
Nanostructured Platforms for the Sustained and Local Delivery 

of Antibiotics in the Treatment of Osteomyelitis

Vuk Uskoković

Advanced Materials and Nanobiotechnology Laboratory, Richard and Loan Hill Department of 

Bioengineering, College of Medicine, University of Illinois at Chicago, 851 South Morgan St, #205 

Chicago, Illinois, 60607-7052

Vuk Uskoković: uskok@uic.edu

Abstract

This article provides a critical view of the current state of the development of nanoparticulate and 

other solid-state carriers for the local delivery of antibiotics in the treatment of osteomyelitis. 

Mentioned are the downsides of traditional means for treating bone infection, which involve 

systemic administration of antibiotics and surgical debridement, along with the rather imperfect 

local delivery options currently available in the clinic. Envisaged are more sophisticated carriers 

for the local and sustained delivery of antimicrobials, including bioresorbable polymeric, 

collagenous, liquid crystalline, and bioglass- and nanotube-based carriers, as well as those 

composed of calcium phosphate, the mineral component of bone and teeth. A special emphasis is 

placed on composite multifunctional antibiotic carriers of a nanoparticulate nature and on their 

ability to induce osteogenesis of hard tissues demineralized due to disease. An ideal carrier of this 

type would prevent the long-term, repetitive, and systemic administration of antibiotics and either 

minimize or completely eliminate the need for surgical debridement of necrotic tissue. Potential 

problems faced by even hypothetically “perfect” antibiotic delivery vehicles are mentioned too, 

including (i) intracellular bacterial colonies involved in recurrent, chronic osteomyelitis; (ii) the 

need for mechanical and release properties to be adjusted to the area of surgical placement; (iii) 

different environments in which in vitro and in vivo testings are carried out; (iv) unpredictable 

synergies between drug delivery system components; and (v) experimental sensitivity issues 

entailing the increasing subtlety of the design of nanoplatforms for the controlled delivery of 

therapeutics.
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I. INTRODUCTION

Osteomyelitis, the infectious inflammation of bone and one of the oldest documented 

diseases, the earliest descriptions of which date back to Hippocrates (fifth century BC),1 is 

an illness particularly prevalent among the elderly, diabetics, children, and indigenes of 
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Third World countries (Fig. 1a). Before the advent of antibiotics, the mortality rate because 

of osteomyelitis was 25–45%. Although morbidity due to chronic bone infection has 

drastically decreased from the pre-penicillin era, down to ~3% in the past 20 years,2 it is still 

high on the global scale, and treating the disease continues to be considerably challenging.3 

The incidence of osteomyelitis in the United States is 1–2%, but the disease is far more 

prevalent in developing countries, as well as among particular patient populations: 

approximately 1 in 5000 children, 1 in 1000 neonates, 1 in 250 patients with sickle cell 

disease, 1 in 7 diabetics, and 1 in 3 patients with punctured foot.4–7 Its comparatively low 

prevalence can be explained by the fact that bone is an organ well protected from external 

pathogens and is not readily prone to infection. The difficulty faced by invasive pathogens in 

an attempt to colonize the bone is, however, directly proportional to the difficulty faced by 

clinicians in ensuring the delivery of antibiotics to the site of infection and curing it. The 

prevalence of chronic osteomyelitis among patients treated for at least one episode of acute 

osteomyelitis is consequently high, in the range of 5–25%.8 Strategies for improving the 

therapeutic approach in the treatment of osteomyelitis have thus been explored for over a 

century,9 with a steadily increasing annual number of publications related to it—from 1 to 

10 until 1944 to 100–300 from 1944 to 1974 to 713 in 2012 (US National Library of 

Medicine), more than in any of the preceding years—going in step with the anticipated 

increase in the number of cases of bone disease as the corollary of the aging population 

worldwide (Fig. 1b). The number of hip and knee replacement procedures performed in the 

United States has, for example, doubled in the past decade, whereas the number of the 

reported cases of bone infection accompanying those procedures also has steadily increased 

in proportion to the number of surgeries performed (Fig. 2). In spite of using aseptic 

techniques and antibiotic prophylaxis, osteomyelitis is estimated to develop in 22–66% of 

patients following orthopedic operations, and the corresponding mortality rate could be as 

high as 2%.10 This review describes (1) the pathologies that cause osteomyelitis; (2) the 

traditional therapeutic approach to curing it; and (3) advanced therapeutic methods based on 

the design of nanostructured platforms for the sustained and local delivery of antibiotics.

II. PATHOLOGIES AND THE DOWNSIDES OF THE TRADITIONAL CLINICAL 

APPROACH

Osteomyelitis is mainly caused by pyogenic bacteria found in healthy oral flora, although 

cases of infection caused by fungi are also common.13–15 Bone infections caused by 

Brucella suis,16 Haemophilus influenzae,17 Mycobacterium tuberculosis,18 Mycobacterium 

ulcerans,19 and pox viruses,20,21 as well as those whereby bone lesions are secondary to 

Bacille Calmette-Guérin22 or smallpox23 vaccination, also have been reported in the 

literature. Although many gram-negative and gram-positive bacteria were reported to have 

caused osteomyelitis; the great majority of bone infections, however, is staphylococcal in 

origin and mostly caused by a single bacterium: Staphylococcus aureus.24,25 In addition to 

S. aureus, S. epidermidis is another common cause of osteomyelitis; it is present in up to 

90% of bone infections following intraoperative implantation of a foreign material. Because 

most cases of osteomyelitis are caused by bacteria that reside on healthy skin and in healthy 

oral flora, osteomyelitis is an illness often caused by a bizarrely small scratch or a bite where 
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by body fluids become exposed to external pathogens, which then go on to induce septic 

arthritis and/or osteomyelitis.26

The onset of the infection induces an acute suppurative inflammation, and numerous factors 

synergistically contribute to the necrosis of the hard tissues, demineralization of the bone, 

and degradation of its collagen matrix: bacteria, pH change, local edema that accumulates 

under pressure, vascular obstruction, and leukocyte collagenase.27 As the infection 

progresses locally, it extends to the adjacent osseous structures through the Haversian and 

Volkmann canals, leading to an increased obstruction of vascular channels and necrosis of 

more osteocytes in the lacunae. By the time the infection reaches the outer part of the cortex, 

it has already caused an inversion of the periosteal blood flow and gained access to the 

subperiosteal space, which results in a subperiosteal abscess and the formation of 

involucrum, a layer of new bone grown from periosteum stripped from the original bone 

under the pressure of pus. Figure 3 shows radiological images of cases of acute and chronic 

osteomyelitis (the former came from a clinic and the latter from an animal model),28 along 

with involucrum formed around the area of necrotic infection and a periosteal reaction in the 

proximal area of the bone, respectively.

Osteomyelitis is particularly prevalent in the facial skeleton because of its accessibility to a 

variety of external pathogens and commensal microorganisms.29 It also presents a major 

complication following orthopedic and maxillofacial surgeries,30 including even the most 

routine dental extractions.31 Although the resistance to infection of healthy bone is naturally 

high, implants reduce it by a factor of 103 (i.e., the number of pathogens sufficient to cause 

an infection is reduced from 108 to 105). As a result, intraoperative introduction of bacteria 

accounts for the largest number of osteomyelitis cases, with the hip being a particularly 

common orthopedic site of infection. Timely treatment of osteomyelitis is required to 

prevent its spread to new sites in the body and to avoid systemic osteonecrosis or unaesthetic 

facial disfigurement in the case of maxillofacial infection. The typical treatment regimen for 

bone infection consists of (1) intravenous administration of antibiotics lasting 2–6 weeks, 

frequently followed by a 6-month course of oral antibiotics in the case of chronic infection; 

and (2) surgical removal of bone that has undergone necrosis due to restriction of blood flow 

by the formed abscesses.32,33 Correspondingly, the major downsides of the conventional 

therapeutic approach include (1) systemic administration of the therapeutic agent and its side 

effects; (2) low concentration of the therapeutic agent around the site of infection, 

potentially inducing resistance of the pathogen to the antibiotic therapy; and (3) irretrievable 

bone loss that often requires the insertion of implants or prostheses as lasting bone 

substitutes. Moreover, in the advanced stages of infection, when bone necrosis has become 

significant, the blood supply to the infected area is inadequate and the lesion is largely 

inaccessible to antimicrobial agents transported by the blood stream. All these downsides 

provide strong incentives in favor of the development of appropriate carriers for the local 

delivery of antibiotics in the treatment of osteomyelitis.

III. CLINICALLY AVAILABLE MATERIALS FOR LOCAL DELIVERY

Because of the apparent downsides of traditional therapy, including primarily the systemic 

and repetitive administration of antibiotics whereby the therapeutic concentrations in the 
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target area constantly fluctuate between toxic and ineffective, steps have been taken to 

develop particulate carriers for the local and sustained delivery of antibiotics following their 

implantation directly at the zone of infection. Ever since the pioneering research in this field 

carried out in Europe in the 1970s,34,35 poly(methyl methacrylate) (PMMA) beads, first 

clinically applied in 1972, have been the gold standard for the local delivery of antibiotics to 

bone cavities. Currently, there is no clinical alternative to PMMA as a local delivery carrier 

for osteomyelitis since they are the only preloaded option approved by the US Food and 

Drug Administration (FDA).36

PMMA beads loaded with hydrophilic antibiotics, including gentamicin, ceftriaxone, 

tobramycin, and vancomycin, have been used with experimental and clinical success in the 

past.37–41 Despite this, numerous limitations are associated with the use of PMMA beads. 

First, they are not biodegradable and require a secondary surgical procedure for removal 

after the antibiotic is released through their porous polymeric structure. Second, PMMA 

beads and spacers exhibit burst release42 that depletes the drug from the carrier and is 

followed by a rather insubstantial release period that may be insufficient to maintain a 

therapeutic concentration for the desired 3–4 weeks and may even promote antibiotic 

resistance.43 Although release kinetics could be extended by increasing the size of the beads 

and increasing the polymerization time, burst release has seemed unavoidable so far.44 

Because the release is conditioned by the diffusion of the drug through the porous polymeric 

network and microscopic cracks in the cement—and not by the degradation of the polymer 

the elution profiles show broad variations depending on the nature of the antibiotic, 

exhibiting intense burst release and a prompt decrease in concentration below the 

therapeutic level in some cases.45,46

Relatively low toxicity results from the absorption of methyl methacrylate monomers and 

the associated carboxylesterase-mediated conversion of methyl methacrylate to methacrylic 

acid,47,48 whereas biofilm frequently forms on antibiotic-laden PMMA beads, hindering the 

antimicrobial action.49,50 Although products preloaded with gentamicin are available on the 

market (Septopal), most clinically applied PMMA beads are loaded with the antibiotic just 

before surgical insertion51 (Fig. 4), which can lead to inconsistent release profiles.52 This 

nullifies the producer’s liability for the product and makes it therapeutically applicable only 

with the patient’s consent.53 Finally, a comprehensive clinical study has yet to prove that 

PMMA beads are more effective than the systemic antibiotic delivery approach in treating 

orthopedic infections.54 No significant difference in the treatment success rate was typically 

observed when debridement was followed by the implantation of antibiotic-containing 

PMMA beads for local release or the prescription of systemic antibiotics.55 The lower cost 

of the therapy is often considered the only advantage of local delivery using PMMA 

beads.56 Consequently, a large population of clinicians is skeptical about the benefits of 

local delivery in the management of osteomyelitis compared with the traditional approach 

and resorts to the latter in their practice.

