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Abstract: Over the past decade, synthesized nanomaterials, such as carbon nanotube, nanoparticle,
quantum dot, and nanowire, have already made breakthroughs in various fields, including biomedical
sensors. Enormous surface area-to-volume ratio of the nanomaterials increases sensitivity dramatically
compared with macro-sized material. Herein we present a comprehensive review about the working
principle and fabrication process of nanowire sensor. Moreover, its applications for the detection
of biomarker, virus, and DNA, as well as for drug discovery, are reviewed. Recent advances including
self-powering, reusability, sensitivity in high ionic strength solvent, and long-term stability are surveyed
and highlighted as well. Nanowire is expected to lead significant improvement of biomedical sensor
in the near future.
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1. Introduction

Biomedical sensors with high sensitivity could make it possible to detect diseases in their early state,
drastically increasing the chance of potentially life-saving detection and intervention. For example,
when breast cancer is detected at an early stage (local disease) and treated with existing therapies,
the five year survival rate is greater than 90%, but drops to around 20% upon developing into
late stages (distant disease) [1]. Highly sensitive biosensors for the early detection of cancer are yet
demanded [2,3]. Though much research has been carried out in an attempt to increase the sensitivity of
biomedical sensors, recent developments in nanotechnology will provide the most promising solutions
in the area of biomedical sensing [4,5]. Nanotechnology includes broad science and engineering research
areas to study materials and structures less than approximately 100 nm [6]. In case of the nanometer scale,
physical and chemical properties of materials are highly dependent on surface-to-volume ratios and
quantum size effects, resulting in completely different properties than those at the macroscale [7].

Since the surface area-to-volume ratio is enormous at the nanoscale, it affects most of the regions
on the sensing structure, making a nanostructure ultrasensitive to changes on its surface. The electron
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movement of the nanostructure is confined by quantization effects, resulting in quantum size effects,
in which the discrete energy levels of the device depend on the size of the structure. In addition,
both the excited energy of semiconductors at the lowest state and the strength of volume-normalized
oscillator are increased by decreasing the scale [8], allowing the nanostructures to have a high energy
conversion efficiency and relatively low thermal noise [9]. The size of biomolecules (~10 to ~100 nm),
which is in the same range of synthetic nanostructures, also benefits the development of biomedical
sensors using nanotechnology.

The primary task of biomedical sensors is to detect and characterize chemical and biological species,
ranging from applications in disease diagnosis to drug discovery. Using nanomaterials (e.g., nanowires,
carbon nanotubes, and nanoparticles) with distinct optical, magnetic, and electrical properties,
those primary biomedical tasks can be achieved readily [10]. For examples, semiconductor crystalline
nanoparticles were used to detect the labeled disease markers and other biological species [11,12],
and colloidal gold was used in optical imaging and magnetic resonance [13,14]. In addition, semiconductor
nanowires made it possible to detect various species electrically and without labels [15]. These nanowires
were fabricated from semiconductor materials [16] and their surface can be readily modified to become
sensitive to chemical and biological species [17,18]. Carbon nanotubes, which can also be employed in
biomedical sensors, however, are synthesized by mixing semiconductor materials and metals, requiring
further purification [19,20]. In addition, the binding protocols of a variety of analytes to nanotubes
have not been well established [16,21]. Therefore, nanostructures fabricated by nanowires are the
most suitable option for biomedical sensors that have high sensitivity, uniformity, reproducibility,
and scalability with relatively simple fabrication process [22,23].

This review includes working principles of nanowire-based biomedical sensors and a variety
of applications in biological and medical fields, updating our previous reports [24,25], which do not
overlap the contents of this paper. We also discuss the advancement of long-term stability, sensitivity in
solvents with high ionic strength, reusability, and self-powering, as those advancements significantly
impact on overcoming the current limitations of nanowire-based biomedical sensors.

