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ABSTRACT 

One of the most remarkable examples of cell-penetrating peptides (CPPs) is Penetratin, 

a 16-mer fragment derived from the Drosophila Antennapedia homeobox. Understanding the 

structure of Penetratin/DNA complexes is a key factor for the successful design of new vectors 

for gene delivery and may assist in optimizing molecular carriers based on CPPs. Herein, we 

present a comprehensive study on the nanoscale structure of noncovalent complexes formed 

between Penetratin and DNA. The strong cationic nature of the peptide makes it a very efficient 

agent for condensing DNA strands via electrostatic attraction and we show for the first time that 

condensation is accompanied by random-to--sheet transitions of peptide secondary structure, 

demonstrating that nucleic acids behave as a structuring agent upon complexation. For the first 

time, nanoscale-resolved spectroscopy is used to provide single-particle infrared data from DNA 

carriers based on CPPs and they show that the structures are stabilized by Penetratin -sheet 

cores, whereas larger DNA fractions are preferentially located in the periphery of aggregates. In-

solution infrared assays indicate that phosphate diester groups are strongly affected upon DNA 

condensation, presumably as consequence of charge delocalization induced by the proximity of 

cationic amide groups in Penetratin. The morphology is characterized by nano-assemblies with 

surface fractal features and short-range order is found in the inner structure of the scaffolds. 

Interestingly, the formation of beads-on-a-string arrays is found, producing nanoscale 

architectures that resemble structures observed in early steps of chromatin condensation. A 

complexation pathway where DNA condensation and peptide pairing into sheets are key steps 

for organization is proposed. 
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INTRODUCTION 

 

Cell penetrating peptides (CPPs) are short amino acid sequences endowed with cell 

penetrating capabilities.1–3 The current literature reports more than 1500 CPPs,4,5 displaying a 

huge variety of characteristics regarding their origin, internalization mechanisms6,7 and 

physicochemical behaviors.6,8 For instance, a large number of Trojan sequences have been 

isolated from transduction proteins whereas many others have been de novo designed in the 

laboratory.4,8,9 Also, several of them exhibit strong amphipathic features whereas others are 

almost exclusively composed by hydrophilic moieties. In this context of huge chemical diversity, 

common features shared by almost all cell-penetrating peptides are their reduced size, normally 

than 30 amino acid residues, and positive net charge.   

One of the most known examples of CPP is so-called Penetratin,  an arginine- and lysine-

enriched 16-mer fragment situated between positions 43 and 58 in the third helix of the 

Drosophila Antennapedia homeoprotein.10–12 Since its discovery in the mid 1990’s, Penetratin 

has been successfully applied to translocate different cargoes into living cells13–15 and, more 

recently, a growing number of studies has reported on its use to deliver silencing RNAs into retinal 

cells,16 to produce conjugates with metallic nanoparticles and polymer micelles,17,18  and to 

formulate conjugates able to invade the blood-brain barrier.17,19 Many of these delivery systems 

have been formulated by covalent conjugation with the load;2,4,9 however, the highly-cationic 

composition makes Penetratin a powerful condensing agent for producing conjugates with 

nucleic acids through non-covalent strategies.11,20,21 The advantage of this approach is that 

preparation is easier and cheaper in comparison to synthesis of covalently bound conjugates, and 

complexation relies on weak interactions that facilitate ease of release. On the other hand, major 

drawbacks of non-covalent assemblies are their lower uptake efficiencies and higher complexity 

for structure determination since these entities can form aggregates with very complex secondary 

and tertiary structures.2,22,23 This last feature in particular represents a key issue either for 

establishing structure-activity relationships or to optimize the production of new vectors intended 

for gene delivery.2,4  In addition, the third helix at C-terminus of homeoproteins is known to dock 
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with DNA major grooves24 and, although several homeodomains have been identified to date, this 

region is highly conserved among different homeoproteins. For instance, certain amino acids are 

systematically found at certain positions: V or I at 45, W at 48, F at 49, R or K at 52, 55 and 

57.25,26 The Penetratin sequence obeys this prototypical composition  and, therefore, information 

on supramolecular ordering of Penetratin/DNA condensates represents a potential contribution 

to shed light on the regulatory function of Antennapedia. 

In the current work, we present a multi-level structural study on the organization of 

complexes formed between Penetratin and DNA. We show that Penetratin has strong condensing 

capabilities, driving nanoscopic condensation with both calf-thymus and plasmid DNA. The 

morphology is characterized by irregular aggregates exhibiting surface fractal features and short-

range order. The secondary structure of the aggregates is dominated by -sheets, while random 

to -sheets transitions are observed upon addition of DNA, demonstrating that nucleic acids 

behave as a structuring agent during complexation. Infrared data suggests the electrostatic 

attraction between opposite charges at amine and phosphate groups is the underlying force driving 

complexation and chemical bonding related to phosphate diester groups is strongly affected upon 

DNA condensation. Interestingly, the nanoscopic structure of condensates containing DNA 

fragments has been shown to display a beads-on-a-string architecture, resembling the morphology 

of aggregates found in the early steps of chromatin condensation.27  

 

MATERIALS AND METHODS 

 

Peptide synthesis, reagents and sample preparation: The Penetratin peptide (R-Q-I-K-I-W-F-

Q-N-R-R-M-K-W-K-K-NH2) was custom synthesized by AminoTech (São Paulo - Brazil), using 

routine solid-phase approaches through the Fmoc strategy as described elsewhere.28,29 TFA was  

used to cleave peptides from polymer resin and deprotect amino acid side-groups. Peptides were 

then precipitated with diethyl ether and the product was freeze-dried for a couple of days. During 

this step, TFA and other scavengers are removed along with the solvent. In the purification step, 
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lyophilized crude peptides were resuspended in aqueous ACN + 0.1% TFA solutions (60:40, v:v)  

and purified on a semi-preparative liquid chromatography system using C18 columns. The 

separated fraction containing purified peptides was lyophilized again for a period of days to 

ensure complete evaporation of the solvent. In the remaining peptide powder, trifluoro acetate 

counter-ions (CF3CO2
-) provide charge neutralization against cationic groups at the peptide, 

which is delivered as a TFA salt. Henceforth, the Penetratin peptide will be referred to as PNT. 

