
Nanostructure thermal conductivity prediction by Monte Carlo sampling
of phonon free paths

Alan J. H. McGaugheya) and Ankit Jain
Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA

(Received 9 December 2011; accepted 21 January 2012; published online 9 February 2012)

We propose a method by which the thermal conductivity of a nanostructure with arbitrary

geometry can be predicted through Monte Carlo sampling of the free paths associated with

phonon-phonon and phonon-boundary scattering. The required inputs are the nanostructure

geometry and the bulk phonon frequencies, group velocities, and mean free paths. The method is

applied to a thin film in the in-plane and cross-plane directions and to a polycrystalline bulk

material. For the film, a faster approach to the bulk thermal conductivity is found compared to

predictions made using the Matthiessen rule with the bulk mean free path and an average

phonon-boundary scattering length. VC 2012 American Institute of Physics. [doi:10.1063/1.3683539]

As the dimensions of electronic, optoelectronic, and

energy conversion devices are reduced, the thermal conduc-

tivities of the device components (e.g., thin films and nano-

wires) are also reduced.1–11 The large electrical power

densities in such devices cause Joule heating and the reduced

thermal conductivities can lead to high operating tempera-

tures, sub-optimal performance, and poor reliability. Predict-

ing the thermal conductivity reduction in nanostructures is

thus a critical part of developing next-generation thermal

management strategies.

We focus here on semiconducting and insulating nano-

structures, where phonons (quantized lattice vibrations) domi-

nate thermal transport.12 As a nanostructure gets smaller, its

thermal conductivity is reduced due to more frequent scatter-

ing between phonons and the system boundaries.1–11 For very

small systems (e.g., silicon films thinner than 20 nm), changes

in the phonon density of states also affect thermal trans-

port.2,6,8 Our interest here is nanostructures large enough that

the phonon density of states is bulk-like.

The thermal conductivity, k, of a nanostructure in the n
direction can be predicted from,12

kn ¼
X

i

cph;iv
2
g;n;i

Ki

jvg;ij
; (1)

an expression obtained by solving the Boltzmann transport

equation under the relaxation time approximation and using

the Fourier law. The summation is over all phonon modes in

the first Brillouin zone, cph,i is the mode volumetric specific

heat, vg,n,i is the n component of the group velocity vector,

vg,i, and Ki is the mean free path. The mean free path is the

average distance a phonon travels before scattering and com-

bines the effects of all scattering mechanisms (e.g., with

other phonons, boundaries, defects, electrons, etc.).

Phonon scattering in a semiconductor or insulating nano-

structure at room temperature and above is dominated by

phonon-phonon and phonon-boundary interactions. The stand-

ard approach for combining these two effects is to use the

Matthiessen rule, whereby the scattering mechanisms are

assumed to be independent, such that the mean free path is

given by,12
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Here, Kpp;i is the bulk phonon-phonon mean free path and �li

is the average distance a phonon travels ballistically before

hitting a system boundary with mode-dependent specularity

parameter pi. Phonon-boundary scattering at room tempera-

ture and above is expected to be predominantly diffuse.13

While we take pi¼ 0 in the analysis that follows, the pro-

posed technique can be used for any value of pi.

The two terms on the right-hand side of the Matthiessen

rule, Eq. (2), are averages. The mean free path associated

with phonon-phonon scattering is an average over many col-

lisions, each with its own free path, Kpp,i
. The mean free path

associated with phonon-boundary scattering is based on a

single length for each mode (e.g., L
2
j vg;i

vg;z;i
j for a film of thick-

ness L that is normal to the z direction11). The phonon can in

fact start at any position in the nanostructure. The goal of

this study is to determine if the thermal conductivity pre-

dicted using Eq. (2) is the same thermal conductivity that

results from considering the natural distributions of phonon-

phonon and phonon-boundary free paths.

We now propose a Monte Carlo method for including free

path distributions in nanostructure thermal conductivity predic-

tion based on knowledge of the bulk phonon properties and the

system geometry. Bulk phonon-phonon mean free paths can be

predicted for a fine resolution of the first Brillouin zone using

molecular dynamics simulations14–16 and/or lattice dynamics

calculations,14,16–19 with input from empirical potentials15,16,20

or first-principles density functional theory calculations.17,19,21

The geometry of a nanostructure can be resolved to sub-

nanometer scales using electron microscopy techniques, allow-

ing for accurate inclusion in calculations.