2. Working Principle and Fabrication Process

2.1. Fundamentals of Nanowire Field-Effect Transistors

Nanowire field-effect transistors (FETs) are a type of nanowire sensor that have originated
from the standard planar FETs which consist of a gate, source, drain, and the body (Figure 1A).
With a metallic material, the source and drain on the body are fabricated at the micro- or nanoscale.
The gate, a critically thin isolation layer (e.g., SiO2), is fabricated between the source and drain,
and generates electric potential variations to adjust the conductivity between the source and drain [26].
These variations in electric potential are usually in response to the application of an external voltage.
Chemically or biologically charged species can also alter the potential and then conductivity by
binding the charged species to the gate. This type of an electrical detection mechanism through an
accumulation of charged species was proposed several decades ago [27]. However, it requires a lot of
samples for detection due to the low sensitivity, preventing the use of the planar gate FET sensor in
many applications.

In the nanowire FETs, doped channels and gates are replaced with nanowires and receptors,
respectively (Figure 1A). Even though the structures of the FETs are different, the working principle
of nanowire FETs remains the same as standard FETs in which the conductivity of nanowires
(i.e., doped channels) is altered by external changes caused by charged species. Among various
semiconductor nanowires that can be fabricated by silicon or other materials [28–30], silicon and
silica nanowires are most widely used due to their high compatibility with the standard CMOS
(complementary metal–oxide–semiconductor) technology. The natural growth of the oxide layer as the
isolation layer on the silicon surface, and the easy modification of the silicon and silica surface, are other
benefits of silicon and silica nanowires. Although the biomolecules have charges, the accumulation



Micromachines 2018, 9, 679 3 of 19

of biomolecules on the isolation layer does not alter the conductivity of nanowires since the original
silicon and silica surface is not sensitive to biomolecules [14]. Therefore, it is necessary to make the
surface functionalized and bound by receptors for sensing the specific charged species (e.g., DNA,
RNA, viruses, etc.). By functionalizing the nanowire FETs, chemical connections between the surface
of isolation layers coated on nanowires and biomolecules can be made (Figure 1B). Then, the receptors,
which bind the collected species, induce an electric field onto the nanowires and alter the conductivity
of nanowires. As we consider species as an input signal, the receptors play a similar role to the gate
since they convert the input signal to changes in the conductivity of devices. Figure 1B shows a typical
binding process using 3-aminopropoyltriethoxysilane (APTES), which is a type of receptor for DNA,
peptide nucleic acid (PNA), and antibodies [16]. APTES converts silicon–oxygen bonds to a silane
chemistry layer (Si–O–Si–X), where X can be modified further or linked with specific receptors.

 

 
Figure 1. Conceptual overview of field effect transistors (FET) (adopted with permission from [24]).
(A) Schematics illustrating the differences between standard and nanowire field-effect transistors. (B)
An overview of the functionalization process of the nanowire (based on 3-aminopropoyltriethoxysilane
(APTES)). The APTES converts the silicon–oxygen bonds into a silane layer, after which, it becomes
possible to bind this layer with several receptors (adopted with permission from [31]). (C) Illustrates
the operating principles of nanowire sensors. The charged molecules captured by the receptors induce
variations in the conductivity of nanowire (there is either an increase or a decrease in the current that
passes through it). The nanowire sensors fabricated using (D) the bottom-up approach and (E) the
top-down approach.

Figure 1C shows the working principle of the nanowire sensor. Upon the binding of the negatively
charged species in an aqueous solution to the receptor, positive charges are induced on the Si
nanowire FET surface. The generation of positive charges can either be considered as the disappearance
of electrons (negatively charged carriers) or the appearance of holes (positively charged carriers),
therefore changing the conductivity (or current) between the source and the drain. In the n-type
Si nanowire, the conductivity will decrease as the charge carriers in this case are electrons.
On the contrary, in p-type Si nanowires, the current will increase as the charge carriers in p-type
nanowires are holes. A semiconductor parameter analyzer is used for the real-time monitoring of
conductivity from the Si nanowire FETs [32,33]. Unlike the typical FETs on electronic circuit boards,
the nanowire FET is usually in the ON state (i.e., DC currents always pass through). Also, since multiple
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nanowires are usually more sensitive to the accumulation of species and experience lower statistical
noise as a result of averaging, an array of nanowires is commonly used in a single sensing device [34].

