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The development of electronic devices based on the functionalization of (nano)cellulose platforms
relies upon an atomistic understanding of the structural, and electronic properties of the combined
system, cellulose/functional element. In this work, we present a theoretical study of the nanocel-
lulose/graphene interface (nCL/G) based on first-principles calculations. We find that the binding
energies of both hydrophobic/G (nCLphob/G) and hydrophilic/G (nCLphil/G) interfaces are primar-
ily dictated by the van der Waals interactions, and are comparable with that of their 2D interface
counterparts. We verify that the energetic preference of nCLphob/G has been reinforced by the
inclusion of an aqueous media via the implicit solvation model. Further structural characterization
was carried out using a set of simulations of Carbon K-edge X-ray absorption spectra to identify
and distinguish the key absorption features of the nCLphob/G and nCLphil/G interfaces. The elec-
tronic structure calculations reveal that the linear energy bands of graphene lie in the band gap of
the nCL sheet, while depletion/accumulation charge density regions are observed. We show that
external agents, i.e. electric field and mechanical strain, allow for tunability of the Dirac cone and
the charge density at the interface. The control/maintenance of the Dirac cone states in nCL/G is
an important feature for the development of electronic devices based on cellulosic platforms.

I. INTRODUCTION

Designing new biodegradable electronic devices based
on renewable and environmentally sustainable platforms
has been intensively investigated with the motivation
to combat resource constraints and waste disposal chal-
lenges [1]. Most electronics are still assembled from non-
renewable and nonbiodegradable materials and occasion-
ally use production techniques that rely on hazardous
compounds.

The possibility of building flexible devices using pa-
per has led to the development of novel green electronic
alternatives [2–4]. Cellulosic substrates have been ex-
plored for many applications, including transistors [5],
supercapacitors [6], and organic solar cells [7]. More re-
cently, nanoparticles extracted from cellulose pulps (cel-
lulose nanocrystals-CNC and cellulose nanofibers-CNF)
have also been considered lightweight and robust mate-
rials for electronic devices [8, 9]. Substrates produced
from CNCs and CNFs display advantages over regular
paper, including smoothness, high optical transparency,
and superior mechanical properties [10, 11]. Besides, due
to relatively inexpensive isolation methods, nanocellulose
has excellent potential as a sustainable nanomaterial for
designing many functional structures.

To impart electrical conductivity to cellulose, metal-
lic particles [12], conductive polymers [13], carbon-based
particles [14], and 2D materials [15] are usually integrated
into nanocellulose through different techniques (coating,
dipping, printing, blending, etc.). The combination of
nanocellulose and 2D nanomaterials such as graphene,
MoS2, and MXene has recently triggered great inter-

est in the scientific community as a new class of mul-
tifunctional hybrid compounds. By assembling graphene
and nanocellulose within a stretchable elastomer matrix,
Weng et al. [16] fabricated a robust strain sensor for
efficient human-motion detection. Moisture-responsive
foldable actuators were also produced from exfoliated
graphene and amphiphilic nanocellulose by a simple vac-
uum filtration method [17]. Tian et al. [18] combined the
excellent mechanical properties of CNF with the metal-
like electrical conductivity of MXenes to design super-
capacitor electrodes with high electronic conductivity of
2.95 × 104 S m−1.

For electronic applications, 2D/nanocellulose hybrid
materials should be able to tolerate mechanical stress and
deformations while maintaining the satisfactorily elec-
trical conductivity of 2D materials. Therefore, funda-
mental understanding of how the insertion of cellulose,
a dielectric compound, influences the electrical proper-
ties of 2D materials is essential to guide the develop-
ment of (nano) devices. Considerable experimental works
on 2D/nanocellulose hybrids have shown promising out-
comes. However, they only focus on the global electrical
response and ignore the effect of nanocellulose/2D inter-
action at the nano and atomic levels on the electronic
properties. Our group recently used first-principles cal-
culations with a machine learning approach to evaluate
relevant chemical and structural parameters that govern
the binding energy of graphene oxide/nanocellulose in-
terfaces [19], which have been considered promising poly-
meric composites for gas barriers [20] and water decon-
tamination [21]. In the same direction, Zhu et al. [22]
employed first-principles methods to study the interface
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bonding behavior of graphene oxide and cellulose deriva-
tives composite systems. Despite such previous studies,
a detailed picture of the interaction between the different
cellulose surfaces and graphene is hitherto unexplored.