With no nonbiodegradable bone substitutes for load-bearing applications in sight for either 

the biomedical device market or anywhere in clinical testing, for many decades now the 

greatest potential among the bone engineers has been logically ascribed to bioresorbable 

implants. However, the only currently clinically available bioresorbable alternative to 
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PMMA beads, predominantly used outside the United States, is calcium sulfate cements.57 

Unlike PMMA, whose monomeric absorption has previously caused intraoperative 

cardiopulmonary complications during arthroplasty,58 calcium sulfates are nontoxic and 

inexpensive and have been successfully used as a drug carrier in the treatment of 

osteomyelitis.59,60 In addition to being used since the late 19th century as a bone filler in 

their hemihydrate form, also known as plaster of Paris,61 calcium sulfates have been applied 

in reparative dentistry for maxillary sinus floor augmentation62 and for the repair of 

periodontal defects63 and root perforations.64 In addition to their exceptional softness and 

poor handling features, the main downside is that they are resorbed rapidly, in a matter of 

weeks—faster than the bone ingrowth rate—which can lead to mechanical implant failure.65 

An ideal bioresorbable implant provides a mechanical support that is gradually transferred to 

the newly formed bone, a requirement that calcium sulfates do not satisfy. They can also 

cause severe drainage at the wound site after the surgical implantation,66 as well as the 

formation of a fibrous gap in the area where the slowly ingrowing bone replaces the rapidly 

resorbing cement,67 the same effect that is expected to result from the use of aragonite68 or 

calcium phosphate phases, such as tricalcium69 or dicalcium70,71 phosphates, as bone fillers; 

these are more soluble than hydroxyapatite, the calcium phosphate constituent of bone. Also, 

as a result of their relatively fast degradation in the body, the concentration of the antibiotic 

at the target site and its mean blood serum concentration over the first month following 

implantation are lower when compared with hydroxyapatite.72 For this reason, and in view 

of the fact that calcium sulfates have not led to therapeutic outcomes any better than those of 

PMMA implants,73 their use as an ideal bioresorbable delivery vehicle for antibiotics and a 

void filler in bony defects has been questioned.74

IV. ADVANCED DRUG DELIVERY PLATFORMS IN THE RESEARCH STAGE

As noted earlier, two main disadvantages of the traditional treatment of osteomyelitis 

include (1) systemic distribution of the therapeutic agent and (2) the need for surgical 

removal of necrotic bone. Options for sustained antibiotic release that can ensure high local 

concentrations and low serum concentrations of the drug75 already exist, and progress in 

terms of promoting the osteogenic activity of the carrier is expected in the future. Whereas 

local and sustained release of the drug could overcome the need for prolonged oral and/or 

intravenous antibiotic therapies, the induction of osteogenesis by the carrier itself or the 

growth factors released from it could eliminate or at least minimize the surgical removal of 

affected bone, along with the frequent skeletal deformations and unaesthetic physical 

disfigurements it entails. Patients with diabetic neuropathy are prone to developing 

osteomyelitis of the forefoot, which often leads to minor amputation76; with the 

development of osteogenic carriers that could revitalize the diseased bone, however, such 

clinical cases could be coped with in a manner less traumatic for the patient. For example, in 

parallel with the drug release process, the particles may decompose, dissipating their 

osteogenic contents and thus fostering the bone healing process and natural restoration of the 

portion of bone damaged by the pathogen. The therapeutic approach to treating 

osteomyelitis would clearly yield a whole new dimension by using one such osteogenic drug 

delivery platform. After all, with an ideal therapeutic agent serving a dual purpose of (1) 

eliminating the source of illness and (2) revitalizing the organism, the conception of drug 
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delivery carriers that exhibit simultaneous bactericidal and osteogenic performance is 

natural.

A. Calcium Phosphates

Calcium phosphates occupy a special place among the biodegradable drug carriers of 

antibiotics in bone repair. They have been traditionally considered a convenient choice for 

the synthetic substitute of hard tissues because of their excellent biocompatibility, 

osteoconductivity, lack of cytotoxicity, nonimmunogenicity, and sufficient loading 

capacities, thanks to which hydroxyapatite, their least soluble phase, has been used as a 

chromatographic adsorbent of proteins,77–79 nucleic acids,80–82 and microorganisms.83 

Excellent adsorption properties of hydroxyapatite are the result of its positively charged 

surface Ca2+ ions engaging in an anion-exchange interaction with deprotonated carboxyl 

groups of proteins and the negatively charged PO4
3− groups engaging in a cation-exchange 

interaction with protonated amino groups of proteins.84 Moreover, hydroxyapatite possesses 

different net charges on the a and c planes of its hexagonal crystal lattice—positive and 

negative, respectively,85 which renders it effective in the crystallographically selective 

binding of multiple molecular entities. Other variations of hydroxyapatite, such as 

carbonated apatite86 and biphasic calcium phosphate,87 possessed an even greater protein 

adsorption capacity, given an identical particle size and specific surface area, which was 

hypothesized to be due to their greater solubility, which increases the ionic strength in the 

medium and the surface exposition of the polar residues of proteins, thus increasing the 

binding efficacy.88 Hydroxyapatite also has been used as an amphiphilic stabilizer in 

Pickering emulsions, suggesting its ability to interact with both hydrophilic and hydrophobic 

compounds.89

Unlike PMMA, calcium phosphates are fully bioresorbable, and the rate of their degradation 

could be tentatively tuned by controlling the phase composition of the compound.90 Namely, 

as can be seen in Table 1, calcium phosphates can adopt a variety of stoichiometries, 

covering a range of solubility product values, from 0.07 for anhydrous and monohydrous 

monocalcium phosphates to 10−7 for monetite and brushite to 10−25 for α-tricalcium 

phosphate to 10−117 for hydroxyapatite.91 Of course, because more ionic species exist in the 

stoichiometric formulas of the less soluble phases, the difference in solubility is of a lesser 

magnitude than that in the solubility product, amounting to approximately 6 · 104, 1.6 · 102, 

and 8.3 times higher solubility for monocalcium phosphate, monetite, and α-tricalcium 

phosphate, respectively, compared with hydroxyapatite (0.3 mg/dm3) in water at 37°C and 

at a physiological pH.

Particle size presents an important consideration in the design of most optimal degradation 

and release profiles, and nanosized calcium phosphates have proved to be far more 

advantageous than the microsized ones,92 a natural consequence of the fact that bone itself 

contains apatite particles with nanosized dimensions93 (20 × 10 × 2 nm, on average94). 

Furthermore, porosity that is controllable via sintering at elevated temperatures could be 

used to vary the degradation rate in vivo within a wide window of values; again, nanosized 

and fully dispersed hydroxyapatite is highly bioresorbable and the denser formulations are 

resorbable to a significantly lesser degree,95 leading to hypotheses that nonporous, sintered 
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hydroxyapatite blocks should be stable in biological milieus for centuries.96 In this case the 

drug release rate tends to be directly proportional to the resorption rate, that is, significantly 

higher for the more porous calcium phosphate microstructures.97 Stoichiometry of single-

phase compositions, implant geometry, ionic substitutions, crystallinity, and macro- and 

microporosity are other factors known to greatly affect the degradation rate of calcium 

phosphates in vivo.98–100 When self-setting calcium phosphates pastes are used, the powder-

to-liquid ratio, initial viscosity, pH, and the presence of additives, such as crystallization 

seeds, inhibitors, or dispersants, are additional factors that influence the hardening 

properties, the degradation kinetics, and the rates of resorption and new bone ingrowth,101 

which usually range anywhere between 3 months and 3 years.102

Calcium phosphates are also a component of the mineral phase of hard tissues, which makes 

them a natural candidate for bone-filling drug carriers. With bone acting as a natural 

reservoir for calcium and phosphate ions,109 any excessive amounts thereof could be 

regulated in favor of new bone growth. Calcium and phosphate ions released upon the 

degradation of these compounds can also stimulate osteoblastic differentiation110,111 and 

proliferation112 and be used as ionic ingredients for the formation of new bone. Another 

advantage of calcium phosphates is that they could be sterilized by a variety of techniques, 

including γ-irradiation, gas plasma, supercritical carbon dioxide, or even steam autoclaving 

(in the case of hydroxyapatite), without causing adverse effects to their structure and 

properties. By contrast, in general there is currently no established sterilization procedure for 

polymers that does not modify their structure to some degree, due to (1) physical 

deformations and chemical changes—scission and cross-linking that occur upon 

autoclaving,113 alongside practically inevitable degradation of an encapsulated drug114; (2) 

surface chemistry modifications that occur upon the application of ethylene oxide, hydrogen 

peroxide, or ozone115; (3) bulk structural changes and a decrease in the molecular weight 

that occur during γ-irradiation,116 while a difficult regulatory path is posed before novel or 

nontraditional sterilization methods.

Calcium phosphates are also relatively easy to prepare in a variety of morphological 

forms,117 although not at a particle size below 20 nm, as is the case with metals. Different 

calcium phosphate particle morphologies possess different bioactivities,118,119 which allows 

for the optimization of their biological response by means of controlling morphological and 

specific crystal face exposition. Calcium phosphates are also naturally precipitated in a 

nanosized form, and the use of nanoparticulate calcium phosphates could be considered as a 

win–win solution in the quest for simultaneous bactericidal and osteogenic properties. 

Namely, the drug adsorption efficiency is directly proportional to the specific surface area of 

the adsorbent and inversely proportional to the particle size.120 The large surface area of 

nanosized calcium phosphates thus increases their drug-loading capacity and makes them a 

more effective bactericidal agent.121 At the same time, nanosized calcium phosphates 

possess higher bioactivity than their microsized counterparts,122,123 an insight that is natural 

in view of the nanosized dimensions (30 × 20 × 2 nm)124 of mineral particles in bone. Last 

but not least, calcium phosphates are one of the safest nanomaterials evaluated for toxicity 

so far.125 Figure 5a displays round hydroxyapatite nanoparticles obtained by precipitation 

from alkaline aqueous solutions and highlights their ability to capture large amounts of drug 
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molecules in the pores between the particles upon desiccation at low pressure. 

Mechanistically similar intraporous loading of hydroxyapatite with a drug was reported 

earlier for isepamacin sulfate, an aminoglycoside antibiotic.126 The same effect of extended 

release could be achieved by compacting the antibiotic-loaded calcium phosphate powders 

under pressure.127 PerOssal, a commercial mixture comprising 51.5% nanocrystalline 

hydroxyapatite and 48.5% calcium sulfate, for example, relies on such compaction of 

nanoparticles to ensure sustained release of antibiotics.128

1. Concerns Pertaining to the Use of Calcium Phosphates—The application of 

calcium phosphate particles as drug delivery carriers naturally has its downsides, and the 

main one comes from their difficult surface functionalization. This is, in part, the effect of 

their ionic nature, which dictates that the surface layers undergo rapid reorganization via 

dissolution/reprecipitation phenomena in ionic media. As evidence of this effect, ζ potential 

of hydroxyapatite particles changed with the immersion time, indicating an exchange of ions 

across the interface layer and its restructuring following local changes in the solvent 

medium.129,130 Despite the presence of calcium, phosphate, and hydroxyl ionic groups on 

the particle surface, which, in theory, would allow the binding of an array of functional 

groups, the intense ionic exchange between the particle surface and its ionic milieu renders 

this approach inoperative for dispersed particles. Compared with calcium phosphate 

nanoparticles, silanol groups on the surface of silica nanoparticles offer greater stability and 

more facile functionalization with organic molecules, having the same role as monolayers of 

thiol groups chemisorbed on the surface of silver, copper, or gold132 and carboxylic or 

phosphonic acid moieties on the surface of metal oxides or quantum dots. Their downside, 

however, is an uncertain fate in the body and an array of inflammatory and oxidative 

stresses possibly induced in it, ranging from mitochondrial dysfunction to genotoxicity to 

pulmonary congestion to hepatocyte necrosis.133–135

Unlike polymeric materials (e.g., hyaluronic acid), whose viscosity could be controlled to a 

greater degree by means of chemical or photochemical cross-linking, thixotropic calcium 

phosphate cements exhibit a far narrower window of setting rates, which significantly limits 

the flexibility of their surgical handling. Variations in the concentration of plasticizing 

additives, liquid-to-solid ratio, particle size and sphericity, and ionic strength of the liquid 

phase have all been studied in a search for the optimal conditions for the fabrication of 

injectable but cohesive calcium phosphate pastes and putties.136 On the other side of the 

spectrum, occupied by solid and strictly implantable materials, nonsintered calcium 

phosphates in particular—which are strong but fragile and most interesting for drug delivery 

applications are hardly formable and also are difficult to surgically attach to bone with 

screws and intramedullary rods, for which reason they are often combined with a tougher, 

more ductile organic phase to mimic the mechanical properties of bone itself.137 Also, as a 

consequence of uncontrolled ripening in the nucleation and crystal growth stages, 

monodisperse calcium phosphates are difficult to prepare in a broad array of sizes, which 

poses obstacles to systematic studies of the effect of calcium phosphate particle size on 

bioactivity.138

Last but not least, the most important disadvantage of calcium phosphates is that they have 

little or no ability to be loaded with organic molecules via intercalation, which limits the 
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loading mechanism to physisorption only and makes prolonged release difficult to achieve. 

