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We review some of the recent research activities on plasmonic devices based on metal-dielectric-metal (MDM) stub resonators
for manipulating light at the nanoscale. We first introduce slow-light subwavelength plasmonic waveguides based on plasmonic
analogues of periodically loaded transmission lines and electromagnetically induced transparency. In both cases, the structures
consist of a MDM waveguide side-coupled to periodic arrays of MDM stub resonators. We then introduce absorption switches
consisting of a MDM plasmonic waveguide side-coupled to a MDM stub resonator filled with an active material.

1. Introduction

Light-guiding structures which allow subwavelength con-
finement of the optical mode are important for achieving
compact integrated photonic devices. The minimum con-
finement of a guided optical mode in dielectric waveguides is
set by the diffraction limit and is of the order of λ0/n, where
λ0 is the wavelength in free space and n is the refractive index.

As opposed to dielectric waveguides, plasmonic waveg-
uides, based on surface plasmons propagating at metal-
dielectric interfaces, have shown the potential to guide and
manipulate light at deep subwavelength scales [1, 2]. Several
different nanoscale plasmonic waveguiding structures have
been recently proposed, such as metallic nanowires, metallic
nanoparticle arrays, V-shaped grooves, and metal-dielectric-
metal (MDM) waveguides [3–10]. Among these, MDM
plasmonic waveguides are of particular interest because
they support modes with deep subwavelength scale and
high group velocity over a very wide range of frequencies
extending from DC to visible [11]. Thus, MDM waveguides
could be potentially important in providing an interface
between conventional optics and subwavelength electronic
and optoelectronic devices. Because of the predicted attrac-
tive properties of MDM waveguides, their modal structure
has been studied in great detail [6, 11–14], and people have

also started to explore such structures experimentally [15–
17]. Recent research work has therefore focused on the devel-
opment of functional plasmonic devices, including active
devices, for nanoscale plasmonic integrated circuits. Three-
dimensional MDM plasmonic waveguides were recently
experimentally realized and characterized by several research
groups [18–21]. In these experiments, the MDM waveguides
are typically defined using electron beam lithography (EBL)
and patterned using a focused ion beam (FIB) or other sim-
ilar processes. In addition, the integration of nanoplasmonic
waveguides with active materials, such as photochromic
molecules or CdSe quantum dots, has also been recently
achieved experimentally by several research groups [22, 23].

Waveguide-cavity systems are particularly useful for the
development of several integrated photonic devices, such
as tunable filters, optical switches, channel drop filters,
reflectors, and impedance matching elements. In MDM
plasmonic waveguide devices, a waveguide-cavity system can
be created by side-coupling a stub resonator, consisting of a
MDM waveguide of finite length, to a MDM waveguide [9].
In this paper, we provide a review of some of our own recent
research activities on plasmonic devices based on metal-
dielectric-metal stub resonators for manipulating light at the
nanoscale [24–26]. The remainder of the paper is organized
as follows. In Section 2, we first review the methods used
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for the simulation and analysis of such devices. We then
introduce slow-light waveguides for enhanced light-matter
interaction (Section 3) and absorption switches (Section 4)
based on metal-dielectric-metal stub resonators. Finally, our
conclusions are summarized in Section 5.

2. Simulation and Analysis Methods

2.1. Full-Wave Finite-Difference Methods. The properties of
MDM plasmonic waveguide devices can be investigated
using full-wave electromagnetic simulation methods such
as finite-difference methods in the time and frequency
domains. In particular, the finite-difference frequency-
domain (FDFD) method [27, 28] allows to directly use
experimental data for the frequency-dependent dielectric
constant of metals such as silver [29], including both the
real and imaginary parts, with no approximation. Perfectly
matched layer (PML) absorbing boundary conditions are
used at all boundaries of the simulation domain [30].

Due to the rapid field variation at the metal-dielectric
interfaces, a very fine grid resolution of ∼1 nm is required
at the metal-dielectric interfaces to adequately resolve the
local fields. On the other hand, a grid resolution of ∼ λ/20
is sufficient in other regions of the simulation domain. For
example, the required grid size in air at λ0 = 1.55µm is
∼77.5 nm, which is almost two orders of magnitude larger
than the required grid size at the metal-dielectric interfaces.
A nonuniform orthogonal grid [31] is therefore commonly
used to avoid an unnecessary computational cost. We found
that by using such a grid our results are accurate to ∼0.05%.

The properties of MDM plasmonic waveguide devices
can also be investigated using the finite-element frequency-
domain method (FEM). The FEM is a more powerful
technique than FDFD, especially for problems with complex
geometries. However, FDFD is conceptually simpler and
easier to program. The main advantage of FEM is that
complex geometric structures can be discretized using a
variety of elements of different shapes, while in FDFD
a rectangular grid is typically used leading to staircase
approximations of particle shapes [30, 32]. In addition,
in FEM fields within elements are approximated by shape
functions, typically polynomials, while in FDFD a simpler
piecewise constant approximation is used [32]. In short,
FEM is more complicated than FDFD but achieves better
accuracy for a given computational cost [32].

