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ABSTRACT A memristor is a two-terminal electronic device whose conductance can be precisely modulated by charge or flux through

it. Here we experimentally demonstrate a nanoscale silicon-based memristor device and show that a hybrid system composed of

complementary metal-oxide semiconductor neurons and memristor synapses can support important synaptic functions such as

spike timing dependent plasticity. Using memristors as synapses in neuromorphic circuits can potentially offer both high connectivity

and high density required for efficient computing.
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T
he sequential processing of fetch, decode, and execu-

tion of instructions through the classical von Neu-

mann bottleneck of conventional digital computers

has resulted in less efficient machines as their eco-systems

have grown to be increasingly complex. Though the current

digital computers can now possess the computing speed and

complexity to emulate the brain functionality of animals like

a spider, mouse, and cat,1-4 the associated energy dissipa-

tion in the system grows exponentially along the hierarchy

of animal intelligence. For example, to perform certain

cortical simulations at the cat scale even at 83 times slower

firing rate, the IBM team in ref 2 has to employ Blue Gene/P

(BG/P), a super computer equipped with 147 456 CPUs and

144 TB of main memory. On the other hand, brains of

biological creatures are configured dramatically differently

from the von Neumann digital architecture. The key to the

high efficiency of biological systems is the large connectivity

(∼104 in a mammalian cortex) between neurons that offers

highly parallel processing power.5 The synaptic weight

between two neurons can be precisely adjusted by the ionic

flow through them and it is widely believed that the adapta-

tion of synaptic weights enables the biological systems to

learn and function.1,4,6-9

A synapse is essentially a two-terminal device and bears

striking resemblance to an electrical device termed mem-

ristor10,11 (memory + resistor). Similar to a biological syn-

apse, the conductance of a memristor can be incrementally

modified by controlling charge or flux through it. In this

study we demonstrate the experimental implementation of

synaptic functions in nanoscale silicon-based memristors.

In particular we verify that STDP, an important synaptic

modification rule for competitive Hebbian learning,6-8 can

be achieved in a hybrid synapse/neuron circuit composed

of complementary metal-oxide semiconductor (CMOS)

neurons and nanoscale memristor synapses (Figure 1a).

These demonstrations provide the direct experimental sup-

port for the recently proposed memristor-based neuromor-

phic systems.12,13 For example, in a crossbar hardware

structure schematically shown in Figure 1b, a two-terminal

memristor synapse is formed at each crosspoint and con-

nects CMOS-based pre- and postsynaptic neurons. The

hybrid memristor/CMOS circuits discussed here can be

fabricated using similar techniques developed recently for

memristor-based memory and logic.14 The crossbar synapse

network can potentially offer connectivity and function

density comparable to those of biological systems and

operate in a way analogous to biological systems rather than

digital computers.12,15 In this case, every CMOS neuron in

the “pre-neuron” layer of the crossbar configuration is

directly connected to every neuron in “post-neuron” layer

with unique synaptic weights. A high synaptic density of

1010/cm2 can also be potentially obtained for crossbar

networks with 100 nm pitch, a feature size readily achiev-

able with advanced lithography approaches.16,17

The memristor in our setup consists of a layered device

structure including a cosputtered Ag and Si active layer with

a properly designed Ag/Si mixture ratio gradient that leads

to the formation of a Ag-rich (high conductivity) region and

a Ag-poor (low conductivity) region (Figure 1a, inset) (Sup-

porting Information). Typically, resistance switching devices

regardless of switching material being used require an

electroforming process during which metal ions or particles

are injected into and cause semipermanent structural modi-

fications inside the otherwise insulating storage medium.

The forming process creates localized conducting paths

(filaments) whose motion results in discrete, abrupt resis-

tance switching characteristics.18-23 By cosputtering Ag and

Si, nanoscale Ag particles are incorporated into the Si

medium during device fabrication and a uniform conduction
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front between the Ag-rich and Ag-poor regions can be

formed. As a result, the forming process can be eliminated.

