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Abstract 
The novel coronavirus (2019-nCoV) emerged in China at the end of 2019 and 
then spread worldwide, particularly to Italy, Spain, the USA, and Iran. Currently, 
Coronavirus Disease 2019 (COVID-19) is a main public health issue. As of 
April 21, 2020, more than two million confirmed cases of COVID-19 with 
more than 170,000 deaths have been reported in 210 countries by WHO. The 
2019-nCoV can be spread by direct contact or droplets between humans and 
shows great potential for a pandemic. At present, there is no particular antiviral 
therapy for 2019-nCoV-infected persons. However, a wide range of therapeutic 
agents are being examined. The capabilities inherent to nanotechnology hold a 
large guarantee in presenting innovative approaches in the field of COVID-19 
prevention, diagnosis, and cure. We in this article discuss how nanotechnology 
can improve the treatment of persons infected with the COVID-19 virus.
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Introduction
The novel coronavirus disease (2019-nCoV), called by the World Health 
Organization (WHO) as  Coronavirus Disease 2019 (COVID-19), was first 
reported on December 31, 2019 (Wuhan, China) (1). Compared to the other 
known coronaviruses like as the Severe Acute Respiratory Syndrome coronavirus 
(SARS-CoV) and the Middle East respiratory syndrome coronavirus (MERS-
CoV), the mortality rate of COVID-19 is considerably lower; however, it is 
more transmissible (2),  so far, it has spread to many countries around the world, 
infected more than two million people, and it has led to the death of tens of 
thousands of people. Coronaviruses are a big family of viruses that attack the 
upper and lower respiratory tracts in humans, leading to a range of disease from 
the common cold to very severe, even fatal forms. But, it is the third time in the 
21st century that a coronavirus explosion turns into a global health emergency. 
More than hundreds of coronaviruses have until been known, most of that is 
transferable between animals like pigs, camels, and bats, however, in several 
cases, a genetic mutation is all these viruses require to spread to humans (3). So 
far, seven coronaviruses have been diagnosed with human diseases, four of which 
are NL63, OC43, 229E, and HKU1, which cause moderate to severe disease, and 
the other three are even fatal (4). The first was SARS-CoV, which appeared in late 
2002 and disappeared in 2004; the second is MERS-CoV, which appeared in 2012 
and yet spread between camels (2, 5); and the third is SARS-CoV-2 that causes 
COVID-19 – first reported in China and according to numerous researchers, is 
leading the world toward the grips of a pandemic (6). The SARS-CoV-2 virus 
is in the form of spheres with a diameter of 125 nm, with lipid-based viral 
envelopes and positive-sense single-stranded RNA genomes. The SARS-CoV-2 
virus has four kinds of structural proteins: envelope (E), spike (S), nucleocapsid 
(N), and membrane (M)  proteins (6, 7), which the S protein has a vital role in 
connecting the virus to its host’s cells and facilitating it to penetrate the cells 
(5). The most frequent symptoms and signs of COVID-19 are fever, cough, and 
dyspnoea. After a week or more, it could cause shortness of breath, about 20% of 
the patients requiring hospital cure. In many patients, particularly the elderly and 
those with chronic health conditions, the early signs could develop to pneumonia, 
with chest tightness, and shortness of breath (4). On the other hand, the quickly 
increasing fatality tolls of COVID-19 have been an alarm for global health. Many 
researchers have lately turned their focus to this growing threat and a global 
attempt is underway to stop its spread. At present, there is no particular antiviral 
treatment accessible for COVID-19, however, a broad range of pharmaceutical 
agents are being examined. Nanotechnology holds a large guarantee in presenting 
innovative approaches to a broad range of problems regarding the prevention, 
diagnosis, and cure of COVID-19, in which nanotechnologists certainly play a 
vital role and bear their social responsibility. In the meantime, among a variety 
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of fields of technology and science, nanotechnology has huge probability to be 
of massive help in prevention, diagnosis, and cure of COVID-19. At prevention 
step, nano-fiber based facial respirators, with the help of nanotechnology-enabled 
extremely effectual antimicrobial and antiviral disinfectants have been the first 
personal protective ways that could prevent the extension of the virus; also, 
widespread research is underway to expand a vaccine for COVID-19 based on 
different nano-materials. In diagnostics, nanotechnology has shown significant 
promise in designing sensors for developing rapid-response COVID-19 tests. Last 
but not least, at the curing phase, nano-medicines have been at the core of many 
researchers’ attention, several of that are at present being studied in clinical trials. 
Given the wide abilities of nanotechnology, it is probable that innovations in this 
field might have an important effect on problems associated with COVID-19. 
This review briefly addresses the potential application of nanotechnology for the 
treatment of COVID-19 disease. 