Namely, burst release typically results when the drug is adsorbed on the surface of the 

carrier, and while, on one hand, this effect is favorable in terms of ensuring that the minimal 

inhibitory concentration for the given pathogen is exceeded, it can also deplete the carrier 

from the antibiotic and make its further release therapeutically ineffective. Still, a 

tremendous difference between microsized and nanosized calcium phosphate particles was 

found: Whereas the concentration of vancomycin released from the former was below the 

detection limit 10 days after the implantation, nanoparticles of the same composition were 

able to sustain the therapeutic level of release for up to 6 weeks.139 Extended release from 

porous calcium phosphate cements and its therapeutic effects in vivo were confirmed on 

numerous other occasions.140–143 Finally, because of relatively low ζ potentials (<15 mV on 

the absolute scale), calcium phosphates form sols of low stability; simple and rapid 

precipitation procedures for their formation in the low crystalline and nanoparticulate form, 

on the other hand, enable them to be prepared before their clinical application.

2. Calcium Phosphate as an Intrinsically Osteoinductive Material—Calcium 

phosphates have been generally considered as osteoconductive materials in the sense that 

they support bone growth on them, although their ability to upregulate the expression of 

osteogenic markers and boost osteoblastic differentiation, making them osteoinductive, too, 

has been reported on numerous occasions.144–146 The addition of growth factors, such as 

bone morphogenetic proteins (BMPs), also has made calcium phosphates 

osteoinductive,147,148 although the same osteoinductive effect achieved by BMP-2 on 

human mesenchymal stem cells was accomplished by nanosized hydroxyapatite particles.149 

In a corresponding study composites for the delivery of recombinant human BMP-2 (rH-

BMP-2) to mice and rabbits, comprising poly(D, L-lactic acid), p-dioxanone, polyethylene 

glycol (PEG), and β-tricalcium phosphate needed less of the BMP than the same composites 

that excluded hydroxyapatite from their composition to induce the same osteopromoting 

effect and new bone formation.150,151 Another study demonstrated that the expression of 

BMP-2 in human periodontal ligament cells increased upon stimulation with nanosized 

hydroxyapatite.152 Optimization of substrate topography was able to yield the same 

differentiation–induction effect as the chemical differentiation agents in the transformation 

of mesenchymal stem cells to osteoblastic ones,153 and a similar approach that could be 

applied to ensure induced osteogenic response of bone cells without the use of expensive 

growth factors would be great news, especially since bone infection is an illness known to 

be particularly prevalent among patients in the Third World countries, for whom 

affordability presents a vital feature of a marketed drug. This does not even consider that the 

use of rHBMP-2 in bone augmentation procedures has induced ectopic bone formation, 

osteolysis, pseudoarthrosis, inflammatory reactions in soft tissues, increased risk of 

malignancies, and other adverse effects,154,155 raising significant concerns over its safety in 

the recent years.156 The combination of rHBMP-2 with calcium phosphates has, however, 

mitigated these adversities associated with the direct infusion of the given growth factor or 

its delivery using organic carriers.157 The naturally bactericidal citrate ion, accounting for 

5.5 wt% of the organic content of bone, where it coats hydroxyapatite crystals at 0.5 

molecules/nm2 and stabilizes them in the collagen matrix,158 increases in concentration in 

parallel with the differentiation of mesenchymal stem cells into osteoblasts159 and has been 
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proposed as an alternative to BMPs in view of the ability of composites comprising 

hydroxyapatite, in combination with polymers based on citric acid, to facilely regenerate 

necrotic bone.160

To render calcium phosphates as a base for an authentically osteogenic material by including 

cell components capable of bone production, such as osteoprogenitor cells or differentiated 

osteoblasts, however, the formation of porous scaffolds based on calcium phosphates is 

needed, comprising a difficult but not impossible task.161–164 For example, with the addition 

of only 3 vol% gelatin, electrospinning, the method traditionally used to obtain polymeric 

scaffolds, could be used to prepare calcium phosphate scaffolds as well.165 Biomimetic 

methods based on the usage of porous biological hard tissues as casting molds for the 

synthesis of structurally similar inorganic scaffolds also have recently gained popularity.166 

In addition, a combination of self-setting pastes and porogens, such as mannitol 

crystals,167,168 pectin,169 hydrogen peroxide,170 inorganic crystals,171 surfactants,172,173 

poly-(D,L-lactide-co-glycolide) (PLGA),174,175 oils,176 or other hydrophobic compounds, 

was also used to create macroporous calcium phosphate formulations. Calcium phosphate 

nanoparticles were successfully incorporated in polymeric,177 collagen,178 or carbon 

nanotube179 scaffolds with the purpose of promoting greater adsorption of adhesive serum 

proteins and inducing bone growth. Simple admixing of microsized polymeric spheres into 

calcium phosphate cements is another method used to produce macroporosity sufficient to 

provide a proliferation milieu for host cells after the degradation of the polymeric phase.180

3. Prospect of Ion-Substituted Calcium Phosphates—By affecting their lattice 

parameters, crystallinity, and the solubility product, ionic substitutions in calcium 

phosphates seem to have a large effect on a range of their physicochemical 

properties.181–183 While geological apatite can accommodate half of all the elements of the 

periodic table in its crystal lattice,184 biological apatite contains about a dozen different ions 

as impurities, which has provided a rationale for the expected improvement in the biological 

response to ion-substituted calcium phosphates.185 Substitution of Ca2+ with K+, Na+, or 

other alkali ions can, for example, increase the solubility of hydroxyapatite beyond that of 

tricalcium phosphate.186 Like Na+, Mg2+ is an ion that inhibits the nucleation of 

apatite.187,188 However, it is also the ion for which bone is the biggest reservoir in the body 

and whose deficiency logically reduces bone growth,189 explaining numerous attempts to 

augment existing calcium phosphate formulations by doping them with Mg2+.190,191 

Together with Mg2+, Zn2+ has been found in subnormal concentrations in osteoporotic 

patients, suggesting the vital role of these two cations in proper bone remodeling.192,193 

Because of the essential role of Zn2+ in the production of more than one bone growth 

protein, including the zinc finger containing transcription factor Osterix,194 the deficiency of 

this micronutrient was proven to have detrimental repercussions on bone development, as 

well,195 which is another argument in favor of its incorporation into calcium phosphates 

designed for bone substitutes. Zinc-substituted hydroxyapatite containing 1.6 wt% of Zn2+ 

possessed a more pronounced antibacterial effect against S. aureus compared with pure 

hydroxyapatite.196 Selenium is another element with strong antimicrobial properties that has 

been introduced to carbonated hydroxyapatite via CO3
2− → SeO3

2− substitution, with the 
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resulting material being able to inhibit the formation of Pseudomonas aeruginosa and S. 

aureus biofilm on its surface.197

Silicon (Si) and strontium (Sr) are present in newly formed bone in the amounts of 0.5198 

and 0.03 wt%, respectively, and a more viable biological response was detected upon the 

implantation of Si-doped and Sr-doped hydroxyapatite compared with pure 

hydroxyapatite.199–201 The most probable reason for this lies in the osteopromotive 

properties of Si and Sr ions per se; Si has been demonstrated to increase bone mass density 

and angiogenesis during new bone growth,202 whereas Sr upregulates the expression of the 

osteoblastic protein osteoprotegerin, which inhibits the production of RANKL and hinders 

the differentiation and activation of osteoclasts.203 Incorporation of either of these two ions 

in the crystal lattice of hydroxyapatite increased the degradation of the compound in 

vitro.204,205 Vanadium is another element critical for healthy bone development because of 

its ability to stimulate mineralization of collagen and proliferation of osteoblasts,206 but the 

bioactivity of vanadium-doped calcium phosphates207 has yet to be assessed.

Calcium phosphates are able to sequester heavy ions from the environment, such as Pb2+ 

and As5+, which is why they have been used as adsorbents in water purification.208 Calcium 

phosphate particles could thus be easily doped with Eu3+, Tb3+, Gd3+, La3+, or other 

lanthanides and be made luminescent and used for imaging applications.209,210 

Hydroxyapatite labeled with 99Tm, 125I, 90Yt, 153Sm, or 3H radionuclides could also be 

considered for simultaneous bone substitution and imaging applications.211–213 Doping 

hydroxyapatite with alkaline earth metals and magnetic elements, such as cobalt214 or 

iron,215–217 yielded other impure forms of calcium phosphate that have been intensively 

researched for their unique bioactive properties.218–220 Superparamagnetic hydroxyapatite 

obtained by doping with approximately 10 wt% Fe2+/Fe3+ was hailed as a far less toxic 

alternative to magnetite when used as a heating material for hyperthermia-based bone cancer 

therapies.221 Finally, carbonated hydroxyapatite, structurally similar to its biomineralized 

form, has been frequently demonstrated to be superior in terms of its bioactivity compared 

with its stoichiometric, noncarbonated counterpart.222,223

Explored alternatives to calcium phosphates and the two aforementioned materials in actual 

clinical use, PMMA and calcium sulfate, include mainly various polymeric materials, 

bioactive glasses, liquid crystals, collagen, and titanium nanotubes; these are discussed in 

the sections that follow.

B. Synthetic Biodegradable Polymers

Synthetic biodegradable polymers proposed as potential antibiotic carriers in the site-

specific treatment of osteomyelitis are predominantly poly(α-hydroxy esters).224–226 Among 

them, poly(L-lactic acid) (PLLA), poly(glycolic acid) (PGA), PLGA,227 and poly(ε-

caprolactone)228 (PCL) have been studied most. All of these compositions have a proven 

history of encapsulating arrays of both hydrophilic and hydrophobic compounds, including 

antibiotics,229 and enabling their sustained, first-order release over prolonged periods of 

time.230 While being formable in situ and capable of fitting practically any shape of a bone 

defect to be filled, they also allow for fine-tuning of their mechanical and degradation 

properties via control over their chemical structure, including parameters such as molecular 
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weight, crystallinity, cross-linking ratio, and end-group identity. For example, the 

decomposition kinetics of PLGA could be easily controlled by varying the lactide-to-

glycolide ratio and made to match the rate of new bone formation; namely, while PLLA has 

a relatively lengthy degradation time scale, ranging from 3 months to over a year, depending 

on the molecular weight, crystallinity, and other physicochemical factors, a gradual increase 

in PGA content shortens this degradation to a matter of weeks for PLGA 50:50 as a result of 

the decreased crystallinity and higher hydrolysis rate of PGA, after which the crystallinity 

and resistance to degradation increase again at higher PGA contents, producing the 

characteristic U-shaped curve (Fig. 6a).231,232 An example of how sensitive the kinetics of 

degradation and drug release could be to cross-linking ratio is shown in Fig. 6b; whereas 0.5 

% of cross-linking in an acrylic hydrogel completes release in less than 5 hours, 1% of 

cross-linking promotes sustained release over a period of 8 days.233 Other biodegradable 

synthetic polymers developed and tested as potential carriers of antibiotics in the treatment 

of osteomyelitis include poly(trimethylene carbonate)234,235; polyamide fibers236; 

polyhydroxyalkanoates, e.g., poly(3-hydroxybutyrate-co-3-hydroxyvalerate)237; and 

polyanhydrides, e.g., poly(sebacic anhydride)238; poly(sebacic-co-ricinoleic-ester-

anhydride)239; or Septacin,240 a copolymer of dimeric erucic acid and sebacic acid. 

