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ABSTRACT 

Naderishahab, Tahereh 

M.S.O.E 

July 2017 

 

High accuracy tilt or roll angle measurement is required for a variety of engineering and 

scientific applications.  Optical interferometry is normally used because it is non-contact and can 

measure tilt with a very high degree of accuracy. In this thesis, a cyclic interferometer has been 

developed with four mirrors to measure tilt angles as small as a few nanoradians.  To measure the 

phase, a novel and simple method of phase shift by polarization was developed to enhance 

measurement sensitivity and accuracy.  Since the cyclic interferometer is insensitive to external 

vibrations and turbulences, polarization phase step was accomplished with relative ease. 

To introduce the phase shift, a quarter wave plate and a half wave plate were used with a 

polarized laser beam. Multiple reflections were also introduced in the cyclic interferometer to 

enhance tilt measurement capability. A new method was developed to evaluate phase and 

eventually measure the tilt even in the case of changing fringe visibility.  The results of these 

studies show that the multiple reflection cyclic interferometer can be used to measure object tilts 

in the order of 0.2 nanoradians or 10-5 arc second.  
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 Introduction 

High accuracy tilt measurements on the scale of thousands of arc seconds or nanoradians 

are often used in different fields of science and engineering including metrology for precision 

autocollimation and planarity measurements. The measurement of tilt has diverse applications, for 

example, to control the straightness of the translation stages of x-ray interferometers [1], to control 

the angle between mirrors in interferometric telescopes used for astrometry [2], to measure the 

gravitational constant or the Casimir force [3], to measure the cantilever deflection in atomic force 

microscopes [4] and to measure angular accelerations [5]. Although tilt measurement is a 

mechanical problem, optical methods are often used. 

 Interferometry is a highly sensitive tilt measurement optical technique that uses the 

principle of the interference of two beams generated from the same laser that travels slightly 

different optical path lengths whenever an angular displacement occurs. The Michelson 

interferometer is the commonly used device for measuring tilt with high accuracy and sensitivity 

[6]. A Fabry-Perot etalon along with scanning has also been used to measure tilt with high accuracy 

[7]. Another interferometric method is the Murty Shear Plate which measures tilt by determining 

the slope of the wavefront after passing through the shear plate [8]. In addition, heterodyne 

techniques in interferometry have been used to enable measurements of small tilts in systems [9].  

Most recently, a new method using a cyclic lateral shear interferometer has been used in 

order to measure small tilt angles. In this setup, when the interferometer is rotated, a phase 

difference is introduced between the two laterally sheared beams, which are then used to measure 

the rotation [10]. Angles as small as 22 arc secs have been measured. On the other hand, multiple 



  

3 

reflections have been used in metrology to increase the sensitivity of Michelson Interferometers 

for measuring small linear displacements [11]. The concept of multiple reflections was 

incorporated in a cyclic interferometer to improve upon the sensitivity to tilt measurement. The 

cyclic path interferometer with its counter propagating beams is not sensitive to linear 

displacement, but has been shown to be sensitive to tilt. In comparison to the Michelson 

interferometer, the cyclic interferometer is twice as sensitive when measuring tilt. It has been 

shown that the cyclic path interferometer with multiple reflections can be used to measure tilt 

angles below 5 μrad [10]. 

In this thesis, the cyclic interferometer has been improved by introducing a novel method 

of phase stepping to extract phase information, thus allowing tilt measurements down to the 

nanoscale.  It is worth mentioning that since the two counter propagating beams travel the same 

distance, the system is less sensitive to vibrations and external turbulence.  This added stability 

allows for an easy method to introduce phase stepping by using the polarization of the laser beam. 

Since the beams are traveling the same path and in the opposite directions, it is not easy to 

introduce conventional phase stepping tools. It is shown that by using only two additional 

components in the cyclic interferometer, phase stepping can be introduced with relative ease. Also 

developed in this thesis are two phase stepping algorithms, namely the four-phase step method and 

the phase differentiation method. 

1.1 Thesis Organization 

In this thesis, different approaches for measuring small angle tilts are reviewed. The present 

chapter will highlight the framework of the thesis.  
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In Chapter 2, different tilt measurement techniques are explained. Specific interferometers 

will be discussed, namely the Michelson interferometer, the Heterodyne interferometer, and the   

cyclic path interferometer.  

In Chapter 3, the theory and setup of a cyclic path interferometer are discussed in detail. 

Also, the tilt measurement procedure using the cyclic path interferometer with phase stepping and 

phase measurement is described.  Two phase stepping routines are discussed in this chapter, 

namely the four-phase step method, which is used when the visibility of the fringes is not changing, 

and a modified phase differentiation method, which is used when the visibility of the fringes 

change with the introduction of phase step.   

In Chapter 4, the experimental setup for measuring small angle tilts using the cyclic path 

interferometer will be explained in detail. The process that leads to a higher sensitivity in the 

measurements will also be discussed, along with polarization phase stepping. 

Chapter 5 will present a summary of the results and simulations of the tilt measurements 

achieved using the setup explained in Chapter 4. It will also offer concluding remarks, including 

directions for further research.  
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 Optical Techniques for Tilt Measurement 

2.1 Introduction  

Both interferometric and non-interferometric techniques can be used to measure angular 

tilt or rotation. In this thesis, the focus will be on the interferometric techniques as they are robust 

and can be used to measure small tilt needed in many applications.  

2.2 Optical Interferometry Used for Measuring Small Tilt Angles 

When two or more waves generated from the same coherent source converge, they will 

interfere with each other. This interference may be constructive or destructive: They will add 

wherever a peak of one wave match with the peaks of the other. This superposition is called 

constructive interference. Wherever a peak of one wave falls on the trough of the other wave, they 

will cancel each other out (or partially cancel, if the amplitudes are not the equal). This is called 

destructive interference.  

If the interference involves two identical waves, with the same amplitude and wavelength, 

then the waves will have a constructive interference at a certain point if their path lengths up to 

that point are the same or differ by an integral number of wavelengths. For the waves to interfere 
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destructively, their path lengths must differ by an integral number of wavelengths plus a half a 

wavelength [12]. 

Figure 2.1 An Example of Optical interference, The Young double-slit experiment [12]. 

Optical Interferometry has been used for examining the quality of optical elements like 

mirrors, lenses, etc. It looks for and measures any deformation in the optical element’s surface. To 

evaluate these optical elements, highly accurate measurements in the interferometric process are 

needed. There are several interferometers used for measuring small-angle tilts in systems including 

the Michelson, heterodyne, and cyclic path interferometers [13, 9, 10]. Also, there are a few 

techniques that are based on interferometric processes. One such method uses a Murty shear plate 

[8], while another uses the Fabry-Perot etalon to measure the small-angle tilts in the system [7]. 

These methods will be explained in detail in the following subsections. 

2.2.1  Tilt Measurement Using Michelson Interferometer  

As is shown in Fig 2.2,  the Michelson interferometer is a common configuration for optical 

interferometry and was invented by Albert Abraham Michelson. A beam splitter (BS) is used to 

split the light into two beams that are orthogonal to each other. These two beams are then reflected 

back to the BS via two mirrors, where they are then combined to form one beam. The amplitudes 

https://en.wikipedia.org/wiki/Interferometry
https://en.wikipedia.org/wiki/Albert_Abraham_Michelson
https://en.wikipedia.org/wiki/Beamsplitter
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of the two beams will combine based on the principles of interferometry causing constructive or 

destructive interference as explained before.  The interfered beam is directed to a screen or a CCD 

camera or some other type of detector for making the observation [6]. 

 

Figure 2.2 Schematic of a Michelson interferometer [14]. 

Tilt measurements are based on the measurement of the optical path difference (d) between 

two beams if one of the mirrors is tilted by  in the Michelson interferometer.  If D is the distance 

of the mirror that is tilted to the screen, then:  

𝛼 = 𝑑/𝐷 

A disadvantage for this system is its limited resolution.  In order to measure small angles, 

a large distance D is needed between the mirror and the screen or the CCD camera [6].  