Entry mechanism and replication of Coronavirus
Coronavirus spike glycoprotein has been shown as an important determinative 
of virus entry into host cells (2). The SARS-CoV and SARS-CoV-2 spike 
glycoproteins bind to the angiotensin-converting enzyme II (ACE2) cellular 
receptor (8, 9), also, SARS-CoV and MERS-CoV binds CD209L and dipeptidyl 
peptidase 4 (DPP4) cellular receptors respectively (10, 11). It is recognized that 
SARS-CoV entry into cells is mainly achieved by direct membrane fusion between 
the virus and the membrane (12). An important proteolytic cleavage event at the 
SARS-CoV S protein at position (S20) has been reported to mediate membrane 
fusion and viral infection (13). The MERS-CoV as well as the development of 
abnormal two-phase furin activation for membrane fusion (14).  In addition to 
membrane fusion, clathrin-dependent and -independent endocytosis also mediates 
SARS-CoV entry (15). Once the virus enters the cells, the genome is released 
into the cytoplasm space host and translates into two structural proteins and 
polyproteins, which then begin to replicate the viral RNA genome (16). Delayed 
envelope glycoproteins are inserted into the membrane of the endoplasmic 
reticulum or Golgi and are nucleocapsidis created by a mixture of genetic and 
nucleocapsid protein. After that, the viral cells germinate into the endoplasmic 
reticulum-Golgi intermediate compartment. Eventually, vesicles, including virus 
cells, coalesce with the membrane to release the coronavirus (2). The 2019-nCoV 
employed the same cell entry receptor ACE2 as the SARS-CoV. Peng Zhou et al. 
showed that 2019-nCoV is capable to employ all ACE2 proteins, but no ACE2 
mouse, as an entry receptor to enter into cells with ACE2 expression, but not cells 
which did not express ACE2, demonstrating that ACE2 is almost the cell receptor 
through which 2019-nCoV enters the cell. The COVID-19 binds to ACE2 via 
S-protein on its surface. During infection, the S-protein is divided into S1 and 
S2. S1 subunit includes the receptor-binding domain that lets coronaviruses to 
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straightly bind to the peptidase domain of ACE2. S2 then probably has a function 
in membrane fusion. Peng Zhou et al. also showed that 2019-nCoV does not 
employ other coronavirus receptors, like DPP4 and aminopeptidase N (7).

COVID-19 Challenge 

Several issues make 2019-nCoV mainly worrying. Being a novel virus, there is no 
acquired immunity; 40 candidate vaccines are at present in the study phase, but 
specialists agree that no extensively utilizable vaccine will be accessible for at 
least 12 to 18 months. The case-fatality rate, that by meaning is computed only 
based on identified patients and is so presently hard to estimate correctly, appears 
to be about 4%. Here are some reasons why the 2019-nCoV appears to be a threat. 
First, it can kill older people with existing health problems as well as healthy 
ones. The information up to now shows that the virus has a fatality risk of about 
4%; this rate is many times more severe than usual seasonal influenza. Second, 
COVID-19 is relatively efficiently transmitted (17). The average infected person 
spreads the disease to three or four others. That’s an exponential growth rate. 
There is as well strong proof that it could be spread by persons who are just 
mildly disease or not even showing signs.  This represents a challenge because it 
would be hard to identify patients that need to be tested for the disease because 
they have no symptoms or signs, but their capacity to transmit the disease would 
permit for amplification in an uninfected population [18]. This means 2019-nCoV 
will be more difficult to contain than SARS, which was only transmitted by those 
showing signs and were much fewer proficiently transmitted (17). So, rapid 
treatments are vital interventions for COVID-19.