Polymeric composites are also the subjects of intense research. For example, a layer-by-

layer technique was used to grow multilayered polyelectrolyte films incorporating 

gentamicin and comprising a cationic poly(β-amino ester) and anionic poly(acrylic acid) on 

top of nondegradable poly(ethyleneimine) and poly(sodium 4-styrenesulfonate). Despite the 

fact that more than two-thirds of the drug content were released in the first 3 days, the 

implants were successful in treating S. aureus infection in a rabbit bone model.241

1. Concerns Pertaining to the Use of Aliphatic Polyesters—Although poly(α-

hydroxy esters) have been successfully used in bone tissue engineering since the early 

1990s,242–244 there exists a concern that their acidic degradation products may favor 

bacterial growth and promote hard-tissue resorption and bone mass loss,245,246 effects 

experimentally evidenced in the past. In spite of the supposed safe inclusion of the 

byproducts of the degradation of PLLA-based polymers in the metabolic cycles of the host 

organism (e.g., lactic acid is secreted by osteoclasts to resorb bone and is also one of the 

compounds in the Krebs cycle), chronic inflammation has often resulted as a response to 

their implantation in bone tissue engineering.247–249 Another concern is that this 

acidification effect may render rather ineffective antibiotics whose antimicrobial 

effectiveness exists within only a narrow window of pH values. A decrease in pH from 7.4 

to 5.5, for example, has led to a 16-fold increase in the minimum inhibitory concentration of 

clindamycin with respect to S. aureus.250 Poly(α-hydroxy esters) also lack the mechanical 

properties required for load-bearing applications; PLGA, combining the adsorptive stability 

of PLA with the mechanical strength of PGA, is the most favored and thus the most 

researched option with respect to this intrinsic drawback.

C. Gels and Bioderived Polymers

Aqueous monoolein gels are an example of a liquid crystal system that was used to deliver 

gentamicin sulfate for 3 weeks without the burst effect.252 A mannosylated poly-

phosphoester gel with the capability of targeting macrophages and releasing the antibiotic 
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payload in a site-activated manner, that is, only after being degraded by the bacterial 

enzymes, was developed.253 Use of the osteointegrating effects of calcium phosphates was 

attempted by incorporating them into cubic liquid crystals of gentamicin–mono-olein–water 

formulations.254 Various combinations of calcium phosphates with gelatins, that is, mixtures 

of peptides and proteins resulting from partial degradation of collagen, also were 

investigated.255,256 Among other bioderived polymers, some have been used to encapsulate 

antibiotics, such as albumin257,258 or dextran,259 but have not been reported in bone-related 

experimental trials, except in combination with more mechanically stable, inorganic phases. 

Albumin coatings around allografts, for example, improved cell adhesion and 

proliferation260 and enhanced bone healing,261 whereas the use of dextran as a porogen in 

PMMA beads boosted the release of vancomycin, daptomycin, and amika-cin.262 

Conversely, silk fibroin coating around PCL microspheres managed to reduce the initial 

burst release of vancomycin and extend the timeframe of its release.263 Silk–alginate 

copolymers are particularly interesting because of their tunable stiffness as the function of 

the silk-to-alginate ratio and the concentration of the crosslinker,264 but they have not been 

used yet for the controlled delivery of antibiotics. Other natural polysaccharides, such as 

chitosan,265–267 pectin,268 amylose,269 alginate,270 and hyaluronic acid,271 have been both 

used for the controlled release of antibiotics in vitro and tested as a component of 

antimicrobial bone grafts in vivo. Pectin microspheres, alone and in combination with 

chitosan, were used to encapsulate ciprofloxacin and were more effective in treating 

osteomyelitis than intramuscularly administered antibiotic in a rat model.272 A cross-linked 

amylose starch matrix loaded with ciprofloxacin prevented and eradicated infection more 

effectively than oral ciprofloxacin treatments in dogs with an infected femur.273 

Vancomycin encapsulated within alginate beads and distributed in a fibrin gel scaffold was 

used to treat infected tibiae in rabbits.274 Still, the most researched among bioderived 

polymers as a potential carrier of antibiotics in the treatment and prevention of orthopedic 

infection is collagen.

D. Collagen Sponges

Outside the United States in the 1980s, collagen sponges, also known as fleeces, began to be 

used as the major alternative to PMMA beads for the local delivery of antibiotics. Their 

application has been justified by a moderate number of clinical and in vivo studies.275 For 

example, compared with PMMA beads, sponge-like collagen carriers of gentamicin were 7 

times more effective in reducing the bacterial colony count in the treatment of osteomyelitis 

caused by S. aureus in the tibiae of rats.276 Also, the placement of gentamicin-eluting 

collagen fleece around the fixation plate during the surgical treatment of open bone fracture 

prevented surgical site infection from occurring and promoted bone union in a large 

population of patients.277 In fact, rather than as a bone filler, collagen has been mostly used 

as a material for postsurgical prophylaxis in the treatment of infectious disease.

1. Concerns Pertaining to the Use of Collagen—In spite of (1) the viable tensile 

strength of collagen, (2) its ability to foster cellular attachment, and (3) the fact that collagen 

sponges have been successfully used in the past,278 the choice of antibiotics in their 

clinically applicable versions has been limited to gentamicin only, alongside other 

disadvantages that collagen intrinsically possesses. The main problem associated with the 
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application of collagen and its derivatives as bone fillers comes from the intrinsic 

immunogenicity of the collagen molecule,279 namely, most of it is xenogenic in origin 

because it is difficult to obtain directly from a patient, and recombinant technologies and the 

methods to extract the immunogenic, telopeptide portion of collagen molecules are not only 

of limited availability but also lead to reduced bioactivity of the protein.280 Although 

collagen has been successfully applied topically, for example, in biodegradable sutures and 

as a prophylactic wound dressing carrier of antibiotics,281–283 its mere subcutaneous 

epithelialization may lead to undesired immunogenic or antigenic responses.284,285 While it 

can lead to antigenic and inflammatory responses, collagen is also typified by comparatively 

uncontrolled degradation and drug release rates in the body.286,287 For this reason, a 

combination of collagen sponges with other polymers has been used to render more 

sustained drug release profiles. One such composite material enriched with chitosan 

microspheres and delivering recombinant human BMP-2 considerably outperformed a pure 

collagen sponge loaded with the same growth factor in terms of new bone growth 

enhancement, bone/implant integration, and the duration of drug release.288

E. Silicon-Based Materials

Porous bioactive glass scaffolds loaded with ceftriaxone demonstrated a higher local 

concentration of the antibiotic 6 weeks after the implantation compared with a parenteral 

treatment composed of two injections per day.289 Silicate-to-borate replacement in bioactive 

glasses produced materials that also were used for the controlled delivery of vancomycin or 

teicoplanin and repair of infected bone in rabbits.290,291 Partial substitution of PO4
3− groups 

of hydroxyapatite with SiO4
4− species resulted in a calcium phosphate–based glass ceramic 

able to release vancomycin in a sustained manner over 2 weeks after cross-linking with 

chitosan.292 The addition of Ag+ ions to phosphate-based glasses led to their sustained 

release and bactericidal effect against S. aureus biofilms. 293 Further research will, however, 

be necessary to show whether such antibiotic-free methods are capable of acting against 

severe bone infections. As far as silica-containing materials are concerned, xerogels 

obtainable from a solgel process were used to encapsulate and ensure the prolonged release 

of vancomycin, with the water-to-alkoxysilane molar ratio being discerned as a parameter 

for the control of release kinetics.294 Zeolites, microporous aluminosilicates with 

pronounced (1) antibacterial,295 (2) adsorptive,296 and (3) bone-protective dietary297 

properties, inhibited osteoclast-mediated bone resorption in vitro,298 but their application as 

a component of bone fillers in combination with calcium phosphates or other 

osteoconductive phases is still a largely unexplored area. Metal-organic frameworks, 

mesoporous materials structurally related to zeolites,299 have been proposed as potentially 

efficient drug delivery carriers,300 including in applications that pertain to bone 

regeneration,301 which, however, they have yet to be tested for. Their main weakness is 

rapid degradability in aqueous media, and structural variants with increased stability in 

water are being intensively sought.302

F. Metals

The widespread rise in the resistance of common pathogens to organic antibiotics has led to 

a greater degree of consideration of the use of metals to prevent or treat infection,303 with 

many of them, such as silver-impregnated fabrics used as prophylactic dressings during 
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wound healing,304 regularly applied in the clinic. Because of its antimicrobial properties,305 

the first metal proposed for use in the treatment of osteomyelitis was silver; be it alone or in 

the form of nylon wire composites, clinical testing resulted in a 65% success rate and no 

evidence of postoperative argyria.306 Titania nanotubes formed by electrochemical 

anodization on the surface of titanium nanowires used for bone fixation were capable of 

being loaded with gentamicin and releasing it over a period of 2 weeks.307 In another study, 

however, the same combination of gentamicin and TiO2 nanotubes with an 80-nm diameter 

and 400-nm length led to prompt release of the drug in only 1–2 hours, but it still reduced 

the adhesion of Staphylococcus epidermis on the surface compared with pure titanium.308 

Surface etching and anodization parameters could be used to modify the diameter of the 

nanotubes and thereby control the rate of diffusion of the drug stored in them into the 

biological environment.309

Surface texture of the material is also a property of interest; for example, electropolishing of 

a Ti-6Al-7Nb alloy decreased the amount of S. aureus adhering to it.310 A tradeoff, 

however, is expected to arise because osteoblasts, which compete with the bacteria for the 

bioactive surface of the implant in a process that greatly determines the clinical outcome,311 

also prefer to attach to rougher surfaces, such as those that typify naturally topographically 

irregular calcium phosphates.312 To that end, titanium implants are being subjected to 

sandblasting and etching procedures,313,314 as well as coated with bioactive layers, 

predominantly hydroxyapatite,315–317 to make up for their intrinsic bioinertness and have 

their bioactivity boosted before surgical insertion.