2.2.2 Tilt Measurement Using Heterodyne Interferometer 

The original heterodyne interferometer shown in Fig. 2.3 is used for linear displacement 

measurements. In this schematic arrangement, two collinear and orthogonally polarized beams 

with different angular frequencies (ω1, ω2) are sent to a Polarizing Beam Splitter (PBS). One of 

the beams is sent on a fixed retroreflector, while the other is sent on a moving retroreflector. Due 

(2.1) 

D 
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to motion, the beam reflecting from the moving retroreflector will undergo a Doppler shift. Both 

beams reunite at the back of the PBS, where interference happens. The phase shift of the 

measurement signal from photo detector 1 is compared to the reference signal from the photo 

detector 1. The displacement of the moving mirror can then be extracted by measuring the phase 

shift measured by the two signals [9].   

Figure 2.3 Schematic of the Heterodyne interferometer [9]. 

Chiu et al. introduced a new method for measuring phase from the phase retardation of 

wave plates using a heterodyne interferometer. Fig. 2.4 shows a linearly polarized light at 

wavelength of λ1 or λ2 passing through an electro-optic modulator. It is incident on a BS and then 

divided into two equal amplitude beams. The reflected light passes through an analyzer and then 

enters a photodetector Dr.  The transmitted light passes through a tested wave plate as well as an 

analyzer and is detected by another photodetector Dt. The phase difference between the two beams 

is then measured using a phase meter [15]. 
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Figure 2.4  Schematic of the heterodyne interferometer proposed by Chiu et al. for measuring phase retardation in 

wave plates. P, polarizer; BS, beam splitter; M, mirror; EO, electro-optic modulator; AN, analyzer; W, wave plate to 

be measured; D, photodetector [15]. 

A modification of the previous setup was later proposed for measuring angles based on 

the heterodyne interferometer and Total Internal Reflection. The setup shown in Fig. 2.4 is 

modified by replacing the test waveplate with a movable prism. This modified schematic is 

shown in Fig. 2.5 [16]. 

Figure 2.5 Schematic of the setup introduced by Chie and Su for measuring tilt angles. EO: electro-optic modulator; 

BS: beamsplitter; D: photodetector; AN: analyzer [16]. 

In this setup, the signal measured by Dt is the test signal, and the signal measured by Dr is the 

reference signal. The two signals are sent to the phasemeter and their phase difference Φr is 

obtained. Then the test prism is removed so the transmitted light will travel through the analyzer 

and Dt, this time the phase of the reference signal is measured by the phasemeter to be Φt. So, the 
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phase difference between the s and p polarization is determined due to the total internal reflection 

and can be expressed as in Eq. (2.2) [9] 

 Φ = Φt + Φr (2.2) 

The tilt angle can be calculated by substituting Φ into the Fresnel’s Equations. Fresnel's 

equations describe the reflection and transmission of electromagnetic waves at an interface 

between two layers with different refractive indices. That is, they give the reflection and 

transmission coefficients for waves with electric field parallel and perpendicular to the plane of 

incidence. For light from a medium of index n1 incident upon a medium of index n2 at an angle θi 

and the angle of transmission θt, Fresnel’s equations give the reflection coefficients as follows [9]:  

And  

 𝑟⊥ = 𝑠𝑖𝑛(θ𝑖 − θ𝑡)𝑠𝑖𝑛(θ𝑖 + θ𝑡) 
 

 

2.2.3 Tilt Measurement Using Cyclic Path Interferometer 

The cyclic path interferometer is a type of two beam amplitude division interferometer 

which was first discussed by Michelson [17] and Hariharan [18]. The first version of this 

interferometer was a triangular path cyclic interferometer. This type of interferometer uses a beam 

splitter to divide the beam into two beams which ideally travel the same loop in opposite directions 

 𝑟‖ = tan⁡(θ𝑖 − θ𝑡)tan⁡(θ𝑖 + θ𝑡) 
 

(2.4) 

(2.3) 
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before recombining. This type of interferometer offers three main advantages: First, it is very easy 

to set up. Second, it restricts the degrees of freedom in the system, and third, it decreases the 

requirements on both the coherence length of the source and the angular stability of the beam. The 

schematic of the first version of the cyclic path interferometer is shown in Fig. 2.6 [19]. According 

to Fig. 2.6, the laser beam expansion and collimation is done using the microscope objective and 

the collimating lens. It is worth mentioning that the light source used in this system was a He-Ne 

5 mW laser of 632.8 nm wavelength and was linearly polarized in the TEM00 mode. 

Figure 2.6 Schematic of cyclic interferometer. BS, beam splitter: M. mirror: C, collimator; PH, pinhole; MO, 

microscope objective; S, screen; RBS, rotational beam splitter; I, iris diaphragm [19]. 

Kumar et al. presented a new method for measuring small roll angles using the same setup 

as in Fig. 2.6 [20]. The cyclic interferometer is mounted on a rotary stage, and lateral shear is 

generated by polarization and which when brought to the same state of polarization by a polarizer 

produces lateral shear interference fringe. When the cyclic path interferometer is rotated, a phase 

change is introduced between the orthogonally polarized beams because the incident angle has 

changed. This results in spatial displacement of the interference fringes. Using polarization phase 

shifting technique the phase difference between the two beams, is measured [20]. 
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2.2.4 Tilt Measurement Using the Murty Interferometer 

The Murty interferometer is a lateral shearing interferometer designed by Murty for testing 

optical elements [8]. This method, similar to other interferometric methods, is based on the change 

in the optical path differences between two beams which in this case are the beams reflected from 

the front and back surfaces of the parallel plate. 

This flat parallel plate is shown in Fig. 2.7. The optical path difference between the 

reflection from  

 

Figure 2.7 Flat-Parallel plate of glass used in Murty interferometer [8]. 

the back and front surfaces can be expressed as  

 𝑂𝑃𝐷 = 2𝑛𝑡cos𝜃′⁡⁡⁡⁡⁡⁡⁡⁡⁡ (2.5) 

Where t is the thickness of the flat plate, n the refractive index of the plate in vacume and θ´ is the 

angle of refraction corresponding to the angle of incidence. In the case of light entering the glass 

plate at two different angles such as θ1 and θ2,  the difference between the optical path differences 

for the rotated and unrotated beam will be  
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 𝑂𝑃𝐷1 − 𝑂𝑃𝐷2 = 2𝑛𝑡(cos𝜃′1 − cos𝜃′2) (2.6) 

According to the Stokes relations, the destructive interference will happen when  

 𝑂𝑃𝐷1 − 𝑂𝑃𝐷2 = 𝑚𝜆 (2.7) 

In which, m is an integer and λ is the wavelength of the light source used. Using Equations (2.6) 

and (2.7), the angle of rotation for the glass plate will be calculated by θ2-θ1 [8]. 

2.2.5 Tilt Measurement using the Fabry-Perot Etalon 

A Fabry-Perot etalon is typically made of a transparent plate with two reflecting surfaces. 

As is shown in Fig. 2.8, interference happens between the multiple reflections of light between the 

two reflecting surfaces.  Constructive interference occurs if the transmitted beams are in phase and 

destructive interference happens if they are out-of-phase. Whether the multiply-reflected beams 

are in-phase or not depends on λ the wavelength of the light, θ the angle the light incident on the 

etalon, l, the thickness of the etalon and n, the refractive index of the material between the 

reflecting surfaces [7]. 

                                                       Figure 2.8 The Fabry-Perot etalon [7]. 
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This schematic of the angle measurement was proposed by Lin et al. and is shown in Fig. 

2.9 [7]. Here the first PBS splits the linearly polarized laser beam equally into two beams, L1 and 

L2 which are both linearly polarized as well. These two beams pass through the Fabry-Perot etalon, 

which is on a rotational stage driven by a piezo actuator that is controlled by a computer, and then 

go through the second PBS, which directs L1 and L2 to the photo detectors PD1 and PD2 [7]. When 

the etalon is rotated the two beams suffer a phase shift which can be detected and related to the 

rotation. The accuracy in measuring rotation with this set up is 0.01 arc-sec. 