Liquid chromatography coupled to mass spectroscopy assays revealed purity and molecular mass, 

respectively, at 95% and 2245.7 Da (calculated Mw = 2245.75 Da). Double-stranded DNA 

originated from calf thymus tissue was purchased from Sigma-Aldrich and characterized by 

agarose gel electrophoresis (SI file, Figure S1A). Ultrasonication was used as described 

elsewhere30–32 to fragment calf thymus DNA to sizes of ~200 bp (Figure S1B). Since separation 

between consecutive base pairs along the B-form of DNA chains is about 0.34 nm,33 the size of 

these fragments can be estimated to be ~200 × 0.34 = 68 nm, which is a bit longer than the 

persistence length of the DNA backbone (50 nm).31 Therefore DNA fragments can be described 

as rod-like structures not able to fold, with diameter of ~2 nm.31,32   Stock solutions were prepared 

by weighing peptide powder or DNA fibers into Eppendorf tubes and re-suspending them in 

ultrapure water (or deuterated water, D2O) to the desired concentrations. DNA stock solutions 

were left to rest in the fridge (4 °C) for periods of 2-3 days, with several vigorous vortexing cycles 

to assist homogenization. The complexes were prepared by mixing proper amounts from the stock 

solutions to obtain different ratios between cationic charges on the side chains of the PNT and 

anionic charges at phosphate groups of the DNA (N+:P- ratio).  pH assessment carried out either 

in peptide (or DNA) solutions or in mixtures with PNT/DNA complexes (1:1 molar charge ratio) 

revealed that our samples are slightly acidic, pH ~ 6 (see SI file, Fig. S13). Therefore, peptide 

basic groups are protonated whereas DNA strands carry two negative charges per base pair. Since 

our peptides were synthesized with a NH2 group at C-terminus, charges were computed 

considering the protonated N-terminus plus one positive charge per alkaline residue along the 

sequence, leading to a + 8 net charge per Penetratin chain. In addition, since measurements were 

performed within a period of a few days from sample preparation, stability of DNA base-pairs is 
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kept in the samples.34  The formation of white pellets upon mixture of PNT and DNA was 

observed in solutions containing DNA at concentrations above > 1 mg/ml; in more dilute 

preparations, no visual phase separation appeared. The green fluorescent protein (GFP) 

expressing vector, pEGFP-N3, was acquired from BD (New Jersey, USA). Initially, Escherichia 

coli (DH5-α) bacteria were transformed with pEGFP-N3 (Clontech, Mountain View, USA) and 

cultured in 2 L. Bacteria mass obtained after centrifugation was used to pEGFP-N3 purification 

using Endo-free Megaprep kit from Qiagen (Hilden, Germany) following the provided 

instructions. Plasmid integrity was analyzed by agarose gel electrophoresis, and the plasmid 

concentration and quality were assessed by Nanodrop 2000 (Thermo Fisher Scientific, 

Massachusetts, EUA). 34  

 Fourier-transform Infrared Spectroscopy (FTIR). Samples were prepared in deuterated 

water, D2O, and examined on a Varian 610-IR spectrophotometer using an ATR accessory. 

Peptide concentration was kept at 1 mg/ml and the corresponding amount of DNA was added to 

match the desired N+:P- ratio. Droplets from solutions were placed on top of the germanium 

crystal and data were collected at 2 cm-1 resolution. After 128 accumulations, data were averaged 

and background-subtracted.  

Circular Dichroism (CD). Solutions containing peptides dissolved into ultrapure water at 0.1 

mg/ml were loaded into Hellma cells with 1 mm path length. Titration assays were carried out by 

adding DNA from concentrated solutions to cover N+:P- ratios below and above the point of molar 

equivalence between positive and negative charges. Spectra were collected in the range 180 – 255 

nm, in steps of 1 nm and 1 s per step. Data from four accumulations were averaged and 

background subtracted, and conversion into ellipticity units has been performed by normalizing 

the data according to the peptide concentration in the solution. Only data exhibiting absorbance 

< 2 were considered for analysis. Fourier filtering (7 points window) was used to minimize noise. 