G. Composites

In the design of nanoparticles for biomedical applications great emphasis has been placed on 

particles capable of simultaneously aiding in prevention, early detection, and treatment of a 

medical condition. With antibiotic calcium sulfate cements already in use in prophylaxis 

against surgical wound infection, it can be expected that theranostic particles able to 

simultaneously prevent, monitor, or diagnose the onset of infection and release antimicrobial 

agents to prevent its early spread may be developed in the future. In that sense fantastic 

multifunctional composite nanoparticles can be considered to be the ideal toward which the 

nanoparticle fabrication field will advance (Fig. 7a). The difficulties in achieving stable, 

chemical functionalization of calcium phosphate particles with therapeutic ligands can be 

mitigated by coating them with a chemically bondable layer, such as PLGA318,319 or 

PCL320 or by forming around the calcium phosphate core multilayered composite particle 

structures321 with an ability to carry various therapeutic agents either between the calcium 

phosphate layers or within the polymeric coatings (Fig. 5b–d). Through a simple series of 

chemical steps, polymeric coatings can also be conjugated with various targeting or 

therapeutic ligands.322 Binding amino acids with appropriate physical properties via PEG 

linkers, for example, phenylalanine as a hydrophobic residue, lysine as a positively charged 

one, and glutamic acid as a negatively charged one, can be used to increase the drug-binding 

affinity of the polymeric surface.323 Tailoring of the nanodiamond particle surface with 

carboxylic or amino groups to render it negatively or positively charged under physiological 

conditions, respectively, greatly affected the binding and release of various drugs; binding of 

the negatively charged drug by physisorption to an amine-functionalized surface is so 
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intensive that virtually no release in vitro occurred.324 Such combinations of various loading 

locations on the particle could potentially yield multiple-stage release profiles that might not 

only favor the antimicrobial efficacy of the particles in vivo but also prove to be beneficial in 

increasing the regenerative capacity of the carriers, given that the tissue regeneration process 

following injury can be divided into multiple stages (Fig. 7b), each of which could be 

targeted and augmented by a specific particle additive released within a precisely tailored 

time window. To avoid adverse outcomes resulting from obviation or incompletion of any 

single one of the interconnected steps in the bone-healing cascade (Fig. 7c, d), the 

biomolecular machinery involved in every one of these stages could be targeted separately 

and triggered at the right time by using such a smart composite particle that sequentially 

releases its multiple payload in a highly controlled, spatiotemporal manner. An interesting 

approach to achieving such multimodal release profiles is through cooperative assembly of 

block copolymers as elemental building blocks of the particle, each of which carries a 

unique therapeutic payload and degrades at a different rate.325

The combination of calcium phosphates with a polymeric component can also be beneficial 

for the second essential function to be achieved by these nanoparticulate drug carriers, in 

addition to their antibacterial role: assistance in bone regeneration. Namely, since bone itself 

is a composite material comprising a soft, collagenous component and a hard, ceramic one, 

it is natural to expect that a soft/hard composite of a similar nature should prove an ideal 

material for bone replacement therapies. In view of this, a range of properties of calcium 

phosphates is improved upon their combination with a polymeric phase, starting, most 

essentially, with the mechanical ones. Namely, it is generally assumed that the 

microstructure and nanoarchitecture of calcium phosphates alone cannot be modified in such 

a manner as to make the material mechanically compatible with the grafted bone and 

prevent the frequent fracture of the filler upon its surgical placement to substitute natural 

bone.326 Only a combination with a soft component is thought to be able to ameliorate these 

fundamental issues associated with the clinical application of calcium phosphates. The 

combination of viscoelastic properties of the polymers and osteoconductivity of calcium 

phosphates has yielded composites that surpassed the resistance to fracture, structural 

integrity, and stiffness of the individual components,327 making up for the low compressive 

strength of the former and the brittleness and lack of malleability of the latter.328 

Reinforcement with polypropylene fumarate,329 for example, improved the flexural strength 

of brushite from 1.8 to 16.1 MPa and increased the fracture surface energy from 2.7 to 249 

J/m2. Although calcium phosphates exhibit relatively high values of compressive strength 

(10–100 MPa), as opposed to tensile and shear strengths (1–10 MPa), even these values 

could be improved with the addition of a polymer, as exemplified by the doubling of the 

compressive strength of a biphasic calcium phosphate cement, from 35 to 60 MPa, upon the 

incorporation of only 0.5 vol% of a superplasticizer based on a vinyl-modified 

copolymer, 330 as well as upon the addition of gelatin331 or ammonium polyacrylate.332 

Polymers could also increase the plastic flow and enhance the viscosity of the material, thus 

making possible its preparation in the form of an injectable self-setting paste,333 although 

there is usually a fine line dividing an excessive increase in the setting time from improved 

mechanical properties.334,335 Finally, the resorption time and the corresponding bone 

ingrowth rate significantly increased when hydroxyapatite was implanted as a bone 
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substitute in vivo in a composite form, in combination with PLGA,336,337 a polymer that is 

able to accelerate the resorption of calcium phosphates by releasing its acidic degradation 

products.338 Yet another tradeoff exists here: An increase in the porosity of the ceramic 

substructure of the composite leads to improved bioresorption characteristics but 

simultaneously entails an increased susceptibility of the material to crack propagation and 

the corresponding proneness to fail under load-bearing conditions.339

Such composite particles showed promise in earlier research. Gentamicin-containing 

granules composed of hydroxyapatite nanoparticles, chitosan, and ethyl cellulose, for 

example, were effective in the treatment of chronic osteomyelitis.340 Another prospective 

hybrid organic–inorganic system was formed by dispersing silsesquioxane microspheres 

loaded with acetylsalicylic acid as an anti-inflammatory model drug in a calcium phosphate 

cement.341 Similar composites reduced in size to the nano scale may be recognized as a 

trend toward which this field will be moving (Fig. 8). Polymeric coatings may also increase 

the loading capacity and prevent the burst release of the drug merely adsorbed on the 

particle surface. Coating chitosan/tricalcium phosphate composites with 2.5w/v% PCL has 

thus mitigated the burst release effect and promoted zero-order kinetics for the release of 

vancomycin during the first 6 weeks. 342 Impregnation of the poly(α-hydroxy esters) with 

bone morphogenetic proteins has been shown to (1) overcome the inflammatory response, 

(2) induce full bioresorption of the polymer, and (3) enhance bone growth,343–345 while the 

addition of demineralized bone particles to PLGA reduced (1) inflammation, (2) fibrous 

tissue encapsulation, and (3) foreign body giant cell response.346 The combinations of 

alkaline calcium phosphate phases, such as hydroxyapatite or octacalcium phosphate, with 

acidic poly(α-hydroxy esters) are thus particularly interesting because of their ability to 

mutually compensate for potentially harmful pH changes that follow their degradation. The 

wide range of pH conditions provided by the synergetic action of osteoblasts and osteoclasts 

in the degradation of calcium phosphates in vivo makes the use of pH-sensitive coatings 

potentially interesting, too. Poly(aspartic acid) presents one such pH-sensitive polymer; its 

swelling is more pronounced at the physiological pH than at pH ~3 and can be facilely 

controlled by the degree of cross-linking.347 Another type of environmentally responsive 

polymers are thermosensitive polymers, which transform from sols to hydrogels at body 

temperature and enable in situ gelling at the target site promptly after injection.348 Some of 

the biodegradable polymers of this type include N-isopropylacrylamide copolymers, 

poly(ethylene oxide)/poly(propylene oxide) block copolymers, and PEG/poly(D,L-lactide-

co-glycolide) block copolymers, the latter of which have been successfully applied to 

encapsulate teicoplanin with 100% efficacy and treat osteomyelitis in rabbits.349

That even the activity of antibiotics can be improved with a proper coating is illustrated by 

the more effective prevention of the formation of S. aureus biofilms when vancomycin was 

delivered encapsulated within cationic liposomes and carried in a porous nano-

hydroxyapatite/chitosan/konjac glucomannan scaffold.350 The same antibiofilm effect was 

achieved by the delivery of liposomal gentamicin from scaffolds containing β-tricalcium 

phosphate with release kinetics able to be controlled by the liposome size.351 

Functionalization of particulate carriers with anionic amphiphiles that may disrupt the 

bacterial biofilm and neutralize the carbohydrates by the action of which bacteria penetrates 
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the cell membrane is another unexplored but potentially fruitful direction for research. With 

antioxidant therapy being one of the hotspots of medicine, endowing carriers with reducing 

agents, such as ceria domains352 or ascorbic acid,353 could be an avenue for abating the 

reactive oxygen species and minimizing the oxidative stress that entail infectious disease. 

Nanoparticle uptake by the cells can be controlled using ζ potential,354 a ubiquitous physical 

property,355 but precise correlations between the surface charge and the therapeutic efficacy 

of nanoparticles in the treatment of osteomyelitis have yet to be established, even though 

wound healing could be enhanced by endowing cells with relatively high ζ potentials.356 

The usage of dispersion agents or the application of other strategies from the repertoire of 

colloid chemistry357 to promote greater dispersion and penetration of the antibiotic-carrying 

particle to the infected tissue—a general challenge for the developers of injectable drug 

delivery materials358—is another unexplored avenue.

Conjugation of the carrier particles to moieties that would have an affinity for various bone 

components359 and act as either targeting agents or metabologens is yet another unexplored 

research directive in the design of antiosteomyelitis composite particles. Human 

recombinant BMPs, two of which—BMP-2 and BMP-7—were approved for specific 

clinical cases by the FDA, have been successfully delivered using various types of 

nanoparticles, ranging from poly(α-hydroxy esters) to PEG-based hydrogels to dextran to 

polymeric composites with hydroxyapatite to calcium phosphates alone,360 and their 

covalent binding on the polymeric particle surface may prove to be a more effective 

approach for their delivery compared with internal encapsulation, especially in view of the 

extraordinary sensitivity of their osteoinductive effect to the release kinetics.361 These 

conjugates could also include biomolecules that inhibit specific bacterial ingredients, such as 

(1) lipoteichoic acids, components of gram-positive cell walls that induce bone resorption; 

(2) polysaccharides in the bacterial capsules, which play a role in the adhesion of bacteria 

onto an osseous or implant surface and the formation of a biofilm, the basis for proliferation 

of pathogens in hard tissues; or (3) other osteolytic factors, including cytokines or other 

signaling molecules, which may interfere with the pathway of the osteoblast lineage.364 

Such efforts may have a chance to bring researchers from drug delivery and drug discovery 

fields closer because, after all, the synergy between the drug and the particle will prove to be 

of ever more vital importance in the design of ultrapotent therapeutic agents in general.

Inclusion of peptides with strong antibacterial properties, which tend to be more immune to 

promoting bacterial resistance if delivered in concentrations lower than minimal inhibitory 

ones, would present another interesting approach.365,366 The polymeric surface of a 

composite particle could be functionalization with arginylglycylaspartic acid, a tripeptide 

involved in cellular recognition and capable of triggerinxg adhesion of fibroblasts.367 

Bisphosphonates, molecules with a strong affinity for the mineral component of bone368,369 

and most commonly prescribed in the prevention and treatment of osteoporosis and other 

conditions featuring bone loss and fragility,370 could be used further to ensure particle 

localization and the delivery of therapeutics directly in the area of infected tissue. Although 

a possible concern comes from the clinically observed adverse consequences of 

oversuppressed bone resorption and disrupted bone metabolism by the prolonged use of 

bisphosphonates,371 the risk for developing these side effects is still small compared to the 

benefits.372
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ZnO has been added to implantable PMMA beads as a radiographic contrast medium for the 

past 30 years,373 yet calcium phosphates and other carriers could be doped with heavy metal 

atoms such as 111In, 99mTc, Gd, or Mn or bound to optically active molecules and used for 

the same imaging purpose with far greater sensitivity. Combinations of calcium phosphate, 

PLGA, and semiconductor quantum dots374,375 at the nanoparticle scale have enabled 

monitoring of the particle route in the body, and the distribution of the locally implanted 

therapeutics could be monitored in a similar manner. Quantum dots are, however, known for 

their cytotoxic nature,376 with only a few exceptions, including silica-based compositions, 

the only type currently approved for use in clinical trials by the FDA.377 Proposed as 

bioimaging alternatives to inherently toxic quantum dots and nonbiodegradable aromatic 

polymers are aliphatic, biodegradable, and tunably photoluminescent oligomers,378 but they 

have yet to be explored as components of bone tissue substitutes.