In the current study, based on first-principles calcu-
lations, we investigate the (i) energetic stability, (ii)
structural, and (iii) electronic properties of the nanocel-
lulose/graphene interface (nCL/G). The hydrophobic
(nCLphob/G) and hydrophilic (nCLphil/G) interfaces
were addressed in this study. In (i), we have examined
the role played by the vdW interaction on the nanocel-
lulose - graphene binding strength and the aqueous me-
dia effect on the nCL/G binding energy. The structural
characterization [(ii)] was performed by a set of X-ray
near edge absorption structure (XANES) simulations of
the nCLphob/G and nCLphil/G interfaces to identify the
corresponding X-ray fingerprints. In (iii), we show that
the Dirac bands of graphene lie in the nCL’s bandgap,
with the Dirac point at about 2 eV above the valence
band maximum of the nanocellulose (∆EDP), followed
by a small net charge transfer (∆ρ ∝ 1012e/cm2) from
graphene to the nCL/G interface region. In the sequence,
we investigate the role of external agents such as electric
field and mechanical strain in the electronic properties of
nCL/G.

II. COMPUTATIONAL DETAILS

All calculations were performed within the density
functional theory (DFT), where the exchange-correlation
term was described by the generalized gradient approxi-
mation (GGA-PBE) [23] proposed by Perdew, Burke and
Ernzerhof. The periodic image interaction was avoided
by using at least 25 Å vacuum perpendicular to graphene
sheet. The Kohn-Sham orbitals were expanded in a plane
wave basis set with an energy cutoff of 400 eV and the
electron-ion interaction have been evaluated using the
PAW (projected augmented wave) method [24]. The Bril-
louin Zone (BZ) sampling was performed according to
the Monkhorst-Pack scheme [25], using a 6×6×1 mesh.
The search for binding energies, equilibrium geometry
and electronic properties were performed using Vienna
Ab-initio Simulation Package (VASP) [26, 27], and the
influence of an aqueous environment was simulated based
on the implicit solvation model implemented in DFT code
VASP (VASPsol [28–30]). The equilibrium configuration
was calculated taken in account a fully relaxed of atomic
positions, considering a convergence criteria of 25 meV/Å
for the atomic forces. In order to provide a more com-
plete picture of the energetic features of the nCL/G in-
terfaces, we have examined role played by the vdW dis-
persion interaction on the nCL/G binding energies. We
have considered two different non-local vdW approaches,
viz.: vdW-DF [31–33], and vdW-optB86b [34, 35].

The Carbon K-edge X-ray absorption near edge struc-
ture (XANES) spectra were simulated using XSpectra
package [36–38], implemented in Quantum ESPRESSO

FIG. 1. Structural models of graphene interacting with the
hydrophobic (a1)-(a2), and hydrophilic (b1)-(b2) nanocellu-
lose sheet described by a single layer (a1)-(b1), and bilayer
(a2)-(b2) of cellulose nanofibrils.

[39, 40]. To describe the K-edge spectra, we used a recon-
structed ultrasoft pseudopotential with a core-hole in C-
1s orbital and the electron wave functions were recovered
using GIPAW [41] reconstruction. Here, the BZ sampling
was the same previously described and the energy cut-
offs for the plane wave basis set and self-consistent total
charge density were respectively 48 and 192 Ry.