Surface charge variation of the isolation layer is another factor of changes in the conductivity
of nanowires. The pH of solvents affects the surface charge of nanowires, resulting in the alteration
of the conductivity of nanowires [14]. At low pH, the surface terminating in –NH2 group, as shown
in Figure 1B, consumes positively charged holes from the nanowire surface and becomes –NH3

+.
At high pH, –SiOH consumes electrons from the nanowire surface and becomes –SiO–. The conductivity
changes of nanowires due to pH is a combined effect of these two mechanisms [14]. The pH is an
important factor to maintain the accuracy of nanowire sensors since measurement data from the same
solutions with different pH will be inconsistent.

Counterion condensation effect also contributes to the conductivity of nanowires. For instance,
if the bound molecules are negatively charged in the solvent, they will be surrounded by positively
charged counterions due to electrostatic interactions. Positive charges from counterions on a certain
length are attracted to negative charges from the target biomolecules. As a result, charges from the
target biomolecules are eliminated [35]. This length is called Debye length (λd). The Debye length
is the measure of a charge carrier’s net electrostatic effect in a solution, which means how far those
electrostatic effects are maintained. Therefore, the Debye length is critical for sensors to be able to
differentiate the signal from target molecules that are in an electrostatic system. Over the Debye length,
the negatively charged molecules become electrically neutral as the effect of negative charges is offset
by positive charges coming from the electrostatic interaction of analytes, contributing to no changes
in the conductivity of the nanowire. Therefore, only the target molecules within the Debye length
contribute to the conductivity change. In addition, the detectability of negatively charged molecules
decreases as the Debye length is shortened [35]. Long-enough Debye lengths can fully detect the
charged molecules with high sensitivity. In the design of nanowire sensors, an optimal Debye length
is a major parameter to be carefully considered, and a long Debye length ensures the counterions
effect small [36]. The Debye length for the nanowire sensors can be approximately calculated as
λD ≈ 0.304I−0.5, where I is the ionic strength of the solvent solution [37,38]. As in the equation,
the Debye length gets increased as the ionic strength gets decreased. Thus, the sensitivity of nanowire
sensor with a less conductive solvent is better than with the more conductive solvent. Significant
increments in the Debye length was obtained by diluting the phosphate buffered saline (PBS) with the
deionized water [39].

2.2. Fabrication Process

There are bottom-up and top-down methods that are utilized for the fabrication of nanowire
sensors. As shown in Figure 1D, the bottom-up methods have been used to grow high-quality nanowires
commonly on Si wafers [40]. Although most nanowires are cylindrical in shape, existing bottom-up
techniques are capable of varying their cross-sectional shape, producing round, square, and triangular
versions [41]. The fabrication process starts with growing Si nanowires using the chemical vapor
deposition (CVD) method [31]. Si nanowires can be grown catalytically in the CVD reaction via the
vapor–liquid–solid (VLS) mechanism [42]. Subsequently, the Si nanowires suspended in ethanol
solution are deposited onto a silicon substrate. A photoresist is then spin-coated onto the substrate
with deposited Si nanowires, and then the metal electrodes are patterned by the lift-off method process.
The bottom-up fabrication ends with passivation and surface modification with receptor binding [31].
The isolation layer on the nanowire surface is easily achieved by exposing it to air or an oxygen
environment. The bottom-up approach has a drawback of the randomly oriented nanowires, leading to the
poor uniformity and low yield rate of nanowire sensors. In order to improve the orientation, additional
alignment steps during fabrication are required, such as Langmuir–Blodgett [43], blown-bubble [44],
microfluidic flow [45], contact printing [46], and electric-field [47,48]. Nevertheless, the standard CMOS
fabrication process is not compatible with those alignment methods, making the mass production of
the aligned nanowire sensors difficult.
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Unlike the bottom-up methods, the top-down methods, based on the microfabrication process
on a silicon-on-insulator (SOI) wafer or a single-crystalline silicon (SCS) wafer, can fabricate
aligned nanowires that are compatible with the standard CMOS technology. As shown Figure 1E,
the fabrication process starts from doping low-density boron or phosphorous on the top Si layer of a
SOI wafer. Subsequently, heavy density doping on the patterned area is conducted to define the source
and drain leads, followed by forming micrometer-sized source and drain electrodes using reactive
ion etching (RIE). Then, electron-beam (E-beam) lithography is used to fabricate nanometer-sized Si
nanowires and the metal contact leads are formed by a thermal evaporation. Finally, the fabrication
process ends with passivation and surface modification, same as the bottom-up method [49,50].
While the top-down methods are highly compatible with the CMOS processes with well-oriented
nanowires, the diameter of nanowires is bigger than nanowires produced via the bottom-up method.
Despite differences in nanowire orientation and materials for drain and source, these devices share the
same architecture (e.g., drain/nanowire/source).