Current treatments of COVID-19 and their limitations

As mentioned above, there is no special antiviral treatment for COVID-19. 
Scholars are attempting to find therapeutics to treat patients with this infection. 
Researchers so far have examined several drug candidates, from different classes, 
including protease inhibitors, nucleoside analogs, neuraminidase inhibitors, 
polymerase inhibitors, and DNA synthesis inhibitors, that may have potential 
efficacy for treatment of COVID-19 (19, 20). Currently, several drugs including 
ritonavir/lopinavir, darunavir, emtricitabine/tenofovir, ruxolitinib, remdesivir, 
favipiravir, and chloroquine are undergoing clinical trials to evaluate their 
efficacy to treat COVID-19 and have been achieved several promising results 
so far (Table1). Lim et al. showed that using lopinavir/ritonavir in patients 
with COVID-19 causes a reduction in viral loads, therefore improving clinical 
symptoms during the treatment (21). Recently, Wang et al. showed in vitro which 
chloroquine and remdesivir were highly efficient in control of COVID-19 (22). 
The Clinical Medical Research Center of the National Infectious Diseases and 
the Third People’s Hospital of Shenzhen initiated a clinical trial on favipiravir 
to treat COVID-19 on February 14, 2020. Their results showed favipiravir had 
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more strong antiviral activity than that of ritonavir/lopinavir on patient with 
COVID-19.

Also, Chen et al. reported that favipiravir, compared to arbidol, does not 
significantly improve rate of clinical recovery at day 7. In this clinical trial, 
favipiravir showed remarkably improvement in time-to-relief for cough and fever 
(23).   

In recent days, an international team reported that human recombinant soluble 
ACE2 (hrsACE2) can remarkably inhibit primary stages of SARS-CoV-2 
infection. Angiotensin-converting enzyme 2 (ACE2) has been reported as an entry 
receptor for SARS-CoV-2 infection and it has been proposed which blocking this 
interaction might be used in treatment of persons with COVID-19 infection (24).

Table 1. Current therapeutics used in treatment of COVID-19.

Candidate 
Therapeutics

Class Mechanism 
of Action

Currently being 
trialled COVID-19?

Corticosteroids Steroid 
hormones

Inhibition of 
the effector 
function of 
Th2 cells, 
eosinophils, 
and epithelial 
cells (25)

Yes
NCT04244591

Chloroquine Heme 
polymerase 
inhibitor, 
Antimalarial 
agent

Inhibition of 
glycosylation 
of newly 
synthesized 
proteins in 
many viruses 
(26),

Increase 
endosomal 
pH needed 
for virus/cell 
fusion (27)

Yes (27)
NCT04261517
ChiCTR2000029542, 
ChiCTR2000029559, 
ChiCTR2000029609, 
ChiCTR2000029740, 
ChiCTR2000029760, 
ChiCTR2000029761, 
ChiCTR2000029762, 
ChiCTR2000029803, 
ChiCTR2000029826, 
ChiCTR2000029837, 
ChiCTR2000029868, 
ChiCTR2000029898, 
ChiCTR2000029899, 
ChiCTR2000029935, 
ChiCTR2000029939
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Ritonavir+ 
Lopinavir
(Kaletra) 

Protease 
inhibitors,
Antiretroviral

Inhibits vi-
rus-specific 
processing 
of viral Gag-
Pol and Gag 
polyproteins 
in cells in-
fected with 
virus through 
inhibition of 
viral proteas-
es (28)

Yes
NCT04255017
ChiCTR2000048824,
ChiCTR2000048919, 
ChiCTR2000048809,
ChiCTR2000048991,
ChiCTR2000048992,
ChiCTR2000049015,
ChiCTR2000049065

IFNα2b
(PegIntron®, 
Sylatron®, 
IntronA®)

Type I interferon 
made by 
leukocytes 
during viral 
infection

Inhibition 
of viral 
replication, 
Stimulation 
of innate 
antiviral 
responses 
in patients 
infected with 
virus (29)