III. RESULTS

The structural models of nCL/G interface are depicted
in Fig. 1. The graphene layer interacts with the hy-
drophobic and hydrophilic nanocellulose sheets described
by a single layer of cellulose fibrils, labelled as nCLphob/G
and nCLphil/G in Fig. 1(a1) and (b1), and bilayer of cel-

lulose fibrils, nCLphob
2 /G and nCLphil

2 /G in Fig. 1(a2) and
(b2).

A. nCL/G Binding Energy and Geometry

We start our investigation by examining the energetic
stability and equilibrium geometry of the nCL/G inter-
face, and the role played by the long-range vdW forces
on the nanocellulose - graphene binding strength. The
hydrophobic interface is characterized by the predomi-
nance of CH-π bonds, whereas in nCLphil/G the inter-
face interaction is mainly dictated by the OH-π bonds.
The nCL/G interface binding energy (Eb) was calcu-
lated by comparing the total energy of the final system
(E[nCL/G]) and the sum to the total energies of the iso-
lated components; for example, in Figs. 1(a1) and (b1)
a single sheet of celulose nanofibrils (E[nCL]) and single
layer graphene (E[G]),

Eb = E[nCL/G]− E[nCL]− E[G]. (1)
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TABLE I. Binding energies (Eb in meV/Å2) and the aver-
aged ncl–G vertical distance (h in Å) of the nCLphob/G and
nCLphil/G interfaces.

nCLphob/G nCLphil/G
vdW Eb h Eb h
DF 12.92 2.71 11.63 2.59

optB86b 15.10 2.53 13.87 2.13
no vdW 0.51 3.04 0.81 2.90

DF-solvent 11.80 2.71 9.51 2.70

nCLphob
2 /G nCLphil

2 /G
vdW Eb h Eb h
DF 13.22 2.75 12.34 2.51

optB86b 16.07 2.46 13.91 2.32
DF-solvent 12.92 2.74 9.69 2.69

For each interface, i.e. nCLphob/G and nCLphil/G, we
have considered three different stacking geometries. We
found that Eb and the (averaged) equilibrium vertical
distance between the nCL and graphene sheet (h) change
by less than 0.06 meV/Å2 and 0.01 Å.

Our results of Eb and h, summarized in Table I, re-
veal an energetic preference for the nCLphob/G inter-
face. By using the vdW-DF approach to describe the
long-range vdW interactions we found binding energies of
12.92 and 11.63 meV/Å2 for nCLphob/G and nCLphil/G,
respectively. Comparing with other layered 2D counter-
part systems, we find that the nCLphob/G binding en-
ergy is (i) comparable with that of boron-nitride/G bi-
layer (∼12 meV/Å2 [42]); (ii) about 13% smaller com-
pared with the intersheet binding energy of nCL; [43]
and (iii) between 16% and 40% higher when compared
to graphene oxide (GO) and nCLphobinterface, depend-
ing on the oxygen concentration [19]. In order to ver-
ify the reliability of our results, we have also calculated
the binding energies (i) by using another vdW functional
(optB86b in Table I), and (ii) adding a second layer of

cellulose nanofibrils, nCLphob
2 /G and nCLphil

2 /G, as de-
picted in Figs. 1(a2) and (b2), respectively. Our Eb re-
sults, Table I, confirm the energetic preference for the
nCLphob/G interface.

The energetic preference of the nCLphob/G interface is
in agreement with recent theoretical findings based on
molecular dynamic simulations [44, 45]. Both studies
indicate that the presence of trapped water molecules
at the nCL/G interface reduces the binding energy;
moreover in Ref. 44 the authors verified the exclusion
of the water molecules from the nCLphob/G interface.
Indeed, by using the implicit solvation model [29, 30]
we find a reduction of the interface binding energy
[Eq. 1], Eb = 12.92→ 11.80 meV/Å2 in nCLphob/G, and
11.63→ 9.51 meV/Å2 in the nCLphil/G interface, while
the equilibrium geometries of the nCL/G interfaces are
nearly the same as those obtained previously with no
solvent effects. It is worth noting that the larger bind-
ing energy reduction in the latter is due to the hy-
drophilic nature of the interface, which is in agreement