Figure 2.9  a) Schematic of the Angular probe and b) the control and signal processing system [7].  

2.3 Autocollimation technique for Measuring Small Tilt Angles 

An Autocollimator, shown in Fig. 2.10, projects a collimated beam, which is completely 

or partially reflected by an external reflector back into the system, where it is then focused and 

detected by a photo detector. When the reflector is rotated, the focused spot shifts. From this shift, 

the rotation angle can be determined [21]. 

 



  

15 

                                                      . 

The autocollimator is simple and easy to work with but to achieve a high sensitivity there 

is a problem. The amplification factor is given by the ratio between the effective focal length of 

the system and spatial resolution of the photo detector. A high sensitivity requires a long focal 

length. For example, an autocollimator having a focal length of 50 cm and a sensitivity of 5 

nanoradians, needs a detector with a resolution and mechanical stability of 2.5 nm [21].  

Pisani and Astrua proposed a method using multiple reflections that can help increase the 

sensitivity [22].  

Figure 2.11 Schematic of the experimental setup for amplifying angle measurement using an 

Autocollimator [22]. 

Figure 2.10  Schematic of an Autocollimator [21]. 
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The schematic of their setup is presented in Fig. 2.11 which consists of a laser source, the angle 

amplification mirrors, and a device for measuring the angle. The laser source produces a collimated 

beam, the beam goes through a BS and is split into two beams, one goes towards the detector while 

the other hits mirror A, which is then reflected towards mirror B and bounces between the two 

mirrors approximately 60 times before exiting the mirrors and going back to the BS, which is 

reflected towards the angle measurement device. The angle measurement device includes a 

positive lens and a position-sensitive detector placed at the focal point of the positive lens [22]. 
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 Phase Shifting Method for Tilt Measurement in Cyclic 

Path Interferometer 

In this chapter, the theory of tilt measurement in a cyclic path interferometer will be 

discussed. In addition, a different method of extracting phase information from the fringes using 

phase stepping methods will be discussed. Two methods of extracting phase namely the standard 

four-phase step and the phase differentiation method will be outlined.   

3.1 Cyclic Path Interferometer 

The setup for tilt measurement with a cyclic path interferometer is shown in Fig 3.1. Kumar 

et al. using their setup for measuring small tilt angles were able to measure angles as small as 23 

arcsec (0.1mrad). The setup with three mirrors (rectangular cyclic path interferometer) is found to 

be twice as  sensitive as a classical Michelson interferometer. As stated before since the two 

counter propagating beams travel identical paths, the interferometer is insensitive to external 

Figure 3.1 Schematic of the cyclic path interferometer with 4 mirrors, mirror 3 is the mirror that is tilted [10]. 
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vibrations and turbulences. The schematic diagram for this interferometer is shown in Fig. 3.1 

[10]. A 50/50 beam splitter is used to generate two equal amplitude beams.  Both beams travel the 

same path but in opposite direction. After traversing, the two beams recombine at the beams splitter 

where they interfere, Mirrors 1 and 2 are fixed while, mirror 3 introduces the tilt. By tilting Mirror 

3, the two beams go through slightly different paths, thus causing a linearly increasing or 

decreasing phase change in the plane of the wavefront, which causes fringes of equal inclination 

to appear in the overlapping area. The path difference caused by the tilt in the case of a cyclic 

interferometer in both beams are equal but have different signs, positive for one and negative for 

the other. Thus the total path difference between the two beams is added and is twice that of a 

Michelson interferometer.  

In order to increase the sensitivity of the system in measuring tilt angles a new system was 

described where the two beams are multiply reflected between two parallel mirrors.  The modified 

schematic arrangement with the multiple reflection setup is shown in Fig. 3.2. 

Figure 3.2 Schematic of the Cyclic path interferometer with multiple reflections [10]. 
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In the modified setup Mirror 3 has been replaced with a two-parallel mirror arrangement 

where Mirror 3 is mounted on a nano rotational stage.  As the beams arrive at Mirror 3, they start 

to reflect between Mirror 3 and 4. After going through a series of multiple reflections, the beams 

leave the Mirror 3 and Mirror 4 assembly and recombine again at the BS. The number of multiple 

reflections increases the tilt sensitivity by a factor of 2N, where N is the number of reflections 

occurring on Mirror 3.  

3.2 Theory of Multiple Reflections 

As shown in Fig. 3.3, according to the basic law of reflection in geometrical optics, when 

a ray of light is incident on a flat mirror with an angle of α, the beam will be reflected from the 

surface of the mirror with an angle of α. If the mirror is rotated by an angle θ, the reflected beam 

will be rotated with an angle 2θ [22].  

Figure 3.3 Effect of rotation of a mirror on reflecting beams. 

In the case of two parallel flat mirrors, for example, Mirror3 and Mirror4 in Fig 3.4, when  
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a beam impinges on Mirror 3 with an angle of α it starts to bounce a few times between the two 

mirrors and at last it will exit with the same angle α. If Mirror 3 is rotated by an angle of θ, 

Figure 3.4 Effect of rotation of one of two mirrors in a setup with flat parallel mirrors. 

where θ is much smaller than (θ << α), then after one reflection, the angle α will have doubled, 

similar to the case with one mirror. After each reflection of the beam, the angle doubles. Thus the 

beam which comes out of the system is eventually rotated with an angle 2Nθ, which N is the 

number of reflections on Mirror 1 (the tilted mirror) [22]. 

 

3.3 Multiple Reflection in Cyclic Path interferometer 

As mentioned before, in the cyclic path interferometer, both beams travel the same distance 

before recombining at the beam splitter. As was shown in Fig. 3.2, to generate more reflections 

between Mirror3 and Mirror4, the angle θ, i.e., the angle between the beams as they enter and exit 

Mirror3, should be as small as possible. The relationship between the distance between the two 

mirrors (d), the length of Mirror 3 (L), the incident angle (θ) and the number of reflections (N) is 

as follows [10]. 

(3.1) 
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𝑁 = 12𝑑 ∙ 𝐿tan⁡(θ) 
 

That is, the number of reflections is inversely related to the incident angle and the distance between 

the mirrors, even though N increases with the length of Mirror 3. In order to make the beam enter 

the mirrors easily Mirror 3 is slightly longer than Mirror 4. 

          Assuming that the two beams reunite at the BS, where interference happens, Z is the distance 

between a virtual point behind Mirror3 and the BS. When no tilt is introduced to the system, the 

two beams will coincide at the BS but when Mirror 3 is tilted by an angle α, the centers of the two 

beams will be separated by a distance AB as shown in Fig. 3.5. In this case, if X is the distance 

between the center of the beam to any point on the beam, the optical path difference between the 

two beams at the small-angle condition can be calculated using Equation (3.2) [10]. 

𝑂𝑃𝐷 = 4𝑋𝑁α 
(3.2) 

Figure 3.5 The effect of tilt on the beams in the cyclic path interferometer proposed by Kumar et al. 
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 If the beam is close to being collimated, then the radius of curvature of the beam does not 

affect the fringe spacing. The tilt angle then can be calculated using Equation (3.3). In this 

equation, it has been assumed that the wavefront is aberration free. Further studies of the influence 

of aberrations on the tilt measurement were carried out and shown that spherical aberration will 

introduce large errors in the measurement of tilt [23]. 