Another silicon nanowire fabrication process using a top-down process based on bulk SCS wafer
is shown in Figure 2. Generally, the fabrication is performed with combined processes of typical
semiconductor manufacturing process, which uses photolithography, silicon dry etching, anisotropic
wet etching, and thermal oxidation [51–53]. In these top-down fabrication methods, the width
of the silicon nanowires is controlled by the thermal wet oxidation time. Its result is organized
silicon nanowires. The schematics of the fabrication processes of (100)- and (111)-oriented SCS wafer
are illustrated in Figure 2A,B respectively. For the (100)-silicon fabrication process, a 1000-Å-thick
silicon dioxide is grown on the boron-doped silicon substrate using a thermal oxidation process.
After photolithographic definition of the space and line, the silicon dioxide at the top layer is etched by
the dielectric etching process. Then, photoresists are removed, and cleaning processes are performed.
Then, the silicon deep RIE etching process is performed to define the rectangular-structured columns,
where the silicon nanowires are located. Subsequently, anisotropic silicon wet etching process,
using tetramethylammonium hydroxide (TMAH) solution, is carried on until the {111}-plane of
the silicon surface is exposed. As shown in the Figure 2A, the hourglass-shaped silicon structures
are fabricated, exposing the etch-stop {111}-surfaces. The arrayed silicon nanowire structures are
fabricated by a thermal oxidation process, in which the upper layers of the hourglass structures are the
silicon nanowires, and are isolated by the thermal oxide between the upper and lower layer. The height
of the nanowire is determined by the photolithographic pattern width, which is an inherent property
of the SCS wafer. The top-down (111)-silicon nanowire fabrication also starts with the thermal oxide
growth process. Then, photolithography and dielectric etching processes are performed to define the
line and space patterns. The primary deep silicon RIE process is performed for defining the height of
the silicon nanowire. For (111)-silicon nanowires, the height and the width of the structures are defined
separately, which can result in various structures, such as wires and ribbons. Then, thermal oxidation
process is performed for passivation of the sidewalls of the whole structures. The plasma-enhanced
anisotropic dielectric dry etching process is performed to expose the bottom surface of the structure,
and secondary deep silicon RIE process is performed to fabricate the sacrificial layer. Subsequently,
an anisotropic silicon wet etching process by TMAH solution is followed to reveal the {111}-planes.
Finally, the thermal oxidation process is performed to fabricate the arrayed rectangular nanowire
structures, after the passivated silicon dioxide layers’ removal.

One of critical components of the nanowire sensors is the fluid exchange system. The fluid
exchange system delivers analytes or fluids to, or close to, the surface of the nanowire sensor.
Polydimethylsiloxane (PDMS)-based channel devices are widely used for feeding analytes to nanowire
sensors. In biosensing applications, PDMS is also advantageous due to its high biocompatibility [54,55].
However, the PDMS-based microfluidic fluid exchange system has a few limitations. Since fluid flow
in microscale channels is characterized by laminar flow, particles inside the microfluidic channels
are difficult to approach the surface of the nanowire sensors. In addition, there is the possibility of
sensitivity reduction of the sensor as PDMS can absorb biomolecules [54]. In order to overcome these



Micromachines 2018, 9, 679 6 of 19

limitations of PDMS microfluidic channels, an acrylic chamber as a fluid exchange system has been
developed [56].

 

 
Figure 2. Top-down fabrication process and results using single-crystalline silicon (SCS) wafer.
(A) (100)-silicon (adopted with permission from [51,52]). (B) (111)-silicon (adopted with permission
from [53]).