Porosity of composites in the compact, fully set form could be modified using other 

additives, such as glucose,379 calcium sulfate,380 calcite,381 gelatin,382 or others, and set to a 

specific pore size, pore size distribution, and pore interconnectivity that maximize the 

internal cell proliferation and the transfer of nutrients and metabolic products. For example, 

combinations of silica and calcium phosphate allowed for a control over porosity of the 

resulting gentamicin-loaded nanocomposites in the mesoporous (2–50 nm) and macroporous 

(>50 nm) ranges by means of controlling their silica content.383 Porosity also could be 

limited to the surface only384 to promote a bioactive response while preserving the 

compactness and stability of the core of the system against attack from the corrosive 

biological environment, or the other way around, porous on the inside and compact on the 

outside,385 like bone itself. It could be also made gradient, extending throughout the bulk of 

the composite in different ways.386 As a matter of fact, Janus-faced387 and functionally 

gradient structuring388 on the nano and molecular scales are other largely unexplored, yet 

incredibly potent features of the next generation of advanced materials. Finally, enriching 

antibiotic carriers with pluripotent cells, such as mesenchymal stem cells able to 

differentiate into osteoblasts,389,390 would be another research step in the direction of 

advanced therapeutic platforms for simultaneous bactericidal and osteogenic performance. 

In that sense, understanding the role of the extracellular matrix and an array of 

microenvironmental cues in directing the pluripotent cell fate currently stands as a major 

challenge to be overcome to minimize cells’ chances of acquiring neoplasticity and to 

maximize their chances of acquiring the best possible phenotype for the given therapy.391

V. ADDITIONAL CHALLENGES

A. Inconsistencies Arising from Different Analytical Contexts

An essential wisdom conveyed from the drug delivery field is that context is everything. 

When not delivered in a proper manner, even the most effective therapeutics will be 

deprived of their remedial effectiveness. A direct corollary of this insight is that drug 

discovery and drug delivery could be imagined as two sides of the same coin, 

complementing each other in a complete drug therapy. In other words, in a wrong setting 

even the most therapeutically potent agent will be ineffective, whereas even the most toxic 

chemicals applied in the right amount and setting could strengthen an organism, as data in 
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support of the effect of hormesis could indicate. Therefore, it should not be surprising that 

problems and challenges will continue to abound even if we were to succeed in the design of 

a perfect drug delivery carrier.

An example of the effect of the environmental context on a drug elution profile from a 

particulate carrier is shown in Fig. 9. Namely, two kinetically distinct release profiles from 

an identical drug-containing powder result, depending on the release measurement method 

applied: zero-order when a comparatively small volume of the solvent is replenished daily 

and first-order when a larger volume of the solvent is used without its daily replenishments. 

Whereas the drug is released with a burst effect when large amounts of solvent surround the 

powder, a limited volume of the solvent limits the maximal amount of the drug that could be 

released before saturation, leading to identical concentrations of the drug in the solution 

sampled at regular time spans (24 hours). In such a manner reprecipitation of sparsely 

soluble hydroxyapatite on the surface of more soluble di- and tricalcium phosphates in the 

form of a protective layer that hinders further dissolution, which might have occurred in vivo 

or at smaller solvent volumes, and higher corresponding degrees of supersaturation can be 

prevented by frequently replenishing the solvent and used to speed up the dissolution of 

these calcium phosphate phases under physiological conditions. Neither of these two 

methods, however, mimics the biological conditions under which fast clearance of the 

released drug is typically observed, nor do they account for the effects of the complex 

interface between the device and various macromolecules and cells of the host organism on 

the drug release. Although the size, shape, and elasticity of nanoparticles in biological 

milieus do influence their biodistribution profiles, the route of uptake and the mechanism of 

interaction with a cell are mainly determined by the protein corona adsorbed on the particles 

and the surface propensities that it endows them with.394,395 How to devise in vitro drug 

release testing procedures that would be able to replicate in vivo conditions better, typically 

characterized by (1) a more dynamic flow of fluids, (2) specific local pH profiles that are 

often disease-dependent, and (3) much more complex and selective media, is another 

colossal challenge for the drug delivery field.

Incompatibility between in vitro and in vivo tests has been frequently observed396; what has 

been shown as toxic or inflammatory in vitro can have the same effect in vivo but can also 

provide the right level of inflammation that follows every successful reaction toward unity 

between the bone and the implant.397 The trivial observation that pure water momentarily 

destroys cells in culture via osmotic rupture of the cell membrane, whereas we consume it 

every day without serious consequences, could be used to illustrate the inevitable 

discrepancy between testing materials in culture and in a more complex, organismic 

environment. Moreover, not only do different lines of the same cell type often respond 

differently to identical chemical stimuli398; the same insight applies to cells from the same 

line but at different stages of cell cycle progression.399 On the other hand, techniques for 

replicating the exact microenvironment in which cocultured primary cells exist in the body, 

which is one of the key factors that determine their fate,400 have yet to be developed.

As for animal models of osteomyelitis, different species and experimental protocols have 

been used in the past. The rabbit is the oldest animal model of osteomyelitis, dating back to 

1941,401 and it has traditionally involved injections of a suspension comprising S. aureus 
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and 5 wt% sodium morrhuate, a sclerosing agent causing aseptic necrosis of bone, to induce 

suppuration and subperiosteal abscesses in the bone. Fibrin glue and other sealants often are 

used to prevent bacterial leakage.402 The most common, however, is the rat model, typically 

involving the insertion of screws or other fixation devices inoculated with S. aureus.403 An 

alternative method involves the creation of a defect in the tibia or femur by drilling a hole in 

it and stabilizing it with screws, plates, and wires. The defect then is filled with collagen or 

gelatin sponges soaked in S. aureus and kept there for up to 24 hours, which is superseded 

by injection or implantation of an antibiotic-releasing material.404 Mice and chickens are 

other common small-animal models, whereas dogs, goats, and sheep are the most common 

large-animal models, whose main advantage is the ability to accommodate real-size devices 

and tolerate multiple interventions, alongside more veritably mimicking the mechanical 

loads born by bones in the human body. A central challenge in all of these models is how to 

create bone lysis that is sufficient but not excessive and does not threaten the fixation 

stability. Avoiding the formation of virtually untreatable biofilm on fixation devices is cited 

as another challenge faced by these animal models,405 even though it presents a more 

faithful model for cases in which infection is secondary to surgical foreign body 

implantation. Yet another detail common to these models is that chemically induced necrosis 

or mechanical trauma, such as fracture (as in most mouse models) or the insertion of 

intramedullary pins, plates, or other fixation devices, need to be coupled to dispersal of the 

pathogen to induce chronic infection.406 Still, in spite of more than 70 years since the first 

reproducible animal model of chronic osteomyelitis was reported and continuous 

advancements since then, inconsistent correlations between in vitro and in vivo antibacterial 

efficacies of therapeutic agents still commonly occur.407

As for the drug elution rate, values obtained in vitro may drastically increase in vivo for 

various reasons, including the complex interface with chemical and biological species (e.g., 

enzymatic activity, the concentration of free radicals that induce oxidative scission of 

covalent bonds between monomers, the types of antibodies adsorbed, or the extent of fibrous 

capsule formation, if any) or different rheological properties, demanding new strategies to 

ensure the optimal 4–6 weeks of release time. PLGA scaffolds, for instance, degraded faster 

in vivo than in vitro,408 and in addition to phagocytosis, enzymatic hydrolysis, the regions of 

low pH at the cell–material interface, and biomechanical stress, increased wetting in 

biological conditions can be another factor responsible for this effect.409 This is especially 

relevant for hydrophobic polymers, the category to which unmodified PLGA belongs. This 

disparity between the carrier degradation and the drug release kinetics estimated using in 

vitro and in vivo measurement modes is expected to be even higher for calcium phosphates 

than for polymers because while the degradation of the latter is primarily driven by 

hydration and hydrolysis both in vivo and in vitro, the degradation of ceramic implants is 

mainly caused by the phagocytic and acidifying (pH 7.4 → 3–4)410 action of multinucleated 

osteoclasts and macrophages.411 This discrepancy is further added up to by knowing that 

calcium phosphate phases more soluble than octacalcium phosphate transform to a certain 

degree into the most stable phase, hydroxyapatite under physiological conditions.412,413 

Factors that dictate to what degree this transformation takes place in vivo are not clearly 

defined; on one hand its precursors are classified as biosoluble ceramics,414 unlike 

bioresorbable hydroxyapatite, and indisputably degrade faster than the latter, whereas on the 
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other hand this transformation has been both theoretically predicted and experimentally 

verified on numerous occasions.415–417 Comparatively soluble calcium phosphates, 

including monetite, brushite, and amorphous calcium phosphate, were also found in vivo,418 

suggesting that this transformation may frequently be limited to a few surface layers that 

undergo intense dissolution/reprecipitation, thus protecting the inherently unstable and 

soluble particle or implant core. The chemical propensity of more soluble calcium 

phosphates to be resorbed at a higher rate, however, is complicated by knowing that 

osteoclasts anchor more steadily on the less soluble calcium phosphate phases; the 

substantial release of Ca2+ ions from the surface of the more soluble ones disrupts the 

ordering of actin microfilaments in the osteoclast podosomes, leading to the periodic 

detachment of the cells from the material surface.419 Similarly, whereas the degradation of 

aliphatic polyesters(e.g., PLGA)is slowed under fluid flow because of dissipation of acidic 

byproducts that would have sped up the degradation process, fluid flow prevents local 

supersaturation and accelerates the degradation of alkaline calcium phosphates such as 

hydroxyapatite. Hence, despite the excellent release profiles in vitro, the possibility that the 

minimum inhibitory concentration in sections of the target tissue may not be exceeded in a 

time-sustained manner, be it due to biofilm formation, intracellular colonization, premature 

biodegradation, or other factors, will always exist. In such a way exist threats that antibiotic 

resistance could be inadvertently promoted, an effect that directly contributes to the global 

loss of antibiotic efficacy in use.420 In those cases even a direct injection of a bolus dose of 

the antibiotic may lead to more favorable outcomes than the implantation of the drug–carrier 

composite.421

B. Antibiotic Specificities

Antibiotics differ according to their mechanism of action; some, such as β-lactam 

antimicrobials, are time-dependent, requiring prolonged presence in the target zone for 

effective suppression or eradication of the pathogen, whereas others, such as quinolones and 

aminoglycosides, are concentration-dependent, requiring higher concentrations over shorter 

periods of time.422 Therefore, depending on the nature of the drug, differently structured 

carriers may prove to be most optimal. As expected from the synergetic background of drug 

carrier interaction, the properties of the carrier influence the efficacy of the drug therapy, but 

the drug identity, amount, and binding mechanism in turn influence the properties of the 

carrier. The anionic group of gentamicin sulfate, for example, had an inhibitory effect on the 

crystallization of brushite during coprecipitation of the antibiotic and the carrier, resulting in 

smaller particles, lower porosity, and slower drug release compared with pure 

gentamicin.423 The morphology, crystallinity, and dispersability of particles coprecipitated 

with the drug may thus all be affected by the drug properties. The loading efficiency and the 

release rate of a drug from a particle is consequently dependent on the molecular nature of 

the drug, as exemplified by the different elution profiles for different antibiotics 424 The 

release from PMMA beads, for example, varied drastically, reaching completion anywhere 

between 3 and 21 days, depending on the antibiotic admixed.425 Also, whereas the release of 

vancomycin from a brushite cement reached completion between days 1 and 2, only one 

quarter of tetracycline loaded within the same carrier was released on day 5.426 Synergetic 

effects are important here; for example, the elution rates for tobramycin and vancomycin 

released together from a PMMA cement were higher than those when the drugs were 
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released alone.427 Then, not only does the identity of the drug have an effect on release 

profiles, but its amount can drastically modify them, too, as exemplified the case where 25 