As a test system, we choose a silicon thin film at a tem-

perature, T, of 300 K with bulk phonon properties calculated

using the Stillinger-Weber potential22 (see Fig. 1). Both the

in-plane and cross-plane thermal conductivities are pre-

dicted. The bulk phonon frequencies, group velocities, anda)Electronic mail: mcgaughey@cmu.edu.
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mean free paths are calculated using harmonic and anhar-

monic lattice dynamics calculations with Bose-Einstein (i.e.,

quantum) statistics. We previously reported on predictions of

Stillinger-Weber silicon bulk and thin film thermal conduc-

tivities [with Eq. (2) used to include the effects of boundary

scattering].6,7 A first Brillouin zone with 55 572 phonon

modes (9262 evenly spaced wave vectors with six phonon

modes/wave vector) was found to be sufficient to predict a

size-independent bulk thermal conductivity and is used here.

We first loop over the 55 572 phonon modes in the first

Brillouin zone. For each mode, the following procedure is

repeated 1000 times:

1. A phonon-phonon free path is randomly drawn from a

Poisson distribution, P(Kpp,i), given by,

PðKpp;iÞ ¼
1

Kpp;i

expð�Kpp;i=Kpp;iÞ: (3)

The Poisson distribution is chosen as it describes the

free path distribution of the particles in an ideal gas.23

As we are modeling the phonons as particles (i.e., a pho-

non gas), this choice seems reasonable.

2. A point is randomly chosen in the nanostructure. For the

film, this choice amounts to choosing a value of z
between 0 and L. Using the phonon mode’s group veloc-

ity vector, which gives the direction of energy propaga-

tion, the distance the phonon will travel ballistically

before hitting a boundary is calculated. For diffuse

boundary scattering, this distance is the phonon-

boundary free path, l. If the boundary scattering is

partially specular (i.e., pi= 0), l can be calculated by

considering a series of elastic reflections and ballistic

paths through the nanostructure [see second term on the

right-hand side of Eq. (2)].

3. The minimum of the two free paths, Kpp or l, is taken as

the nanostructure free path. This choice removes the

assumption in the Matthiessen rule that the scattering

mechanisms are independent.

The 1000 free paths are averaged to give the mean free path

for that mode. Once this procedure has been performed for

all modes, Eq. (1) is applied to predict thermal conductivity.

We find that 1000 free paths/mode is sufficient to predict a

thermal conductivity within 1% of the value obtained using

10 000 free paths/mode and that this error decreases with

increasing film thickness. Running ten separate calculations

with 1000 free paths/mode gives a standard deviation of less

than 0.5% of the mean thermal conductivity.

The in-plane and cross-plane thermal conductivity pre-

dictions for film thicknesses between 20 nm and 10 lm are

plotted in Fig. 2. Also plotted are the thermal conductivities

predicted by a direct use of the Matthissen rule [Eq. (2)] in

Eq. (1) (i.e., no random sampling). All the film thermal con-

ductivities are normalized by the bulk value, k1, and

approach it as the film thickness increases.

Calculating the mean free path with random sampling of

the phonon-phonon and phonon-boundary free paths leads to

a faster approach to the bulk thermal conductivity than using

average values of these two quantities and the Matthiessen

rule. The maximum difference is 6% for the in-plane direc-

tion and 10% for the cross-plane direction for film thick-

nesses around 500 nm. This thickness corresponds to about

twice the average specific heat- and group velocity-weighted

mean free path in SW silicon at a temperature of 300 K

(243 nm) (Ref. 6) and is thus where phonon-phonon and

phonon-boundary scattering effects are comparable.