FIG. 2. Carbon K-edge simulated XANES spectra of pristine
graphene (a), and single layer cellulose fibrils (b) as a function
of the radiation polarization angle (θ).

with our results of solvation energies (Es)[46], namely
2.87 and 10.77 meV/Å2 in nCLphob/G and nCLphil/G,
respectively, and 4.21 and 11.19 in the nanocellulose bi-

layer systems, nCLphob
2 /G and nCLphil

2 /G.
Long range vdW dispersion interaction plays an impor-

tant role in the interchain and intersheet binding energy
between the cellulose fibrils and nCL sheets, respectively
[43, 47]. To quantify the role played by the vdW inter-
action on the nCL - G binding energy, we have calculated
Eb by turning off the vdW contribution. In this case, the
binding energy of the nCLphob/G (nCLphil/G) interface
reduces to 0.51 (0.81) meV/Å2, and the vertical distance
h increases to 3.04 (2.90) Å. Thus, similarly to the inter-
sheet binding energy in pristine nCL,[43] we can deduce
that the non-covalent (vdW) interactions rules the for-
mation of nCL/G interfaces.

B. Structural Characterization, XANES

Core-level spectroscopy is a powerful tool to provide
the structural characterization of materials in an atomic
scale based on the local electronic properties of the
probed element. Currently, the combination of experi-
mental X-ray absorption near edge structure (XANES)
data and first-principles simulations has proven to be
a highly successful strategy to understand the atomic
structure of novel materials [37, 48–50]. In this subsec-
tion, we present XANES simulation results of the Carbon
K-edge absorption spectra of nCL/G interfaces in order
to find spectroscopic finger prints of the atomic structures
of the nCLphob/G and nCLphil/G interfaces.

Let us start with the XANES of the pristine isolated
systems, graphene and single layer nCL. In Fig. 2(a), we
present the absorption spectra of graphene as a func-
tion of the orientation (θ) of the radiation polarization
vector (ε̂), where we can identify the C-1s→π∗ [→σ∗]
transition for ε̂ = ε̂⊥ (θ= 90◦) [ε̂ = ε̂‖ (θ= 0◦)]. The en-
ergy positions of these absorption peaks, around 285 and
292 eV, respectively, indicated as g1 and g2 in Fig. 2(a),
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and the dependence of their intensities with the orien-
tation of the polarization vector are in good agreement
with the previous experimental findings [51, 52].

Experimental results of XANES spectra of cellulose
[53, 54] indicate the presence of two absorption peaks,
at 289.3 and 290.7 eV, both attributed to the C-1s→π∗

transition, associated to the C–OH and C–H bonds, re-
spectively. Those bonding structures are present in the
single layer nCL, and, indeed, the respective absorption
spectra are captured in our simulations. In Fig. 2(b), we
show our results for a single-layer nCL sheet which are
characterized by (i) two absorption peaks, denoted c1 and
c2, lying at about 287 and 290 eV, and (ii) reduced angu-
lar dependency with the direction of the polarization vec-
tor compared to the one of graphene [Fig. 2(a)]. As shown
in Fig. 2(b), the energy positions of c1 and c2 changes by
0.36 and 0.21 eV, respectively, for θ = 0 → 90◦.[55] The
absorption spectra in the nCL bulk phase (not shown)
have a similar characteristic, with c1 and c2 shifted by
∼+2 eV, for example c1: 287→ 289 eV.