μg/cm2 of paclitaxel deposited on the surface of a phosphonohexadecanoic acid coated 

cobalt chromium alloy released 90% of the drug in the first week, whereas quadrupling the 

paclitaxel concentration to 100 μg/cm2 resulted in zero-order release throughout a 5-week 

period of time.428

The release zone of the antibiotic following surgical insertion is generally only a few 

centimeters, and the rheology of the fluid in which the drug carrier is immersed, including 

hematoma and seroma, might redirect the released drug away from the target site. Therefore, 

continuous-flow chambers have been designed to assess drug elution profiles under more 

dynamic conditions that resemble the in vivo context to a greater extent.429 Still, different 

implantation sites greatly affect the biodegradation rate of the implant, including the release 

profile of the drug that it contains.430 Subcutaneous implantations of a biomaterial 

composed of PEG and poly(butylene terephthalate) thus degraded faster than the 

intramuscular ones,431 whereas polydioxanone orthopedic pins were resorbed faster when 

implanted in the medullar canal rather than intramuscularly or subcutaneously.432 

Mechanical loading, sheer, and friction are other factors that contribute to the different 

release from orthopedic drug delivery devices implanted at different sites in the body.433 

Also, hypochlorites generated smaller polymeric fragments with higher toxicity than 

peroxides,434 suggesting that the dominant reactive oxygen species as inflammatory 

compounds in the implantation area, which are involved in the degradation of polymeric 

carriers, inevitably define the toxic propensities of the biomaterial in question. In that sense 

the art of surgical implantation has to complement the reliability of the drug release pattern 

of the implanted drug–carrier composite. That different target areas in the body require 

unique drug delivery platforms for optimal release has been confirmed many times, and it is 

logical to expect that the same will prove to be true in the treatment of different segments of 

bone. Mandibular infection, for example, typically requires a shorter duration of antibiotic 

therapy compared with long-bone infection. Intensely vascular cancellous bone, with a 

comparatively high rate of turnover, may thus be expected to require more intense release 

kinetics compared with less vascular and more slowly remodeled cortical bone.435 In 

general, the principle similia similibus curantur, dictating the substitution of like with like, 

is expected to apply in every aspect of tissue engineering, including the province of bone.

C. Intracellular Colonization by S. aureus

Another potential difficulty arises from the fact that S. aureus, the main causative agent of 

osteomyelitis, found in healthy oral and nasal flora has the ability to penetrate endothelial, 

epithelial, and osteoblastic cells and thrive in the intracellular environment, where it is less 

susceptible to the antibiotic therapy.436–438 Different but in all cases finite uptake efficiency 

and kinetics were observed for different strains of S. aureus, and common to all of them was 

the role of fibronectin-binding proteins in intracellular colonization, the blocking of which 

completely prevented the latter from occurring.439 S. aureus internalized by the cells and 

shielded from the host immune system is thought to provide a reservoir of bacteria in 

recurring osteomyelitis and inhibit the immunological role of osteoblasts in releasing 

cytokines and attracting leukocytes to the infection site. Targeting the antibiotic therapy to 
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these intracellular colonies may thus prove to be more relevant for treating chronic bone 

infection than eliminating only pathogens that colonize the bone matrix.440 Nanoparticles, 

including calcium phosphate ones, have shown great promise in the intracellular delivery of 

plasmids,441–443 and they may similarly prove to be effective carriers of antibiotics inside 

the cell where bacterial microcolonies are localized. Correspondingly, a recent study showed 

that clindamycin-loaded hydroxyapatite and amorphous calcium phosphate particles are 

more effective in reducing the intracellular bacterial population and slowing the growth of S. 

aureus cocultured with osteoblastic MC3T3-E1 cells than the pure antibiotic.444 Figure 10a 

shows a schematic description of their uptake by the cell and the delivery of a genetic 

material to it, whereas 10b shows the intracellular localization of calcium phosphate 

nanoparticles in an immunofluorescent analysis of osteoblastic MC3T3-E1–calcium 

phosphate interface. A reduction in the number of intracellular bacteria has already been 

demonstrated for nanosized PLGA particles loaded with nafcillin.445 The rapid degradation 

of calcium phosphate carriers in the acidic milieu of a lysosome–endosome complex 

following uptake may also increase the osmotic pressure and enable the plasmid or protein 

cargo to escape swiftly into the cytoplasm before it is enzymatically hydrolyzed, which 

could be considered yet another advantage of calcium phosphates as intracellular delivery 

agents.

D. Synergetic and Sensitivity Effects

Immunofluorescent labeling and confocal microscopy, along with other in vitro assays, 

including real-time polymerase chain reaction, can provide good insight into the cell–

material interface on which the bone regeneration aspect of therapy ultimately depends446 

(Fig. 11a). Nanoparticles have, however, been notorious in terms of resisting any clear-cut 

descriptions of their biological effects, as exemplified by the recently derived inverse, dose-

dependent toxicity relationship for 100-nm silica nanoparticles in the human epithelial 

intestinal HT-29 cell line.447 In a similarly counterintuitive fashion, the uptake efficiency 

and the expression of plasmids could occasionally be out of proportion: Efficient uptake 

may lead to low gene transfection and vice versa.449 Synergetic effects resulting from the 

minor amounts of impurities left over from synthesis procedures or supposedly inert product 

components may prove to be equally important in determining therapeutic outcomes. For 

example, the osteogenic effect of calcium phosphate as a drug carrier was able not only to 

mitigate but also to fully reverse the unviable effect that the pure antibiotic exerted on 

osteoblastic cells, while retaining its antimicrobial potency through a more sustained release 

of the antibiotic (Fig. 11b).The addition of calcium hydroxide to tobramycin-containing 

PMMA beads similarly had a protective effect on bone against the high concentrations of 

the antibiotic.450

A related problem occurring in parallel with the sophistication of the carrier particle is the 

difficulty transferring the synthesis methods from the laboratory to the clinic or any large-

scale fabrication setting. Namely, the more intricate the particle, the greater the range of 

experimental variables to which its preparation is sensitive.451 The case of Abbott Labs 

losing hundreds of millions of dollars trying to restore the polymorph of their proprietary 

AIDS drug, Ritonavir, after a new polymorph had begun to appear in their synthesis batches 

and before being forced to withdraw the drug from the market and lose another half a billion 
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dollars,452 can thus be instructive, if not ominous, in its foreshadowing the trend of a 

pervasive irreproducibility toward which the science of synthesis of fine particles streams. 

Startups in organic photovoltaics have, for instance, failed to make profit mainly because of 

the unsurpassable variability in processing outcomes. A systematic analysis of two donor 

materials synthesized by the same manufacturer resulted in confirmation of the same 

crystallinity, side-chain variation, interface composition, and domain morphology, yet their 

performance was radically different because of a difference in the nano scale that was too 

fine to be probed by state-of-the-art instrumentation.454 Note also that the purity of solvents 

and compounds used as precursors for the synthesis of nanostructured powders has had a 

drastic effect on their morphology,455 whereas cell detachment or excellent spreading result 

depending on whether cultured cells are grown on ordinary or tissue culture–grade 

polystyrene.456 Alongside the chemical effects exemplified by different reaction outcomes 

when reactants produced by different manufacturers are used, there exist examples of the 

following physical effects on synthesis reactions: stirring rate457,458; the Earth’s magnetic 

field459,460; gravity,461,462 whose intensity appears to be directly proportional to the 

osteogenic potency of mesenchymal stem cells and boney tissues463–465; the seasonal 

variations in (1) humidity,466 (2) barometric pressure, and (3) temperature; micrometric 

differences in the positioning of samples in furnaces during annealing467; experimental 

animal behavior; and circadian rhythm, on which the expression of almost 50% of genes in 

certain cell types has been shown to depend468; and the reaction vessel composition,469 

texture,470 and dimensions,471,472 one of the most critical parameters in the transfer of 

synthesis methods from a small-scale setup in a laboratory to a large-scale fabrication setting 

in an industrial milieu. For example, overly tall reaction volumes increased the probability 

of the formation of aragonite or vaterite, two of the less thermodynamically stable calcium 

carbonate phases during the precipitation of this compound from a solution in the presence 

of an organic matrix, whereas flattened volumes were more prone to yield calcite, the least 

soluble calcium carbonate phase.473 Agitation, a traditional means for dispersing particles, 

has occasionally had the opposite effect, inducing the aggregation of both polymeric and 

inorganic nanoparticles,474 which may explain cases in which the efficiency of drug loading 

via adsorption is inversely proportional to the stirring rate.475 Similarly antagonistic effects 

of specific physicochemical synthesis parameters present more of a rule than an exception in 

the field of nanoscience.476 Assessments of biological responses are particularly prone to 

exhibit such antagonistic intricacies, as exemplified by the case in which doubling the dose 

of calcium phosphate nanoparticles transformed the response of human bronchial epithelial 

cells from unviable to viable.477 Biological systems in general are, in fact, notorious for 

their sensitivity to the slightest change in their homeostatic equilibria, as demonstrated by 

the long-familiar finding that bone reaches its maximum toughness in compositions that 

leave behind 66.5 wt% of ash, twice higher than the value at 65 and 68 wt% of ash 

content.478,479 On the characterization side, this sensitivity results in ever more difficult 

separation of the effects of the measurement system from the properties of the measured 

objects, and this will increasingly apply to all 3 essential characterization aspects toward 

which materials science progresses: single-particle spectroscopic microscopy, high-

throughput analysis, and in situ analyses. Of course, each of these problems conceals a 

gateway to an exciting opportunity, as exemplified by the fact that ultrafine microscopic 

methods do regularly create or remove single vacancies480 or shift adatoms481,482 on the 
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surfaces of analyzed materials, but measuring the energy required for these local 

transformations to take place has allowed for the construction of atomic-scale images of 

local phase properties,483,484 which is state-of-the-art in the field of materials imaging.

In view of this one thing is certain: the design of a new generation of biomaterials will need 

to cope with the very same issues pertaining to the extraordinary sensitivity of function to 

the finest structural and compositional variations if its products are to match perfectly the 

properties of the natural tissues they are meant to replace. Yet, as common wisdom has it, a 

path without risks, perplexities, and challenges is not worth taking, and difficulties arising 

from attempts to design nanoscale platforms for the ultrasensitive delivery of pharmaceutics 

can certainly be seen as signs that those involved in these endeavors are heading in the right 

direction.

VI. SUMMARY

We approach a time of a prolific confluence of materials science and medicine. It is 

anticipated that materials science will provide the foundations for the design and 

development of advanced diagnostic and therapeutic methods. Within the frame of its 

objective, this review has provided a critical view of the current state of affairs in the 

development of nanoparticulate and other solid-state carriers for the local delivery of 

antibiotics in the treatment of osteomyelitis. In a broader picture extending outside of this 

narrow frame, however, is a view of ongoing progress in the way a relatively modest field of 

medicine, in terms of the complexity of therapeutic materials used, is being revolutionized 

by recent advancements in materials science and engineering. The surgical implantation of 

PMMA beads or, occasionally, plaster of Paris still presents the most popular method for the 

local and sustained delivery of antibiotics in the treatment of osteomyelitis, but this is about 

to change as more sophisticated materials, nanostructured in essence, are being developed 

on laboratory benches and sent down the translational path toward the direction of the 

bedside.

