13 NA air objective or 10× 0.2 NA air objective. High magnification images of 

H&E slides (Fig. 1J, Fig. 5, and Supplementary Fig. 9) were acquired on the Panoramic 

Scan II (3DHistech), with a 40× 0.95 NA air objective (Zeiss).
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Autofluorescence analysis

Background was removed from images by subtraction of mean pixel values from blank 

regions, prior to analysis. For each fluorescent channel, 10 regions of interest containing the 

brightest fluorescent signals and one area containing only autofluorescence signal, as judged 

by a pathologist’s visual inspection, were selected, and used to calculate signal-to-

background ratios.

Measurement of the expansion factor and normalization

We suggest, as we did here, that users acquire low magnification images of the sample pre- 

and post-expansion, and then take the ratio of these sizes to calculate the expansion factor, 

which can be used to normalize the physical size of the post-expansion image to that of the 

pre-expansion state, and thus enable “biological” length units to be utilized. This 

normalization process also nulls out the small (<10%) natural sample-to-sample variability 

of the expansion process.

Measurement error quantification

This section is based on our previously described method8 for distortion vector field 

calculation and root-mean-square (RMS) error calculation, with minor modifications. We 

semi-automated the distortion vector field and RMS error calculation with improved code, 

eliminating the need for manual selection of control points for the non-linear registration 

that leads to the distortion vector field8. Given the challenge of finding matching z planes in 

pre- vs. post-expansion states, the same fields of view in multiple z planes were first imaged 

pre- and post-expansion. To match z planes pre- and post-expansion, scale-invariant feature 

transform (SIFT) keypoints37 were generated for all the possible combination of pairs of 

pre-expansion z planes and post-expansion z projections (note that since the sample expands 

along the z axis, 1 pre-expansion z plane should correspond to 1 post-expansion z projection 

from 4–5 z planes). SIFT keypoints were generated using the VLFeat open source library38 

and filtered by random sample consensus (RANSAC) with a geometric model that only 

permits rotation, translation, and uniform scaling. The pair of pre- and post-expansion 

images with the most SIFT keypoints was used for image registration by rotation, translation 

and uniform scaling, as well as calculation of expansion factors and distortion vector fields. 

By subtracting the resulting vectors at any two points, distance measurement errors could 

easily be sampled, and the RMS error for such measurements was plotted as a function of 

measurement length from at least 3 patients.

Expansion immunoFISH

For ExPath samples being processed for immunohistochemistry plus DNA FISH probing, 

digested gel samples were placed in hybridization buffer made of 1× PBS, 15% ethylene 

carbonate, 20% dextran sulfate, 600 mM NaCl and 0.2 mg/ml single stranded salmon sperm 

DNA at 85°C for 30 mins, then mixed with 30 μL of hybridization buffer containing 

SureFISH probes 17q12 HER2 and Chr17 CEP (Agilent/Dako) which was pre-heated at 

85 °C for 10 mins. The mixtures were then incubated at 45°C overnight. The next day, 

samples were washed with stringency wash buffer made of 1×SSC (150 mM NaCl, 15 mM 

sodium citrate, pH 7.0) and 20% ethylene carbonate at 45°C for 15 min, followed by washes 

Zhao et al. Page 13

Nat Biotechnol. Author manuscript; available in PMC 2018 January 17.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



with 2× SSC at 45 °C, 3 times for 10 mins each. Finally, the gel samples were washed with 

0.02× SSC multiple times at RT (5 min each) until the expansion was completed.

Computational nuclear atypia analysis

For the task of evaluating Nucleus Detection and Nucleus Segmentation, the analyses 

leading to the tables and figures listed below used 31 cases out of the total of 105 cases: 

Supplementary Table 6; Supplementary Table 7; Supplementary Table 8; Supplementary 

Fig. 9. For the task of Image Classification (see corresponding section below), the tables and 

figures below used all 105 cases: Supplementary Table 9; Supplementary Table 10; 

Supplementary Table 11; Supplementary Table 12; Figure 5C. We proposed a framework for 

classification of expanded tissue images into different categories: normal breast, benign 

breast lesions (UDH and ADH), and non-invasive breast cancer (DCIS). This image 

classification framework consisted of four components: image preprocessing, nuclei 

segmentation, feature extraction and image classification. The image pre-processing and 

nuclei segmentation pipelines are shown in Figure 5A.

Image pre-processing

Due to confocal acquisition (see above) of multiple non-overlapping image tiles which 

required stitching to produce a single image, these tiles exhibited background fluorescent 

signals. During image pre-processing, a rolling-ball algorithm39 with ball size set to the 

average nuclei size was applied to remove background noise. After background noise 

removal, nucleus-to-background contrast was enhanced by adaptive histogram 

equalization40. These enhanced images were then smoothed by a median filter with radius 

10.