The XANES spectra of nCLphob/G and nCLphil/G in-
terfaces are shown in Figs. 3(a) and (b). In both spectra
we identify the C-1s→π∗ and →σ∗ absorption features
from graphene for θ = 90◦ and 0◦, respectively. Between
these two transitions energies, we can identify the follow-
ing differences on the absorption features in nCLphob/G
and nCLphil/G attributed to the nCL absorption spectra.
(i) The presence of absorption peaks 1a and 2a [Fig. 3(a)]
for θ = 0◦, while in the nCLphil/G we find one absorp-
tion feature, 1b in Fig. 3(b); (ii) the absorption peak 2b at
287.5 eV is clearly visible in the nCLphil/G interface for
θ = 90◦, but it is attenuated in nCLphob/G; and (iii) due
to the tilted geometry of cellulose fibrils with respect to
the graphene layer, the absorption spectra in nCLphil/G
are no longer symmetric for positive and negative val-
ues of radiation polarization angles. For instance, the
absorption features for θ = +15◦ and −15◦ (dot-dashed
lines) present different intensities, as seen in Fig. 3(b).

Because the formation of nCL/G heterostruture is
ruled by the vdW interactions, with no covalent bonds
between the nCL sheet and the graphene layer, the
nCL/G interfaces’ absorption spectra are primarily de-
termined by the superposition of the ones of isolated
components. Indeed, the absorption spectra can be bet-
ter understood by XANES computations of hypothetical
structures, namely, an isolated single-layer graphene, and
nCL sheet (both) constrained to the respective nCL/G
interface equilibrium geometry. The XANES simulations
of these constrained structures reveal that the features
1a and 2a in nCLphob/G emerge from the superposition
of the edge transitions in graphene with the absorption
peaks c1a and c2a of the nCL, Figs. 3(a1) and (a2). Sim-
ilarly, the absorption peak 1b in nCLphil/G results from
the superposition of graphene edge absorption structure
with the c1b peak of the tilted layer of cellulose fibrils,
Figs. 3(b1) and (b2), and for θ = 90◦ the absorption fea-
ture 2b is composed by the superposition of graphene
near-edge structure with the absorption peak c2b of the

FIG. 3. XANES spectra of nCLphob/G (a), and nCLphil/G
(b) interfaces. XANES spectra of hypothetical graphene
[(a1)-(b1)] and single layer nCL sheet [(a2)-(b2)] constrained
to the equilibrium geometry of the respective final sys-
tem, nCLphob/G and nCLphil/G, as indicated in the insets.

XANES spectra of nCLphob
3 /G (c), and nCLphil

3 /G (d).

tilted nCL.

The absorption spectra of the nCL/G systems,
Figs. 3(a) and (b), were calculated by considering
graphene on a single layer of cellulose sheet. However,
when the number of nCL sheets grows, it is worth-
while to examine the changes on the XANES spectra.
Our results reveal that as the number of nCL layers in-
creases, the absorption characteristics from the C - H and
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FIG. 4. Electronic band structure of nCLphob/G (a) and
nCLphil/G (b). The zero energy was set at the vacuum level,
the Fermi level is indicated by the dashed black lines, and red
circles indicates cellulose contribution in band.

C - OH bonds grow more pronounced between 285 and
292 eV. In Fig. 3(c) and (d) we present the absorption

spectra for three layer of cellulose fibrils, nCLphob
3 /G and

nCLphil
3 /G. In the former interface the absorption peaks

1a and 2a become more apparent [labelled as 1c and 2c in
Fig. 3(c)], similarly the features 1b and 2b of nCLphil/G

become more intense in nCLphil
3 /G, indicated as 1d and

2d in Fig. 3(d), and thus reinforcing the differences in the
XANES signatures of the hydrophobic and hydrophilic
nCL/G interfaces.