2.2. Transmission Line Theory. The properties of systems,
which consist of circuits of deep subwavelength MDM
plasmonic waveguides, can be described using the concept
of characteristic impedance and transmission line theory
[7, 33, 34].

The characteristic impedance of the fundamental TEM
mode in a perfect electric conductor (PEC) parallel-plate
waveguide with a dielectric layer thickness d is uniquely
defined as the ratio of voltage V to surface current density
I and is equal to [34]

ZTEM ≡
V

I
= Exw

Hy
= βTEM

ωε0
w =

√

µ0

ε0
w, (1)

where Ex, Hy are the transverse components of the electric
and magnetic field, respectively, and we assumed a unit-
length waveguide in the y direction. Non-TEM modes, such
as the fundamental MDM mode, voltage, and current, are
not uniquely defined. However, metals like silver satisfy the
condition |εmetal| ≫ εdiel at the optical communication
wavelength of 1.55 µm [29]. Thus, |Exmetal| ≪ |Ex diel|, so
that the integral of the electric field in the transverse direction
can be approximated by Ex dielw, and we may therefore define
the characteristic impedance of the fundamental MDM
mode as

ZMDM(w) ≡ Ex dielw

Hy diel
= γMDM(w)

jωε
w, (2)

where γMDM = αMDM + iβMDM is the complex wave vector
of the fundamental propagating TM mode in a MDM
waveguide of width w and ε is the dielectric permittivity of
the dielectric region of the MDM waveguide.

2.3. Scattering Matrix Theory. The properties of systems
which consist of circuits of deep subwavelength MDM plas-
monic waveguides, in which only the fundamental TM mode
is propagating, can also be described using scattering matrix
theory [35]. As mentioned above, in the transmission line
theory method the transmission and reflection coefficients at
MDM waveguide junctions are calculated using the concept
of the characteristic impedance (2). Unlike the transmission
line theory method, in the scattering matrix theory method,
the transmission and reflection coefficients at MDM waveg-
uide junctions are directly numerically extracted using a full-
wave simulation method such as FDFD [35]. Thus, the use
of the scattering matrix theory method results in improved
accuracy and increased computational cost associated with
the additional full-wave simulations required to extract the
transmission and reflection coefficients at MDM waveguide
junctions.

2.4. Numerical Example. We now consider a specific numer-
ical example in order to compare the different methods
for the analysis and simulation of nanoscale plasmonic
devices based on metal-dielectric-metal stub resonators.
We consider a plasmonic MDM waveguide side-coupled
to two MDM stub resonators (Figure 1(a)). The resonant
frequencies of the cavities can be tuned by adjusting the
cavity lengths L1 and L2. This system is a plasmonic analogue
of electromagnetically induced transparency (EIT) [36, 37].

The MDM waveguide and MDM stub resonators have
deep subwavelength widths (w ≪ λ), so that only the
fundamental TM mode is propagating. Thus, we can use
transmission line theory or scattering matrix theory to
account for the behavior of the system. First, the properties of
such a side-coupled-cavity structure can be described using
transmission line theory and the concept of characteristic
impedance. Based on transmission line theory, the structure
of Figure 1(a) is equivalent to two short-circuited trans-
mission line resonators of lengths L1 and L2, propagation
constant γMDM(w), and characteristic impedance ZMDM(w)
(2) which are connected in series to a transmission line with
the same characteristic impedance ZMDM(w) [33]. Based on
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Figure 1: (a) Schematic of a MDM plasmonic waveguide side-coupled to two MDM stub resonators. (b) Schematic defining the reflection
coefficient r1 and transmission coefficients t1, t2, t3 when the fundamental TM mode of the MDM waveguide is incident at a waveguide
crossing. Note that t2 = t3 due to symmetry. (c) Schematic defining the reflection coefficient r2 of the fundamental TM mode of the MDM
waveguide at the boundary of a short-circuited MDM waveguide. (d) Transmission spectra for the structure of (a) calculated using FDFD
(circles), transmission line theory (solid blue line), and scattering matrix theory (solid red line) for a silver-air structure with w = 50 nm.
Also shown are the reflection (solid green line) and absorption (solid cyan line) spectra calculated using FDFD. Results are shown for
L1 = 360 nm, L2 = 160 nm. ((e)–(g)) Magnetic field profiles for the structure of (a) for L1 = 360 nm, L2 = 160 nm, w = 50 nm at f = 143,
299, 194 THz, when the fundamental TM mode of the MDM waveguide is incident from the left.

this model, the transmission T of the structure of Figure 1(a)
can be calculated as [33]

T =
∣

∣

∣

∣

1 +
1

2

(

tanh
(

γMDML1

)

+ tanh
(

γMDML2

))

∣

∣

∣

∣

−2

. (3)