Nuclei Segmentation

The nuclei segmentation procedure consisted of three steps. First, nuclei were segmented 

using a Poisson distribution based minimum error thresholding method41. Standard and 

global thresholding methods are not efficient as a minimum error threshold method, because 

of the high variability within the nuclei regions and background regions. In order to address 

this issue, our locally adaptive thresholding algorithm selected the threshold by modelling 

the image histogram as a mixture of two Poisson models. The threshold value was computed 

by minimizing the relative entropy between the image histogram and the Poisson mixture 

model. The initial segmentation of nuclei was then improved by a set of morphological 

operations that include hole-filing and morphological closing to fill holes and to combine 

small fragments of nuclei into single nuclei, and morphological opening to remove small 

non-nucleus regions (e.g. blood vessels, parts of fragmented nuclei, and artifacts). This 

segmentation method may under-segment clusters of nuclei that touch each other. Second, to 

separate the touching and overlapping nuclei, we used a scale-adaptive multi-scale Laplacian 

of Gaussian (MSLoG) filter42 to produce local maxima and select seed points for nuclei. For 

selecting local maxima, constant scale produces imprecise nuclear seed points, since nuclear 

size varies considerably in early breast neoplasia lesions. In order to address this problem, a 

scale-adaptive MSLoG filter was applied on a given number of scales, and then local 

maximum points in the scale-space response were selected as seed points. Last, these seed 
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points were used as markers for the marker-controlled watershed algorithm to separate 

touching and overlapping nuclei.

Feature extraction

After nuclei segmentation, we extracted morphological, first-order statistical and second-

order statistical features for each nucleus. The morphological features included shape and 

geometrical features which reflect nuclear phenotypic information. The computed 

morphological features were: area, convex area, perimeter, equivalent perimeter, eccentricity, 

orientation, solidity, extent, compactness, major axis length, minor axis length, elliptical 

minor, and major radius. The first-order statistical features corresponded to the distribution 

of gray-level values within nuclei. The computed first-order statistical features were: mean, 

median, mean absolute deviation, standard deviation, interquartile range, skewness, and 

kurtosis. The second-order statistical features corresponded to the textural variation inside 

nuclei.

We computed two types of second order statistical features using grey level Haralick co-

occurrence43 and run-length44 matrices. The co-occurrence matrix GLCM (i,j; d,θ) is square 

with dimension Ng where Ng is the total number of grey levels in the image. The value at 

the ith column and jth row in the matrix was produced by counting the total number of 

occasions where a pixel with value i is adjacent to a pixel with value j at a distance d and 

angle θ. Then the whole matrix was divided by the total number of such comparisons that 

were made. Alternatively, we can say that each element of the GLCM matrix is considered 

as the probability that a pixel with grey level i is to be found with a pixel with grey level j at 

a distance d and angle θ. We defined adjacency in four directions (vertical, horizontal, left 

and right diagonals) with one displacement vector, which produced four GLCM matrices. In 

our case, texture information was rotationally invariant. So, we took the average in all four 

directions and produced one GLCM matrix. Later, we computed 14 features proposed by 

Haralick from the GLCM in order to identify texture more compactly. These 14 features 

were: Autocorrelation, Correlation, Contrast, Cluster Shade, Cluster Prominence, Energy, 

Entropy, Homogeneity, Inverse Difference Normalized, Inverse Difference Moment 

Normalized, Dissimilarity, Maximum Probability, Information Measure Correlation 1 and 

Information Measure Correlation 2.

The set of consecutive pixels, with the same grey level, collinear in a given direction, 

constitutes a grey level run length matrix GLRLM (i,j; θ). The dimension of the GLRLM is 

Ng×R, where Ng is the number of grey levels and R is the maximum run length. Similar to 

the GLCM, we computed GLRLMs for four directions and averaged them. The 11 run-

length features, derived from the GLRLM, are: short run emphasis (SRE), long run emphasis 

(LRE), grey-level non-uniformity (GLN), run length non-uniformity (RLN), ratio-

percentage (RP), low grey level runs emphasis (LGLRE), high grey level runs emphasis 

(HGLRE), short run low grey level emphasis (SRLGLE), short run high grey level emphasis 

(SRHGLE), long run low grey level emphasis (LRLGLE) and long run high grey level 

emphasis (LRHGLE). In total, we computed 45 features for each nucleus. Last, these 

features were summarized at the image level by computing the first-order statistics including 
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mean, median, mean absolute deviation, standard deviation, interquartile range, skewness 

and kurtosis of each feature per image, producing 315 summary features per image.

