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Motivated by the recent development of fast and ultrasensitive thermometry in nanoscale systems, we
investigate quantum calorimetric detection of individual heat pulses in the sub-meV energy range. We propose
a hybrid superconducting injector-calorimeter setup, with the energy of injected pulses carried by tunneling
electrons. It is shown that the superconductor constitutes a versatile injector, with tunable tunnel rates and
energies. Treating all heat transfer events microscopically, we analyze the statistics of the calorimeter temperature
fluctuations and derive conditions for an accurate measurement of the heat pulse energies. Our results pave
the way for fundamental quantum thermodynamics experiments, including calorimetric detection of single
microwave photons.
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I. INTRODUCTION

In quantum calorimetry [1], energy of individual particles
is converted into measurable temperature changes. Mainly
driven by the possibility of achieving unprecedented, high
resolution and near-ideal efficiency x-ray detectors for space
applications [1–4], quantum calorimetry has over the past
few decades also been developed for a wide range of other
particles, including α and β particles, heavy ions, and weakly
interacting elementary particles [5–7]. Today, fast and sensi-
tive thermometry, together with small absorbers with weak
thermal couplings to the surrounding, allows for time-resolved
measurements [8–11] and detection of energies all the way
down to the far-infrared spectrum [12,13], i.e., energies of the
order of meV.

Recent demonstrations of fast and ultrasensitive hot-
electron thermometry [10,11] at cryogenic conditions consti-
tute a key step towards quantum calorimetry for even smaller
energies, around 100 μeV or less. Time-resolved detection of
such low-energy quanta, carried, e.g., by microwave photons
or tunneling electrons, is of fundamental interest for nanoscale
and quantum thermodynamics. This includes heat and work
generation in open systems [14–18], thermodynamic fluctu-
ation relations [19–24], thermal quantum conductance [25],
heat engines and information-to-work conversion [26,27], and
coherence and entanglement [16]. However, calorimetric sub-
meV measurements still constitute an outstanding challenge;
a proof-of-principle experiment requires an improvement of
the detection sensitivity by at least an order of magnitude
and a source of heat pulses with well defined energy and
controllable injection rate.

To meet this challenge we propose and theoretically an-
alyze a nanoscale hot-electron quantum calorimeter cou-
pled to a superconducting injector, see Fig. 1. As argued
in Refs. [10,11], such setups show potential for superior
detection sensitivity. All calorimeter heat transfer processes,

including the stochastic exchange of quanta with a weakly
coupled thermal phonon bath, are treated on an equal, micro-
scopic footing. This allows us to show that the rate and energy
of the heat pulses injected from the superconductor, carried

FIG. 1. (a) Two representative Monte Carlo simulated (see ap-
pendix) time traces of the absorber electron temperature Te(t ), with a
jump �Te caused by a single particle absorption event followed by a
decay, rate τ . The superimposed fluctuations are due to stochastic
heat exchange with a phonon bath at low (red) and intermediate
(black) temperatures Tb (see text). Noise free case, Eq. (1), is shown
with a dashed line. Inset: Effective circuit model of a calorimeter with
heat capacity C and heat conductance κ to the bath. (b) Schematic of
the nanoscale injector-calorimeter setup: A normal metallic island
(green) contains a thermalized electron gas, with fluctuating temper-
ature Te(t ), constituting the absorber. The island is well coupled to
an electrically grounded superconductor (upper, blue) acting as a heat
mirror. It is further tunnel coupled to another superconductor (lower,
blue), kept at a temperature Ts and biased at a voltage V , serving as a
particle source with tunable injection rate �i (Ts, V ). A thermometer,
coupled to the island, is also shown (yellow). The island phonons,
at temperature Tb, constitute a thermal bath weakly coupled to the
island electron gas.
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by tunneling electrons, are tunable by the applied injector
bias and temperature. Moreover, the varying pulse energy
and stochastic injection give rise to temperature back-action
effects modifying the calorimetric performance. Analyzing
the resulting calorimeter temperature fluctuations, focusing
on the experimentally accessible lowest order cumulants, we
derive conditions for a faithful operation, where back-action
effects are negligible. Our results will stimulate fundamental
experiments, aiming for thermal measurements of, e.g., single
microwave photons.

II. HOT-ELECTRON QUANTUM CALORIMETRY

A generic hot-electron quantum calorimeter is shown
schematically in Fig. 1(a): An absorber with heat capacity
C is coupled, with thermal conductance κ , to a heat bath of
phonons kept at temperature Tb. The absorber electron gas is
rapidly thermalizing, with a temperature Te(t ) well defined at
all times. Operating in the linear regime and neglecting tem-
perature background noise, absorbing a particle with energy
ε at t = 0 gives rise to a jump �Te = ε/C of the absorber
temperature, followed by an exponential-in-time decay as

Te(t ) = Tb + �Tee
−t/τ , t � 0 (1)

with τ = C/κ the absorber relaxation time. With a nonin-
vasive and fast temperature measurement, �Te and thus the
energy ε can be inferred. However, the background temper-
ature exhibits fluctuations δTe(t ), due to the fundamentally
stochastic bath-absorber energy transfer, governed by the
fluctuation-dissipation-like relation

〈δTe(t )δTe(t ′)〉 = kBT 2
b

C
e−|t−t ′ |/τ , (2)

see Fig. 1(a) for two different temperatures. Hence, the
background noise is typically negligible if the amplitude√〈δT 2

e (t )〉 = Tb(kB/C)1/2 is much smaller than the temper-
ature signal �Te; larger noise prevents a faithful absorber
temperature readout.