Yes 
ChiCTR2000048684

Emtricitabine+ 
tenofovir
(Truvada)

Non-nucleoside 
reverse 
transcriptase 
inhibitor + 
DNA synthesis 
inhibitor

Incorporated 
into the viral 
DNA strand 
by virus 
reverse tran-
scriptase and 
terminates 
DNA chain 
elongation 
(28)

Yes
ChiCTR2000048919

Ruxolitinib
(Jakafi or Jakavi)

Janus kinase 
(JAK) 1 and 2 
inhibitor

Inhibition of 
virus replica-
tion in lym-
phocytes and 
macrophages 
(30)

Yes 
ChiCTR2000049088
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Darunavir (with 
cobicistat)
(Prezista®/ 
Prezcobix® and 
Generic)

Protease 
inhibitors,
Antiretroviral

Inhibits 
virus-specific 
processing 
of viral Gag-
Pol and Gag 
polyproteins 
in cells 
infected with 
virus through 
inhibition 
of viral 
proteases 
(28)

Yes
ChiCTR2000048992,
NCT04252274 

Baloxavir
marboxil
(Xofluza)

Endonuclease 
inhibitor, 
Antiviral

Inhibition 
of cap-de-
pendent en-
donuclease 
of influenza 
virus (31)

Yes
ChiCTR2000049013

Favipiravir
(or T-705
or Avigan)

Experimental 
antiviral drug. 
Pyrazinecarbox
amide derivative 
viral RNA 
polymerase 
inhibitor.

Inhibition of 
the RNA de-
pendent RNA 
polymerase 
of RNA vi-
ruses (32)

Yes  
ChiCTR2000049015,
ChiCTR2000049013,
ChiCTR2000049042

Arbidol 
(Umifenovir)

Russian-made 
small indole-
derivative 
molecule.
Antiviral

Inhibition of 
the different 
steps of the 
viral life cy-
cle (33)

Yes
ChiCTR2000049069,
ChiCTR2000049065,
NCT04252885

Novaferon,
Nova

Recombinant 
protein produced 
by DNA-
shuffling of 
IFN-α

I n h i b i t i o n 
of viral 
r ep l i ca t ion 
(34)

Yes
ChiCTR2000049065,
ChiCTR2000048809
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GS-5734/ 
Remdesivir

Nucleoside 
inhibitor

Incorporation 
into nascent 
viral RNA 
chain and 
p re -ma tu re 
termination 
of RNA chain 
e l o n g a t i o n 
(22)

Yes
NCT04252664,
NCT04257656

Despite the promising effects of the drugs used to treat COVID-19, several 
challenges remain with current treatments. One of the challenges is the 
administration of the drug by the oral route that can create both topical and 
systemic side effects. The drug delivery to the lung to treat pulmonary diseases 
by oral therapy requires high doses of drug, also rapid clearance of drugs leads to 
a need for daily treatment with several drug candidates for the long periods (35). 
The other significant challenge in viral infectious diseases is emergence of drug 
resistance (28), which may also occur in patients with COVID-19 disease.

Potential applications of Nanotechnology in treatment of COVID-19

Nanotechnology offers promising solutions to overcome the challenges of oral 
administration of drug and to treat drug resistance. Nanotechnology-based drug 
delivery systems (nano-DDS) have several unique physical properties, such as 
high water-solubility, sensitivity to temperature, simple surface modification, 
controlled release capability of encapsulated drugs, and high surface-area-to-
volume ratios (36). The medical scientists can use these unique properties to 
overcome the challenges related to enhanced drug resistance of infectious agents.

Nano-DDS can be adapted (i) to increase the solubility of drugs, (ii) to protect 
drugs from degradation, (iii) to reduce drug-associated toxicity, (iv) to modulate 
drugs release, (v) to enhance cellular uptake of drugs and their blood circulation 
time, and (vi) to target drugs to affected cells, tissues, and organs (37-40).