C. Electronic properties

The electronic properties of nCL/G are character-
ized by an insulator/semi-metal interface with the lin-
ear energy bands of graphene lying within the bandgap
of nCL. In Figs. 4(a) and (b), we present the orbital
projected electronic band structures of nCLphob/G and
nCLphil/G, where we find (i) the graphene’s Dirac-point
(DP) at about 2 eV above the valence band maximum
(VBM) of the nCL layer; and (ii) the emergence of an
energy gap of ∼0.04 eV at the DP. There is a small
amount of charge accumulation at the nCL/G inter-
face. Based on the Bader analysis [56], we found a
net charge transfer (∆ρ) of 0.23 (0.28)×1013 e/cm2 from
graphene to the nCLphob/G, (nCLphil/G) interface, fol-
lowed by a reduction of the graphene work-function
(Φ)[57] by 0.2 eV compared with that of free-stading
graphene sheet, 4.33→ 4.13 eV. Similar results were ob-

tained in the nCLphob
2 /G and nCLphil

2 /G interfaces.
In Figs. 5(a) an (b) we present a map of the charge

accumulations in the nCLphob/G and nCLphil/G inter-
faces, where the following characteristics are noteworthy:
(i) the inhomogeneous (net) charge distribution on the
graphene sheets [Figs. 5(a1) and (b1)], which can be at-
tributed to the differences in the orbital hopping between
the nCL surface and the graphene’s π orbitals; and (ii),
as depicted in Figs. 5(a2) and (b2), those charge transfers
occurs primarily at the nCL/G interface, since ∆ρ ≈ 0 in

FIG. 5. Net charge tranfers, ∆ρ in nCLphob/G (a1),

nCLphil/G (b1), nCLphob
2 /G (a2), and nCLphil

2 /G (b2). Iso-
surfaces of 0.4 me/Å3, and postive (negative) values of ∆ρ
are indicated in blue (yellow).

the subsurface nCL layers, Figs. 5(a3) and (b3). Such a
net charge localization suggest the emergence of localized
electronic transmission channels at the nCL/G interface.
On the other hand, it is worth mentioning that such an
inhomogeneous net charge distribution [(i)], giving rise
to electron- and hole-rich regions in graphene, will play
a deleterious role on the electronic transport properties
throughout the nCL/G layers.

The understanding of the electronic properties of the
nCL/G interface in the presence of external agents is
an important issue for the development of electronic de-
vices/sensors based on a combination of cellulosic materi-
als and graphene. Thus, in the sequence, we will focus on
the effects of external electric field (EEF) and mechanical
compressive strain in the nCL/G interface.

Let us start with the effect of EEF.[58] As shown in
Fig. 6, the energy position of the Dirac point with respect
to the VBM of the nCL (∆EDP) increases from 1.6 (1.1)
to 2.3 (2.6) eV in nCLphob/G (nCLphil/G), for EEF of
−0.25 and +0.25 V/Å, respectively. Concomitantly, the
G→ nCL/G net charge transfer, ∆ρ, varies from 0.08
(0.14) to 0.36 (0.47)×1013 e/cm2. Such tuning of ∆EDP

and ∆ρ is nearly linear with respect to the EEF. In par-
ticular, for ∆EDP as a function of the EEF we find the
following rates, −1.43 eV/(V/Å) and −3.14 eV/(V/Å) in

5



FIG. 6. Energy position of the DP with respect to the
VBM (∆EDP - filled lines), and the net charge transfer from
graphene to the nCL (∆ρ in 1013 e/cm2 - dashed lines) as a
function of the external electric field (EEF) for the nCLphob/G
(a), and nCLphil/B (b) interfaces.

nCLphob/G and nCLphil/G, respectively. Assuming that
such a linear relationship is preserved for larger values
of EEF, we can infer that in nCLphil/G the DP becomes
resonant with the nCL valence band for EEF> 0.6 V/Å,
and thus suppressing the G→ nCL/G charge transfer.