The two principal downsides of the traditional means of treating bone infection are systemic 

and long-term administration of antibiotics and the necessity for surgical debridement. The 

new generation of carriers for the delivery of antimicrobials envisaged during this discourse 

is expected to tackle these issues by first promoting the sustained release of antibiotics 

limited to the target site. Another vital feature of advanced carriers for the controlled release 

of antibiotics is their ability to contribute to the osteogenesis of the adjacent tissue in parallel 

with their degradation and replacement with regenerated bone. Thus antibiotic delivery and 

tissue regeneration are two central aspects of therapies for osteomyelitis in which milestone 

improvements are to be expected using the new generation of nanostructured carriers. Next 

steps in their development would be tuning their structure to an environmentally responsive 

and spatiotemporally targeted performance, as well as integrating them with alternatives to 

traditional antibiotics, whose ineffectiveness against increasingly resistant opportunistic 

pathogens is approaching critical scales. If we look at this trend in the development of drug 

delivery carriers for treating a particular disease from a broader angle, outside of the frame 

once again, we might conclude that structurally complex, multifunctional, theranostic 

composite nanoparticles present an object of interest toward which scientific efforts 
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colliding at this multidisciplinary junction of medical significance will be converging in the 

years and perhaps decades to come.

For a long time the degradation of polymeric biomaterials had been considered an 

unfavorable process, a cause of the deterioration of their properties and performance in the 

body. It took a fresh, new look at them to turn these demerits into advantages and present 

their degradation as a colossal value and untapped potential for the biomedical community. 

Using their degradation as a pathway to controlled drug release and tuning it to the rate of 

new tissue in growth nowadays presents the basic approach to tissue engineering and 

regenerative medicine. It goes without saying, of course, that the time for the reversal of this 

paradigm and inauguration of equally legitimate strivings to create bionic tissue-engineered 

materials—whose purpose would be not only to restore the lost functionality in a segment of 

the body or the body as a whole but also to augment and raise it far beyond the levels of 

ordinariness via lasting assimilation of the new interfaces—has yet to come. Be that as it 

may, potential problems faced by even the hypothetically perfect antibiotic delivery vehicles 

mentioned toward the end of this discourse include (1) the propensity of S. aureus, the main 

causative agent of osteomyelitis, to form intracellular colonies involved in recurrent, chronic 

osteomyelitis; (2) the need for the mechanical and release properties of a carrier to be 

adjusted to the target area of surgical implantation or injection; (3) the disparity between 

environments in which in vitro and in vivo drug–carrier composite testing is carried out; (4) 

unpredictable synergetic effects of the delivery system components or foreign agents; and 

(5) experimental sensitivity issues posed in parallel with the increasing subtleness of 

nanoplatforms designed for the controlled delivery of therapeutics. Inspired by the parable 

of biodegradable polymers, we could conclude that all of these problems, were they 

considered from a fresh, new angle, might either stimulate the development of 

bioengineered systems that will solve them and many other problems at the same time or, 

even more amazingly, be glimpsed as solutions per se to problems existing in a different 

domain. For if a new, multidisciplinary model for a prolific lifetime in science teaches us 

something, it is that two gaps in knowledge, when combined, can create a bridge to much 

greater knowledge lying far beyond the horizon.
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FIG. 1. 

(a) Age of patients with osteomyelitis.11 (b) US population ≥65 years old (bars), along with 

a projected increase in the number of patients with bone disease. Sources: US Bureau of the 

Census and Office of the Surgeon General.
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FIG. 2. 

The number of prosthetic joint infections (solid circles and squares), increasing in direct 

proportion with the total number of knee (squares) and hip arthroplasties (circles) 

performed.12
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FIG. 3. 

Radiographs of tibiae displaying a clinical case of acute pyogenic hematogenous 

osteomyelitis, also known as Brodie’s abscess (△), along with an area of increased bone 

density around the lytic lesion due to periosteal reaction and osteosclerosis (□) (a), and 

evidence of chronic osteomyelitis from a goat model, manifesting as a periosteal reaction in 

the proximal area of the bone (b).
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FIG. 4. 

A typical preoperative preparation of poly(methyl methacrylate) (PMMA) beads 

encapsulating an antibiotic of choice, consisting of (1) manual admixing of the antibiotic 

with the bone filler; (2) filling a mold with the solid mixture; (3) hardening; (4) removing 

the beads; (5) collecting the beads.
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FIG. 5. 

(a) Narrowly dispersed calcium phosphate nanoparticles prepared by precipitation form 

aggregates upon desiccation at low pressure, capturing the antibiotic clindamycin inside of 

the resulting pellet pores, thus ensuring sustained release over prolonged periods of time. (b) 

Increased loading efficiency and sustained release from well-dispersed particles could be 

obtained by coating calcium phosphate particles with clindamycin adsorbed on them with a 

layer of polymer, in this case poly-(D,L-lactide-co-glycolide) (PLGA). High-resolution 

transmission electron microscopic images of PLGA-coated hydroxyapatite (c) and 

hydroxyapatite nanoparticles (encircled by dashed lines) dispersed in a chitosan matrix 

(d).131 Reprinted with permission from Elsevier (Vukomanović M, Škapin S, Jančar B, 

Maksin T, Ignjatović N, Uskoković V, Uskoković D. Poly(D,L-lactide-co-glycolide)/

hydroxyapatite core-shell nanospheres. Part 1: A multifunctional system for controlled drug 

delivery. Coll Surf B Biointerfaces. 2011;82(2): 404–13).
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FIG. 6. 

An approximate degradation half-life (T1/2) for pure poly(lactic acid) (PLA), pure 

poly(glycolic acid) (PGA), and their copolymers at various weight ratios (a) and a drastic 

difference in the kinetics of drug release from polyethylene glycol diacrylate with 2 different 

percentages of cross-linking: 0.5 and 1 (b).251 Reprinted with permission from Elsevier; 

Middleton JC, Tripton AJ. Synthetic biodegradable polymers as orthopaedic devices. 

Biomaterials. 2000;21:2334–46.
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FIG. 7. 

Schematic description of a hypothetical multifunctional composite nanoparticle (a) and the 

subdivision of the tissue regeneration process following injury at multiple stages (b). Stages 

specific to the bone regeneration process (c) and adverse outcomes of their obviation or 

incompletion (d) are shown.362,363 Reprinted with permission from American Cancer 

Society; Ma X, Zhao Y, Liang XJ. Theranostic nanoparticles engineered for clinic and 

pharmaceutics. Acc Chem Res 2011;44(10):1114–22, and Elsevier; Mehta M, Schmidt-

Bleek K, Duda GN, Mooney DJ. Biomaterial delivery of morphogens to mimic the natural 

healing cascade in bone. Adv Drug Deliv Rev. 2012;64(12):1257–76.
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FIG. 8. 

An example of composite monodisperse nanoparticles with simultaneous antioxidative, 

antibacterial, and osteoinductive properties. These nanoparticles are formed by coating poly-

(D,L-lactide-co-glycolide) (PLGA) around silver (Ag) poly(glycolic acid) (PGA) core-shell 

nanoparticles (Nps) with ascorbic acid dispersed therein. The particles reduced the 

concentration of superoxide in human umbilical vein endothelial cells, suppressed the 

growth of Escherichia coli and methicillin-resistant Staphylococcus aureus, and upregulated 

the expression of 2 osteogenic markers: osteocalcin and protocollagen type I.392,393 Adapted 

and reprinted with permission from Springer (Stevanović M, Savanović I, Uskoković V, 

Škapin SD, Bračko I, Jovanović U, Uskoković D. A new, simple, green and one-pot four-

component synthesis of bare and poly(α, γ, L-glutamic acid) capped silver nanoparticles. 

Coll Polym Sci. 2012;290(3):221–31) and the American Chemical Society (Stevanović M, 

Uskoković V, Filipović M, Škapin SD, Uskoković DP. Composite PLGA/AgNpPGA/AscH 

nanospheres with combined osteoinductive, antioxidative and antimicrobial activities. ACS 

Appl Mat Interfaces. 2013;5(18):9034–42).
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FIG. 9. 

Hypothetic release curves for a drug delivery device under two different measurement 

regimens: daily replacements of a comparatively small volume of the solvent (circles) and 

usage of a considerably larger volume of solvent with no daily replenishments (triangles).
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FIG. 10. 

(a) A schematic description of the uptake of a calcium phosphate nanoparticle (CaPs) by the 

cell and its gene transfection with a DNA plasmid attached to the nanoparticle.448 (b) A 

single-plane confocal optical image of fluorescently stained osteoblastic cell nuclei, 

cytoskeletal f-actin, and CaP aggregates containing clindamycin following 48 hours of 

incubation. Part A is reprinted with permission from Elsevier (Nouri A, Castro R, Santos JL, 

Fernandes C, Rodrigues J, Tomás H. Calcium phosphate-mediated gene delivery using 

simulated body fluid (SBF). Int J Pharm. 2012;434(1–2):199–208).
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FIG. 11. 

(a) A single-plane confocal optical micrograph of a fluorescently stained calcium phosphate 

nanoparticle conglomerate loaded with clindamycin and osteoblastic MC3T3-E1 cells (f-

actin; nucleus) following 21 days of incubation in differentiation medium. This image shows 

intimate contact between the cells and the material, a direct indication of the 

osteoconductivity of the latter. (b) Results of a gene expression study performed using 

quantitative reverse transcriptase polymerase chain reaction and showing diminished 

expression of three different osteogenic markers BGLAP (left), Col I (middle), and Runx2 

(right) in osteoblastic MC3T3-E1 cells incubated with an antibiotic, clindamycin phosphate 

(CL). The effect was compensated for when incubation was carried out in the presence of 

either hydroxyapatite nanoparticles (HAP) per se or HAP loaded with CL (HAP/CL). 

Messenger RNA expression was detected relative to the housekeeping gene ACTB. *Genes 

are significantly upregulated (P < 0.05) with respect to the control group. +Genes are 

significantly down-regulated (P < 0.05) with respect to the control group.453 Reprinted with 

permission from John Wiley and Sons (Uskoković V, Desai TA. Phase composition control 

of calcium phosphate nanoparticles for tunable drug delivery kinetics and treatment of 

osteomyelitis. Part 2: antibacterial and osteoblastic response. J Biomed Mat Res Part A. 

2013;101:1427–36).
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Table 1

Main Calcium Phosphate Phases103–108

Phase Chemical Formula Space Group pKsp at 37°C Solubility (mg/dm3)

MCPA Ca(H2PO4)2 Triclinic P1̄ 1.14 17 · 103

MCPM Ca(H2PO4)2·H2O Triclinic P1̄ 1.14 18 · 103

DCPD CaHPO4·2H2O Monoclinic Ia 6.6 88

DCPA CaHPO4 Triclinic P1̄ 7.0 48

β-CPP Ca2P2O7 Tetragonal P41 18.5 7.6

ACP Ca3(PO4)2·nH2O / 25 0.8

α-TCP Ca3(PO4)2 Monoclinic P21/a 25.5 2.5

β-TCP Ca3(PO4)2 Rhombohedral R3cH 29.5 0.5

TTCP Ca4(PO4)2O Monoclinic P21 37.5 0.7

OA Ca10(PO4)6O Pseudo-hexagonal P63/m 69 87

CDHA Ca10−x(HPO4)x(PO4)6−x(OH)2−x (0 < x < 1) Pseudo-hexagonal P63/m 85 9.4

OCP Ca8H2(PO4)6·5H2O Triclinic P1̄ 97.4 8.1

HA Ca10(PO4)6(OH)2 Pseudo-hexagonal P63/m 117.3 0.3

FA Ca10(PO4)6F2 Pseudo-hexagonal P63/m 120 0.2

ACP, amorphous calcium phosphate (data pertain to the phase obtainable at pH 9–11); CDHA, calcium-deficient hydroxyapatite; CPP, calcium 
pyrophosphate; DCPA, dicalcium phosphate anhydrous, also known as monetite; DCPD, dicalcium phosphate dihydrate, also known as brushite; 
FA, fluoroapatite; HA, hydroxyapatite; MCPA, monocalcium phosphate anhydrous; MCPM, monocalcium phosphate monohydrate; OA, 
oxyapatite; OCP, octacalcium phosphate; TCP, tricalcium phosphate; TTCP, tetracalcium phosphate.
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