A homemade MatLab routine was used to calculate linear combinations of PNT and DNA spectra 

and compare the minimal residual result to the experimental data.  
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Small-angle X-ray Scattering. Small-angle X-ray Scattering (SAXS) measurements were 

carried out using synchrotron sources at SAXS-1 LNLS (Campinas, Brazil) and BM29-ESRF 

(Grenoble, France).  Data from PNT/DNA complexes were collected on SAXS-1, using white 

pellets precipitated  from PNT/DNA. Samples were left to equilibrate for 2-3 days at 4 °C before 

SAXS experiments. The PNT concentration was kept at 5 mg/ml, while DNA concentration was 

adjusted to match the desired N+: P- ratio. The pellets were sandwiched between mica windows, 

with 1 mm path length, and SAXS data was acquired during 300 s, at room temperature. Data 

collection was separated into ten successive frames to inspect   radiation damage. Data from 

solutions containing only PNT or DNA were obtained on BM29 using the BioSAXS apparatus 

available on the beamline. The X-ray energy was set at 12 keV and successive frames of 0.2 s 

each were registered during flow. The frames were averaged and scattering from water was 

subtracted to provided background correction. Complementary SAXS data were collected on a 

laboratory Xenocs-Xeuss instrument at Institute of Physics, University of São Paulo (see SI file 

for details).  Small-angle neutron scattering (SANS) experiments were carried out on LOQ 

beamline at ISIS (see SI, file for details). In all cases the scattering intensity is displayed as a 

function of the reciprocal space momentum transfer modulus q, defined as 𝑞 = 4𝜋 sin 𝜃 / 𝜆, 

where 2𝜃 is the scattering angle and 𝜆 the radiation wavelength (see SI file for details). 

Nanoscale Infrared measurements (AFM-IR). Nanospectroscopy measurements were 

performed using an Anasys NanoIR2-s instrument at LNNano. Droplets of PNT/DNA aqueous 

solutions (PNT at 0.5 mg/ml) were deposited onto the surface of Au-coated silica substrates and 

left to rest for about 5 minutes. The substrates were then rinsed with ultrapure water and left to 

dry overnight into desiccators. All measurements were carried out at room temperature. AFM-IR 

is a relatively recent technique and it is based on the thermal expansion of the sample upon 

infrared absorption.35,36 Herein, the microscope was used in contact mode and substrates were 

illuminated by a tunable laser.37 For collecting IR spectra from individual aggregates, the AFM 

tip was positioned on the top of the particle whereas the laser source was varied in the range 1550 

– 1800 cm-1, generating absorption spectra from the area underneath the tip (diameter ~30 nm). 
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Chemical maps were obtained by fixing the laser source at specific wavenumbers (1670 or 1720 

cm-1) and scanning the surface with the AFM tip. All data were baseline subtracted (Au profile) 

and smoothed using an FFT filter (7 points of window).  

Transmission electron microscopy (TEM). Transmission electron microscopy imaging was 

carried out on a JEOL 2100 FEG-TEM microscope at LNNano, Campinas, Brazil. Samples were 

prepared by depositing complexes from 0.1 mg/ml solutions onto lacey Carbon grids (300 mesh) 

and letting them rest for 60 s. The excess of solution was removed with filter paper. Droplets with 

5 l of 2% uranyl acetate solution were deposited onto the grid and left to rest for 30 s. The 

procedure for uranyl staining was repeated twice. The microscope was operated at 200 keV 

acceleration voltage. Further data treatment was performed using Image J software.  

 

 

RESULTS AND DISCUSSION 

 

Small-Angle Scattering 

We have performed small-angle X-ray Scattering (SAXS) to investigate the nanoscopic 

structure of PNT/DNA complexes. SAXS is powerful technique that provides structural data from 

samples under hydrated conditions, thus, being complementary to microscopy methods performed 

on dried specimens. Through these experiments, we have been able to get insights into the shape 

of aggregates and characteristic sizes such as radius of gyration. In addition, our data also revealed 

the presence of ordering in the inner part of the assemblies.  The of q-range scanned in our 

experiments corresponds to length scales in the interval from 2 to 50 nm and should provide 

information on the supramolecular arrangement of the complexes.  
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Figure 1: SAXS data from solutions containing Penetratin (PNT), DNA and PNT/DNA 
complexes at the molar charge ratios (N+:P-) indicated. Scattering from PNT/DNA formulations 
(upper curves) cannot be described in terms of linear combinations of their single-phase 
components, which is ascribed to appearance of new polymorphs upon complexation. The 
presence of Bragg peaks indicates the formation of ordered domains in the inner structure of the 
complexes. Solid red lines correspond to model fitting through least-square approaches discussed 
in the text.  

 

Figure 1  presents SAXS  curves from either  single-component solutions (i.e., containing 

only PNT or double-stranded DNA) or mixtures containing PNT/DNA complexes at peptide-to-

DNA charge ratios N+:P- =  2:1, 1:1 and 1:2. A first qualitative assessment reveals that scattering 

profiles from PNT/DNA samples (upper curves in Fig. 1) are not described in terms of linear 

combinations of their single-phase constituents. Scattering profiles of two-component systems 

can be described by linear combinations of their single components when shapes found in the 

original solutions are kept upon mixing38 and inter-particle interactions are not at play in bimodal 

systems.39 As further demonstrated either by SAXS data or by microscopy images herein, these 

scattering profiles that are not described in terms of single-phase components indicate that new 

polymorphs appear upon complexation between PNT and DNA.  In the upper curves of Figure 1, 

the appearance of Bragg peaks at q ~2.2 nm-1 is an obvious feature indicating that new structural 
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levels are present in the mixtures. In fact, data from solutions containing PNT/DNA assemblies 

show scaling law behaviors at low-q range and the strong interference peak at high q-values attests 

the presence of fractal aggregates with a distinctive internal correlation distance. The exponents 

of these scaling laws provide information on dimensionality of fractal aggregates.38 Curves from 

PNT samples (lower curve, Fig. 1) are characterized by a large plateau at intermediate-q range, 

followed by a steepest descent at high-angles scaling with ~ q-1.5. This result is analogous to the 

scattering from polymer Gaussian chains and it is consistent with partially-coiled peptide strands 

in solution.28,40 At low q, SAXS data for PNT  show an upturn in intensity,  indicating co-existence 

of larger aggregates in the solutions. These data were properly fitted using a combination of the 

generalized Gaussian coil model and the Fisher-Burford fractal model28,38 (further details on the 

model may be found in the SI file, Eqs. S1 and S2, and Fig. S3). The fitting procedure allowed us 

to determine structural parameters of the particles, including their gyration radius (Rg), the Flory 

exponent for peptide chains () and the fractal dimensionality of larger aggregates in solution (D). 