Image classification

In the last part of our framework, we performed logistic regression with Lasso regularization 

to build multivariate image feature-based models to classify normal, benign and pre-invasive 

malignant tissue images. The analyses were implemented in R (http://www.r-project.org/), 

using the glmnet package45. Lasso regularization46 was used to create simpler models, less 

prone to overfitting than those that would be obtained from standard logistic regression. The 

Lasso procedure consists of performing logistic regression with an L1 regularization penalty, 

which has the effect of shrinking the regression weights of the least predictive features to 0. 

The amount of the penalty (and the number of non-zero features in the model) is determined 

by the regularization parameter λ. This method has been shown to perform well in the 

setting of colinearity47 and has been widely used to build predictive models from high-

dimensional data in translational cancer research. Features were standardized separately in 

the training and validation data-sets prior to model construction, using the selected setting in 

glmnet. We evaluated model performance with 6-fold cross validation (6F-CV). For 

validation, we selected the value of λ that achieved the maximum area under curve (AUC) in 

cross-validation on the training data-set and applied this fixed model to the validation data-

set. Model performance was assessed by computing the AUC of true positives vs. false 

positives, where a perfect classifier would achieve an AUC of 1, and a random classifier 

would achieve an AUC of 0.5.

We also evaluated our framework using two other machine learning classifiers, which are 

commonly used in biomedical research. A random forest classifier48 fits a number of 

decision trees on various sub-samples of the dataset and uses averaging to improve the 

predictive accuracy and to control over-fitting. Number of trees (numTrees), maximum depth 

of the tree (maxDepth) and number of features (numFeatures) to be used in random selection 

are three parameters that affect the performance of the random forest classifer. In our 

experiments we used numTrees = 100, maxDepth=30 and numFeatures=20. The other 

classifier we explored was Naïve Bayes49, which is a probabilistic classifier based on 

applying Bayes’ theorem with strong independence assumptions between the features. As 

the predicted value is class label (e.g., we are pursuing a classification problem), the 

independence assumption is less restrictive for classification as compared to regression51.

Image classification results

We applied our image classification framework on both pre-expanded and expanded images. 

Both data sets consisted of 105 images containing 36 normal breast tissue images, 31 non-

invasive lesion breast tissue images (15 UDH and 16 ADH) and 38 pre-invasive breast tissue 

images (DCIS) from 41 cases (likely different patients, but since patients were identified 

only by sex and age in commercial samples, this is a lower bound). Thus, these 105 images 

belonged to 4 different classes (Normal, UDH, ADH and DCIS). The ground-true 

classification was performed and validated by 3 certified pathologists (E.Y.O., V.T., and 

S.J.S.) from more than 350 examined cases. The total number of images was 131; 105 

images were analyzed and 26 were excluded because they were judged to be borderline 
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diagnostic cases. In order to discriminate normal breast tissue vs. non-invasive and pre-

invasive breast tissues, we performed binary classification for all classes (Fig. 5C). When 

discriminating normal breast tissue vs. UDH, ADH and DCIS tissue, the GLMNET 

classifier reported AUC values of 0.95, 0.96 and 0.94 for expanded data as compared to 

AUC values of 0.86, 0.82 and 0.75 for pre-expanded data, respectively. For differentiating 

non-atypical breast tissue (UDH) from atypical breast tissues (ADH and DCIS), the 

GLMNET classifier reported AUC values of 0.93 and 0.89 for expanded data as compared to 

AUC values of 0.71 and 0.82 for pre-expanded data, respectively. For discriminating atypical 

benign breast tissue (ADH) vs. pre-invasive breast cancer tissue (DCIS), the GLMNET 

classifier reported a AUC value of 0.95 for expanded data as compared to a AUC value of 

0.84 for pre-expanded data. A comparison of GLMNET classification results vs. two other 

machine learning classifiers (Naïve Bayes and Random Forest) is reported in Supplementary 

Table 9. Top performing features in expanded and pre-expanded data are reported in 

Supplementary Tables 10 and 11, respectively.

Statistical analysis

Statistical analyses were performed with R (version 3.2.5). Data are presented as mean ± 

standard deviation (SD) or standard error of the mean (SEM) with sample numbers n noted 

in the text, tables, and figure legends. Student’s t-test was used to determine significant 

differences between means. A bootstrapped paired t-test was used to statistically compare 

receiver operator curves. In the box plot graphs, the ends of whiskers are defined by the SD, 

and the central rectangle spans from minimum to maximum; the segment in the rectangle 

indicates the median, and the square symbol indicates the mean.