For a film with a temperature gradient in the in-plane

direction, Turney et al. solved the Boltzmann transport equa-

tion without invoking the Matthiessen rule and found that

the mean free path is given by,6

Ki ¼ 1� 1� pi

di

1� expð�diÞ
1� pi expð�diÞ

� �
Kpp;i; (4)

where di ¼ L
Kpp;i

�

��� vg;i

vg;z;i

���. When we use Eq. (4) with pi¼ 0 in

Eq. (1) to predict thermal conductivity, we get a value within

1% of that predicted using the random sampling technique

with no systematic error. This finding indicates that these

two approaches are capturing the same physics and high-

lights the limitations of the Matthiessen rule for combining

phonon-phonon and phonon-boundary scattering.

For more complicated geometries (e.g., porous silicon

meshes9), it is not obvious what single length scale could be

used for the phonon-boundary scattering mean free path in

the Matthiessen rule. Furthermore, an exact solution of the

Boltzmann transport equation, providing an expression like

Eq. (4), may not be possible. Our free path Monte Carlo sam-

pling technique removes these complications.

FIG. 1. Film model. The film is infinite in the in-plane directions.

FIG. 2. (Color online) Thin film thermal conductivity predictions for in-

plane and cross-plane directions by Matthiessen rule and sampled phonon

mean free paths. The curves are generated by considering ten film thickness

per decade. By properly sampling the phonon-phonon and phonon-boundary

free paths, a larger thermal conductivity and faster approach to the bulk ther-

mal conductivity are predicted compared to the average values used in the

Matthiessen rule.
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To demonstrate the usefulness of our technique, we now

predict the thermal conductivity of polycrystalline bulk

Stillinger-Weber silicon at a temperature of 300 K. Typically,

the average grain size is used in the Matthiessen rule to

include the effect of phonon-grain boundary scattering.24,25

We use spherical grains for computational efficiency, but the

grain shape can be arbitrary. To calculate the mean free path

of each phonon mode, we randomly sample three quantities.

First, a grain diameter is selected from a log-normal distribu-

tion.26 Second, a point is randomly chosen in the grain,

allowing for calculation of the phonon-boundary free path

(we again assume diffuse boundary scattering). Third, a

phonon-phonon free path is selected from a Poisson distribu-

tion based on the bulk mean free path. The nanostructure free

path is taken as the smaller of the phonon-boundary and

phonon-phonon free paths. The mean free path for that mode

is calculated by 1000 such samplings of grain diameter, ini-

tial position, and phonon-phonon free path, and weighting the

contributions to thermal conductivity by the grain volume.

The resulting thermal conductivities for average grain diame-

ters of 100 nm and 1 lm are plotted as a function of the grain

diameter variance divided by the mean grain diameter in Fig.

3. Also plotted is the thermal conductivity predicted using

the Matthiessen rule (i.e., using the bulk phonon mean free

paths, one geometric scattering length, and the mean grain di-

ameter). As the variance in the grain diameter increases,

assuming a single grain diameter can lead to a significant

underprediction of thermal conductivity. We note that our

predictions should be interpreted qualitatively, as the thermal

conductivity of a polycrystalline material will depend on the

grain shapes and relative orientations.

The proposed calculation technique runs quickly (given

a set a phonon properties, on the order of seconds for each

thermal conductivity prediction described here), can access

much larger length scales than atomistic calculations, and

better captures the phonon physics compared to using the

Matthiessen rule. As such, we recommend that it be used for

predicting the thermal conductivity of other nanostructures.

The major assumptions in our implementation of the free

path Monte Carlo sampling technique are that (i) the bulk

phonon-phonon free paths follow a Poisson distribution and

that this distribution will hold in a nanostructure, (ii) a pho-

non is equally likely to originate at any point in the nano-

structure, and (iii) the bulk phonon properties (frequency,

group velocity, and mean free path) are valid everywhere in

the nanostructure. Detailed theory or experimental results do

not exist to test these assumptions. While we believe that our

assumptions are reasonable, their study is an intriguing direc-

tion for future efforts.
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FIG. 3. (Color online) Thermal conductivity of polycrystalline Stillinger-

Weber silicon as a function of the mean grain diameter and the grain diame-

ter variance. For the solid lines, the grain diameter, phonon-phonon free path,

and phonon starting point are all randomly sampled. The dashed lines corre-

spond to predictions made using the Matthiessen rule with the bulk mean free

paths, one geometric scattering length, and the mean grain diameter.
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