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Curcumin, a low-molecular-weight natural polyphenol mainly found in the plant Curcuma longa (turmeric), is widely used as a
food colorant and as a potential protective agent against several chronic diseases including cancer, HIV-infection, neurological,
cardiovascular, and skin diseases. Moreover, evidences from long-term use process and preclinical trials have demonstrated low
toxicity of curcumin, even at relatively high doses. However, it has been well known that the application of curcumin was limited
owing to its water insolubility, instability, and poor bioavailability. For decades, many attempts have been made to compensate for
these disadvantages, with the development of improved delivery platforms as the feasible approaches. The past ten years witnessed
the encouraging progress in the use of nanoscale drug delivery systems on curcumin such as loading curcumin into liposomes or
nanoparticles, forming self-microemulsifying drug delivery systems (SMEDDS), cyclodextrin inclusions, and solid dispersions, as
well as the latest reported technologies such as nadodisks and nanotubes. This paper summarizes the recent works on the design
and development of nanoscale delivery systems of curcumin, with the goal of harnessing the true difficulties of this multifunctional
agent in the clinical arena.

1. Introduction

Curcumin (Figure 1), an active constituent mainly derived
from Curcuma longa (turmeric), is a natural yellow-orange
polyphenol which has been used for its medicinal benefits
for centuries [1, 2]. Curcumin was firstly extracted in impure
form in 1815, then in 1870 the pure crystalline state was
prepared. Almost three decades later, its composition was
finally elucidated as 1, 6-heptadiene-3, 5-dione-1, 7-bis-(4-
hydroxy-3-methoxyphenyl)-(1E, 6E) [3–6]. In China, cur-
cumin has been used as a part of herbal medicine for cen-
turies to alleviate throbbing pain in the chest and hypochon-
driac region, mass in abdomen, and pain of the shoulder due
to win-cold or traumatic injuries. The accumulating of ex-
perimental and clinical evidences indicates that curcumin
has a variety of pharmacological activities, such as antitumor,
antiinflammatory, antivirus, antioxidation, anti-HIV, and
low toxicity [7–11].

However, good things never come easy. Applicational ad-
vancement of curcumin has been hindered by its water insol-
ubility, degradation at alkaline pH, and photodegradation
and thus extremely low bioavailability in both vascular and
oral administration [12, 13]. Therefore, many approaches
have been investigated, including synthetic analogues, chem-
ical modification to prodrugs, combined with other dietary
components and using nanoscale drug delivery systems to
overcome deficiencies.

Among these methods, nanoscale drug delivery systems
have become a source of concern for many researchers in the
domain of tradional Chinese medicine (TCM). Many suc-
cessful examples of the combination of nanotechnology and
TCM have been reported. Due to the surface effect, small
size effect, quantum size effect, and quantum tunnel effect of
nanoparticles, nanoscaled TCM has produced some new out-
comes. For instance, xionghuang (realgar), a famous TCM,
has been identified as an effective antitumor agent. When
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Figure 1: Chemical structure of curcumin.

fabricated into nanoscale, the apoptosis rate of the tumor
cells was markedly increased [14]. Furthermore, nanotech-
nologies disrupt the cell membrane and thus release the
trapped materials. Take Ganoderma lucidum (Lingzhi) for
example, the immune function could be evidently enhanced
after nanoscale processes [15].

Consequently, a good understanding of nanotechnolo-
gies is necessary for the advancement of curcumin with high-
er efficacy. To date, many studies have focused on loading
curcumin into liposomes or nanoparticles, forming self-
microemulsifying drug delivery systems (SMEDDS), cyclo-
dextrin inclusions, and solid dispersions [16–18], and much
progress has been made in the past ten years. The purpose
of this paper is to provide an updated summary of the ap-
plications of novel delivery systems of curcumin.

2. Liposomes

Liposomes (Figure 2) are closed spherical vesicles consisting
of a lipid bilayer that encapsulates an aqueous phase in which
drugs can be stored [19]. Possessing the advantages of high
biocompatibility, easy preparation, chemical versatility, and
simple modulation of their pharmacokinetic properties by
changing the chemical composition of the bilayer compo-
nents, liposomes as a drug delivery system have been used to
improve the therapeutic activity and safety of drugs for many
years [20].