Data availability

The Expansion Pathology protocol and the code used for the computational nuclear atypia 

analysis are posted at http://expansionmicroscopy.org. Data are available upon request to the 

corresponding authors of the paper.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Design and validation of expansion pathology (ExPath) chemical processing

(A) Schematic of ExPath workflow (details in Supplementary Fig. 1). (B) Pre-expansion 

image of a 1.5 mm core of normal human breast tissue acquired with a widefield 

epifluorescent microscope. Blue, DAPI; green, vimentin; magenta, voltage-dependent anion 

channel (VDAC). (C) Post-expansion (i.e., ExPath) widefield fluorescent image of the 

sample of B. (D and E) Root mean square (RMS) length measurement error as a function of 

measurement length for pre- vs post-expansion images (blue solid line, mean of DAPI 

channel; green solid line, mean of vimentin channel; shaded area, standard error of mean; n 

= 3 samples from different patients. Average expansion factor: 4.3 (standard deviation (SD): 

0.3)). (F) Super-resolution structured illumination microscopy (SR-SIM) image of normal 

human breast tissue. Blue, DAPI; green, vimentin; magenta, keratin-19 (KRT19). (G) 

ExPath image of the sample of F acquired with a spinning disk confocal microscope. (H and 

I) RMS length measurement error as a function of measurement length for ExPath vs SIM 

images of human breast tissue (blue solid line, mean of DAPI channel; magenta solid line, 
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mean of KRT19 channel; shaded area, standard error of mean; n = 5 fields of view from 

samples from 4 different patients. Average expansion factor: 4.0 (SD: 0.2)). (J) Hematoxylin 

and eosin (H&E) stained human breast sample with atypical ductal hyperplasia (ADH). Inset 

(upper left) is a magnified view of the area framed by the small square at right. (K) ExPath 

widefield fluorescent image of the sample of J, stained with antibodies against Hsp60 

(magenta) and vimentin (green), and DAPI (blue). (L) ExPath widefield fluorescent image 

of a human breast cancer sample without HER2 amplification. Blue, anti-HER2 (not 

visible); gray, DAPI; green, DNA FISH against chromosome 17 centrosome; magenta, DNA 

FISH against HER2. (M) ExPath widefield fluorescent image of a human breast cancer 

sample with HER2 amplification, stained as in L. Scale bars (yellow scalebars indicate post-

expansion images): (B) 200 μm; (C) 220 μm (physical size post-expansion, 900 μm; 

expansion factor 4.1); (F) 10 μm; (G) 10 μm (physical size post-expansion, 43 μm, 

expansion factor 4.3); (J) 5 μm, inset 1 μm; (K) 5 μm, inset 1 μm (physical size post-

expansion, 23 μm; inset, 4.6 μm; expansion factor 4.6); (L) and (M), physical size post-

expansion 20 μm.
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Figure 2. ExPath reduction of tissue autofluorescence

(A–J) Widefield images of normal human lung tissue, labeled with DAPI (gray) and 

antibodies against ACTA2 (blue), vimentin (green), and KRT19 (magenta), showing pre- 

(A–E) and post- (F–J) expansion data. (K–P) Confocal images of normal human breast 

tissue, labeled with DAPI (blue) and antibodies against vimentin (green) and KRT19 

(magenta), showing pre- (K–M) and post- (N–P) expansion data. (Q) Signal-to-background 

ratio for pre-expansion (magenta) as well as post-expansion (green) states of n=3 samples of 

breast tissue from 3 patients. Average expansion factor: 4.1 (SD: 0.1). ** P<0.01, * P<0.1, 

two-tailed paired t-test. The ends of whiskers are defined by the SD; the upper and lower 

boundaries of the box are defined by the maximum and minimum, respectively; the segment 

in the rectangle indicates the median; the square symbol indicates the mean. Scale bars 

(yellow indicates post-expansion image): (E) 45 μm; (J) 45 μm (physical size post-

expansion, 208 μm; expansion factor 4.6); (K–M) 5 μm; (N–P) 5 μm (physical size post-

expansion, 18 μm; expansion factor 4.0).
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Figure 3. ExPath imaging of a wide range of human tissue types