In addition, under applied bias the continuous motion of

the conduction front in the cosputtered memristor device

replaces discrete, localized conducting filament forma-

tion22 and results in reliable “analog” switching behaviors

(Figure 1c).

Figure 1c shows the measured device current i(t) (blue

lines) as a function of the applied voltage across the mem-

ristor v(t) for five consecutive positive voltage sweeps and

five consecutive negative voltage sweeps. Distinct from

devices that show abrupt conductance jumps,18-23 here the

conductance continuously increases (decreases) during the

positive (negative) voltage sweeps, and the I-V slope of each

subsequent sweep picks up where the last sweep left off. In

fact, the device I-V can be well fitted by a simple memristor

circuit model11 (orange lines, Figure 1c)

Here w(t) stands for the normalized position of the

conduction front between the Ag-rich and Ag-poor regions

within the active device layer and has the value between 0

and 1. Upon the application of a positive voltage bias, Ag

ions move from the Ag-rich region to the Ag-poor region and

increases w, and vice versa. As w(t) approaches to 0(1), the

device reaches the lowest (highest) conductance state with

resistance of ROFF (RON). In this model we further assumed

the position w(t) is a linear function of the flux-linkage �(t)

) ∫v(t)dt through the device. Equation 1 can then be

rewritten as

This is the equation for a flux-controlled memristor10 and

G(�(t)) is the so-called memductance. In addition, for the

devices studied here bias voltages with amplitude < VT ) 2.2

V are not sufficient to drive the Ag ions inside the a-Si matrix

and have negligible effect on the memristor resistance. The

threshold effect and the value of the threshold voltage VT

have been consistently obtained in all the devices tested in

this study.

The calculated current values during the voltage sweeps

based on the memristor model discussed above were shown

as orange lines in Figure 1c together with the measured

current (blue lines). The inset to Figure 1c shows the values

FIGURE 1. Nanoscale memristor characteristics and its application as a synapse. (a) Schematic illustration of the concept of using memristors
as synapses between neurons. The insets show the schematics of the two-terminal device geometry and the layered structure of the memristor.
(b) Schematic of a neuromorphic with CMOS neurons and memristor synapses in a crossbar configuration. (c) Measured (blue lines) and
calculated (orange lines) I-V characteristics of the memristor. Inset: calculated (orange lines) and extracted (blue lines) values of the normalized
Ag front position w during positive DC sweeps. (d) The current and voltage data versus time for the device in (c) highlighting the change in
current in sequential voltage sweeps.

i(t) )
1

RONw(t) + ROFF(1 - w(t))
v(t) (1)

i(t) ) G(�(t))v(t) (2)
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of w(t) (orange lines) used to calculate the current during the

five consecutive positive voltage sweeps by assuming w(t)

to be a linear function of the flux-linkage �. In addition, the

values of w(t) can also be directly extracted from the data

using eq 1 and are shown in the inset to Figure 1c as the

blue lines. The relative good agreements between the cal-

culated and the measured values in i(t) and w(t) verify that

the device characteristics above the threshold voltage can

indeed be explained by the memristor-model using eqs 1

and 2, where the front position is roughly a linear function

of the flux-linkage �(t) ) ∫v(t)dt. However, strictly speaking

the device is not a true memristor due to the threshold effect

but falls in the more broadly defined memristive device

category.24 On the other hand, the threshold effect makes

it possible to perform nondisturbing read of the device state

by using read pulses with Vread < VT and can in fact be

beneficial in practical applications.