α = 𝜑2𝜋 ∙ 𝜆4𝑋𝑁 

3.4 Different Methods for Evaluating Phase in the Cyclic Path Interferometer 

There are three possible ways to measure the fringe spacing observed in the overlapped 

region of the cyclic interferometer.  The first method is a basic method using fringe tracing, where 

the fringes are thinned and the spacing between them is evaluated. In the second method, when 

relatively large number of fringes are obtained, a Fourier transform method can be used to extract 

the total phase and thereby the tilt. A third and robust method is to employ a phase stepping routine 

to extract the phase. The previous work [10], used another method by assuming that the fringes 

formed are of unit visibility cosine squared (cos2) plot was fit to the fringes and the phase was 

extracted. In the case of fringes with lower visibility a constant intensity value was subtracted and 

then the fringes were fit with the cosine squared profile. However, the drawback of this evaluation 

is that there must at least one fringe in the field, which places a natural lower bound on the smallest 

tilt angle that can be measured by this method. In this thesis, polarization phase stepping was used 

to extract the phase the limit was lowered from micro radians to nanoradians [10].   

(3.3) 
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3.4.1 The Fringe Tracing Method 

In this method, positions of the individual fringes are detected and used as interpolation 

points. This is because the phase value for each fringe is known at least relatively to other fringes. 

Points along a fringe all have the same phase value while the phase difference between adjacent 

fringes is known to be 2π. In the next step, the intermediate phase values between the fringes are 

interpolated using the fringe values at the center as interpolation points. In the fringe tracing 

method, there is still error in detecting the center of the fringes despite the method’s use of 

computers, which causes a decrease in the accuracy of the phase. A diagrammatic explanation of 

the process is shown in Fig. 3.6. 

3.4.2 The Fourier Transform Method 

This method is based on the Fourier transform of the intensity distribution of the 

interferogram pattern. In this method, when the fringes are oriented along one direction such that 

the carrier signal of higher frequency is modulated by a low frequency original signal, then a one-

dimensional Fourier transform along a line perpendicular to the fringes can be performed.  Figure 

Figure 3.6 Process of phase evaluation using the fringe tracking method [24]. 
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3.7 shows a diagrammatic explanation of this process where one can see that the original fringes 

have a high carrier fringe overlaid by a low frequency signal [24].   

 

Figure 3.7  Process of phase evaluation using the Fourier transform method [24]. 

The Fourier transform produces a central maximum and two side order peaks that carry the 

low frequency signal. A bandpass filter is then used to isolate one-of-the side band in the Fourier 

spectrum. This side band is then centered and the phase information is extracted by performing an 

inverse Fourier transform.   

3.4.3 Phase Shifting Method 

In order to extract quantitative data from an interference pattern, the phase difference 

between the two interfering beams must be extracted.  In this method, a known phase difference 

is introduced between the two beams in a few steps. After each step, the image of the interference 

pattern is recorded. With a known phase shift, it is then possible to calculate the original phase 

difference between the interfering beams. There are many algorithms that have been developed in 
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the literature to accomplish this task and the most commonly used method is the four-phase step 

method.  The data from this algorithm will be used to calculate the primary phase difference 

between the interfering beams [6].  The phase stepping method has a lot of advantages compared 

to other techniques: 

• High measurement accuracy  

• Rapid measurement 

• Good results with low contrast fringes 

• Results independent of intensity variations across pupil 

There are two types of phase stepping techniques used in interferometry namely temporal 

phase step and spatial phase step. In this thesis, the focus has been primarily on the temporal phase 

step using a polarization phase stepping technique. There are different methods that have been 

developed to introduce the constant phase step and this is discussed in the following sections. 
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3.3.3.1 Phase Shifting -  Moving Mirror  

By far the most common method used to introduce a time-varying phase shift in a phase 

Figure 3.8 Three common interferometer configurations: (a) Twyman-Green, (b) Mach-Zehnder, (c) Fizeau [6]. 

shifting interferometric system is to translate one of the mirrors or optical surfaces in the 

interferometer with a piezo electric transducer (PZT). Depending on the configuration of the PZT, 

up to a few hundred volts may be needed to obtain the required motion of a wavelength or less. By 

discretely changing the applied voltage, the required phase shift can be introduced. 

If the voltage is programmed to vary smoothly, a phase shift of a desired functional form 

can be produced. This method has been used in different interferometers such as the Twyman-

Green, The Mach-Zehnder and the Fizeau interferometers as shown in Fig. 3.8 [6]. 

3.3.3.2 Phase Shifting -  Diffraction Grating 

When a diffraction grating is translated through a beam of light, a Doppler shift is 

introduced in the diffracted beams. The translation direction is perpendicular to the propagation 
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direction. The frequency shift is proportional to the diffraction order m and the velocity v, and 

inversely proportional to the grating period d, or 

∆𝜐 = 𝑚𝑣𝑑  

The un-diffracted beam has no frequency shift, beams diffracted in the same direction as 

the translations see a positive frequency shift while beams diffracted in the opposite direction have 

their frequency decreased. One of the diffracted orders is selected and interfered with the original 

frequency to produce a phase shifting interferometer [25].  

3.3.3.3 Polarization Phase Shifting 

In polarization phase shifting, generally, the reference and test waves with linear 

orthogonal polarizations are transformed to opposite circular polarizations and are allowed to pass 

through a linear polarizer. The (geometrical) phase shift is introduced by varying the angular 

orientation of the pass direction of the polarizer. Polarization phase shifting has been applied to 

different interferometric configurations [25]. 

Figure 3.9 Polarization Phase shifter arrangements [25].  

 

(3.4) 
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 The most important advantage of this method is that it allows one to capture all the 

necessary phase-shifted interferograms simultaneously, thereby reducing the vibration 

susceptibility to a minimum and extending the scope of the measurement to dynamic 

interferometry.  

3.4.4 Detecting the Wavefront Phase 

After introducing the phase shift into the system there are several algorithms used to 

calculate the phase shift introduced in the system. In the following sections, two methods that have 

been used for measuring tilt will be discussed.  

 

3.3.4.1 The Four-Step Algorithm with Constant Visibility 

The easiest algorithm, introduces the phase shift in 3 steps resulting in 4 measurements [6]. 

The phase difference introduced in each step is π/2. If the phase shift introduced into the system is 𝛿 and has four values as follows: 

𝛿𝑖 = 0, 𝜋2 , 𝜋, 3𝜋2 ; 𝑖 = 1,2,3,4 

Substituting these values for 𝛿⁡in equation (3.5) 

𝐼(𝑥, 𝑦, 𝑡) = 𝐼′(𝑥, 𝑦) + 𝐼′′(𝑥, 𝑦)cos⁡(𝜑(𝑥, 𝑦) + 𝛿(𝑡)) (3.5) 
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Where 𝐼′ is the average intensity and 𝐼′′ is the fringe or intensity modulation. Assuming 

that with the introduction of phase step, there is no change in the visibilities of the fringes. The 

result will be as shown in equations (3.6) to (3.9) as follows:  

𝐼1(𝑥, 𝑦, 𝑡) = 𝐼′(𝑥, 𝑦) + 𝐼′′(𝑥, 𝑦)cos⁡(𝜑(𝑥, 𝑦)) 

𝐼2(𝑥, 𝑦, 𝑡) = 𝐼′(𝑥, 𝑦) + 𝐼′′(𝑥, 𝑦)cos⁡(𝜑(𝑥, 𝑦) + 𝜋2) 

𝐼3(𝑥, 𝑦, 𝑡) = 𝐼′(𝑥, 𝑦) + 𝐼′′(𝑥, 𝑦)cos⁡(𝜑(𝑥, 𝑦) + 𝜋) 

𝐼4(𝑥, 𝑦, 𝑡) = 𝐼′(𝑥, 𝑦) + 𝐼′′(𝑥, 𝑦)cos⁡(𝜑(𝑥, 𝑦) + 3𝜋2 ) 

            Using trigonometric identities will result in: 

𝐼1(𝑥, 𝑦, 𝑡) = 𝐼′(𝑥, 𝑦) + 𝐼′′(𝑥, 𝑦)cos⁡(𝜑(𝑥, 𝑦) 

𝐼2(𝑥, 𝑦, 𝑡) = 𝐼′(𝑥, 𝑦) − 𝐼′′(𝑥, 𝑦)sin⁡(𝜑(𝑥, 𝑦)) 

𝐼3(𝑥, 𝑦, 𝑡) = 𝐼′(𝑥, 𝑦) − 𝐼′′(𝑥, 𝑦)cos⁡(𝜑(𝑥, 𝑦)) 

𝐼4(𝑥, 𝑦, 𝑡) = 𝐼′(𝑥, 𝑦) + 𝐼′′(𝑥, 𝑦)sin⁡(𝜑(𝑥, 𝑦)) 

By solving these four equations with three unknowns, the value of 𝜑 will be calculated for 

each point on the interferogram. The calculation can be done only by using three images, but the 

fourth one is included in order to make the calculation easier. How these equations are solved for 𝜑⁡is shown in equations (3.14) to (3.17). 