The condition �Te � √〈δT 2
e (t )〉 is met in state-of-

the-art experiments [10] with real-time detection of ε ∼
100 meV, where the signal-to-noise ratio �Te/

√〈δT 2
e 〉 =

ε/[Tb
√

kBC] ∼ 100 (for Tb ∼ 100 mK, C ∼ 105kB). To ac-
curately detect ε � 100 μeV requires significantly reduced C

and Tb (details to be discussed in the section on experimental
feasibility). While detection of heat pulses ε � 100 μeV is
within reach, albeit challenging, a proof-of-principle experi-
ment also requires an injector with controllable ε and tunable
injection rate �i, such that the heat pulses are well separated
in time, τ�i � 1.

Here we propose and analyze an integrated hybrid su-
perconductor injector calorimeter, see Fig. 1, fulfilling all
requirements. The injected heat pulses are carried by tunnel-
ing quasiparticles. Both the injector-absorber (i) and bath-
absorber (b) heat exchanges are described microscopically,
with quanta of energy transferred at rates �σ (Te), σ = i, b.
The statistics of the heat pulses is described by the cumulant
generating functions (CGFs) Fσ (ξσ , Te) for the long-time,

total energy transfer [28],

Fσ (ξσ , Te) = �σ (Te)

[∫
dεeiεξσ Pσ (ε, Te) − 1

]
, (3)

for uncorrelated, Poissonian particle transfers. Here ξi, ξb are
counting fields and the particle energies are distributed ac-
cording to Pσ (ε, Te), accounting for fluctuations of energy due
to quantum and/or thermal effects, generic for nanosystems.
We first investigate the CGFs at constant Te and then analyze
the back action of the temperature fluctuations on the energy
transfer rates, deriving estimates on the system parameters
required for a faithful calorimetric operation.

A. Hybrid nanoscale calorimeter

The injector-calorimeter system [see Fig. 1(b)] consists of
a superconducting injector, with gap � and fixed temperature
Ts, tunnel coupled, with a (normal state) conductance GT ,
to a nanoscale metallic island absorber of volume V . The
absorber electron gas has a temperature Te(t ) and heat capac-
ity C[Te(t )] = (π2k2

B/3)νFTe(t ), with νF the density of states
(DOS) at the Fermi level. The electron gas is further coupled
[29], with a thermal conductance κ[Te(t )] = 5�VT 4

e (t ) with
κ ≡ κ (Tb) and � the electron-phonon coupling constant, to
the bath phonons kept at a fixed temperature Tb. A second
superconductor, coupled to the absorber via an Ohmic contact,
works as a heat mirror and fixes the electric potential of
the island to the superconducting chemical potential. A bias
|V | < �/e is applied between the injector and the second
superconductor. The temperature Te(t ) is measured by a fast,
ultrasensitive thermometer, assumed to be effectively nonin-
vasive [30]. We neglect both standard and inverse proximity
effect.

Injector-absorber heat pulses are transferred by the tun-
neling of individual electron and hole quasiparticles. The
statistical properties of the charge transfer across a normal-
superconducting tunnel barrier are well known [31,32]. By
properly accounting for the energy carried by each tunneling
particle [33], the generating function Fi(ξi, Te) for the heat
transfer statistics is readily obtained as

Fi(ξi, Te) =
∫

dε[�i
+(eiξiε − 1) + �i

−(e−iξiε − 1)] (4)

with rates �i
±(ε) = (GT/e2)νS(ε − eV )f±(ε − eV, Ts )f∓(ε,

Te) where νS(ε) = |ε|/√ε2 − �2θ (|ε| − �), with θ (ε) the
step function, is the normalized superconducting DOS and
f+(ε, T ) = (eε/[kBT ] + 1)−1, f−(ε, T ) = 1 − f+(ε, T ). From
the first and second derivatives of Fi(ξi, Te) with respect to
ξi (taken at ξi → 0), the known expressions for the average
energy current and noise [34] are obtained. Equation (4) de-
scribes particles tunneling in (+) and out (−) of the absorber
with spectral rates �±(ε). The energy of each particle is
“counted” via the factors e±iξε. By comparing Eqs. (3) and (4)
[changing ε → −ε in the second term in (4)] we see that the
injector provides uncorrelated-in-time energy transfer events,
at a rate �i(Te) = ∫

dε[�i
+(ε) + �i

−(ε)], with an energy prob-
ability distribution Pi(ε, Te) = [�i

+(ε) + �i
−(−ε)]/�i.

Focusing on the regime kBTs, kBTe � �, the CGF
Fi(ξi, Te) describes four superimposed Poissonian processes
with injections at energies ±� ± eV , see appendix. In
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FIG. 2. (a) Probability distribution of energies transferred to
the absorber P (ε) from injector-absorber quasiparticle tunneling,
for four different sets of {kBTs/�, kBTe/�, eV/�} = {0.02, 0.02, 0}
(dashed), {0.05, 0.01, 0} (orange, solid), {0.01, 0.05, 0} (green,
solid), and {0.01, 0.05, 0.5} (blue, solid). Corresponding injector
regimes (I), (II), and (III) shown, see text. (b) Probability distribu-
tion for bath-absorber energy transfers due to phonon creation and
annihilation, for different temperature ratios Te/Tb.

particular, in three different limits V = 0, Ts � Te (I), V =
0, Ts � Te (II), and Ts(1 − e|V |/�) � Te � e|V |/kB (III),
particles are injected at corresponding energy εI = �, εII =
−�, and εIII = eV − �, see Fig. 2(a), giving CGFs

F
(α)
i (ξi, Te) = gcα

(
eiεαξi − 1

)
, α = I,II,III, (5)

where g = √
2πGT�/e2 and cI = h(Ts), cII = h(Te)

and cIII = h(Te) exp([e|V |/kBTe)/2, with h(T ) =√
kBT/� exp(−�/[kBT ]).
Equation (5) is the first key technical result of this paper.