By the same token, liposomes have found wide applica-
tion in ameliorating curcumin’s bioavailability and efficacy;
indeed, various modifications of liposomal curcumin have
been developed such as polymeric conjugation on the lipo-
some surface to acquire better clinical outcomes [4, 17–26].
The exploration disclosed an effective method for the prepa-
ration of curcumin-loaded liposomes using sonication at an
average size of 100–150 nm [22]. Exclusion chromatography
was used to remove the unentrapped curcumin. In vitro tests
showed that treatment of liposomal curcumin (5–10 µM) for
24–48 h at 37◦C resulted in at least a 70–80% inhibition of
cellular proliferation without affecting their viability, which
was approximately 10-fold higher versus free curcumin.

3. Nanoparticles

Nanoparticles (NPs), which are particles ranging in size from
1 to 100 nm, possess distinct physical and chemical proper-
ties that can be exploited for drug delivery [19]. Encapsulat-
ing drugs within NPs can improve the solubility and phar-
macokinetics of drugs and sometimes enable targeting and

slow release. Generally, nanoparticles’ carrier materials can
be divided into synthetic biodegradable high molecular pol-
ymers (polyvinyl alcohol, polylactic acid, etc.) and natural
polymers (proteins, polysaccharides, etc.) [27]. Among the
various nanodrug systems, polymer NPs, solid lipid NPs,
magnetic NPs, polymer micelles, and albumin NPS are the
five ones that are widely applied and intensively studied on
curcumin.

3.1. Polymer Nanoparticles. Due to the small size and excel-
lent biocompatibility, nanosized polymer nanoparticles can
circulate in the bloodstream for a longer time; thus, specific
therapy can be achieved [28]. The widely researched syn-
thetic polymers include chitosan [29, 30], poly(D,L-lactide-
co-glycolide) (PLGA) [31–33], and PEG. In addition, other
carrier materials such as poly(butyl)cyanoacrylate [34], silk
fibroin [35], N-isopropylacrylamide (NIPAAM) [36], and
hydrophobically modified starch [37] have also shown a high
potential for solving the problems of curcumin.

PLGA and a stabilizer polyethylene glycol- (PEG-)5000
were employed to form a nanoparticulate curcumin formu-
lation with 97.5% efficiency encapsulation and 80.9 nm par-
ticle diameter [32]. The result of an in vitro experiment dem-
onstrated that curcumin-loaded PLGA NPs enhanced cellu-
lar uptake and increased bioactivity in inducing apoptosis
and suppressing proliferation of tumor cells. The nanopar-
ticulate formulation also showed better bioavailability and
had a longer half-life than free curcumin in mice. Moreover,
polymers can be combined to form copolymers, which
could be a promising drug carrier. For example, the PLGA-
PEG-PLGA triblock copolymers prepared using the solvent-
dialysis method could encapsulate hydrophobic curcumin,
which indicated good pharmacokinetic profiles [38].

3.2. Solid Lipid Nanoparticles (SLNs). SLNs are made of nat-
ural or synthetic lipid or lipoid, such as lecithin and triglyc-
erides, which are solid at human physiological temperature
[39]. SLNs present many potential advantages. For example,
they protect labile compounds from chemical degradation,
provide sustainedrelease to improve the availability of the
drug, and target the effect to improve the efficiency of the
drugs [40].

Kakkar et al. [41] prepared curcumin-loaded solid lipid
nanoparticles (C-SLNs), with an average particle size of
134.6 nm and a total drug content of 92.33± 1.63%, using
the microemulsification technique. In vivo studies demon-
strated significant improvement in bioavailability after ad-
ministration of C-SLNs at all the doses other than free sol-
ubilized curcumin. In another study, transferring-med-
iated solid lipid nanoparticles containing curcumin were re-
cently fabricated [42], and the potential of enhancing the
anticancer effect of curcumin in breast cancer cells in vitro
was confirmed.

3.3. Magnetic Nanoparticles. Magnetic drug targeting, in
which a drug is conjugating with a magnetic material under
the action of the external magnetic field, is an important
drug delivery system. Drug-loaded magnetic nanoparticles
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Figure 2: Structure of liposomes.

can accumulate in target tissue areas under the action of the
external magnetic field; the drug then releases from the par-
ticles in a controllable way [43].