The radius of gyration of Gaussian chains is Rg = 1.4 nm ± 0.2, whereas the Flory exponent was 

found to be  = 0.5. These values are consistent with peptide strands in a theta solvent.38,39 The 

fitted fractal component has Rg = 14.2 ± 1.0 nm and fractal dimensionality D = 2.5 ± 0.1, 

indicating the presence of surface fractal aggregates with rough interfaces. As a whole, the fitting 

proved the co-existence of PNT monomers in a theta solvent with fractal oligomeric aggregates. 

 Curves from DNA solutions are characterized by a power law descent scaling with ~q-1, 

consistent with rod like-structures. An interference peak is noticed at q ~ 0.3 nm-1, which is a 

consequence of positional order arising from repelling (negatively-charged) DNA chains. To fit 

the data, we have used a cylinder shell form factor convoluted with the PRISM structure 

factor.41,42
  Further details on the model are given in the SI file (Eqs. S3-S7, Fig. S4). The radius 

of the cylinder core was fitted at Rc = 0.8 ± 0.4 nm whereas the thickness of the shell was found 

to be S= 0.5 ± 0.4 nm.  These values are in close agreement with reported values for DNA 

strands, with bases and phosphate groups forming the core of duplexes surrounded by a shell of 

hydration and counterion layers.32,43
 The cross-section radius (RCS) due to electrostatic repulsion 
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between DNA chains  was found to be RCS = 8.4 ± 1.1 nm, revealing average separation of about 

16.8 nm between chains, in close agreement with previous data on calf thymus DNA solutions.44 

In the case of PNT/DNA complexes, the shape of the SAXS profiles is quite different and 

data exhibit multiple structural levels across the q-range investigated. By inspecting upper curves 

in Figure 1, we find out that the low q range is characterized by a power law decay scaling with 

exponents close to -4. This behavior is consistent with the Porod law for smooth surfaces38 and it 

indicates the presence of structures bigger than lengths resolvable by our SAXS experiments, ~ 

50 nm.  The interference peak at q ~ 2.2 nm-1 (Figure 1) indicates a repeat distance of 2/q ~ 2.9 

nm, which is larger than the diameter of DNA double strands (~2 nm). Interestingly, we observe 

that charge ratio affects the scattering profiles. Indeed, for N+:P- = 1:2 ,the slope of the 

intermediate q-range approaches -1 and the interference peak carrying information on correlated 

domains is less pronounced, suggesting the presence of rod-like particles (DNA chains) and lower 

compactness of the inner structure due to smaller content of cationic charges. Unfortunately, it is 

not easy to conceive an analytical model that accounts for all structural features found in the 

SAXS data from PNT/DNA complexes. In this case, we have adopted an empirical approach 

based on the summation of a power-law and a broad peak function45 (see SI file, Eqs. S8 and S9). 

This model has been successfully used to describe scattering data with multiple structural levels 

from other soft matter systems38,46 and it allows for quantifying shape-independent parameters 

such as dimensionality of fractal structures and correlation lengths () associated to interference 

peaks (see best fitting parameters in Table S1, SI file). The fitting procedure indicated that N+:P- 

=  1:2 sample  is populated by mass-fractal aggregates with dimensionality Dm = 2.1, which is 

consistent with highly interconnected networks.[38] The center of the interference peak is located 

at q0 = 2.16 nm-1, whereas the correlation length is found at  = 3.16 nm indicating short-range 

ordering of scattering inhomogeneities, and suggesting structures with a low degree of order. In 

the case of formulations with N+:P- = 1:1 or 2:1, power-law exponents increase, and the aggregates 

are classified as surface-fractals (see details in the SI file, Eq. S9). Fractal dimensionalities are 

found at Ds = 2.3 and 2.6, respectively, for compositions with 1:1 and 2:1 charge molar ratio. Peak 
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positions are found at q0 = 2.19 nm-1 for both formulations and correlation lengths are determined 

at = 3.54 and 3.23 nm, respectively. The parameter Ds carries information on the smoothness of 

the interfaces of aggregates in solution. Ds = 2 represents perfectly smooth surfaces, whereas 

values approaching 3 correspond to “very rough” surfaces.47 The correlation length, , is related 

to the degree of order between adjacent structures in the inner part of aggregates, and it reaches a 

maximum for N+:P- = 1:1. Putting the findings above together, our data indicate that the 

formulation with molar equivalence between charges produces self-assemblies with the smoothest 

interfaces with the solvent and the highest degree of internal ordering. Therefore, these aggregates 

also show the highest compactness among those investigated here, which is consistent with total 

complexation at this composition and absence of exceeding PNT or DNA. Complementary 

neutron scattering experiments probed the intermediate q-range either in PNT/DNA complexes 

or in single-phase (PNT or DNA) solutions (see SI file, Fig. S6). The results found in these assays 

were consistent with SAXS measurements, confirming the robustness of the structural 

information derived above.  