Second, the properties of such a side-coupled-cavity struc-
ture can also be described using scattering matrix theory. The
complex magnetic field reflection coefficient r1 and transmis-
sion coefficients t1, t2 = t3 for the fundamental propagating

TM mode at a MDM waveguide crossing (Figure 1(b)),
as well as the reflection coefficient r2 at the boundary of a
short-circuited MDM waveguide (Figure 1(c)), are numer-
ically extracted using FDFD [35]. The power transmission
spectra T(ω) of the two-cavity system (Figure 1(a)) can then
be calculated using scattering matrix theory as

T = |t1 − C|2. (4)
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Here, C = t2
2(2t1 − 2r1 + s1 + s2)/(t2

1 − (r1 − s1)(r1 − s2)),
si = r−1

2 exp(2γMDMLi), i = 1, 2.

In Figure 1(d) we show the transmission spectra for the
structure of Figure 1(a) calculated using FDFD, transmission
line theory (3) and scattering matrix theory (4). We observe
that there is good agreement between the transmission
line theory results and the exact results obtained using
FDFD. We note, however, that while the transmission at the
transparency peak is correctly predicted by transmission line
theory, the resonance frequency obtained using transmission
line theory is blue-shifted with respect to the exact result
obtained using FDFD (Figure 1(d)). The difference between
the transmission line theory results and the exact results
obtained using FDFD is due to the error introduced by
the transmission line model in the phase of the reflection
coefficient [38, 39] at the interfaces of the two-side-coupled
cavities. Such limitations of the transmission line model for
circuits of MDM plasmonic waveguides are also described
in detail in [35]. We also observe that there is excellent
agreement between the scattering matrix theory results and
the exact results obtained using FDFD. This is due to the
fact that, as mentioned above, in the scattering matrix
theory method, the transmission and reflection coefficients
are directly extracted using FDFD. The improved accuracy
of scattering matrix theory with respect to transmission
line theory comes at the cost of the additional FDFD
simulations required to numerically extract the transmission
and reflection coefficients.

The transmission spectra T(ω) feature two dips
(Figure 1(d)). We found that the frequencies ω1, ω2

where these dips occur are approximately equal to the
first resonant frequencies of the two cavities; that is,
φr1 (ωi) + φr2 (ωi) − 2βMDM(ωi)Li ≈ −2π, i = 1, 2, where
φri = arg(ri), i = 1, 2. When either one of the cavities is
resonant, the field intensity in that cavity is high, while the
field intensity in the other cavity is almost zero, since it is
far from resonance (Figures 1(e) and 1(f)). In addition,
the transmission is almost zero, since the incoming wave
interferes destructively with the decaying amplitude into
the forward direction of the resonant cavity field. The
transmission spectra T(ω) also feature a transparency peak
centered at frequency ω0. We found that ω0 is approximately
equal to the first resonant frequency of the composite cavity
of length L1 + L2 + w formed by the two cavities; that
is, 2φr2 (ω0) − 2βMDM(ω0)(L1 + L2 + w) ≈ −2π. Thus, the
transmission peak frequency ω0 is tunable through the cavity
lengths L1, L2. When ω = ω0, the field intensity is high in the
entire composite cavity (Figure 1(g)), and the transmission
spectra exhibit a peak due to resonant tunneling of the
incoming wave through the composite cavity. In Figure 1(d)
we also show the reflection and absorption spectra for the
structure of Figure 1(a). We note that in all cases considered
in this paper the length of the MDM stub resonators is
much smaller than the propagation length of the supported
optical mode in the stubs. Thus, the absorption in the
MDM stub resonators is small. This applied to both the
two-stub structures considered in this Section, as well as the
single-stub structures considered in Section 4 below.

3. Slow-Light Waveguides

Slowing down light in plasmonic waveguides leads to
enhanced light-matter interaction and could therefore
enhance the performance of nanoscale plasmonic devices
such as switches and sensors [40–45]. However, in con-
ventional MDM plasmonic waveguides, once the operating
wavelength and modal size are fixed, the group velocity of
light is not tunable.

3.1. Slow-Light Based on a Plasmonic Analog of Periodically
Loaded Transmission Lines. In this section, we first introduce
a plasmonic waveguide system, which supports a subwave-
length broadband slow-light-guided mode with a tunable
slow-down factor at a given wavelength. The structure is
a plasmonic analog of the periodically loaded transmission
lines used in microwave engineering [33]. Such slow-light
plasmonic waveguide systems could be potentially used in
nonlinear, switching, and sensing applications.

The structure consists of a MDM waveguide side-coupled
to a periodic array of MDM stub resonators (Figure 2(a)).
Both the MDM waveguide and MDM stub resonators have
deep subwavelength widths (w0,w ≪ λ). The periodicity
d is also subwavelength (d ≪ λ), so that the operating
wavelength is far from the Bragg wavelength of the waveguide
[46] (λ≫ λBragg). In addition, the distance between adjacent
side-coupled cavities d-w is chosen large enough so that
direct coupling between the cavities has a negligible effect on
the dispersion relation of the system. This sets a lower limit
on the periodicity dmin of the plasmonic waveguide structure.
For w = 50 nm we found that dmin ∼ 80 nm.