A nanosized magnetofluorescent water-dispersible
Fe3O4-curcumin conjugate with chitosan or oleic acid as
its outer shell and entrapped curcumin was designed [44].
The Fe3O4-curcumin conjugate exhibited a high-loading cel-
lular uptake that was distinctly observed by magnetic and
fluorescent methods and was also shown to be a good can-
didate for a dual (optical and magnetic) imaging probe.

3.4. Polymer Micelles. Another feasible approach to figuring
out a way to solve the poor solubility, stability, and bioavail-
ability of curcumin is to encapsulate it within micelles
[45, 46]. Recently, polymeric micelles have gained attention
as an excellent delivery system for poorly water-soluble
drugs due to their high drug-loading capacity, high water-
solubility, low toxicity, and appropriate size (<200 nm) for
long circulation in the blood [45, 47, 48].

For example, Leung et al. [49] investigated encapsulation
of curcumin in cationic micelles composed of surfactants
cetyl trimethylammonium bromide (CTAB) or dodecyl tri-
methylammonium bromide (DTAB). Data showed that al-
kaline hydrolysis of curcumin is greatly curbed with the aid
of either CTAB or DTAB micelles. Along the same lines, am-
phiphilic block copolymer micelles of poly(ethylene oxide)-
b-poly(epsilon-caprolactone) (PEO-PCL) as vehicles for cur-
cumin were also reported [50]. The author believed that
PEO-PCL micelles as an injectable formulation can effective-
ly solubilize, stabilize, and control the release of curcumin.

3.5. Albumin Nanoparticles. The possibility of loading a fair
amount of active components of poor aqueous solubility is
an issue of common concern. Albumin is the body’s natu-
ral carrier of hydrophobic molecules, such as fatty acids, hor-
mones, and fat-soluble vitamins [51]. Albumin has been
extensively investigated as a drug carrier due to its nontox-
icity and nonimmunogenicity [52]. Furthermore, albumin
possesses good solubility in both water and ethanol, which
provide a specific capacity for enhancing the solubility of

curcumin. Novel curcumin-loaded human serum albumin
nanoparticles (CCM-HSA-NPs) with a narrow size distribu-
tion in the 130–150 nm range were prepared [52].

The CCM-HSA-NPs showed a much greater water solu-
bility (300-fold) than free curcumin and experienced negligi-
ble activity loss during storage [52]. The amounts of curcum-
in in tumors, vascular endothelial cell binding of curcumin,
and transport of curcumin across a vascular endothelial cell
monolayer after treatment with CCM-HSA-NPs were in-
creased 14-, 5.5-, and 7.7-fold beyond that achieved by free
curcumin. Furthermore, in vivo antitumor tests revealed that
CCM-HSA-NPs had a better therapeutic effect than free cur-
cumin without leading to toxicity.

4. Microsphere and Microcapsule

When a pharmaceutical agent is encapsulated within or dis-
persed in polymer materials, drug safety and efficacy can be
greatly improved and new therapies are possible. Given the
protection and selective permeation properties and organ-
targeted release feasibility, microspheres and microcapsules
are broadly applied not only in the food-making and cosmet-
ics industry, but also in pharmaceutical fields such as drug
delivery recently. Thus, a series of natural active ingredients,
such as ptothecin, zedoary oil, rutin, and andrographolide,
have been made into microspheres or microcapsules [28].

Many researchers have made some attempts to deliver
curcumin by microspheres or microcapsules [53–57]. The
fabrication of microcapsules using a layer-by-layer (LbL) ap-
proach with curcumin demonstrated that curcumin can be
accumulated in hollow microcapsules with polyelectrolyte
multilayer shells (PSS/PEI)6 [55]. Bioactivity of the released
drug is evaluated by cytotoxicity studies using L929 cell lines.
The new formulation was found to be cytocompatible while
the extract of capsules loaded with curcumin showed severe
cytotoxicity on the mouse fibroblast cell, indicating that the
released curcumin is active. In addition, the high stability of
polyelectrolyte microcapsules in the aqueous medium indi-
cates that these drug carriers are suitable for drug delivery
applications.
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5. Microemulsion

Microemulsions are isotropic dispersions consisting of oil
and water stabilized by an interfacial film of surfactant mol-
ecules, typically in conjunction with a cosurfactant. Due to
their extremely small emulsion droplet sizes in the range of
50 to 200 nm, which are much smaller than conventional
emulsions ranging from 1 to 100 µm, microemulsions as a
lipid-based delivery system possess many advantages, includ-
ing high solubilization potential, thermodynamic stability,
improved drug dissolution and surfactant-induced perme-
ability enhancement [58, 59]. Among various drug delivery
systems, the microemulsion system is considered to be an
ideal alternative for hydrophobic drugs such as curcumin.