 

Secondary structure: FTIR and CD in solution 

FTIR assays were carried out to provide insights into chemical groups playing a role for 

complexation between peptide and DNA, and to investigate the secondary structure of PNT upon 

association with nucleic acids. By probing the vibrational spectra of the samples, we have been 

able to get insights into chemical groups affected by association between PNT and DNA and 

extract information on the chemical moieties implied in the formation of the complexes. Solutions 

used for FTIR experiments were prepared at different charge ratios, using deuterated water as a 

solvent. Two major regions of the infrared spectrum were scanned in these experiments, the sugar-

phosphate region and the amide I band. The first range comprises wavenumbers situated between 

1000 and 1300 cm-1 and it carries information on chemical bonds of phosphate and ribose groups. 

The second region comprises the amide I band located between 1600 and 1700 cm-1, exhibiting 

resonances related to NH moieties on peptide backbones.48 Vibrations related to DNA guanine 
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groups could be found in the range 1700-1800 cm-1.46,47 Data from sugar-phosphate region are 

shown in Figure 2A and they reveal that complexation between PNT and nucleic acids strongly 

affects vibrations related to chemical groups on the DNA backbone. Particularly, bands are 

noticed at 1010 and 1023 cm-1, being assigned to ester phosphate/ribose linkage.49,50 These peaks 

appear accompanied by strong resonances at 1054 and 1084 cm-1, which are ascribed to stretching 

of C-O bonds at deoxyribose and stretching of –PO2- groups, respectively. By comparing these 

bands with peptide-free solutions, one observes increasing intensity and sharpness in complexes 

containing PNT at charge ratios closer to the neutralized charge. On the other hand, these bands 

are found to decrease in mixtures where cationic charges overpass the number of anionic groups. 

Unfortunately, we are not able to devise here a rigorous explanation for this effect, but we 

hypothesize it is related to electrostatic perturbation taking place upon conjugation of species with 

different charges.46,48 In fact, in PNT/DNA samples, strong polyelectrolytes are in involved in the 

formation of complexes. DNA is the strongest polyanion found in nature33 and small fractions of 

nucleic acid strands likely have a dramatic influence on the interplay between charges in 

Penetratin chains. In this case, we propose that the presence of opposite charges affects dipolar 

moments associated to chemical bonds contributing to the infrared spectra, similar to what is 

observed for DNA structure in presence of ionic species.46,48 When there is an excess of cationic 

charges, there appears to be a reduction of dipole moments and, closer to neutrality, they are 

reinforced.  

A very intense peak at 1198 cm-1 is noticed either for samples containing DNA or for 

solutions prepared exclusively with PNT; in this case, we have assigned it to scissoring bend of 

D2O molecules51 and used it as an internal standard for normalizing absorbance intensities. A 

shallow shoulder at ~1230 cm-1 is also noticed only in samples close to the neutral charge point 

and it is tentatively ascribed to antisymmetric stretching of –PO2- and its reinforcement in 

complexes closer to neutral charge point corroborates the role of phosphate groups as key 

mediators of complexation. In previous studies have demonstrated that association between 

arginine-rich peptides and nucleic acid sequences is strongly influenced by interactions between 
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guanidinium moieties and phosphates.52,53 In this case, in addition to the strong Coulomb 

attraction between these species, the formation of bidentate H-bonds by arginine sidechains has 

been observed52 and all these features together have strong repercussion in the vibrational 

behavior of phosphate stretching.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Spectroscopy assays from solutions containing PNT and DNA at the charge ratios 
indicated. (A) and (B) FTIR data collected across spectral ranges corresponding to DNA sugar-
phosphate region and peptide amide band, respectively. (C) CD data from DNA titration into PNT 
solutions.  



14 

 

 

Figure 2B shows infrared data across the amide I region. Similar to the behavior observed 

in the sugar-phosphate region, solutions containing complexes closer to the neutral charge point 

exhibit spectra with peaks with increased intensity and sharpness, whereas those with exceeding 

cationic charges show a diminution of their vibrations. Again, this observation is interpreted as 

an indication for changes of dipole moments due to the electrostatic interactions arising from 

presence of charged groups in the surroundings and, since the vibrations are associated to 

secondary structure of peptides, they may also suggest appearance of new conformers upon 

complexation with DNA. These samples are characterized by a strong peak centered at 1635 cm-

1, which is assigned to the presence of sheet fractions increasing when peptide strands condense 

onto the backbone of DNA duplexes. Since this band is broad, disordered structures likely 

contribute to the infrared profile. Spectra from PNT solutions feature peaks at 1618 and 1641 cm-

1, which are ascribed, respectively, to sheet and random coil content in the sample.54,55 Since 

SAXS data from PNT solutions prepared at the same concentrations used in FTIR assays indicated 

coexistence of coiled peptide strands and small aggregates in solution, we propose that the 

content observed in FTIR is related to oligomeric peptide aggregates whereas disordered 

conformations are likely associated to free PNT strands. Data from DNA solutions exhibit peaks 

at 1708 and 1741 cm-1 which are associated to C=O stretching. Particularly, the band at 1708 cm-