𝐼4 − 𝐼2 = 2𝐼′′(𝑥, 𝑦)sin⁡(𝜑(𝑥, 𝑦)) 

(3.9) 

(3.8) 

(3.7) 

(3.6) 

(3.14) 

(3.13) 

(3.12) 

(3.11) 

(3.10) 
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𝐼1 − 𝐼3 = 2𝐼′′(𝑥, 𝑦)cos⁡(𝜑(𝑥, 𝑦)) 

By taking the ratio of (3.19) and (3.20), term 2I’’ is eliminated, leaving us with the 

following: 

𝐼4 − 𝐼2𝐼1 − 𝐼3 = sin⁡(𝜑(𝑥, 𝑦))cos⁡(𝜑(𝑥, 𝑦)) = tan⁡(𝜑(𝑥, 𝑦)) 

This will lead us to the amount of phase difference between the two interfering beams 

𝜑(𝑥, 𝑦) = 𝑡𝑎𝑛−1 (𝐼4 − 𝐼2𝐼1 − 𝐼3) 

Figure 3.10 Process of phase evaluation using phase shifting. 

  

A diagrammatic explanation of how the four-phase step method works is shown in Fig. 3.10. It is 

worth mentioning that there are several algorithms used to measure the phase difference using the 

phase shifting method. These algorithms vary in the number of phase steps they employ, from one 

all the way to five [26]. 

 

(3.16) 

(3.17) 

(3.15) 
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3.3.4.2 Phase differentiation Method with Constant Visibility 

This method works like the Phase Shifting method but the difference is that only two steps 

of a known value are required [27].  The equation for the interference between the reference and 

the test wavefront is as follows:  

𝐼1(𝑥, 𝑦, 𝑡) = 𝐼0{1 + 𝛾𝑐𝑜𝑠⁡(𝛿(𝑥, 𝑦))} 

In Equation 3.21, 𝐼0is the average intensity, 𝛾 is the visibility of the interference pattern, 

and 𝛿(𝑥, 𝑦) is the wavefront phase. In the next step, a phase shift of π/2  is introduced into one of 

the beams, the result of which will be the second interference pattern with an intensity of: 

𝐼2(𝑥, 𝑦, 𝑡) = 𝐼0{1 − 𝛾𝑠𝑖𝑛(𝛿(𝑥, 𝑦))} 

It has been mentioned that any value of phase step can be introduced into the system in 

order to generate the second interference pattern. Joenathan and Khorana [27] used a phase step of 

π/2 for simplicity of calculations. Each of the phase stepped interference fringes are sheared by a 

few pixels along the y or x direction, which depends on the slope of the wavefront. If the shear has 

to be along one direction, this can be done by introducing a known amount of tilt between the 

interfering beams [27]. 

The equations for the differential intensity data for the case that the tilt is along the x axis, 

can be expressed as:  

𝐼1𝑑 = 𝐼1(𝑥 + ∆𝑥, 𝑦) − 𝐼1(𝑥, 𝑦) = 𝐼0𝛾{cos⁡(𝛿(𝑥 + ∆𝑥, 𝑦)) − 𝑐𝑜𝑠(𝛿(𝑥, 𝑦))} 

And 

(3.19) 

(3.18) 

(3.20) 
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𝐼2𝑑 = 𝐼2(𝑥 + ∆𝑥, 𝑦) − 𝐼2(𝑥, 𝑦) = −𝐼0𝛾{sin⁡(𝛿(𝑥 + ∆𝑥, 𝑦)) − 𝑠𝑖𝑛(𝛿(𝑥, 𝑦))} 

Which ∆𝑥 is the lateral displacement of the fringe pattern. By using the Taylor series, 

equations 3.22 and 3.23 can be simplified into the following equations: 

𝐼1𝑑 = −𝐼0𝛾{sin(𝛿′)[sin(𝛿(𝑥, 𝑦))]} 

And 

𝐼2𝑑 = −𝐼0𝛾{sin(𝛿′)[cos(𝛿(𝑥, 𝑦))]} 

Which 𝛿′ = (𝜕𝛿(𝑥, 𝑦) 𝜕𝑥⁄ )∆𝑥 where 𝜕𝛿(𝑥, 𝑦) 𝜕𝑥⁡⁄ is the slope of the phase function. Therefore, 

the phase at the point (𝑥, 𝑦),⁡can be calculated by dividing equation 3.22 by 3.23: 

𝛿(𝑥, 𝑦) = 𝑡𝑎𝑛−1 ([𝐼1𝑑𝐼2𝑑]) 

3.3.4.1 Phase differentiation Method with Varying Visibility:  

In the cyclic interferometer because the beams travel the same path, the conventional 

method of moving the mirror or grating or stretching the fiber cannot be used and the phase shift 

will occur in both the beams. Thus, the resultant phase difference will always be zero. Therefore, 

a new and simple phase step method using polarization was developed. Since a linear polarization 

beam is converted into a circularly polarized beam using a quarter-wave plate, the chances of 

getting perfect circular polarization is hard. Also, the rotation of a half-wave plate converts the 

circularly polarized light into a linear polarized beam that will interfere when they combine at the 

Beam Splitter. The phase shift is introduced by rotating the half-wave plate in steps of 45 degrees. 

(3.23) 

(3.22) 

(3.21) 

(3.24) 
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This can cause changes in the amplitudes of the two counter propagating beams, and thus there is 

a possibility of a change in the visibility of the fringes. 

 To overcome this problem, a new method of phase evaluation using the phase 

differentiation method was introduced. If 𝐼0is the average intensity and 𝛾 is the visibility of the 

interference pattern and 𝛿(𝑥, 𝑦) is the wavefront, the equation for the interference between the 

reference and the test wavefront is as follows: 

𝐼1(𝑥, 𝑦) = 𝐼0{1 + 𝛾1𝑐𝑜𝑠⁡(𝛿(𝑥, 𝑦))} 

A phase shift of  radians is introduced, and a second image of the interference pattern is captured. 

Do note that a phase shift of  is introduced by rotating the half-wave plate by . The amplitudes 

of the resulting linearly polarized light can vary, thus causing a change in the fringe visibility. It 

must be noted that the average intensity or the bias might not change very much in the process. 

The equation for the interference with the phase shift become  

𝐼2(𝑥, 𝑦) = 𝐼02𝛾2{1 − 𝛾2𝑐𝑜𝑠⁡(𝛿(𝑥, 𝑦))} 

 

By approximating that  𝐼0′  and 𝐼0 are equal equation 3.27 will become  

 

𝐼1(𝑥 + 𝛥𝑥) − 𝐼1(𝑥)𝛥𝑥 = 𝐼01𝛾1sin⁡(𝛿(𝑥, 𝑦)) 

𝛥𝐼1 = 𝐼1(𝑥 + 𝛥𝑥) − 𝐼1(𝑥) = 𝐼01𝛾1sin⁡(𝛿(𝑥, 𝑦))𝛥𝑥 

(3.25) 

(3.30) 

(3.29) 

(3.28) 

(3.27) 

(3.26) 

𝐼2(𝑥, 𝑦) − 𝐼1(𝑥, 𝑦) = 𝐼0′ − 𝐼0 − cos⁡(𝛿(𝑥, 𝑦)){𝐼01𝛾1 + 𝐼02𝛾2} 

𝐼1(𝑥, 𝑦) − 𝐼2(𝑥, 𝑦) = cos⁡(𝛿(𝑥, 𝑦)){𝐼01𝛾1 + 𝐼02𝛾2} 
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Which ∆𝑥 is the lateral displacement of the fringe pattern. 