Using transmission line theory [33], the dispersion
relation between ω and the Bloch wave vector γ = α + iβ
of the entire system is found to be

cosh
(

γd
)

= cosh2
(

γ0
d

2

)

+ sinh2
(

γ0
d

2

)

+
Z1

Z0
sinh

(

γ0
d

2

)

cosh

(

γ0
d

2

)

tanh
(

γ1L
)

.

(5)

In Figure 2(b), we show the dispersion relation for the plas-
monic waveguiding structure of Figure 2(a) calculated using
FDFD, which, similar to surface plasmons propagating at a
single metal-dielectric interface [46], exhibits a resonance. In
the lossless metal case, the resonance frequency ωres is the
cut-off frequency of the fundamental mode, and for ω > ωres,
the system has a band gap, supporting a nonpropagating
mode with β = 0. In addition, we have γ0 = iβ0, γ1 = iβ1,
and β(ωres) = π/d at the band edge. Using these and (5),
we find that the resonance frequency ωres is a solution of the
following equation:

Z1 tan
[

β1(ωres)L
]

= 2Z0cot

[

β0(ωres)
d

2

]

. (6)

Thus, unlike in conventional MDM waveguides where ωres

is equal to the surface plasmon frequency of the metal-
dielectric interface (ωres = ωsp) and is fixed for a given metal
[46], in such a plasmonic waveguide system the resonance
frequency ωres is tunable through its geometric parameters.
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Figure 2: (a) Schematic of a plasmonic waveguide system consisting of a metal-dielectric-metal (MDM) waveguide side-coupled to a
periodic array of MDM stub resonators. (b) Dispersion relation of the plasmonic waveguide system of (a) calculated using FDFD (black
solid line). Results are shown for a silver-air structure with d = 100 nm, L = 220 nm, w0 = w = 50 nm. Also shown is the dispersion
relation for lossless metal (red dash-dotted line) and the resonance frequency ωres (black dashed line) (ωres

∼= 0.067∗ 2πc/d corresponding
to λres

∼= 1.5µm). (c) Reciprocal of the group velocity vg of light in the plasmonic waveguide system as a function of frequency. All parameters
are as in (b). (d) Magnetic field profile of the supported optical mode in the system at λ0 = 1.55µm. All other parameters are as in Figure 2(b).
(e) Reciprocal of vg versus propagation length Lp for the plasmonic waveguide system of Figure 2(a) at λ0 = 1.55µm calculated using FDFD.
Results are shown for d = 100 nm (upper blue curve) and d = 200 nm (lower red curve) as L is varied. All other parameters are as in (b).
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In the presence of loss, we have β(ωres) < π/d (Figure 2(b)).
In addition, for ω > ωres, the Bloch wave vector γ has an
imaginary component (β /= 0) and the dispersion relation
experiences back-bending [46] with negative group velocity
vg = ∂ω/∂β (Figure 2(b)).

In such a plasmonic waveguide system, light is slowed
down over a very wide frequency range extending from DC
to slightly below the resonance frequency (Figure 2(c)). To
find the slow-down factor c/vg in the low-frequency limit,
we take the limit of the dispersion relation (5) as ω → 0. We
note that in the limit of ω → 0, γ0 ≃ γ1 ≃ iω

√
εµ0. Using

these, we obtain the low-frequency (ω → 0) slow-down
factor c/vg =

√

1 + wL/w0d. We confirmed that this analytical
result is in excellent agreement with the result obtained
using FDFD. Thus, the group velocity of the system in the
low-frequency regime is entirely controlled by its geometry.
When ω approaches ωres (ω ≤ ωres), the dispersion relation
becomes flat, and the group velocity vg rapidly decreases
(Figure 2(c)).

We found that at frequencies far from the resonance
frequency, the modal energy of the periodic plasmonic
waveguide extends over both the waveguide and the stub
resonators. On the other hand, at frequencies near the
resonance frequency, the field intensity in the resonators
is enhanced, and the modal energy is therefore mostly
concentrated in the resonators (Figure 2(d)). In both cases
the modal size is subwavelength. In addition, due to the
absorption loss in the metal, there is a trade-off between
the slow-down factor c/vg and the propagation length Lp

of the supported optical mode in such slow-light plasmonic
waveguide systems (Figure 2(e)).

3.2. Slow-Light Based on a Plasmonic Analog of Electromag-
netically Induced Transparency. In this section, we introduce
an alternative MDM plasmonic waveguide system, based on
a plasmonic analogue of EIT, which also supports a guided
subwavelength slow-light mode. EIT is a coherent process
observed in three-level atomic media, which allows a narrow
transparency window in the spectrum of an otherwise
opaque medium, and can slow down light pulses by several
orders of magnitude [47]. Since the EIT spectrum results
from the interference of resonant pathways [47, 48], it has
been recognized that similar interference effects can also
occur in classical systems, such as optical waveguides coupled
to resonators and metamaterials [47, 49–51]. In addition,
it has been demonstrated that periodic optical waveguides,
resulting from cascading structures with EIT-like response,
can slow down and even stop light [48, 52, 53]. Our proposed
structure consists of a periodic array of two MDM stub
resonators side-coupled to a MDM waveguide.