3. Detection of Various Biological Agents

3.1. Proteins

Several new biomarkers have been discovered through research in proteomics and genomics
that could potentially be used for diagnosing diseases [1]. In order to diagnose complicated diseases
like cancer, that are characterized by considerable heterogeneity, single marker tests do not yield
acceptable diagnoses [3]. It is important, therefore, to consider multiple biomarkers [6]. This is
especially important for the treatment of cancer, where the detection of multiple biomarkers could
determine the stage of the disease [6]. The first application of p-type silicon nanowire sensors
was to detect proteins in a solution, electrically [16]. Since then, various nanowire and nanowire
array-based platforms have been developed for simultaneously detecting multiple disease marker
proteins [28,33,57,58].
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Many contemporary studies have converged on developing platforms that can detect these disease
markers real-time [59], as well as directly from whole blood [60]. It is also possible now to detect a
wider variety of biomarkers like cardiac biomarkers [56]. Recent work has also demonstrated the
application of nanostructured sensing platforms in detecting many proteins, label free, making it
possible to diagnose pregnancy and diseases like diabetes, Parkinson’s disease, atherothrombosis,
and autoinflammatory diseases [61]. Furthermore, recently, nanowire-on-a-chip platforms have
been developed for the comprehensive detection of biomolecules, wherein nanowires carry out
preconcentration, separation, filtering, and detection, enabling rapid and practical clinical use [62].

Janissen et al. presented comprehensive work that characterizes the effects of surface
functionalization and covalent immobilization for protein detection from pathogens. In the study,
surface functionalization with APTES, ethanolamine, was compared to the surface passivation via
poly(ethylene glycol) (PEG) (Figure 3A). It was found that, compared to APTES, applying ethanolamine
significantly promoted the bioreceptor density and coating homogeneity (Figure 3B,C). In addition,
applying PEG led to many benefits, including (1) higher ligand binding specificity due to the
reduction in non-specific adhesion; (2) increased receptor/ligand binding based on spatial separation;
(3) additional spatial mobility for immobilized antibody, which further improves the antigen binding;
and (4) minimized Debye length for sensing. They further applied the optimized functionalization
strategy to detect a Chagas disease protein biomarker, IBMP8-1. The limit of detection (LOD) and
minimal concentration detection are 5.7 fM and 32 fM, respectively, in serum (Figure 3D). The linear
sensitivity region ranges from 90 to 500 fM. This article incorporates many recent strategies together
and provides an improved methodology to fabricate robust, reliable, and sensitive protein biosensors
using nanowires in a multiplexing format.

 

 
Figure 3. Generalized strategy for ultrasensitive detection of protein and DNA using nanowires
(adopted with permission from [62]). (A) Schematic representing the functionalization process to allow
high sensitivity. (1) Coupling ethanolamine to the surface; (2) attaching PEG cross-linker; (3) binding
of biomolecules by peptide-binding. (B) False-colored image of fluorophore antibodies bound to
the ethanolamine and PEGylated surfaces. No statistical difference was found on the amount of
fluorescence. (C) PEGylated surface has higher relative fluorescence. The schematic illustrated the
spacing introduced by PEG significantly improved the binding efficiency of antibodies. (D,E) Detection
of protein antigen (D) and ssDNA (E) using the developed devices. The LOD is 6 fM and 1 fM for
protein and ssDNA, respectively.

3.2. DNA and RNA

It possible to detect specific sequences of DNA and RNA with nanowire sensors [63]. The surfaces
of silicon nanowires consist of single-stranded sequences of PNAs that are placed to act as receptors
for DNA [64]. The capability of silicon nanowires to detect DNA at the 10 femtomolar level has been
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demonstrated [65]. This is significantly better for DNA detection as compared to the quartz-crystal
microbalance [66], surface plasmon resonance (SPR) [67] and nanoparticle-enhanced SPR [68].

The strategy introduced by Janissen et al. can also be applied to further improve the specificity and
sensitivity of nanowire sensors [62]. Preliminary data revealed that the LOD of ssDNA detection of around
1 femtomolar level is achievable [62] (Figure 3E). In addition to the detection of individual strands
of DNA, nanowires can also be utilized to detect the bonding between protein and DNA [38,69,70].