It shows that, by tuning the externally controllable Ts and V ,
we can reach three different regimes where the tunnel-coupled
superconductor injects particles with a well-defined energy
εα , at a rate gcα . This demonstrates that the superconductor
constitutes a versatile heat pulse injector, required for the
proposed proof-of-principle quantum calorimeter experiment.
Moreover, for small temperature deviations Te − Tb � Tb,
relevant for the calorimeter operation, we have

�i = g[h(Ts) + h(Tb) cosh (eV/kBTb)]. (6)

Under the conditions C = 103kB, Tb = 30 mK, the relaxation
time τ is approximately 1–10 μs [10,35]. Experimentally g ∼
1010–1012 s−1 if the injector resistance G−1

T varies in the range
3–300 k� [10,35], making the individual injection event con-
dition �iτ � 1 accessible by tuning Ts, V . The injector is as-
sumed to have ideal BCS (Bardeen-Cooper-Schrieffer) DOS.
However, realistic tunnel junctions present nonzero leakage
with zero-bias conductance γGT attributable to subgap states,
absent in the BCS DOS. This leads to an additional tunneling
rate at subgap energies, �0

i = γgTe/�, which however for
standard γ ∼ 10−5 is negligible compared to �i.

Microscopically, the bath-absorber energy transfer is due
to creation and annihilation of individual bath phonons.
Assuming a weak coupling between the phonons and the
absorber electrons, the CGF Fb(ξ, Te) of the energy trans-
fer is written in the form of Eq. (4), with the spec-
tral rates given by the text book result [36] for phonons
in a metal, �b

±(ε) = −�V/[24k5
Bζ (5)]ε3n(±ε, Tb)n(∓ε, Te),

where n(ε, T ) = (eε/[kBT ] − 1)−1 and ζ (x) the Riemann zeta
function. Similar to the injector, from �b

±(ε) one gets
�b(Te) = ∫

dε[�b
+(ε) + �b

−(ε)] and Pb(ε, Te) = [�b
+(ε) +

�b
−(−ε)]/�b, with the energy probability distribution plot-

ted in Fig. 2(b) for a set of temperature ratios Te/Tb. It is
clear from the figure that, in contrast to the sharply peaked
and gapped injector-absorber energy distribution, the bath-
absorber distribution is broad and smooth, symmetric around
ε = 0 for Te = Tb.

The cumulants S
(n)
b = ∂n

ξb
Fb(ξb, Te)|ξb=0 are given by

S
(n)
b = �Vkn−1

B
ζ (n±)(n + 3)!

24ζ (5)

(
T n+4

e ± T n+4
b

)
, (7)

where n± = n + (7 ± 1)/2 and +/− is for n = 1, 2...

even/odd. The result for odd n is exact and for even n an accu-
rate approximation, deviating <2% from the exact result for
any n, Te/Tb [37,38], see appendix. Equation (7) is our second
key technical result, which gives a complete description of the
statistics of the electron-phonon heat transfer. Besides being a
fundamentally interesting result on its own, it is a prerequisite
for the analysis of the temperature fluctuation statistics below.
We note the well-known result S

(1)
b = �V (T 5

e − T 5
b ) [29,38].

III. TEMPERATURE FLUCTUATION STATISTICS

While the average temperature in hybrid nanoscale sys-
tems has been widely investigated [39], there is to date
no experimental investigation of the temperature noise. To
obtain a complete picture of the fluctuations, we investigate
the full temperature statistics [40–43], however, focusing on
the noise.

Both rates �σ (Te) and probabilities Pσ (ε, Te) generally
depend on Te(t ). For a large rate �i, the time average T e might
deviate notably from Tb. Moreover, as a result of the stochastic
energy transfers, Te(t ) develops slow fluctuations in time, on
the scale of τ . Both these effects act back on the transfer
statistics and might alter the calorimetric operation. Fully ac-
counting for this back action, we analyze the distribution P (θ )
of the low-frequency, time integrated absorber temperature
fluctuations θ = ∫

[Te(t ) − T e]dt . P (θ ) and the cumulants
are obtained within a stochastic path integral approach [44],
following [28]. This allows us to derive conditions for optimal
calorimeter performance.