A number of studies have recently been published about
the preparation methods, evaluation and pharmacokinetics
profiles of curcumin microemulsions [16, 58, 60–62]. Using
medium chain triacylglycerols as the oil and Tween 20 as
emulsifier, O/W emulsions with mean droplet sizes ranging
from 618.6 nm to 79.5 nm have been successfully prepared
using high-speed homogenization at 24,000 rpm and high-
pressure homogenization at 1500 bar [58]. A 12-O-tetrade-
canoylphorbol-13-acetate-induced [63] mouse ear inflam-
mation model was built to estimate the activity of curcumin
nanoemulsion. A 43% or 85% inhibition effect of edema of
mouse ear exists for 618.6 nm and 79.5 nm 1% curcumin
nanoemulsions, respectively, while the oral administration of
1% curcumin in Tween 20 water solution shows little or no
inhibition effect.

Self-microemulsifying drug delivery systems (SMEDDS)
have recently emerged as one of the most interesting ap-
proaches to improving the solubility, dissolution, and oral
absorption for poorly water-soluble drugs [64]. Setthachee-
wakul et al. [60] successfully developed a new SMEDDS to
improve the solubility and oral absorption of curcumin. A
simplex lattice experiment design was used to optimize the
formulation of SMEDDS: 57.5% surfactant (emulsifier OP:
Cremophor EL = 1 : 1), 30.0% cosurfactant (PEG 400), and
12.5% oil (ethyl oleate), which showed a significant improve-
ment of solubility of curcumin (21 mg/g). The results of
an oral absorption experiment in mice demonstrated that
SMEDDS could obviously increase the oral absorption of
curcumin compared with its suspension.

6. Cyclodextrin Inclusion

Cyclodextrins (Figure 3) are cyclic oligosaccharides with a
hydrophilic outer surface and lipophilic central cavity. Three
types of cyclodextrins exist: α-cyclodextrin, β-cyclodextrin,
and γ-cyclodextrin which are composed of six, seven, and
eight α-(1,4)-linked glycosyl units, respectively [65]. Due to
the advantages of accessibility and lowest-price, β-cyclodex-
trin is generally the most useful. Possessing a special ability of
enabling drugs to increase water solubility, reduce bitterness,
enhance stability, and improve bioavailability, cyclodextrins
have been used extensively in pharmaceutical research and
development [66, 67].
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Figure 3: Chemical structure of β-cyclodextrin.

Recently, a growing body of experimental evidence has
suggested potential significance in exploring the cyclodextrin
carrier properties for the delivery of curcumin [68–72].

In order to explore the cyclodextrin carrier properties for
the delivery of curcumin, a self-assembly of β-cyclodextrin
and curcumin was prepared via inclusion complexation us-
ing a solvent evaporation technique [70]. This study demon-
strated that curcumin was efficiently encapsulated in β-cy-
clodextrin cavities and the developed self-assemblies were
confirmed by spectroscopy (FTIR, 1H NMR), thermal stud-
ies (DSC and TGA), X-ray diffraction, and microscopic stud-
ies (SEM and TEM). In addition, the β-cyclodextrin-cur-
cumin inclusion complex showed an improved uptake in
DU145 cancer cells and greater potent therapeutic efficacy in
prostate cancer cells compared to free curcumin.

In addition, a novel cyclodextrin complex of curcumin
(CDC) was manufactured through a pH shift method using
a highly alkaline solution for curcumin dissolution and con-
tacting with hydroxypropyl-γ-cyclodextrin (HPγCD) [69].
These aqueous curcumin formulations have about 100-fold
greater curcumin concentration than previously described
cyclodextrin complexes of curcumin, and their stability is
remarkably improved. In vitro tests demonstrated that CDC
had more potential compared with free curcumin for cellular
uptake and for antiproliferative and anti-inflammatory activ-
ities.

7. Solid Dispersion

In 1971, solid dispersion was defined as a dispersion of one
or more active ingredients in an inert carrier or matrix in
the solid state prepared by the melting (fusion), solvent, or
melting-solvent methods [73]. In recent years, increasing at-
tention has focused on solid dispersion systems, finding
that they can increase bioavailability of poorly water-soluble
drugs such as curcumin [74–77].
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Figure 4: Most recent DDS of curcumin.