Unlike oral administration, systemic delivery of therapeutics via lungs allows 
that therapeutic can bypass harsh conditions of digestive tract and avoid first-pass 
metabolism (41). Also, compared to the digestive system, the lungs show a low 
level of enzymatic activity  (42).

Local delivery of therapeutics to lungs has many advantages as it improves the 
efficiency of the treatment by enhanced accumulation of therapeutics in the 
lungs, also, reduces systemic side-effects of drugs on other tissues and organs 
through reduction of required dosage of delivered drugs and prevention of their 
penetration into the systemic circulation (43).
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The different types of nanocarriers such as polymeric and solid lipid nanoparticles, 
liposomes, and micelles have been used for delivering therapeutics to the lung due 
to their flexible and controllable biological properties. These nanocarriers can be 
administered through distinct routes, including oral, inhalation and intravenous 
(44). The administration route is as significant as drug formulation for reaching 
therapeutic goals. Table 2 lists several nano-DDS that are used for treatment of 
pulmonary infections.

In recent years, nanoparticle DDS has been designed for improvement of therapeutic 
stability, efficacy, safety, and patient compliance (45). The therapeutic benefits of 
nanoparticles (NPs) as drug carrier are well controlled release properties, high 
bioavailability, low toxicity, high stability, feasibility of incorporation of both 
hydrophobic and hydrophilic therapeutics,  and high encapsulation efficacy for 
therapeutics (46, 47). The development of nanoparticle DDS is one of the best 
ways to gain higher drug levels in the lungs, drug-loaded NPs can be used for 
direct pulmonary delivery via the aerosol route (48).

The inhalational delivery of a drug in form of suspension aerosol or inhaled dry 
powder has two potential limitations including, limited bioavailability of drug 
because of its microparticulate nature and poor solubility that leads to restricted 
dissolution and diffusion of a drug at the site of action, and reduced residence 
time of drug due to its fast alveolar macrophage uptake and ciliary clearance 
that results in elimination of long-term effects of drug. In contrast, inhalational 
delivery of a drug in form of nanosuspensions and nanoparticles has several 
potential advantages including, fast start of action of the drug because of its rapid 
dissolution and diffusion, prolonged drug residence time at the site of action due 
to enhanced adherence of nanoparticulate drug to mucosal surfaces, and lower 
phagocytic clearance of NPs compared to microparticles (49).

The effective pulmonary delivery of an inhalable therapeutic depends on many 
factors, such as shape, size, and surface features (42). These factors affect all 
aspects of pulmonary delivery of drug, such as deposition in respiratory tract, 
dissolution in lung lining fluid and clearance process (50).

Polymeric NPs are achieving fast importance to delivery of drug to the lungs. 
Various polymers have been studied for pulmonary applications. Polymers 
possess multiple benefits, including high capacity for encapsulation of drugs 
and their protection from degradation, and extended delivery of drug for a long 
time (51). The polymers include poly(lactic-co-glycolic acid) PLGA, poly(ε 
caprolactone) PCL, poly(lactic acid) PLA,  chitosan, alginate, and gelatin are 
commonly used for therapeutic purposes (52, 53). By modifying chemical and 
surface properties of polymers, they can be biodegradable (54, 55). Several 
studies have been carried out using polymeric NPs to delivery of anti-infectious 
drugs to the lungs (Table 2). 
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Solid lipid nanoparticles (SLNs) are other group of NPs that have widely been 
investigated for potential pulmonary drug delivery. SLNs are nanocrystalline 
suspensions in water, prepared from phospholipids, physiological lipids, and 
primarily triglycerides (56). SLNs are popular for pulmonary delivery of drug 
since the formulations are prepared with the use of physiological components 
(57). The SLNs have advantages like good tolerability, scaling-up possibility, low 
toxicity, the ability to encapsulate hydrophilic/hydrophobic drugs, and increased 
stability of encapsulated drugs (58). To treatment of lung infections, different 
anti-infectious drugs have been incorporated in SLNs (Table 2).