The distribution is plotted in Fig. 3(a) for the regimes
(I) and (II), with injection at energies ±�, at τ�i � 1. As
a consequence of the heat pulses being well separated in
time, the deviations from the average Tbt0 are small (t0 is the
measurement time). However, the two distributions are clearly
non-Gaussian, shifted and skewed in opposite temperature
directions. Both the average electron temperature T e and the
cumulants S

(n)
Te

can be expressed in terms of 〈〈En(Te)〉〉 =
(−i)n∂n

ξ F (ξ, Te)|ξ=0, the cumulants of the absorber energy
currents. Here F (ξ, Te) = Fi(ξ, Te) + Fb(ξ, Te). The average
temperature T e is found from the energy conservation condi-
tion 〈E (T e)〉 = 0. The second and third cumulants are given
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FIG. 3. (a) Temperature probability distribution P (θ ) for Ts =
10Tb (red, solid) and Ts = 0.1Tb (yellow, solid), corresponding to
injector cases (I) and (II), respectively. Dashed lines show the re-
spective best Gaussian fits. In both plots V = 0, Tb = 0.01�/kB,
C = 20�/Tb, and τ�i = 0.1. (b)–(g) The first three cumulants as
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[(e)–(g)]. In all panels Tb = 0.01�/kB, C = 20�/Tb, and τ�i = 0.1
at Ts = 5Tb and eV = 0.4�, respectively. The total cumulants are
shown with thick, solid lines. In (b) and (e), τ�i is also shown
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cumulants are shown. In (d) and (g) the back-action component (dash
dotted) is shown.

by (see appendix)

S
(2)
Te

= 1

κ2
〈〈E2(Te)〉〉,

S
(3)
Te

= 1

κ3

[
〈〈E3(Te)〉〉 + 3〈〈E2(Te)〉〉 d

dTe

〈〈E2(Te)〉〉
κ (Te)

]
. (8)

In Eq. (8), we have κ (Te) = i∂Te∂ξF (ξ, Te)|ξ=0, and all quan-
tities are evaluated at T e. We note that the back action, besides
modifying T e, is manifested as additional terms for the third
[last term in Eq. (8)] and higher-order cumulants. These terms
describe the effect of fluctuations of lower cumulants on
higher ones [44], i.e., “noise of noise.” In Figs. 3(b)–3(g),
T e, S

(2)
Te

, and S
(3)
Te

are plotted as functions of thermal (V = 0)
and voltage (Ts = Tb) bias, respectively, for experimentally
relevant parameters (see caption).

A. Thermal bias

We focus on the experimentally relevant regime β �
ln(r ) � 1, with β = �/(kBTb) and r = g�/[Tbκ]. Upon in-
creasing Ts, the average temperature T e = Tb[1 + 5rh(Ts)]1/5

shows [Fig. 3(b)] a crossover at Ts ∼ T ∗
s ≡ �/[kB ln(r )] from

constant (dominated by bath coupling) to exponentially in-
creasing ∼e−�/[5kBTs] (dominated by injector coupling).

The temperature fluctuations S
(2)
Te

, normalized to the equi-

librium phonon noise S
(2)
0 = 2kBT 2

b /κ , can be written as a
sum of the bath and injector noise,

S
(2)
Te

/S
(2)
0 = 1 + q6

2q8
+ β(q5 − 1)

10q8
, (9)

where q ≡ T e/Tb. As shown in Fig. 3(c), upon increasing
Ts the bath noise decreases while the injector noise first
increases. The total noise peaks at Ts ≈ T ∗

s and then de-
cays towards zero, due to increasing thermal conductivity
κ (T e) = κq4. The peak value, to leading order in 1/β � 1,
is S

(2)
Te

/S
(2)
0 ≈ 0.035β.

The third cumulant is plotted in Fig. 3(d). At low temper-
atures Ts � T ∗

s , S
(3)
Te

is dominated by the last term in Eq. (8),

giving S
(3)
Te

/S
(3)
0 = −2, with S

(3)
0 = 6k2

BT 3
b /κ2. Increasing Ts

the cumulant changes sign twice around T ∗
s , a consequence of

a competition between the positive injector term and the neg-
ative back-action term. The analysis of the cumulants shows
that T ∗

s sets the upper limit for operation of the calorimeter;
for Ts � T ∗

s we have well separated injection events, �iτ �
1, and the effect of the back action on the absorber temperature
is negligible.

B. Voltage bias

The average temperature T e as a function of V shows
[Fig. 3(e)] a cooling effect [39], with a crossover around V ∼
V ∗ ≡ [� − ln(r )kBTb]/e from constant to close-to-linear de-
crease kBT e ≈ (� − eV )/ ln(r ). The normalized fluctuations
can be written as a sum of the bath (∝1 + q6) and injector
(∝1 − q5) noise as, introducing β̃ = β(1 − eV/�),

S
(2)
Te

S
(2)
0

= q4

2

1 + q6 + (β̃/5)(1 − q5)

(q6 + (β̃/5)(1 − q5))2
. (10)

At V < V ∗, the noise is dominated by the (equilibrium)
phonon part [see Fig. 3(f)] while for V > V ∗ the noise
decreases monotonically with increasing V , due to increas-
ing thermal conductivity κ (T e) = κ (q4 + β̃(1 − q5)/[5q2]).
The third cumulant S

(3)
Te

is dominated, for V < V ∗, by the

back-action term, giving S
(3)
Te

/S
(3)
0 = −2. With increasing bias

the cumulant first becomes increasingly negative, reaching
a minimum around V ∗ and thereafter decrease in absolute
magnitude, towards zero, see Fig. 3(g). Most importantly, V ∗
sets the upper limit for V for a faithful calorimetric operation.
Experimentally, a finite V can lead to simultaneous changes
of Te(t ) and Ts, not discussed here.

IV. OPERATION AND PERFORMANCE

Finally we discuss the experimental feasibility. While a
standard dilution refrigerator reaches a temperature ∼10 mK,
careful design of the experiment is needed to reach that
low T e. However, an equilibrium absorber electron temper-
ature ∼30 mK, setting the effective bath temperature Tb, is
fully feasible. Moreover, C of a small metallic absorber at
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Tb ∼ 30 mK can be as low as 103kB [10], although some
studies [35] indicate that thin films exhibit higher values. The
values C ∼ 103kB and Tb = 30 mK yield a signal-to-noise
ratio of order unity for an energy ε ∼ 100 μeV, see Fig. 1 for
representative time traces. Possible ways to increase S/N are
to employ a larger gap superconductor as injector and a lower
C by using, e.g., a semiconducting or graphene [45] absorber.