We consider the plasmonic waveguide system
(Figure 3(a)) obtained by periodically cascading the side-
coupled-cavity structure of Figure 1(a). The periodicity d is
subwavelength (d ≪ λ), so that the operating wavelength
is far from the Bragg wavelength of the waveguide [25]
(λ ≫ λBragg). In addition, the distance between adjacent
side-coupled cavities d-w is chosen large enough so that
direct coupling between the cavities has a negligible effect
on the dispersion relation of the system [25]. Using

single-mode scattering matrix theory [35], the dispersion
relation between the frequency ω and the Bloch wave vector
γ = α + jβ of the entire system is found to be

cosh
(

γd
)

= A

2
exp
[

−γMDM(d −w)
]

+
B

2
exp
[

γMDM(d −w)
]

,

(7)

which is in excellent agreement with the exact results
obtained using FDFD (Figure 4(a)). Here A = (t1 − r1)((t1 +

r1 − 2C)/(t1 − C)) and B = (t1 − C)−1. In Figure 3(b), we
show the dispersion relation for the plasmonic waveguiding
structure of Figure 3(a). In the lossless metal case, the system
supports three photonic bands in the vicinity of the cavity
resonances. The middle band corresponds to a mode with
slow group velocity vg = ∂ω/∂β and zero group velocity

dispersion β2 = ∂2β/∂ω2 near the middle of this band
(Figure 3(b)). In the two band gaps between the three bands,
the system supports nonpropagating modes with β = 0.
Such a band diagram is similar to that of EIT systems [52].
When losses in the metal are included, the band structure is
unaffected in the frequency range of the three bands except
at the band edges (Figure 3(b)). In addition, in the frequency
range of the two band gaps, the Bloch wave vector γ has
an imaginary component (β /= 0) and the dispersion relation
experiences back-bending [25] with negative group velocity.
In Figure 3(c) we show the magnetic field profile for the
plasmonic waveguide system of Figure 3(a).

In addition, the width of the middle band and the slow-
down factor c/vg strongly depend on the frequency spacing
between the resonances δω = ω2 − ω1. By decreasing the
stub lengths difference δL, δω decreases, and this leads to
decreased bandwidth of the middle band (Figure 4(a)). In
Figures 4(b) and 4(c) we show the slow-down factor c/vg and
propagation length Lp for the plasmonic waveguide system
of Figure 3(a) as a function of frequency for two different
values of δL. In both cases we show the frequency range
corresponding to the middle band of the system. For a given
δL, the propagation length Lp of the supported optical mode
is maximized at a frequency very close to the frequency where
the group velocity dispersion is zero. As δL and therefore
δω decrease, the slow-down factor c/vg increases, while the
propagation length Lp decreases at the frequency of zero
group velocity dispersion. Thus, there is a trade-off between
the slow-down factor c/vg and the propagation length Lp

of the supported optical mode in such slow-light plasmonic
waveguide systems [25]. For δL = 200 nm (δL = 75 nm) we
have c/vg ≈ 6 (c/vg ≈ 30) at the frequency where the group
velocity dispersion is zero (Figures 4(b) and 4(c)). We found
that even larger slow-down factors can be obtained by further
decreasing δL at the cost of reduced propagation length. We
also note that the propagation length of the system for a given
slowdown factor can be increased by incorporating gain
media in the structure [46]. The slow-down factor exhibits
two maxima near the two edges of this band and a minimum
at a frequency near the middle of the band where the group
velocity dispersion is zero.



International Journal of Optics 7

Metal

Metal

w

w

w

L2

L1

Dielectric

d

(a)

320

280

240

200

160

120

80
0 0.1 0.2 0.3 0.4 0.5

F
re

q
u

en
cy

 (
T

H
z)

β(2π/d)

(b)

−max

f = 194 THz

max

0

200 nm

(c)

Figure 3: (a) Schematic of a plasmonic waveguide system consisting of a periodic array of two MDM stub resonators side-coupled to a MDM
waveguide. (b) Dispersion relation of the plasmonic waveguide system of Figure 2(a) calculated using FDFD (red dashed line). Results are
shown for a silver-air structure with d = 300 nm, L1 = 360 nm, L2 = 160 nm, and w = 50 nm. Also shown is the dispersion relation for
lossless metal (black solid line). (c) Magnetic field profile for the structure of (a) for L1 = 360 nm, L2 = 160 nm, w = 50 nm at f = 194 THz.