Further control of the electronic properties of 2D sys-
tems can be achieved through mechanical strain, “strain-
tronics” [59, 60]. Indeed, such an approach has been
used to control the electronic doping level in bilayer
graphene and boron-nitride/graphene vdW heterostruc-
tures [61–63]. In nCL/G, the compressive strain will pro-
mote the strengthening the CH-π (OH-π) orbital over-
lap at the nCLphob/G (nCLphil/G) interface. Here, we
investigate the net charge transfer, ∆ρ, and the work
function (Φ) in nCL/G, as a function of compressive
strain. The strain in the nCLphob/G and nCLphil/G in-
terfaces was applied by considering bilayers of nCL and

graphene, nCLphob
2 /GBL [Fig. 7(a)] and nCLphil

2 /GBL
[Fig. 7(b)]. In Figs. 7(a1) and (a2) we present the spa-

tial distribution of ∆ρ of pristine nCLphob
2 /GBL and

compressed by 9 %, respectively; similarly in Figs. 7(b1)
and (b2), we present ∆ρ for the hydrofilic interface,

nCLphil
2 /GBL. Interestingly, these ∆ρ maps reveal that

the charge transfers are localized at the nCL2/GBL in-
terface region, and as shown in Figs. 8, the net charge
transfer from G to the nCL increases up to ∼ 1.0

(∼ 0.8)×1013 e/cm2 in nCLphob
2 /GBL (nCLphil

2 /GBL) for

FIG. 7. Side view of differential charge densities of
nCLphob

2 /GBL (a) to 9% z-compressed nCLphob
2 /GBL (b),

and nCLphil
2 /GBL (c) to 9% z-compressed nCLphil

2 /GBL (d).
Isosurfaces of 0.4 me/Å3

a compressive strain of about 9 %, which corresponds
to an external pressure of 3.73 (3.15) GPa. Concomi-
tantly with the G→nCL/G net charge transfer, we find
slight increase of the work functions, namely from 4.64

(4.68) to 4.73 (4.88) eV in nCLphil
2 /GBL (nCLphob

2 /GBL)
[Fig. 8]. Finally, we found that we can reach a p-type
doping of about 1.1 (1.3)×1013 e/cm2 of graphene upon
an EEF of −0.25 V/Å in the 9% compressed nCLphob/G
(nCLphil/G) interfaces. Thus, suggesting that suitable
combinations of these external agents can be exploited to
further modify the electrical characteristics of the nCL/G
interface.

IV. SUMMARY AND CONCLUSIONS

We have performed a theoretical investigation of
the energetic, structural, and electronic properties of
nanocellulose/graphene (nCL/G) interface, where we
have addressed the hydrophobic (nCLphob/G) and hy-
drophilic (nCLphil/G) interfaces. We find that the
binding energy of nCL/G is primarily ruled by the
vdW interactions, being comparable with that of
boron-nitride/graphene. The structural fingerprints of
nCLphob/G and nCLphil/G interfaces were identified
through a detailed study of the Carbon K-edge ab-
sorption (XANES) spectra. The electronic structure
of nCL/G is characterized by linear energy bands of
graphene lying within the bandgap of nCL, with the
Dirac point at about 2 eV above the valence band maxi-
mum of the nCL sheet, ∆EDP ≈ 2 eV, and a net charge

6



FIG. 8. Net charge tranfer, ∆ρ, and the work function
Φ upon compression of nCLphob

2 /GBL (a) and nCLphil
2 /GBL

(b). Evac represents the vacuum level.

accumulation, ∆ρ of ∼ 0.2× 1013e/cm2, localized at the
nCL/G interface. External electric fields (EEFs) and me-
chanical strain were used to investigate the tunability
of these quantities, where we found that ∆EDP varies
from 1.6 (1.1) to 2.3 (2.6) eV in nCLphob/G (nCLphil/G),
for EEF of −0.25 and +0.25 V/Å, respectively; whereas
there is an increase of G→ nCL/G ∆ρ up to 1×1013e/cm2

upon an external pressure of 3.73 GPa. We believe that
our findings provide not only the energetic and atomic
scale structural understanding of the nCL/G interface,
but also a set of important information of the electronic
properties to the development of electronic devices based
on the combination of nanocellulose and graphene.
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