V. CONCLUSIONS AND OUTLOOK

We have proposed and theoretically analyzed nanoscale
quantum calorimetry of tunneling electrons in a hybrid su-
perconducting setup. As our main result, we show that sub-
meV calorimetry is feasible under optimized experimental
conditions. Key for our analysis is a microscopic approach,
treating all heat transfer events on an equal footing and fully
accounting for back-action effects. Analyzing the resulting
calorimeter temperature fluctuations allows us to derive condi-
tions for a faithful calorimeter operation. Our results will spur
advanced investigations of experimentally relevant phenom-
ena, e.g., the effect of a nonequilibrium electron distribution
of the absorber and the invasive effect of the temperature
measurement.
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APPENDIX: DETAILED CALCULATIONS

1. Monte Carlo simulations

Here we present some examples of Monte Carlo generated
time traces of the temperature fluctuations. The simulations

are fully taking into account both the stochastic injector
events, transferring energy according to the CGF in Eq. (4)
of the main text, and the stochastic phonon emission and
absorption events. From the simulations we obtain numerical
values of the average temperature, noise, and skewness. Key
expressions like Eqs. (8), (9), and (10) of the main text have
been found to be in perfect agreement with the Monte Carlo
simulations.

In Fig. 4, we show examples of time traces for Tb = 5 mK,
Tb = 30 mK, and Tb = 100 mK, respectively, to illustrate the
effect of phonon noise at different temperatures. In all cases,
ε = 200 μeV, C = 1000kB, and time is chosen such that an
injector event takes place at t = 0. The three cases correspond
to �Te/

√〈δT 2
e 〉 = 15, 2.4 and 0.73, respectively. As clearly

seen, at low temperatures [see Fig. 4(a)], the background
noise is almost negligible compared to the temperature spike
induced by the injector. For more experimentally realistic
settings with intermediate temperatures [see Fig. 4(b)], the
temperature spike of the injector is still clearly visible, al-
though the background noise is no longer negligible. At even
higher temperatures [see Fig. 4(c)], the temperature spike
induced by the injector drowns in phonon noise and it gets
difficult to identify the injector events.

2. Generating function for the injector-absorber energy transfer

Here we derive the cumulant generating function for the
superconducting injector given in Eq. (5) of the main text. Our
starting point is Eq. (4) of the main text,

Fi(ξi, Te) =
∫

dε[�i
+
(
eiξiε − 1

) + �i
−(e−iξiε − 1)], (A1)

with rates �i
±(ε) = (GT/e2)νS(ε − eV )f±(ε − eV, Ts )f∓(ε,

Te), where νS(ε) = |ε|/√ε2 − �2θ (|ε| − �) is the normal-
ized superconducting density of state, f+(ε, T ) = (eε/[kBT ] +
1)−1 and f−(ε, T ) = 1 − f+(ε, T ).

For kBT � � − e|V |, T = Ts, Te, only the tails of the Fermi functions contribute to the integral. Equation (A1) can then be
written as

Fi(ξi, Te) = GT

e2

(∫ ∞

�+eV

dε
ε − eV√

(ε − eV )2 − �2
[e−(ε−eV )/[kBTs](eiξiε − 1) + e−ε/[kBTe](e−iξiε − 1)]

−
∫ −�+eV

−∞
dε

ε − eV√
(ε − eV )2 − �2

[eε/[kBTe](eiξiε − 1) + e(ε−eV )/[kBTs](e−iξiε − 1)]

)

= GT

e2

(∫ ∞

�+eV

dε
ε − eV√

(ε − eV )2 − �2
[e−(ε−eV )/[kBTs](eiξiε − 1) + e−ε/[kBTe](e−iξiε − 1)]

+
∫ ∞

�−eV

dε
ε + eV√

(ε + eV )2 − �2
[e−(ε+eV )/[kBTs](eiξiε − 1) + e−ε/[kBTe](e−iξiε − 1)]

)
. (A2)
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FIG. 4. Examples of Monte Carlo generated time traces of the temperature fluctuations for (a) Tb = 5 mK, (b) Tb = 30 mK, and (c) Tb =
100 mK. Every time trace contains an injector event at t = 0. In all cases, C = 1000kB, ε = 200 μeV, and τ denotes the relaxation time.

Now, evaluating the integrals explicitly, we obtain

Fi(ξi, Te) =
√

2

π
g

(
K1

[
�

kBTs
− iξi�

]
cos [eV ξi] + K1

[
�

kBTe
+ iξi�

]
cosh

[
eV

kBTe
+ ieV ξi

]

−K1

[
�

kBTs

]
− K1

[
�

kBTe

]
cosh

[
eV

kBTe

])
, (A3)

205414-6



NANOSCALE QUANTUM CALORIMETRY WITH ELECTRONIC … PHYSICAL REVIEW B 98, 205414 (2018)

where g =
√

2πGT�
e2 and Kn[x] denotes the nth modified Bessel function of the second kind. Using that kBT � �, T = Ts, Te,

we simplify the Bessel functions as

K1

[
�

kBT
± iξi�

]
≈

√
π

2
h(T )e∓iξi�, (A4)

with h(T ) =
√

kBT
�

e
− �

kBT . This yields the following expression for the generating function for the injector-absorber junction:

Fi(ξi, Te) = g

(
h(Ts)eiξi� cos [eV ξi] + h(Te)e−iξi� cosh

[
eV

kBTe
+ ieV ξi

]
− h(Ts) − h(Te) cosh

[
eV

kBTe

])
. (A5)

a. No applied bias (case I and II)

For V = 0, Eq. (A5) simplifies to

Fi(ξi, Te) = g[h(Ts)(eiξi� − 1) + h(Te)(e−iξi� − 1)]. (A6)

For Ts � Te (Ts � Te), the second (first) term is negligible,
yielding case (I) [(II)] in Eq. (5) of the main text. In both
cases, the statistics correspond to Poissonian processes with
an energy of � transferred in each elementary process.

b. Finite bias (case III)

For eV � kTe, we obtain from Eq. (A5)

Fi(ξi, Te) = g

(
h(Ts)

2
[ei(�+eV )ξi − 1 + ei(�−eV )ξi − 1]

+ h(Te)

2
[e−i(�−eV )ξi − 1]

)
. (A7)

If Ts(1 − eV/�) � Te, the first part is negligible and the
cumulant generating function reduces to

Fi(ξi, Te) = gh(Te)e
eV

kBTe (ei(eV −�)ξi − 1), (A8)

which corresponds to case (III) in Eq. (5) of the main text.

3. Generating function for the bath-absorber energy transfer

At low temperatures, with a weak electron-phonon cou-
pling, Fermi’s golden rule yields the following counting field
resolved rates

�̃b
±(ξ ) = 2π

h̄

∫
dEkNe(Ek )f (Ek )

∫
dqNb(q)n±(εq)M2

× [
1 − f (Ek±q)

]
δ(Ek − Ek±q + εq)e±iεqξ , (A9)

where �̃+(ξ ) [�̃−(ξ )] denotes the counting field resolved
absorption (emission) rate of phonons, Ek (εq) is the en-
ergy of an electron (phonon) with momentum k (q), Ne(ε)
(Nb(ε)) is the density of states of electrons (phonons) on
the island, f (ε) = (exp[ε/kTe] + 1)−1 is the Fermi function
for the electrons, n+(ε) = (exp[ε/(kTb)] − 1)−1 is the Bose
distribution for the phonons, with n−(ε) = 1 + n+(ε), and M
is the coupling strength matrix element for electron-phonon
scattering. The signs of the counting fields have been chosen
such that positive energy corresponds to an inflow of energy
to the electrons from the phonons.

At low temperatures, all relevant scattering processes oc-
cur around the Fermi level, i.e., |k| ≈ |kF|, |q| � |kF|, and
N (Ek ) ≈ Ne. We use a parabolic dispersion relation for the
electrons in the metal, Ek = h̄2k2

2m
≡ Ek . Furthermore, the

phonons are treated as longitudinal ones within the De-
bye model, i.e., Nb(q) = V/(2π )3 ≡ Nb and εq = h̄clq ≡ εq ,
where cl is the velocity of the phonons. For a scalar deforma-
tion potential, M2 = M2

0q and Eq. (A9) can be written as

�̃b
±(ξ ) = 2πM2

0NeNb

h̄

∫
dEkf (Ek )

∫
dqqn±(εq )e±iεq ξ

× [1 − f (Ek±q)δ(Ek − Ek±q ± εq )]. (A10)

Evaluating the integral over q, we obtain

�̃b
±(ξ ) = 2πM2

0NeNb

h̄3c2
l

∫
dEkf (Ek )

∫
dεε2 2πm

h̄3kF cl

× [1 − f (Ek ± ε)]n±(ε)e±iεξ . (A11)

Now, we rewrite the integral as

�̃b
±(ξ ) = (2π )2mM2

0NeNb

h̄6c3
l kF

∫
dεε2n±(ε)e±iεξ

×
∫

dEf (E)[1 − f (E ± ε)], (A12)

or

�̃b
±(ξ ) = VM2

0Ne

2πh̄5c3
l vF

∫
dεε2n±(ε)e±iεξ

×
∫

dEf (E)[1 − f (E ± ε)], (A13)

where vF is the Fermi velocity of the electrons. The prefactor
corresponds to �V/[24k5

Bζ (5)], while the integral over E

gives ∫ ∞

−∞
dEf (E)[1 − f (E ± ε)] = εn∓(ε, Te), (A14)

where we have introduced a Bose distribution with explicit
temperature dependence. We then obtain

�̃b
±(ξ ) = �V

24k5
Bζ (5)

∫
dεε3n±(ε, Tb)n∓(ε, Te)e±iεξ . (A15)

The cumulant generating function is given by Fb(ξb, Tb) =
�b

+(ξb) + �b
−(ξb) − �b

+(0) − �b
−(0), or, equivalently,

Fb(ξb, Tb) =
∫ ∞

0
dε[�b

+(ε)(eiξbε − 1)+�b
−(ε)(e−iξbε − 1)],

(A16)
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with �b
±(ε) = �V

24k5
Bζ (5)

ε3n±(ε, Tb)n∓(ε, Te). The cumulants

are given by S
(n)
b = ∂Fb(ξb,Tb )

∂ξb
|ξb=0, yielding

S
(n)
b = �V

24k5
Bζ (5)

∫ ∞

0
dεε3+n[n+(ε, Tb)n−(ε, Te)

± n−(ε, Tb)n+(ε, Te)], (A17)

with + for n even and − for n odd. For odd n, we obtain

S
(n)
b = �V

48k5
Bζ (5)

∫ ∞

0
dεε3+n

×
[

coth

(
ε

2kBTb

)
− coth

(
ε

2kBTe

)]

= �Vkn−1
B

ζ (n + 3)(n + 3)!