The flux-controlled memristor model suggests that the

device conductance (memductance) can be incrementally

adjusted by tuning the duration and sequence of the applied

programming voltage. Figure 2a shows the results when the

device was programmed by a series of 100 identical positive

(3.2 V, 300 µs) pulses followed by a series of 100 identical

negative voltage pulses (-2.8 V, 300 µs). The device con-

ductance (represented by the measured current at a small

read voltage of 1 V) was measured after each programming

pulse. As expected from the DC characteristics of the device,

the application of positive potentiating voltage pulses (P)

incrementally increases the memristor conductance, and the

application of negative depressing voltage pulses (D) incre-

mentally decreases the memristor conductance. We note

that unlike results from devices with abrupt switching

characteristics where the programming signals control the

final device state,22 here the flux-linkage �(t) during each

programming pulse controls the relative change of the

memristor conductance. This effect was further demon-

strated in Figure 2b. Here mixed positive (P) and negative

(D) voltage pulses with constant pulse height but different

pulse widths were applied to the device and the change in

memristor conductance ∆G were measured and recorded

after each P/D pulse. A clear correlation between ∆G and

the pulse width of the applied P/D signals was observed; the

application of a longer positive (negative) pulse resulted in

a larger increase (decrease) of memristor conductance, and

vice versa.

These results suggest the memristor devices are capable

to emulate the biological synapses with properly designed

CMOS neuron components to provide local programming

voltages with controlled pulse width and height. For ex-

ample, to demonstrate advanced synaptic functions such as

STDP, an important synaptic adaptation rule for competitive

Hebbian learning that demands the change of synaptic

weight to be a strong function of the timing of the pre/

postneuron spikes,6-8 we have implemented a CMOS neu-

ron circuit to convert the relative timing information of the

neuron spikes into pulse width information seen by the

memristor synapse (Supporting Information). Briefly, the

neuron circuit consists of two CMOS based integrate-and-

fire neurons25 connected by a nanoscale memristor with

active device area of 100 nm × 100 nm. The neuron circuit

involves a mixed analog-digital design and employs a time

division multiplexing (TDM) approach with globally synchro-

nized time frames to convert the timing information into a

pulse width.12 Specifically, the neuron circuit generates a

potentiating (depressing) pulse across the memristor syn-

apse when the presynaptic neuron spikes before (after) the

postsynaptic neuron, with the pulse width being an expo-

nentially decaying function of the relative neuron spike

timing ∆t ) tpre - tpost, where tpre (tpost) is the time when the

presynaptic neuron (postsynaptic neuron) spikes (Supporting

Information).

Figure 3a shows the measured change of the memristor

synaptic weight after each neuron spiking event obtained

in the hybrid CMOS-neuron/memristor-synapse circuit. When

FIGURE 2. Memristor response to programming pulses. (a) The
device conductance can be incrementally increased or decreased
by consecutive potentiating or depressing pulses. The conductance
was measured at 1 V after each pulse and the read current is plotted.
P, 3.2 V, 300 µs; D, -2.8 V, 300 µs. (b) (Top) Mixed potentiating and
depressing pulses with different pulse widths that are used to
program the memristor. (Bottom) Measured change of the memristor
conductance after the application of each pulse. The conductance
change was normalized to the maximum memristor conductance.
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the preneuron spikes before (after) the postneuron, the

memristor synaptic weight increases (decreases). In addi-

tion, the change in the synaptic weight versus the spike

timing difference ∆t can be well fitted with exponential

decay functions, verifying that STDP characteristics similar

to that of biological synaptic systems (e.g., Figure 3b) can

indeed be obtained in memristor synapses.7,8

Finally, in Figure 4 we plot P/D response of the device

after continuous applications of the potentiation and depres-

sion pulses. As shown in Figure 4b, up to 1.5 × 108 times of

P/D conductance modulation can be achieved before the

device shows significant degradation. Assuming the syn-

apses are updated at a rate of 1 Hz,27,28 this endurance

corresponds to ∼5 years of continuous synaptic operation.

These demonstrations together with the large connectivity

and density offered by the two-terminal memristor synapses

in the crossbar configuration (e.g., Figure 1b) make the

hybrid CMOS-neuron/memristor-synapse approach promis-

ing for hardware implementation of biology-inspired neu-

romorphic systems.
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