𝐼01𝛾1 = 𝛥𝐼1sin⁡(𝛿(𝑥, 𝑦))𝛥𝑥 

𝛥𝐼2 = 𝐼2(𝑥 + 𝛥𝑥) − 𝐼2(𝑥) = −𝐼02𝛾2sin⁡(𝛿(𝑥, 𝑦))𝛥𝑥 

𝐼02𝛾2 = − 𝛥𝐼2sin⁡(𝛿(𝑥, 𝑦))𝛥𝑥 

By substituting equations 3.31 and 3.33 into equation 3.28 the result will be: 

𝐼1(𝑥, 𝑦) − 𝐼2(𝑥, 𝑦) = cos⁡(𝛿(𝑥, 𝑦)) { 𝛥𝐼1sin⁡(𝛿(𝑥, 𝑦))𝛥𝑥 − 𝛥𝐼2sin⁡(𝛿(𝑥, 𝑦))𝛥𝑥} 

𝐼1(𝑥, 𝑦) − 𝐼2(𝑥, 𝑦) = cot⁡(𝛿(𝑥, 𝑦)) {𝛥𝐼1𝛥𝑥 − 𝛥𝐼2𝛥𝑥 } 

At last: 

{𝛥𝐼1𝛥𝑥 − 𝛥𝐼2𝛥𝑥 } = tan(𝛿(𝑥, 𝑦)){𝐼1(𝑥, 𝑦) − 𝐼2(𝑥, 𝑦)} 

𝛿(𝑥, 𝑦) = 𝑡𝑎𝑛−1 [ 𝛥𝐼1 − 𝛥𝐼2(𝐼1 − 𝐼2)𝛥𝑥] 

 

Do note that the maximum value of phase obtained using equations 3.17 and 3.24 is Therefore, 

the phase map will cycle between 0 to 2, which is called the raw phase map. To obtain the phase, 

the raw phase map needs to be unwrapped; i.e., the 2 phase ambiguities need to be removed. 

(3.36) 

(3.34) 

(3.35) 

(3.33) 

(3.32) 

(3.31) 

(3.37) 
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Here, the phase unwrapping code obtains the maximum value of the phase along the x-and y- 

directions in order to determine the tilt of the mirror using the cyclic interferometer. In this thesis, 

the Polarization Phase shifting was used, and the phase was calculated using both algorithms 

introduced in this chapter. 
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 Experimental Work 

The goal of this thesis is to measure small tilt angles in the order of nanoradians with high 

accuracy using a cyclic path interferometer. 

4.1 Experimental Setup 

The schematic of the initial setup of the cyclic path interferometer is shown in Fig. 4.1. A 

He-Ne laser beam passes through a microscope objective, a pinhole and a collimating lens system. 

The spatial filtering is accomplished by using a microscope objective MOL and a pinhole PH 

combination that clean up the diverging laser beam. The laser beam is collimated after passing 

through the collimating lens placed in the path of diverging beam such that focal point of the 

Figure 4.1 Schematic of the Setup for the cyclic path interferometer 

used in this thesis. 
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collimating lens coincides with the focus spot created by the microscope objective. The collimated 

beam is aligned to be parallel to the table.   

 

In order to make sure that the beam doesn’t converge or diverge as it propagates, a single 

fringe is created in a shear plate placed in the path of the beam. After making sure that the beam 

is very well collimated, the beam passes through a 50/50 BS. Beam1 goes through M1, M3, and 

M2, while Beam2 goes through M2, M3, and M1. They both meet again at the BS. The interference 

of the two beams is then recorded by a large pixel array camera. A photograph of the setup is 

shown in Fig. 4.2.  

 

Figure 4.2 Photo of the experimental setup, before inserting the fourth mirror for multiple reflections. 
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4.1.1 Alignment Procedure 

1. Beam Collimation using shear plate. 

2. Make sure arm lengths are the same. 

3. Make sure beams go through the center of optical elements. 

4. Make sure both beams meet at the same point on M2 (no fringes are observed in the 

region the beams overlap after the BS). 

5. After making sure about the 4 steps above, the mirrors M1 and M3 are moved in a way 

that the fringes are observable. 

4.2 Phase Evaluation 

The goal of this work was to increase the measurement accuracy to tilt. It is well known 

that phase maps of the wavefront can be extracted using phase stepping routines and thus the focus 

was to develop a method to introduce a known phase step between the counter propagating beams. 

The traditional method of moving a mirror mounted on a PZT stage to introduce phase cannot be 

used here because any phase shift introduced in one beam will be identical to the phase step 

introduced in the counter propagating beam.  It was found that the polarization phase step method 

will lend itself very easily to the cyclic interferometer.  A simple, easy to implement, and novel 

method of phase step with fewer components has been introduced.  The output of the laser beam 

is linearly polarized and then sent through a quarter-wave plate that converts the linear polarized 

light to circularly polarized light. In one of the arms of the cyclic interferometer, a half-wave plate 

is introduced that converts the circularly polarized light back to linear polarized light as it 

propagates in both directions. It is well known that the linear polarized light generated by the half-
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wave plate is phase shifted based on the angle of rotation. Thus, a known amount of phase step 

can be introduced between the two beams by rotating the half-wave plate. 

A half an inch diameter quartz quarter-wave plate was placed with its optic axis at an angle 

of 45o with respect to the incident laser beam’s polarization orientation. At this angle, the linearly 

polarized light was converted to a right circularly polarized beam. A half inch diameter half-wave 

plate was then placed in one of the interferometer’s arms. It did not matter which arm because both 

beams travel identical paths. As the half-wave plate was rotated, a phase shift was introduced 

between the two beams and a dynamic change in the fringes was observed.  In the initial stages, it 

was observed that not only a phase shift was introduced, but there was also a slight change in the 

visibility of the fringe. The change in the visibility was reduced to zero by carefully aligning the 

quarter wave plate to get a perfectly circular polarized light. It was observed that, by rotating the 

half-wave plate, a small amount of tilt was introduced into the system also, thus making the fringe 

unstable as the half-wave plate was rotated. In order to reduce the tilt caused by the half-wave 

plate, it was mounted on an XYZ tilt stage to make the half-wave plate rotate perpendicular to the 

incident plane wavefront. At each step, the half waveplate was rotated by 22.5o. Thus, at the end 

of four-step phase shift the achieved phase shift was 90o. 

Figure 4.3 Pictures taken from the output fringes of the cyclic path interferometer using the four-

step phase shifting method 



  

40 

 

In order to extract the phase of the wavefront, a series of images of the fringes were 

captured with a phase step of π/2 introduced after each exposure. Four such images were captured 

as the phase step cycled from 0 to 3π/2 in steps of π/2. The first method a four-step algorithm was 

used as discussed in section 3.3.4.1.   The four images of the interference pattern phase shifted by 

π/2 are shown in Fig. 4.3. These images were then imported into a Matlab program that used the 

four-phase step algorithm to evaluate the phase. To reduce noise from spurious reflections and 

scattering, each image was processed with a 5x5 medium filter. The raw phase map, the 

Figure 4.5 Phase map achieved using the four-step phase shifting algorithm. 

Figure 4.4 Raw image of the interferogram. 
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unwrapping phase map and the phase plots achieved using the Matlab code is shown in Fig. 4.4, 

4.5, 4.6 and 4.7 respectively.  

  

 

 

In order to reduce the number of phase steps, the phase was evaluated using the phase 

differentiation method. Since the phase is linearly increasing with position, the phase 

Figure 4.6 2D unwrapped phase plot for the four-step phase shifting 

method. 