24ζ (5)

(
T n+4

b − T n+4
e

)
, (A18)

while for even n, we obtain

S
(n)
b = �V

48k5
Bζ (5)

∫ ∞

0
dεε3+n

×
[

coth

(
ε

2kBTb

)
coth

(
ε

2kBTe

)
− 1

]

≈ �Vkn−1
B

ζ (n + 4)(n + 3)!

24ζ (5)

(
T n+4

b + T n+4
e

)
. (A19)

In the last step, we have made use of the following approxi-
mation:

I1 ≡
∫ ∞

0
dε ε3+n[coth(εr ) coth(ε) − 1]

≈
∫ ∞

0
dε

ε3+n

2
[coth2(ε) − 1]

(
1 + 1

r6

)
≡ I2. (A20)

To estimate the accuracy of this approximation, we first per-
form a change of variables ε → εr in the second term in I2 to
obtain

I2 =
∫ ∞

0
dε ε3+n

[
coth2(ε) + coth2(εr )

2
− 1

]
(A21)

with which we get

I2 − I1 =
∫ ∞

0
dε

ε3+n

2
[coth(ε) − coth(εr )]2. (A22)

By noting that coth(ε) � coth(εr ) � 1 for any ε � 0 and r �
1, we have that

I2 − I1

I2
�

∫ ∞
0 dε ε3+n[coth(ε) − 1]2∫ ∞
0 dε ε3+n[coth2(ε) − 1]

�
∫ ∞

0 dε ε5[coth(ε) − 1]2∫ ∞
0 dε ε5[coth2(ε) − 1]

= 1 − π6

945ζ (5)

≈ 0.0189 (A23)

with the first inequality becoming an equality only
for r → ∞.

4. Stochastic path integral formulation

The starting point for the derivation of the full
statistics of the time-integrated temperature fluctuations

θ = ∫ t0
0 dt[Te(t ) − T e] is the generating functions for

energy transfers between the injector and the absorber,
�tFi[ξi(t ), Te(t )], and the bath and the absorber,
�tFb[ξb(t ), Te(t )], during a time interval [t, t + �t].
The length of the time interval �t is so short that
the absorber temperature is only marginally changed,
Te(t + �t ) ≈ Te(t ) + �Te(t ), where �Te(t ) � Te(t ). This
requires �t to be much shorter than the time scale over which
Te(t ) changes appreciably, typically set by τ .

In an interval �t , for transferred energies �Ei and �Eb,
the corresponding energy currents are IEi = �Ei/�t and
IEb = �Eb/�t , for the injector-absorber and bath-absorber
transfers, respectively. For the entire measurement time t0,
taking the continuum-in-time limit, we can write the joint,
unconditioned probability distribution of energy currents as
a product of the individual probabilities as

P [IEi, IEb] = P [IEi]P [IEb], (A24)

where the probabilities P [IEi], P [IEb] conveniently can be
written as stochastic path integrals as

P [IEi] =
∫

D[ξi]e
∫ t0

0 dt (−iIEi(t )ξi (t )+Fi[ξi (t ),Te(t )]), (A25)

and

P [IEb] =
∫
D[ξb]e

∫ t0
0 dt (−iIEb(t )ξb(t )+Fb[ξb(t ),Te(t )]). (A26)

To account for the effect of the transferred energy, with
resulting fluctuations of Te(t ), and following back action on
the statistics on the transfer events themselves, we have the
absorber energy E(t ) conservation equation

dE(t )

dt
= IEi(t ) + IEb(t ). (A27)

Importantly, the total energy of the absorber is directly related
to the temperature via the relation E(t ) = C[Te(t )]Te(t )/(2C)
with C[Te(t )] ∝ Te(t ). The conditioned probability for the
realizations of the energy currents is then given by the un-
constrained one multiplied by a functional δ function as

P [IEi, IEb]δ

[
dE(t )

dt
− IEi(t ) + IEi(t )

]
. (A28)

Integrating the constrained probability over the energy cur-
rents we get, writing the δ function as a functional Fourier
transform and inserting the expression in Eq. (A24),∫

D[IEi]D[ξi]D[IEb]D[ξb]D[ξ ] exp

[∫ t0

0
dtH (t )

]
, (A29)

where H (t ) = H [t, IEi(t )ξi(t ), IEb(t )ξb(t ), ξ (t )] is

H (t ) = iξ (t )

(
dE(t )

dt
− IEi(t ) − IEb(t )

)
− iIEi(t )ξi(t )

+Fi[ξi(t ), Te(t )] − iIEb(t )ξb(t )

+Fb[ξb(t ), Te(t )]. (A30)

We can now perform the integrals over IEi(t ) and IEb(t ),
giving functional delta functions δ[ξi(t ) − ξ (t )] and δ[ξb(t ) −
ξ (t )] and hence the total, constrained probability∫

D[ξ ] exp[
∫ t0

0
G[t, ξ (t ), Te(t )]], (A31)
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where

G[t, ξ (t ), Te(t )] = iξ (t )
dE(t )

dt
+ Fi[ξ (t ), Te(t )]

+Fb[ξ (t ), Te(t )]. (A32)

This expression thus gives the probability distribution of
realizations of the total energy change, dE(t )/dt . To access
the statistics of the realizations of the temperature we con-
veniently multiply the obtained probability distribution by a
delta function δ[T (t ) − Te(t )], recalling the relation between
E(t ) and Te(t ), and integrate over E(t ) giving

P [T ] =
∫

D[χ ]e
∫ t0

0 dt (−iχ (t )T (t )+λ[t,χ (t )]), (A33)

where

e
∫ t0

0 dtλ[t,χ (t )] =
∫

D[ξ ]D[E]e
∫ t0

0 dt (iχ (t )Te(t )+G[t,ξ (t ),Te (t )])

(A34)
is a stochastic path integral over ξ (t ), E(t ).