We also consider the effect of the periodicity d
(Figure 3(a)) on the dispersion relation of the system
(Figure 4(d)). For large d the distance d-w between adjacent
two-cavity structures in the periodic waveguide is large, so
that their coupling through the MDM waveguide is weak.
In this regime, the frequency range of the middle band of
the periodic waveguide system of Figure 3(a) approximately
corresponds to the frequency range of the transparency peak
of the two-cavity structure of Figure 1(a). As d decreases, the
coupling between adjacent two-cavity structures increases.
As a result, the slow-light middle band shifts to higher
frequencies, while its width slightly broadens (Figure 4(d)).
Thus, the periodicity provides us an additional degree of
freedom to tune the dispersion relation of the periodic
waveguide system.

4. Absorption Switches

One of the main challenges in plasmonics is achieving active
control of optical signals in nanoscale plasmonic devices
[2]. This challenge has motivated significant recent activities
in exploring actively controlled plasmonic devices, such as
switches and modulators [22, 23, 54–63]. Several different

approaches have been proposed in order to achieve active
control of light in nanoscale plasmonic devices [22, 23,
54–63]. These include thermally induced changes in the
refractive index [54–56], direct ultrafast optical excitation
of the metal [57], as well as the incorporation of nonlinear
[58, 59], electrooptic [60, 61], and gain [62] media in plas-
monic devices. An alternative approach for active control of
optical signals in plasmonic devices is tuning the absorption
coefficient. This has been recently achieved experimentally
through optical excitation of photochromic molecules [23]
or CdSe quantum dots (QDs) [22, 63].

Here, we consider a switch consisting of a silver-air-silver
MDM plasmonic waveguide side-coupled to a MDM stub
resonator filled with a material with tunable absorption coef-
ficient (n = 2.02 + iκ) (Figure 5(a)). The properties of such a
side-coupled-cavity switch can be described using transmis-
sion line theory and the concept of characteristic impedance.
Based on transmission line theory, the side-coupled-cavity
switch is equivalent to a short-circuited transmission line
resonator of length L, propagation constant γ2, and charac-
teristic impedance Z2, which is connected in series to a trans-
mission line with characteristic impedance Z1 [33]. Based
on this model, the transmission T of the side-coupled-cavity
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Figure 4: (a) Dispersion relation of the plasmonic waveguide system of Figure 3(a) calculated using FDFD (circles) and scattering matrix
theory (solid line). Results are shown for L1 = 360 nm, L2 = 160 nm (black line and circles) and L1 = 295 nm, L2 = 220 nm (red line
and circles). All other parameters are as in Figure 3(b). In both cases only a portion of the band structure is shown, corresponding to the
frequency range of the middle band. ((b)-(c)) Reciprocal of the group velocity vg and propagation length Lp for the plasmonic waveguide
system of Figure 3(a) as a function of frequency calculated using FDFD. Results are shown for L1 = 360 nm, L2 = 160 nm and L1 = 295 nm,
L2 = 220 nm. All other parameters are as in Figure 3(b). (d) Dispersion relation of the plasmonic waveguide system of Figure 3(a) calculated
using FDFD. Results are shown for d = 100 nm (black line), d = 200 nm (red line), and d = 300 nm (green line). All other parameters are as
in Figure 3(b). In all cases only a portion of the band structure is shown, corresponding to the frequency range of the middle band.

switch can be calculated using transmission line theory [33]
as

T =
∣

∣

∣

∣

1 +
Z2

2Z1
tanh

(

γ2L
)

∣

∣

∣

∣

−2

. (8)

As seen from (8), the system exhibits a resonance when
β2L = (N+1/2)π, where γ2 = α2+ jβ2, andN is an integer. We
assume that the cavity length L is equal to one of the resonant
lengths LN at frequency ω0 and consider the response of the
system for frequencies ω in the vicinity of ω0(|ω−ω0|/ω0 ≪
1). In such a case, we find that (8) can be approximated as

T(ω) ≈ (ω − ω0)2 + (ω0/2Q0 )2

(ω − ω0)2 + ((ω0/2Q0) + (ω0/2Qe))2 , (9)

where

Q0 =
ω0

2α2vg
, Qe =

Z1

Z2

ω0LN
vg

, (10)

and vg = ∂ω/∂β2 . Here Q0 is the quality factor associated
with the internal loss in the cavity due to the propagation
loss of the optical mode andQe is the quality factor associated
with the power escape through the waveguide. We note that
(9) can also be directly derived using coupled-mode theory
and first-principles calculation of the quality factors Q0 and
Qe [64, 65]. We observe that the on-resonance transmission
is a function of the ratio r of the quality factors; that is,

T(ω0) ≈
(

r

r + 1

)2

, r = Qe

Q0
= Z1

Z2
2α2LN . (11)

Since both α2 and Z2 depend on the imaginary part κ of the
refractive index in the cavity, the transmission of the system
can be controlled by modifying κ with an external beam.