1 has been ascribed to guanine C=O bonds.49   

Assessment of the secondary structure of complexes was independently probed by 

circular dichroism (CD) and the findings revealed by FTIR qualitatively agree with information 

derived from CD assays.  In Figure 2C, CD spectra from PNT show that its secondary structure 

is dominated by random coil conformations, as attested by a remarkable negative peak at 198 nm, 

and in agreement with previous literature.11 Interestingly, upon titration of lower amounts DNA, 

a positive peak appears close to 190 nm along with a negative peak at ~210 nm, corresponding to 

blue-shifted -sheet spectra. The spectra become gradually dominated by DNA features and CD 

also shows that the DNA loses its helical structure, as it can be seen by the decrease in the 
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maxima/minima ratio in the spectra. In this case, it becomes harder to discriminate conformational 

features of peptide strands when larger amounts of DNA are present in the samples. Linear 

combinations of PNT and DNA components were not capable of fitting the experimental data, 

confirming that new secondary structures appear upon complexation (Figure S4, SI file). The 

presence of more than one isochroic point in the data indicates that more than two states are 

present in the solutions and the random-to- transition occurs in a context of reduced 

cooperativity.56  

The findings above can be compared to membrane-mediated transitions observed in PNT 

chains interacting with DOPC/DOPG vesicles.11,57,58 In this case, a nucleation-dependent 

mechanism has been proposed to explain the formation of -sheet oligomers from random-coiled 

monomers.57  The data presented above demonstrate that DNA is also to mediate a similar 

transition, thus suggesting that a nucleation mechanism can be used for explaining -sheet pairing. 

Indeed, negative charges at DNA backbones likely promote electrostatic attraction between PNT 

chains leading to condensation of peptide strands. In this context of strong confinement, where 

repulsive forces between cationic amino acid residues are also screened by anionic charges in 

their surroundings, lateral association into paired -sheets should be assisted.  

 

AFM-IR: infrared data from individual complexes 

The secondary structure of individual PNT/pEGFP-N3 complexes has been examined 

using infrared nanospectroscopy. This is a powerful technique, combining atomic force 

microscopy and infrared spectroscopy (AFM-IR), which provides information on chemical 

bonding with nanoscale spatial resolution.35,36 By using the AFM-IR technique, we have been 

able to measure the vibrational profile of individual peptide assemblies at resolutions of about 30 

nm to provide infrared absorbance maps.53 One of the advantages of this approach is that it 

provides single-particle spectra, in contrast to average information obtained in FTIR 

measurements performed in bulk solutions. In Figure 3A, a topography image shows assemblies 
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dried from a mixture containing PNT and pEGFP-N3 at charge molar ratio N+:P- = 1:1. The 

particles are characterized by irregular shapes and polydisperse sizes, with lateral dimensions 

ranging from hundreds of nanometers to bigger coalesced aggregates in the micrometer range. 

The heights of aggregates remain in the range from tens to few hundreds of nanometers (see SI 

file, Figure S6). Since tip width limits the area for infrared information to a circle with diameter 

~30 nm, we have chosen bigger aggregates in the sample to collect the data. In Figure 3B, spectra 

registered on the top of six individual assemblies are presented along with their average (black 

curve). The colors of the curves allow identifying the corresponding particle used for data 

collection (see colored spots in 3A). Although spectra from dried aggregates exhibit a different 

outlook compared to infrared data from hydrated samples, they also indicate secondary structure 

is composed by large fractions of content alongside with random coil conformations. Changes 

on infrared signatures are likely a consequence of rearrangements due to dehydration, similar to 

what is observed in proteins.59 Remarkable vibrations appear near to 1645 cm-1, which is assigned 

to disordered structures.55,59 Bands around 1673 cm-1 are noticed in all spectra and they could 

indicate either turns or originate from TFA salt in the medium.29 Also, this vibration is 

consistent with C=N anti-symmetric stretching in arginine guanidium groups;55 however, the 

presence of shoulders at ~1690 cm-1 indicates the presence turns or even anti-parallel sheets 

corroborating the presence of content in the aggregates. Noteworthy is that spectra from 

different aggregates show subtle differences indicating variations on the secondary structure; 

although peak positions exhibit approximately the same pattern across amide I band, intensities 

are found to change, and it could be an indication that fractions of content and disordered 

structures are different depending on the aggregate investigated.  

 

 

 

 



17 

 

 

 

 

 

 

 

 

Figure 3: AFM imaging combined with infrared nanospectroscopy. (A) Topography from 
complexes formed between pEGFP-N3 and PNT at 1:1 N+:P- ratio; (B) infrared spectra from 
individual particles. The color of each spectrum corresponds to the color of the spot on the top of 
the particle indicated in (A); (C) and (D) chemical maps showing the spatially-resolved 
absorbance, respectively, at 1670 cm-1 and 1720 cm-1. The region used for infrared mapping is 
indicated by a dashed area in the topography image (A). 