Crystal and amorphous solid dispersions have also been
designed by wet-milling and subsequent freeze-drying with
the aim of improving physicochemical and pharmacokinetic
profiles of curcumin [78]. The mean particle size of curcum-
in was identified to be ca. 250 nm, with a small polydispersity
index in crystal solid dispersion, compared to crystalline cur-
cumin, the authors demonstrated that the rapid dissolution/
dispersion behavior and oral bioavailability increased by 12-
and 16-fold, respectively.

8. Miscellaneous Novel Delivery Systems

Researchers have also tried other ways to improve the biolog-
ical activity of curcumin (Figure 4). The application of these
techniques offered new research direction and a visual field
for solving the limitations of curcumin.

A class of unique hybrid nanogels was designed to im-
prove the therapeutic efficacy of curcumin [79]. These for-
mulations with high drug-loading yields are claimed to be
well suited for in vivo studies and clinical trials. Several
metallocomplexes of curcumin have been synthesized, char-
acterized, and evaluated for various biological activities.
Barik et al. [63] reported that a 1 : 1 complex of copper
with curcumin exhibited SOD activity and in vitro antioxi-
dant activity. Nadodisks (NDs) represent a potentially novel
means to deliver curcumin effectively. NDs are disk-shaped
phospholipid bilayers whose edge is stabilized by apolipopro-
teins, they may have particular in vivo therapeutic appli-
cations due to their nanoscale size and ability to solubilize

curcumin [80]. Paramera et al. [68] evaluated the stability of
yeast cell-encapsulated curcumin in regard to environmental
factors such as light, humidity, and heat. They found that
yeast cells significantly protected curcumin from the detri-
mental effects of light, as well as from oxidative degradation
at elevated relative humidity.

In addition, curcumin-loaded films were prepared using
biodegradable ploymer (PLGA) and in vitro tests indicated
that the curcumin-loaded films have better anticoagulative
effects than PLGA. Recently, a combination of nanotubes and
curcumin also are in application in the chemical industry
[81].

9. Problems and Prospects

Since the discovery of the enhanced drug permeation and re-
tention effect in the 1980s, the advancements in the nano-
technology are widely penetrating to the field of life sciences.
We should be thankful that the nanotechnologies bring a real
innovation for cracking many medical science hard nuts. An
ideal nanoscale agent enables drug arrivals and acts preferen-
tially at the selected target, hence the therapeutic effect could
be markedly improved. Undoubtedly, curcumin, an excellent
representative derived from traditional Chinese medicine,
has been proven effective in long-term use and preclinical
trials. Therefore, it is of great significance to overcome the
current limitations of curcumin. In past decades, researchers
have made real strides in the inhibition of nanotechnologies
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on curcumin, but we should also be soberly aware that some
problems still remain.

Curcumin liposome formulations are known to improve
bioavailability and efficacy and reduce toxicity, but no tis-
sue specificity is associated with the liposomes. After entering
the body, liposomes are rapidly taken up by the reticuloen-
dothelial system in the liver and spleen, leading to a short
circulation time. Therefore, developing effective modifica-
tions of liposomes such as polymeric conjugation on lipo-
some surface becomes essential to acquire better clinical
outcomes. Furthermore, efficacious and simple as they are,
microemulsions also contain multiple surfactants, which
leads to inevitable toxicity. Thus the choice of the surfactants
is critical for the formulation of microemulsions. Addition-
ally, most of the proposed formulations were derived from
synthetic polymers: long-period employments of these ex-
cipients can achieve temporary increased solubility and bi-
oavailability, but potential harms may occur. The search for
excipients has been an important part of the current phar-
maceutical research and this trend seems irresistible.

Taken together, there is no doubt that development of
novel delivery systems of curcumin with better curative ef-
fects will be critical for future development of curcumin as
a therapeutic agent. We strongly believe that a desired prep-
aration will not only load and keep the drug stable, but
will also exactly deliver the drug to candidate cells to en-
hance the therapeutic effect and reduce the toxicity to normal
cells. This is an arduous and complex job: only by multidis-
ciplinary cooperation can we bring this promising natural
medicine to the forefront of therapeutic agents for cancers
and other diseases.
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