In Figure 5(b) we show the transmission spectra of the
side-coupled-cavity structure for w = w0 = 50 nm in the
absence of optical pumping (κ = 0) calculated using FDFD.
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Figure 5: (a) Schematic of a switch consisting of a silver-air-silver MDM plasmonic waveguide side-coupled to a cavity filled with an
absorbing material with refractive index n = 2.02 + iκ. The imaginary part κ of the refractive index can be modified with an external control
beam. (b) Transmission spectra of the switch calculated using FDFD. Results are shown for w = 50 nm, L = 120 nm, κ = 0 (black curve),
w = 50 nm, L = 405 nm, κ = 0 (red curve), w = 200 nm, L = 175 nm, κ = 0 (green curve), and w = 50 nm, L = 120 nm, κ = 0.1 (blue
curve). In all cases w0 = 50 nm and λ0 = 1.55µm.

The length of the cavity L is chosen L = 120 nm, so that
the system exhibits a resonance at λ0 = 1.55µm. The trans-
mission spectra are characterized by a Lorentzian lineshape,
as predicted by (9). We observe that, as |ω − ω0| increases,
the transmission increases, and, in the limit |ω − ω0| → ∞,
the transmission approaches 1 (lim|ω−ω0|→∞T(ω) = 1). In
other words, if ω is far from the resonant frequency ω0, the
incident waveguide mode is almost completely transmitted.
At resonance (ω = ω0), we observe that the transmission is
less than 1% (T(ω0) ≈ −23 dB). When the material filling
the cavity is in its transparent state (κ = 0), the propagation
loss of the optical mode is only associated with the loss
in the metal. In that case, the propagation length is in the
order of tens of micrometers at near-infrared wavelengths
[6], so that α2L ≪ 1, and therefore r ≪ 1 and T ≪ 1
(11). In addition, since r ≪ 1, the total quality factor,

defined as Q ≡ (Q−1
0 + Q−1

e )
−1

, is Q ≈ Qe ≈ 4.4 (10), and
the system response is broad (Figure 5(b)). The low-quality
factor in this structure is associated with the low reflectivity
at the waveguide-cavity interface due to the small impedance
mismatch.

If the stub length L increases to the second resonant
length (L = 405 nm is chosen as before so that the system
exhibits a resonance at λ0 = 1.55µm), more energy is stored
in the resonant cavity, so that Qe increases (10), and therefore
the on-resonance transmission also increases (11). We indeed
observe that for L = 405 nm the transmission is higher
than that for L = 120 nm in the entire frequency range
(Figure 5(b)).

If the stub width w increases (w = 200 nm, and L =
175 nm is chosen as before so that the system exhibits a
resonance at λ0 = 1.55µm), the propagation length of the
optical mode in the cavity increases, leading to higher Q0

(10). In addition, the wider w leads to larger power escape
through the waveguide and therefore lowerQe. Hence the on-
resonance transmission decreases (11). We indeed observe

that for wider w the transmission is lower in the entire
frequency range (Figure 5(b)).

In the presence of optical pumping, the material in the
stub switches to its absorbing state. The internal loss in
the cavity increases, and therefore Q0 decreases, resulting in
higher on-resonance transmission (11). We indeed observe
that for κ = 0.1 the on resonance transmission is significantly
larger than that for κ = 0 (Figure 5(b)). Thus, the side-
coupled structure can operate as an absorption switch for
MDM plasmonic waveguides, in which the on/off states
correspond to the presence/absence of optical pumping.

In Figure 6(a) we show the modulation depth of the
switch T(κ = 1)/T(κ = 0) as a function of the cavity length
L at λ0 = 1.55µm calculated with FDFD. We observe that
the modulation depth exhibits peaks when L is equal to one
of the resonant lengths of the stub. This is due to the fact
that the transmission in the absence of pumping T(κ = 0)
is minimized on resonance, as described above. We also
observe that the maximum modulation depth is obtained
when the cavity length L is equal to the first resonant length.
As described above, if the stub length L increases to a higher-
order resonant length, the quality factor Qe increases and
leads to larger on-resonance transmission. This occurs both
in the presence and in the absence of pumping; that is, both
T(κ = 1) and T(κ = 0) increase. In the absence of pumping
(κ = 0), we have r ≪ 1 for the ratio r of the quality factors, as
mentioned above. Thus, based on (11), the on-resonance
transmission in the absence of pumping varies roughly
quadratically with r. On the other hand, in the presence of
pumping, r is much larger, and the on-resonance transmis-
sion is, therefore, less sensitive to r (11). In other words, if the
stub length L increases to a higher-order resonant length, the
on-resonance transmission in the absence of pumping T(κ =
0) increases more than the on-resonance transmission in the
presence of pumping T(κ = 1). Thus, the modulation depth
T(κ = 1)/T(κ = 0) decreases (Figure 6(a)). In Figure 6(a)
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Figure 6: (a) Modulation depth T(κ = 1)/T(κ = 0) of the
side-coupled-cavity switch (Figure 5(a)) as a function of the stub
length L calculated using FDFD (black curve), and transmission
line theory (red curve). Results are shown for w = 50 nm. All other
parameters are as in Figure 5(b). (b) Magnetic field profile of the
switch for L = 120 nm in the absence of pumping (κ = 0). All other
parameters are as in (a). (c) Magnetic field profile of the switch in
the presence of pumping (κ = 1). All other parameters are as in (b).

we also show the modulation depth of the switch calculated
by transmission line theory (8). We again observe that there
is very good agreement between the transmission line theory
results and the exact results obtained using FDFD.