Images of various tissue types for both normal (left images) and cancerous (right images) 

tissues from human patients. From top to bottom, different rows show different tissue types 

as labeled (e.g., prostate, lung, breast, etc.). Within each block of images for a given tissue × 

disease type, there are 5 images shown. The leftmost of the 5 images shows a core from a 

tissue microarray (scale bar, 200 μm). The middle column within the 5 images shows two 

images, the top of which is a small field of view (scale bar, 10 μm), and the bottom of which 

zooms into the area outlined in the top image by a white box (scale bar, 2.5 μm). The right 
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column within the 5 images shows the same fields of view as in the middle column, but post-

expansion (yellow scale bars;top images, 10 – 12.5 μm; bottom images, 2.5 – 3.1 μm; 

physical size post-expansion, top images, 50 μm; bottom images, 12.5 μm; expansion factors 

4.0–5.0x, see Supplementary Table 3 for raw data). Blue, DAPI; green, vimentin; magenta, 

KRT19.
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Figure 4. ExPath analysis of kidney podocyte foot process effacement

(A) Pre-expansion confocal image of a normal human kidney sample showing part of a 

glomerulus acquired with a spinning disk confocal microscope. Blue, vimentin; green, 

actinin-4; magenta, collagen IV; grey, DAPI. Orange dotted line indicates the line cut 

analyzed in C. (B) ExPath image of the sample of A, using the same microscope. Magenta 

dotted line indicates the line cut analyzed in C. (C) Profiles of actinin-4 intensity along the 

orange and magenta dotted lines of (A) and (B). (D) Electron micrograph of a clinical 

biopsy sample from a normal human kidney. Inset, zoom into the region outlined by the 

black box; dotted line within the inset indicates the line cut analyzed in the graph below the 

image. Below, electron micrograph feature intensity along the line cut of the inset, 

normalized to maximum intensity (“Norm. I.”). (E) ExPath image of a clinical kidney 

biopsy sample from the same patient analyzed in (D), stained as in (A). Inset, zoom into the 

region outlined by the white box; dotted line within the inset indicates the line cut analyzed 

below. Below, actinin-4 intensity along the line cut of the inset, normalized as in D. (F) As 

in D, but for a patient with minimal change disease (MCD). (G) As in E, but for the same 

patient as in F. Scale bars (yellow indicates a post-expansion image): (A) 5 μm; (B) 5 μm 

(physical size post-expansion, 23.5 μm; expansion factor: 4.7); (D) 1 μm; inset, 200 nm; (E) 

1 μm (physical size post-expansion, 4.3 μm; expansion factor: 4.3); inset, 200 nm; (F) 1 μm, 

inset, 200 nm; (G) 1 μm (physical size post-expansion, 4.2 μm; expansion factor: 4.2); inset, 

200 nm.
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Figure 5. ExPath improvement of computational diagnosis of early breast lesions

(A) Automated nucleus segmentation framework, showing steps of the image pre-processing 

and nuclei segmentation pipeline. From left to right: noise removal using rolling ball 

correction, enhancing contrast by histogram equalization, nucleus segmentation by 

minimum error thresholding, seed detection by multi-scale Laplacian of Gaussian (LoG) 

filter, nuclei splitting by marker-controlled watershed. (B) Computational detection and 

segmentation of nuclei is significantly more accurate in expanded samples vs. pre-expanded 

samples: example of atypical ductal hyperplasia (ADH). For the “expert annotation” and 
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“automated segmentation” columns: green filled nuclei are nuclei segmented by the expert 

or the automated segmentation algorithm, respectively (red circles indicate nucleus outlines, 

which are not visible in the ExPath row because the resolution is too high and thus the 

outline is barely visible). In the “automated vs expert” column: green filled nuclei, true 

positives; red filled nuclei, false negatives; blue filled nuclei, false positives (note that when 

the automated segmentation yielded larger outlines than the expert, this is expressed as a 

blue “halo” around the green). (C) Classification models were built using L1-regularized 

logistic regression (the GLMNET classifier). Classification accuracy was measured as the 

area under the receiver operator curve (AUC) achieved by the classification model in cross-

validation. We applied this image classification framework on both pre-expanded H&E and 

post-expanded DAPI images for computational differentiation of normal, benign and pre-

invasive malignant breast diseases. Both data sets consisted of 105 images, containing 36 

normal breast tissue images, 31 benign breast tissue images (15 UDH and 16 ADH) and 38 

non-invasive breast cancer tissue images (DCIS). Average expansion factor: 4.8 (SD: 0.3). * 

P<0.05, bootstrapped paired t-test. P value for each binary comparison: Normal vs. UDH 

(0.17); Normal vs. ADH (0.34); Normal vs. DCIS (0.24); UDH vs. ADH (0.02); UDH vs. 

DCIS (0.01); ADH vs. DCIS (0.24).
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