 

The nanospectroscopy technique was also used to obtain chemical images from PNT/ 

pEGFP-N3 complexes. Absorbance maps shown in Figures 3C and D were collected at 1670 and 

1720 cm-1, wavenumbers respectively associated to vibrations from the amide I region and 

guanine base.49,50 Since there are several chemical groups and two components in the mixture, a 

straightforward interpretation of the data is not possible; however, comparison between 

absorbance distributions at these wavenumbers could provide insights into the localization of 

peptide-enriched domains. The maps reveal that absorbances associated to the different 

wavenumbers are not homogeneously distributed in the particles, suggesting that different 

chemical compositions are found across the complexes.  In fact, one observes that the signal at 

1670 cm-1 (amide I band) is stronger in the central region of the assemblies, whereas signal at 

1720 cm-1 is complementarily enhanced near to their borders (see SI file, Fig. S5 for a difference 

map). In this case, we propose that core of the complexes is enriched in PNT whereas the 

periphery exhibits larger fractions of DNA. Indeed, these findings are consistent with the 

amphipathic design of PNT peptides, which contains hydrophobic amino acids likely able to form 
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lipophilic domains in the inner part of aggregates. On the other hand, DNA is a very water-soluble 

molecule and its affinity to interfaces with the aqueous solvent should be favored. The formation 

of peptide-enriched cores is also consistent with recent findings that revealed self-association 

between arginine-rich sequences, including the Tat-HIV peptide.60,61 In this case, capabilities of 

guanidinium moieties to form bidentate H-bonds play a paramount role for association and 

attractive forces arising from anisotropic charge distribution in like-charged groups assist the 

assembly of peptide strands.  

 

Transmission electron microscopy visualization 

Transmission electron microscopy (TEM) imaging was carried out to provide direct-

space visualization of complexes formed between PNT and DNA fragments. These experiments 

yielded information on the morphology and sizes of self-assemblies, allowing for comparison 

with SAXS and AFM data presented above. Samples were formulated with molar equivalence 

between positive and negative charges, and TEM grids were prepared from solutions containing 

peptides at 0.1 mg/ml. Micrographs shown in Figure 4 confirm complexation between peptides 

and DNA and they reveal the formation of discrete nanostructures with sizes ranging from a few 

nanometers up to hundreds of nanometers. Interestingly, TEM images from preparations 

containing only the Penetratin peptide at the same concentration used to formulate complexes do 

not indicate the formation of ordered assemblies and amorphous films are found throughout the 

grids (see SI file, Fig. S11). The absence of discrete nanostructures is likely ascribed to the strong 

cationic nature of the peptide since association between Penetratin chains is presumably hindered 

by electrostatic repulsion. In this case, we have here evidence that negatively-charged DNA 

strands behave as a structuring agent for Penetratin by screening electrostatic charges and 

enabling the formation of supramolecular arrangements. Both globular aggregates and fibrillar 

structures are found throughout the samples (see Figs. 4A and B) and association between 

globules connected by thread-like structures (see Fig. 4C) often leads to beads-on-a-string or 

“bunch of grapes” morphologies (Figs. 4D and E) rather resembling chromatin.55  The thicknesses 
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of these fibers are in the range of 7-10 nm, which is much higher than the diameter of DNA 

duplexes, indicating that they are likely composed of nucleic acid strands wrapped by peptide 

shells (see discussion on the sketch represented in Figure 5 below). In light of these findings, we 

propose that such peptide-wrapped strands correspond to the starting units of the self-assembly 

pathway leading to the formation of more complex structures at higher scales. In this case, 

association between adjacent fibers through fusion of peptide shells could lead to appearance of 

peptide-enriched domains in the inner part of the larger aggregates, in agreement with 

nanospectroscopic information derived from absorbance maps revealed by AFM-IR (see Figs. 3C 

above and SI file S9). The globular units observed in TEM images exhibit average size at c.a. 47 

nm, with dimensions up to 75 nm. These values are also in agreement with the persistence length 

of DNA chains and with the average size of DNA fragments used to formulate the complexes 

(200 bp or ~ 68 nm). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: TEM micrographs from complexes formed between PNT and DNA fragments at molar 
charge ratio 1:1. Coexistence between fibrillar assemblies and globular aggregates, and 
association between globules connected by thread-like structures is found throughout the samples. 
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Complexation pathway 

The results presented above reveal that the structure of PNT/DNA conjugates is intricate 

and different polymorphs are found in the samples. In spite of this complexity, TEM and AFM 

imaging, alongside with SAXS and spectroscopic information, provide several insights into the 

organization of these systems, from secondary structure to the micrometer range, and enable us 

to draft a pathway for the structuring process of the conjugates. In addition, the data allow to 

hypothesize that a hierarchical framework is at play in the self-assembly and polymorphs appear 

at different size scales where larger structures seem to be composed of subunits visualized in the 

samples.  

Our proposition is divided into five major steps and it appears sketched in Figure 5. 

According to this model, complexation is triggered by electrostatic attraction between negative 

charges at DNA phosphates and cationic groups at peptide chains. In Step 1, initial 

supramolecular association is represented by nucleic acid duplexes decorated with Penetratin 

chains. The role of electrostatic forces as a major self-assembling force is supported by FTIR 

information that suggests increase of dipole moment in phosphate diester bonds when DNA is co-

solubilized with Penetratin, an effect which is likely ascribed to the presence of opposite charges 

in the vicinities of these groups. In Step 2, the formation of fibrillar arrangements composed of 

DNA cores wrapped by peptide shells is illustrated, resembling electron microscopy images that 

shows the presence of rod-like arrays with diameters in the range of 7-10 nm (see Figure 4 and SI 

file). This step is crucial for further stages of self-assembly because these fibrils correspond to 

subunits found in the composition of larger aggregates.  

In Step 3, the formation of highly packed condensates is initiated by lateral association of 

core-shell fibers through fusion of Peneratin layers. At this stage, sizes of condensates are usually 

found to be around 50 nm, limited by the persistence length of DNA chains. Fusion is easily 

observed in TEM images and thread-like assemblies are visible in micrographs exemplifying Step 
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3 in Figure 5, and in Figures 4A and S12 (SI file). In addition, micrographs reveal that threads are 

often connected to globules, indicating that fibrils are in fact subunits composing these round 

aggregates and they should play a role in tethering globular structures. In fact, the presence of 

globular assemblies connected by thread-like arrays is abundant and may be identified in 

micrographs shown in Figures 4C, 4D and additional images in SI file. Step 4 is characterized by 

coalescence of globules into larger bunch-like structures and aggregates now scale up to a few 

hundreds of nanometers.  