Figure 4.7 3D unwrapped phase plot for the four-step phase shifting method. 
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differentiation method is a suitable and easy alternative to the four-phase step method. In addition, 

only two images of the fringes need to be captured with a phase step of π/2 between them.  

 

   

 

4.3 Quantitative measurement of tilt at the nanoscale using four-phase step method 

 In order to measure tilt at the nanoscale, a 50 mm flat mirror (M3 in Fig. 4.1) to be tilted 

was mounted on a Mad City Labs nano-tilt stage (Nano-MTA single axis). The tilt stage was then 

connected to a power supply from Mad City Labs to be able to give tilts with a resolution of 2 

Figure 4.8 Results obtained with the phase differentiation method with a) the raw phase map, b) the unwrapped 

phase map, c) a line along the x and y axis passing through the center of the phase map, and d) the 3D plot of the 

tilted wavefront. 
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nanoradians. The maximum tilt that can be introduced in mirror M3 is 1 μrad. A known tilt of 1000 

nanoradians was introduced in the cyclic interferometric arrangement of Fig 4.1. Using the four-

phase step routine, four fringe patterns were captured, and the value of tilt was then automatically 

calculated using the total phase and the total width of the CCD camera along with the conversion 

equation:  

Measured tilt in radians = 
(𝑃ℎ𝑎𝑠𝑒𝑚𝑎𝑥−𝑃ℎ𝑎𝑠𝑒𝑚𝑖𝑛)∗𝜆𝜋∗𝑝𝑖𝑥𝑒𝑙𝑠𝑖𝑧𝑒∗𝑛𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙⁡𝑝𝑖𝑥𝑒𝑙𝑠 ∗ 𝜋180 

The tilt in Mirror M3 was gradually reduced in steps as follows: 1000, 500, 200, 50, 20, 5, 

and 2 nanoradians. The given tilt was then compared to the measured tilt using the cyclic 

interferometric fringes and four-phase stepping routine. Figures 4.9 to 4.16 shows the results for 

each other tilt angles.   

 

 

 

 

(4.1) 
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Figure 4.10 Results for 500 nanorad tilt introduced into the system using four-step phase shifting 

method, a) raw image of the interference pattern, b) Phase map, c)2D unwrapped phase plot and d)3D 

unwrapped phase plot. 

Figure 4.9 Result for 1000 nanorad tilt introduced into the system using four-step phase shifting method, 

a) raw image of the interference pattern, b) Phase map, c)2D unwrapped phase plot and d)3D 

unwrapped phase plot. 
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Figure 4.11 Results for 200 nanorad tilt introduced into the system using four-step phase shifting method, 

a) raw image of the interference pattern, b) Phase map, c)2D unwrapped phase plot and d)3D unwrapped 

phase plot. 

Figure 4.12 Results for 100 nanorad tilt introduced into the system using four-step phase shifting 

method, a) raw image of the interference pattern, b) Phase map, c)2D unwrapped phase plot and d)3D 

unwrapped phase plot. 
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Figure 4.13 Results for 50 nanorad tilt introduced into the system using four-step phase shifting method, a) 

raw image of the interference pattern, b) Phase map, c)2D unwrapped phase plot and d)3D unwrapped 

phase plot 

Figure 4.14 Results for 10 nanorad tilt introduced into the system using four-step phase shifting method, a) raw 

image of the interference pattern, b) Phase map, c)2D unwrapped phase plot and d)3D unwrapped phase plot 
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Figure 4.15  Results for 5 nanorad tilt introduced into the system using four-step phase shifting method, a) raw 

image of the interference pattern, b) Phase map, c)2D unwrapped phase plot and d)3D unwrapped phase plot. 

Figure 4.16  Results for 2 nanorad tilt introduced into the system using four-step phase shifting method, a) raw image of 

the interference pattern, b) Phase map, c)2D unwrapped phase plot and d)3D unwrapped phase plot. 
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Table 4.1 Introduced tilt vs measured tilt for cyclic interferometer with one reflection using four-step phase shifting 

method. 

 

 

Introduced 

tilt (nrad) 

Phase 

Measured 

(max-min) 

Size of image 

(pixels) 

Measured tilt 

(nrad) 

Experimental 

Error (nrad) 

1000 41.8 3820x4896 4055.8           0.3 

 

500 20.84 3820x4896 2022 0.1 

400 16.68 3820x4896 1618.6 0.1 

300 12.46 3820x4896 1209 0.1 

200 8.36 3820x4896 811.2 0.2 

100 4.16 3820x4896 403.6 0.1 

50 2.08 3820x4896 201.8 0.1 

10 0.42 3820x4896 40.56 0.2 

5 0.20 3820x4896 20.2 0.1 

2 0.08 3820x4896 8.4 0.1 
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The results of the measured tilt against the introduced tilt using the four-step phase shifting 

method shows a very good agreement within experimental error. The maximum phase was 

measured for each tilt, and the measured tilt was calculated by converting the phase to wavefront 

distances in wavelength. Then, tilt was determined from the number of pixels and the pixel size of 

the sensor. Do note that magnification factor does not influence the tilt angles determined by the 

cyclic interferometer. The graph in Fig. 4.17 shows the results of the measured and the introduced 

tilt in the cyclic interferometer with one reflection. Also tilt measurement is done as high as 1.00 

rad to 2 nanorad by evaluating phase.  

The average error for these measurements is 0.2 nanorad. Error in these experiments is 

based on the determination of the phase at every point using the four-phase step method. Errors in 

the value of the phase step can cause unwanted ripples in the phase map. An additional error in the 

phase value can be caused by noise in generating the phase maps as well.  

Figure 4.17 Measured tilt (nrad) vs. introduced tilt (nrad) using the four-step phase shifting method. 
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4.4 Quantitative measurement using fringe differentiation method 

One of the problems that can be faced when using the four-phase step polarization method 

is that the visibility of the fringes is not constant. This can happen if the axis of the quarter-wave 

plate is not located 45 degrees with respect to the incident polarization state, This causes the beam 

exiting the quarter-wave plate to be elliptically polarized. When introducing phase steps by 

rotating the half-wave plate, the two beams thus will result in different amplitudes.   When this 

happens then the visibility of the fringes when introducing a series of phase step of π/2 will not be 

constant. This will create higher order ripples in the phase maps and therefore introduce errors. 

Therefore, a phase differentiation method was proposed whereby the effect of the change in 

visibilities is removed in the phase calculation.  In this method only two images of the fringes are 

required where there is a phase step of π/2 between the two images.  Here x used in extracting 

the slope is determined by the number of fringes and usually it is 1/4 of the fringe width. Once this 

was accomplished, the phase maps and the 3D plot of the tilt were generated by using either 

equation 3.24 or 3.37.  With careful alignment along x, y and z axis, a uniform visibility of the 

fringes was maintained. Thus Equation 3.24 was used for phase calculations. The following figure 

shows this result.   
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Figure 4.18 Results for 1000 nanorad tilt introduced into the system using phase differentiation method, a) 

raw image of the interference pattern, b) Phase map, c)2D unwrapped phase plot and d)3D unwrapped 

phase plot. 

Figure 4.19 Results for 500 nanorad tilt introduced into the system using phase differentiation method, a) 

raw image of the interference pattern, b) Phase map, c)2D unwrapped phase plot and d)3D unwrapped 

phase plot. 
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Figure 4.20 Results for 200 nanorad tilt introduced into the system using phase differentiation method, a) 

raw image of the interference pattern, b) Phase map, c)2D unwrapped phase plot and d)3D unwrapped 

phase plot. 

Figure 4.21 Results for 50 nanorad tilt introduced into the system using phase differentiation method, a) 

raw image of the interference pattern, b) Phase map, c)2D unwrapped phase plot and d)3D unwrapped 

phase plot. 
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As shown in Table 4.2, the results of the measured tilt against the introduced tilt using the 

phase differentiation method shows a very good agreement. The maximum phase was measured 

for each tilt and then the measured tilt was calculated. The graph in Fig. 4.22 shows that the phase 

differentiation method has more accurate results.  