In Figures 6(b) and 6(c) we show the magnetic field
profile of the side-coupled-cavity switch corresponding to
the off and on states, respectively. In the absence of pumping,
corresponding to the off state, the incident optical mode is
almost completely reflected. In contrast, in the presence of
pumping, corresponding to the on state, the transmission
increases by more than two orders of magnitude leading to
a large modulation depth.

In Figure 7 we show the maximum modulation depth
of the side-coupled-cavity switch as a function of the stub
width w. As mentioned above, for a given w the maximum
modulation depth is achieved when the stub length L is
equal to the first resonant length. We observe that for w <
300 nm the maximum modulation depth increases with w.
As described above, larger w leads to both higher Q0 and
lower Qe for the resonator. Thus, the quality factors’ ratio
r decreases, and the on-resonance transmission decreases
(11). This occurs both in the presence and in the absence
of pumping; that is, both T(κ = 1) and T(κ = 0)
decrease. However, as mentioned above, in the absence of
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Figure 7: Modulation depth T(κ = 1)/T(κ = 0) (black curve)
and insertion loss (red curve) of the side-coupled-cavity switch
(Figure 5(a)) as a function of the stub width w. For each stub width
w, the stub length L is equal to the first resonant length of the cavity.
All other parameters are as in Figure 5(b).

pumping (κ = 0) the on-resonance transmission is more
sensitive to r. Thus, as the stub width w increases, the on-
resonance transmission in the absence of pumping T(κ = 0)
decreases more than the on-resonance transmission in the
presence of pumping T(κ = 1). Thus, the modulation depth
T(κ = 1)/T(κ = 0) increases with w (Figure 7). We also
observe that the modulation depth is maximized for w ≈
300 nm. In other words, for a given pumping intensity there
is a maximum achievable modulation depth for the side-
coupled-cavity structure. We found that the decrease with w
of the modulation depth for w > 300 nm is associated with
the excitation of higher-order modes in the resonator, which
occurs when w becomes comparable to the wavelength. In
this regime, the transmission line model breaks down, and
the system properties are no longer accurately described by
(8)–(11).

In Figure 7 we also show the insertion loss of the side-
coupled-cavity switch, defined as −10log10(T(κ = 1)), as
a function of the stub width w. As described above, for
w < 300 nm the on-resonance transmission in the presence
of pumping T(κ = 1) decreases with w, and the insertion loss
therefore increases (Figure 7). For w > 300 nm, the insertion
loss decreases with w(Figure 7), due to the excitation of
higher-order modes in the resonator, as also described above.
We observe that for the side-coupled-cavity switch there is
a tradeoff between modulation depth and insertion loss, as
the geometrical parameters of the stub are varied. Similar
tradeoffs are observed in electroabsorption modulators [66].

In Figure 8, we show the modulation depth T(κ)/T(κ =
0) of the side-coupled-cavity switch as a function of the
imaginary part κ of the refractive index. As expected, the
modulation depth increases with κ. We also observe that even
for a relatively small variation in the absorption coefficient
of the material filling the cavity (κ = 0.01), we can achieve
a modulation depth of ∼60% (∼4 dB). We note that such
modulation depths have been demonstrated experimentally
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Figure 8: Modulation depth T(κ)/T(κ = 0) of the side-coupled-
cavity switch (Figure 5(a)) as a function of the imaginary part κ of
the refractive index. Results are shown forw = 300 nm, L = 210 nm.
All other parameters are as in Figure 5(b).

in other plasmonic absorption switches [23, 63]. For a
modulation depth of 99%, the required variation is κ = 0.15.

5. Conclusions

In summary, in this paper we provided a review of some
of our recent research activities on plasmonic devices based
on MDM stub resonators for manipulating light at the
nanoscale. We first briefly reviewed the methods used for the
simulation and analysis of such devices. We then introduced
slow-light subwavelength plasmonic waveguides based on
plasmonic analogues of periodically loaded transmission
lines and electromagnetically induced transparency. In both
cases, the structures consist of a MDM waveguide side-
coupled to periodic arrays of MDM stub resonators. We
finally introduced switches consisting of a MDM plasmonic
waveguide side-coupled to a MDM stub resonator filled
with an active material. As final remarks, we note that
plasmonic devices based on MDM stub resonators have also
been proposed as compact filters, reflectors, and impedance
matching elements for MDM plasmonic waveguides [10, 67–
74].
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