Liposomes are a popular DDS for pulmonary drug delivery, as they are formed 
mainly from phospholipids, that are inherent in lungs (59). Liposomes possess 
properties like capacity to incorporate of drugs in core or within their membrane 
bilayer, ability to decrease toxicity of drugs and change their pharmacokinetics, 
and potential for sustained release of drugs to increase their effect over an extended 
time period, which make them attractive drug nanocarriers for the treatment 
of pulmonary infections (60, 61). Liposomal DDS using both lipophilic and 
hydrophilic drugs was used to treatment of lung infections through the inhalation 
route (43).

So far, liposome has been one of the most promising nanocarriers to pulmonary 
antibiotics delivery, with several antibiotic formulations in clinical trials (44). 
Conventional liposomes are easily uptake through macrophages cells of the 
reticuloendothelial system. Thus they form a worth delivery vehicle to target 
high antibiotics doses to sites where the bacteria reside (62). Also, the half-life 
antibiotics may extend in the body due to sustained release of these drugs from 
liposomes (62).

Nebulized liposomes to target drugs to the lung have been well described (63, 64). 
It was shown which nebulization of liposomal dispersions permitted penetration 
into the lung peripheral region (65). Efficient chemotherapy of pulmonary 
infections can be performed by drug targeting to alveolar macrophages by using 
aerosolized liposomes (65). However, physical and chemical long-term stability 
of liposome suspensions during storage, such as fusion, leakage, and aggregation, 
is one of key limitations in the development of these nanocarriers (66, 67).

Also, liposomes can be used as a carrier to target cell- and organ-specific using 
ligands. Although, therapeutic applications of ligand-anchored liposomes that are 
injected intravenously, can become restricted because of some factors, including 
leakage of contents of liposomes before they reach to the target site, and uptake of 
liposomes through macrophages of the spleen and liver [64]. The anti-infectious 
drugs which have been encapsulated as liposomal formulations are listed in Table 
2. 
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Polymeric micelles because of their nanoscopic core-shell structure are considered 
as suitable carriers for delivery of poor water-soluble drugs like antibiotics and 
antifungal into the lung (68). The delivery of anti-infection drugs to the lung by 
polymeric micelles mentioned in Table 2. 

Table 2: Examples of nano DDSs developed for delivery of anti-infectious drugs to the lungs.

Nano DDS Therapeutic 
agent

Route of 
adminis-
tration

Organism Purpose/Effect of 
nanoformulation

PLGA
nanoparticles

Isoniazid
Rifampicin
Pyrazinamide

Inhala-
tion

Myco-
bacterium 
tuberculo-
sis

To improve the bio-
availability of antitu-
bercular drugs,
To prolong half-life 
of drugs (69)

PLGA 
nanoparticles

Voriconazole Inhala-
tion

Not tested To improve pulmo-
nary delivery (70)

PLGA 
nanoparticles

Rifampicin Inhala-
tion

Myco-
bacterium 
tuberculo-
sis

To increase uptake of 
drug (71)

Lection 
–PLGA 
nanoparticles

Isoniazid
Rifampicin
Pyrazinamide

Inhala-
tion

Myco-
bacterium 
tuberculo-
sis

To decrease the drug 
dosage frequency,
To improve patient 
compliance in che-
motherapy of TB (72)

Alginate/chi-
tosan 
nanoparticles

Isoniazid
Rifampicin
Pyrazinamide

Inhala-
tion

Myco-
bacterium 
tuberculo-
sis

The controlled re-
lease of antitubercu-
lar drugs (48)

Manni-
tol:Lectin 
nanoparticles

Iitraconazole Inhala-
tion

Aspergil-
lus fumig-
atus

To improve the bio-
availability of drug 
(50)

Polysorbate 
80: polox-
amer 407 
nanoparticles

Iitraconazole Inhala-
tion

Aspergil-
lus fumig-
atus

To increase water sol-
ubility of drug (73)
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Polysorbate 
80: polox-
amer 407 
nanoparticles

Itraconazole Inhala-
tion

Aspergil-
lus fumig-
atus

Improved survival 
and limited invasive 
disease (74)

Cyclodextrin 
complexes

Rifampicin Inhala-
tion

Acine-
tobacter 
baumannii

To increase water sol-
ubility,
To maximize the ac-
tive drug amount,
To optimize lung 
pharmacokinetic pro-
file of drug (75)