Long time limit

In the limit of a long measurement time t0 we can neglect
the time dependence of the variables and write the prob-
ability distribution of the time-integrated temperature θ =∫ t0

0 [Te(t ) − T e]dt as (up to phase factor shifting the distribu-
tion)

P (θ ) = 1

2π

∫
dχ exp [−iχθ + λ(χ )], (A35)

where

eλ(χ ) =
∫

dξdE exp [t0S(χ, ξ, Te)] (A36)

and

S(χ, ξ, Te) = iχ (Te − T e) + Fi[ξ, Te] + Fb[ξ, Te]. (A37)

Solving this equation in the saddle point approximation we
get the generating function, to exponential accuracy, as

λ(χ ) = t0S(χ, ξ ∗, T ∗
e ), (A38)

where ξ ∗ = ξ ∗(χ ) and T ∗
e = T ∗

e (χ ) are the solutions of the
saddle point equations

∂S

∂ξ
= ∂Fi

∂ξ
+ ∂Fb

∂ξ
= 0

∂S

∂E
∝ ∂S

∂Te
= iχ + ∂Fi

∂Te
+ ∂Fb

∂Te
= 0. (A39)

From Eq. (A39) and λ(χ ) we obtain the low-frequency
cumulants of the temperature fluctuations as S

(n)
Te

=
(1/t0)(−i)n∂n

χλ(χ )|χ=0. In terms of 〈〈En(Te)〉〉 =
(−i)n∂n

ξ F (ξ, Te)|ξ=0, the cumulants of the absorber

energy currents, the average temperature T e is found from
〈E (T e)〉 = 0, yielding the equation

h(Ts) + h(T e)

[
− cosh

(
eV

kBT e

)
+ eV

�
sinh

(
eV

kBT e

)]

= 1

5r

(
T

5
e

T 5
b

− 1

)
, (A40)

where h(T ) =
√

kBT
�

e
− �

kBT as before and r =
√

2πGT�2

Tbe2κ
. The

second and third temperature cumulants, experimentally most
relevant, are given by

S
(2)
Te

= 1

κ2
〈〈E2(Te)〉〉,

S
(3)
Te

= 1

κ3

[
〈〈E3(Te)〉〉 + 3〈〈E2(Te)〉〉 d

dTe

〈〈E2(Te)〉〉
κ (Te)

]
, (A41)

where κ (Te) = i∂Te∂ξF (ξ, Te)|ξ=0, the heat conductance, and
all quantities in Eq. (A41) are evaluated at T e. This is Eq. (8)
of the main text.

Of particular interest is the regime τ � 1/�i, with well
separated energy injection events. Then T e ≈ Tb + �T , with
�T = �i〈ε〉/κ and κ ≡ κ (Tb), deviates negligibly from Tb.
The temperature noise S

(2)
Te

in Eq. (A41) becomes, to leading
order in �T/Tb � 1,

S
(2)
Te

S
(2)
0

= 1

2z2

⎡
⎣1 +

(
T e

Tb

)6
⎤
⎦ + rβ

2z2

[
h(Ts)

[
1 +

(
eV

�

)2
]

+h(T e)H (T e, V )

]
, (A42)

where S
(2)
0 = 2kBT 2

b
κ

, β = �
kBTb

, H (T , V ) =
[1 + ( eV

�
)
2
] cosh ( eV

kBT
) − 2 eV

�
sinh ( eV

kBT
) and

z ≡ κ (Te)

κ
=

(
T e

Tb

)4

+ rβ

(
Tb

T e

)2

h(T e)H (T e, V ). (A43)

For only thermal bias, we obtain from Eq. (A40)

�T = rTb

(
h(Ts) + h(Tb)

×
[
− cosh

(
eV

kBTb

)
+ eV

�
sinh

(
eV

kBTb

)])
. (A44)

Furthermore, H (T e, V ) = 1. If β � ln(r ) � 1, we have
z = q4, where q = T e

Tb
. The normalized second cumulant in

Eq. (A42) then reduces to

S
(2)
Te

S
(2)
0

= 1 + q6 + (β/5)[q5 − 1]

2τ 8
(A45)

which is Eq. (9) of the main text.
For voltage bias only, Ts = Tb, and rh(Tb) � 1, Eq. (A40)

reduces to

e−(�−eV )/[kBT e] = 2

5r

�3/2√
T e(� − eV )

(
1 − T

5
e

T 5
b

)
. (A46)

Furthermore, we have z = q4 + β̃b(1−q5 )
5q2 , where β̃ = β(1 −

eV
�

). The normalized second cumulant in Eq. (A42) then
reduces to

S
(2)
Te

S
(2)
0

= q4

2

1 + q6 + (β/5)[1 − q5](
q6 + (β̃b/5)(1 − q5)

)2 , (A47)

which is Eq. (10) of the main text.
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