Introduced 

tilt (nrad) 

Phase 

Measured 

(max-min) 

Size of 

image 

(pixels) 

Measured 

tilt (nrad) 

 Experimental 

Error  

(nrad) 

1000 41.46 3820x4896 4022 
0.1 

500 20.68 3820x4896 2006.6 
0.1 

200 8.32 3820x4896 807.2 
0.2 

50 2.06 3820x4896 200.2 
0.1 

Table 4.2 Introduced vs measured tilt for cyclic interferometer with one reflection using the phase 

differentiation method. 

Figure 4.22 Measured tilt (nrad) vs. introduced tilt (nrad) using the phase differentiation method. 
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4.5 Introducing multiple reflections and measuring the tilt 

 In order to introduce multiple reflections into the system, a flat square mirror M4 with 

dimensions of 75*75 mm2 was introduced, as is shown in Fig 4.2.  

The distance between M3 and M4 is set at 8 mm while the length of M4 (tilting mirror) is 

50 mm. This geometry allows for the incident angle at the interface of mirror M3 to be 38o, and 

thus four reflections can be accommodated with this two-mirror geometry. The setup was adjusted 

to make sure that the least amount of diffraction from the edges of the mirrors had occurred. To 

reduce the size of the laser beam, an iris was placed between the QWP and BS. The results for the 

4 reflections introduced on M4 are shown in the following. Table 4.3 gives the introduced tilt vs. 

the measured tilt using the four-step phase shifting method and multiple reflections. 

Figure 4.23 Schematic of the cyclic interferometer in order to add multiple reflections (M4 is the tilting mirror). 

 

(4.2) 
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𝑁 = 12𝑑 ∙ 𝐿tan⁡(θ) 

 

Figure 4.24 Results for 200 nanorad tilt introduced into the system with multiple reflections using 

four-step phase shifting method, a) raw image of the interference pattern, b) Phase map, c)2D 

unwrapped phase plot and d)3D unwrapped phase plot. 

Figure 4.25 Results for 100 nanorad tilt introduced into the system with multiple reflections using 

four-step phase shifting method, a) raw image of the interference pattern, b) Phase map, c)2D 

unwrapped phase plot and d)3D unwrapped phase plot. 
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Figure 4.26 Results for 50 nanorad tilt introduced into the system with multiple reflections using four-step 

phase shifting method, a) raw image of the interference pattern, b) Phase map, c)2D unwrapped phase plot 

and d)3D unwrapped phase plot. 

Figure 4.27 Results for 10 nanorad tilt introduced into the system with multiple reflections using four-step phase 

shifting method, a) raw image of the interference pattern, b) Phase map, c)2D unwrapped phase plot and d)3D 

unwrapped phase plot. 
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Introduced 

tilt (nrad) 

Phase 

Measured 

(max-min) 

Size of image 

(pixels) 

Measured tilt 

(nrad) 

Experimental 

Error (nrad) 

200 33.01 3820x4896 3204 
0.1 

100 16.56 3820x4896 1606.8 
0.1 

50 8.32 3820x4896 807.2 
0.1 

10 1.62 3820x4896 161 
0.1 

5 0.868 3820x4896 84.2 
0.1 

2 0.33 3820x4896 32.2 
0.1 

Figure 4.28 Results for 2 nanorad tilt introduced into the system with multiple reflections using four-step phase 

shifting method, a) raw image of the interference pattern, b) Phase map, c)2D unwrapped phase plot and d)3D 

unwrapped phase plot. 

Table 4.3 Introduced vs. measured tilt achieved with multiple reflection cyclic interferometer using four-

step phase shifting method. 
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As can be seen in Table 4.3 and Fig 4.30, the slope of the graph for the multiple reflections 

is multiplied by 4, since there were 4 reflections on the tilting mirror, which agrees with the theory 

explained in chapter 3. 
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Figure 4.30 Measured tilt vs introduced tilt comparison for 1 and 4 reflections using four-step 

phase shifting method. 

Figure 4.29 Results for 50 nanorad tilt introduced into the system using phase differentiation method with multiple 

reflections, a) raw image of the interference pattern, b) Phase map, c)2D unwrapped phase plot and d)3D unwrapped 

phase plot 
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Figure 4.31 Results for 100 nanorad tilt introduced into the system using phase differentiation method with multiple 

reflections, a) raw image of the interference pattern, b) Phase map, c)2D unwrapped phase plot and d)3D unwrapped 

phase plot. 

Figure 4.32 Results for 200 nanorad tilt introduced into the system using phase differentiation method with multiple 

reflections, a) raw image of the interference pattern, b) Phase map, c)2D unwrapped phase plot and d)3D unwrapped 

phase plot. 
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Figure 4.33 Measured vs. introduced tilt using phase differentiation method with multiple reflections. 

Table 4 shows the measured vs. the calculated tilt using the phase differentiation method, 

as shown in the results for the system without multiple reflections, this method is more accurate 

according to the slope of the fitted lines to the data points, Fig. 4.30 and Fig. 4.34.  

 

Introduced 

tilt (nrad) 

Phase 

Measured 

(max-min) 

Size of image 

(pixels) 

Measured tilt 

(nrad) 

Experimental 

Error  

(nrad) 

200 33.02 3820*4896 3204 
0.1 

100 16.54 3820*4896 1604.8 
0.1 

50 8.28 3820*4896 804.4 
0.1 

 

Table 4.4 Introduced vs measured tilt in multiple reflection cyclic interferometer using phase 

differentiation method. 
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 Conclusion 

In this thesis, tilt angles were measured using a cyclic interferometer in the nanoscale 

region. Tilt angles as small as 2nrads were measured with high accuracy and sensitivity. The error 

was low, indeed as 0.1 nanoradians. 

A novel and simple polarization phase shifting method was developed for this purpose of 

measuring such small angles. The polarization method uses only one quarter-wave and one half-

wave plate unlike other methods proposed in the literature. Using few components allows for less 

stringent need on the beam quality after passing through each optical component. In evaluating 

phase using the phase step method, a four-phase step and the phase differentiation method was 

used. The use of the differentiation method comes handy because it requires only two images to 

captured unlike the four-phase step method, which requires four images. In the case of changing 

visibility, a new algorithm was developed to calculate phase using the phase differentiation 

method.  In order to introduce the polarization phase shift, a quarter wave plate was used before 

the BS to turn the linearly polarized light into a circularly polarized light. In one of the arms of the 

interferometer, a half-wave plate was used to shift the phase. It is worth mentioning that for the 

four-step phase shifting method four images were captured within 22.5o steps. 

Also, a new method was introduced that is able to evaluate the phase and eventually 

measure the tilt even in the case of varying visibility. This can be done by using two images which 

have a π/2 phase difference. The results for this technique show that the cyclic interferometer can 

be used to measure object tilts in the nanoscale region. 
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 An additional advantage of the cyclic interferometer is that the two counter propagating 

beams travel identical paths and thus the interferometer is insensitive to external vibrations and 

turbulences. 

Multiple reflections were introduced in the cyclic interferometer to enhance tilt 

measurement capability. Using two mirrors that are parallel to each other, the beams were able to 

go through four multiple reflections before being combined at the BS. Thus, the minimum tilt 

angle that is measured was reduced by the number of multiple reflections. So, tilt as low as 0.2 

nanoradians or 10-5 arc of a second was measured. In principle, by increasing the number of 

reflections this value could be further reduced. It is easy to create about 10 reflections with the size 

of the mirrors used in this setup. Therefore the lower limit is set at 0.2 nanoradians or 4×10-5 arc 

of a second.  

For future work, a tilt stage with higher resolution can be used to introduce tilts in the order 

of picoradians that can be measured using this system. The effect of different aberrations on this 

interferometer can also be studied in future work. In addition, the number of reflections can be 

further increased based on the size of the mirror and the input angle as well. 
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