Finally, Step 5shows coalescence aggregates in the micrometer range leading to particles 

with irregular shape because of unspecific association between globules and fiber-like subunits. 

To reconciliate the findings above with infrared nanospectroscopy information, which evidenced 

the presence of peptide-rich domains in the core of the assemblies and DNA content in the 

periphery of aggregates, we propose that coalescence is accompanied by a rearrangement of the 

inner structure. This reorganization is driven mainly by interactions related to amphiphilicity of 

the biomolecules. Indeed, since Penetratin contains an appreciable number of nonpolar groups 

along its composition, hydrophobic effect could push the peptide inward the assemblies, whereas 

the high hydrophilicity of double-helix phosphates would compel DNA toward the interfaces with 

water.  
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Figure 5: Schematic representation of the proposed pathway for PNT/DNA complexation. Self-
assembly is divided into five major steps, from biomolecular association up to the micrometer 
range. Different polymorphs are visualized across the samples and hierarchical aggregation, 
where PNT/DNA fibers behave as subunits within higher scale arrangements, is identified.  

 

 

CONCLUSIONS 

 

We have conducted detailed investigations on the structure of complexes formed between 

DNA and the PNT cell penetrating peptide. A combination of in-situ and ex-situ techniques 

provided an accurate characterization of supramolecular assemblies throughout a wide range of 

lengths, from the secondary structure up to the nanometer scale. Several polymorphs have been 

identified with assistance of different techniques, and coexistence of fibrillar, globular and 
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coalesced assemblies has been unequivocally demonstrated. Morphology of aggregates has been 

found to exhibit fractal-like features, and sizes were found to cover from nanometer to micrometer 

range. In addition, the inner structure has been found to comprise domains with short-range order 

and secondary structure has been found to be predominantly sheet, alongside disordered 

conformations. Complexation involves spontaneous formation of core-shell assemblies, with PNT 

shells condensing around nucleic acid strands, and this stage is likely followed by collapsing of 

fibrillar structures into globular cores where fusion between peptide shells leads to highly 

compacted scaffolds. FTIR assays carried out in solutions containing PNT/DNA complexes show 

that electrostatic interactions are mediated by phosphate groups along DNA backbone and both –

PO2- moieties and ester linkages are strongly affected upon complexation, probably due to charge 

delocalization induced by the proximity of positive charge from amine groups present at peptide 

side-chains. Not surprisingly, the strong cationic nature of PNT makes it a very efficient agent for 

condensing DNA duplexes via electrostatic attraction; however, our study has demonstrated that 

condensation is accompanied by DNA-mediated random-to--sheet transitions of peptide 

secondary structure and a comparison with previous studies on charged lipid membranes suggests 

that a nucleation mechanism could be at the origin of this effect.11,57,58 In this case, nucleic acids 

behave as a structuring agent for the peptide and, to our knowledge, this is the first time that such 

a DNA-induced transitions have been probed in PNT complexes. These findings indicate that, 

although electrostatic attraction is the underlying force triggering complexation, the role played 

by nonpolar residues in the resulting organization of PNT/DNA complexes should not be 

underestimated. For instance, our study revealed extensive presence of sheet peptide 

assemblies which likely results from the interplay of hydrophobic interactions in the core of the 

assemblies.    

Importantly, we have used a cutting-edge technique, AFM combined with 

nanospectroscopy, to collect single-particle vibrational information and provide nanoscale 

resolved maps of infrared absorbance across the self-assemblies. As far as we know, this was the 

first time that complexes formed between DNA and CPPs were investigated in this way. These 
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assays confirmed predominance of -sheet structures and random coil conformations in the 

complexes and indicated variations in the fractions of secondary structure components between 

different aggregates. Infrared absorbance maps revealed domains enriched in -structures in the 

core of the complexes and regions exhibiting stronger vibrations associated to DNA bases 

concentrated closer to the borders of the assemblies. These findings suggest some degree of spatial 

separation between DNA and Penetratin in the complexes and they indicate that the nucleic acid 

load in these carriers tend to be located closer to the interfaces with the surrounding medium. This 

information is a very interesting contribution of the present study because it could explain why 

PNT/DNA conjugates formulated via noncovalent approaches usually show lower transfection 

efficiencies in comparison to complexes obtained from covalent linkage of nucleic acid sequences 

to Penetratin oligomers.3,56 In fact, since our data suggest that DNA is predominantly located in 

the periphery of the complexes; thus, protection of the load and interaction with cell membranes 

are likely depressed in these species.   

Analyses conducted here probably could be carried out for complexes involving DNA 

and other CPPs, but sequence-specific features likely should appear. Such structural differences 

presumably play a role for internalization pathways, delivery efficiency, load capacity and other 

variables that appear upon interaction with cells. All these features together highlight the 

importance of knowing the nanoscale structure of these complexes in detail since it could be 

considered for efficient design of nucleic acid carriers based on CPPs. 

 

SUPPORTING INFORMATION 

Gel electrophoresis assays, peptide characterization, SAXS modeling, SANS data, 

additional AFM-IR and TEM images. 
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