Soli lipid 
nanoparticles

Isoniazid
Rifampicin
Pyrazinamide

Inhala-
tion

Myco-
bacterium 
tuberculo-
sis

Improved drug bio-
availability and mean 
residence time,
Reducing the dosing 
frequency (58)

Soli lipid 
nanoparticles

Amikacin Inhala-
tion

Not tested To increase concen-
tration of drug in the 
lungs (76)

Soli lipid 
nanoparticles

Budesonide Inhala-
tion

Not tested To increase water sol-
ubility and adsorption 
of drug (77)

Soli lipid 
nanoparticles

Rifampicin Inhala-
tion

Myco-
bacterium 
tuberculo-
sis

To reduce of toxicity 
of drug (56)

Liposome Amphotericin 
B

Inhala-
tion

Aspergil-
lus fumig-
atus

To improve the drug 
chemotherapy effica-
cy (78)

Liposome Amphotericin 
B

Intrave-
nous 

Candidosis 
Aspergil-
losis 

To improve the drug 
chemotherapy effica-
cy,
To reduce acute and 
chronic toxicities of 
drug (79)
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Liposome Ciprofloxacin Inhala-
tion 

Not tested To improve the drug 
chemotherapy effica-
cy against intracellu-
lar parasites (80)

Liposome Ciprofloxacin Inhala-
tion

Francisella 
tularensis

Higher serum levels 
of drug,
Prolonged drug reten-
tion in lung (81)

Liposome Ciprofloxacin Inhala-
tion

Not tested To delivery high drug 
concentration to tar-
get site,
Reducing the local ir-
ritation (82)

Liposome Rifampicin Inhala-
tion

Myco-
bacterium 
avium

To reduce of dosage 
of drug (65)

Liposome Rifampicin Inhala-
tion

Myco-
bacterium 
tuberculo-
sis

To improve the che-
motherapy efficacy of 
drug (64)

Liposome Tobramycin  Intratra
cheal   
 

Pseudo-
monas 
aeruginosa

Improved efficacy 
after multiple treat-
ments, 
Prolonged drug reten-
tion in lung  
(83)

Liposome Tobramycin  Intratra
cheal  

Burkhold-
era cepacia

Prolonged efficacy of 
drug (84)

Liposome Polymyxin B  Intratra
cheal   

Pseudo-
monas 
aeruginosa

To increase pulmo-
nary level of drug,
To decrease of toxic 
effect of drug (85)

Liposome Cyclosporine 
A

Inhala-
tion 

Myco-
bacterium 
tuberculo-
sis

To deposit of drug to 
the peripheral lung 
(86)
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Liposome Isoniazid Inhala-
tion

Myco-
bacterium 
tuberculo-
sis

To increase pulmo-
nary level of drug 
(87)

Chi-
tosan-based 
micelles

Amphotericin 
B

Inhala-
tion

Candida 
spp
Aspergil-
lus spp

To improve water 
solubility,
To reduce adverse ef-
fects,
To reduce the aggre-
gation state of drug 
(68)

Conclusion and future perspectives

As shown in this review, remarkable works have been done in nano-formulation 
therapeutics for treatment of the lung infections. Nanotechnology presents 
an excellent opportunity for the basic improvement of current treatments and 
development of novel therapeutic options for lung infections formerly thought 
impossible or difficult to treat. Nonetheless, we are yet in the primary stages 
of nanomedicine in respiratory infections care, which requires physicochemical 
and nanotoxicological analysis for possible human applications. At present, we 
are entering a modern world where nanotherapeutics will change the way we 
practice respiratory medicine. Nanotherapeutics offer improved clinical efficacy 
for patients, especially to those patients who are currently treatment-resistant to 
conventionally administered therapeutics. 

According to the above content and the potential applications of nanotechnology 
to delivery of anti-infection drugs to the lungs, current and potential therapeutics 
of COVID-19 can be encapsulated into nanocarriers and delivered to the lungs 
through the respiratory tract.
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