Similarly, nanowire devices can become RNA sensors by functionalizing PNA or DNA. For example,
Lu et al. presented a way to fabricate a Si nanowire biosensor via anisotropic wet etching with self-limitation
of Si<111> using tetramethylammonium hydroxide (TMAH) [71]. The self-limitation dramatically
improved the uniformity of devices and lowered the manufacturing cost. This low-cost biosensor
demonstrated a rapid detection of miR-21 and miR-205, two cancer-associated miRNAs, with the
low limit of detection (LOD) down to 1 zeptomole. It also demonstrated great selectivity by clearly
identifying the difference between target miRNA and a single-nucleotide mismatched sequence, as well
as performing proper detection for spiked serum samples. In addition, nanowire biosensors have also
been applied to detect virus gene in a label-free fashion. Huang et al. reported a strategy to amplify
the detected signal via exonuclease III-assisted target recycling and achieved a LOD of 3.6 pM [72].

The capability of monitoring various cancer biomarkers in the DNA level, such as telomerase
and carcinoembryonic antigen, opens a door for the use of nanowire-based DNA sensors for cancer
diagnosis and treatment [33,73]. Recently, Yasui et al. unveiled massive number of cancer-related
urinary microRNA candidates (~1000 types) with the help of multiplexed nanowires, covering not
only the urologic malignancies (i.e., bladder and prostate) but also for other cancers (lung, pancreas,
and liver). This provides a foundation for long-term work aiming to setup urine-based checkups
for cancer [74]. However, in addition to this study, to date, the level of multiplexing is still below
the demand for clinical needs. Simultaneous detection of multiple types of analytes from the same
specimen holds the key to providing valuable data for downstream analysis and diagnostics [75].
The demand for high-throughput multiplexing has become even more critical when combined with
machine learning-based diagnostics as it requires a large amount of data for proper training and
accurate detection [75].

3.3. Viruses

The effective detection of viruses is one of the most important tasks of nanowire sensors for
keeping our societies healthy and safe, since most viruses cause serious human diseases and can be
used as biological weapons [76,77]. In recent years, Si nanowire sensors have been used to detect
many dangerous viruses, including Dengue [78], influenza A H3N2 [79], H1N1 [80], and HIV [81].
The nanowire sensor surface is functionalized with antibodies that specifically bind to the target viruses,
affecting the conductivity of the nanowire. For instance, Shen et al. developed a Si nanowire-based
biosensor that could detect as many as 29 flu viruses/µL from exhaled breath condensate (EBC)
samples [79]. Recently, Ibarlucea et al. introduced Si nanowires to detect Ebola VP40 matrix protein [82].
The limit of detection (LOD) was seen to be around 6.25 nM after 30 min incubation, outperforming
the ELISA technique by six orders. With advantages including rapidness, accuracy, and portability,
nanowire biosensors will play an increasingly important role in the point-of-care diagnostics of
epidemic diseases.

4. Recent Advances in Nanowire Biosensors

This section provides a brief introduction to the important technologies that have emerged
in recent years to solve the intrinsic problems of traditional nanowire-based biosensors, including
in vivo sensing, integration with low-cost portable devices, and new strategies to process measured signals.
With the help of these technologies, nanowire-based biosensors have become more practical and
suitable for various biomedical applications.
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4.1. In Vivo Sensing

The traditional applications of nanowires are mostly in vitro. However, recently, more work has
been conducted in investigating sensors that can provide a continuous measurement of biosignals
in vivo. Pilot studies by the Lieber group have demonstrated the possibility of injecting the nanowire
sensors into human body for long-term recording of bioelectric signals, such as neural activities in
the brain [83,84]. The in vivo environment presents a lot of challenges to the properties of nanowires.
On the one hand, the in vivo microenvironment contains many ions that can dissolve the passivation
layer (silicon oxidation) of silicon nanowires which naturally exist in air [85,86]. Early studies have
reported the limited stability of nanowires upon being used with cells [87,88]. Zhou et al. recently
introduced a coating method to enhance the long-term stability of nanowires [89]. Upon studying the
protection of the 10 nm-thick Al2O3 shell, it was observed that the diameter of the nanowire remained
almost the same for at least 100 days in 1× PBS at 37 ◦C, respectively, while the nanowire without the
shell disappeared (Figure 4A). This coating strategy worked not only for Si nanowire, but also for Si–Ge
complex and InAs complex. However, the increment of shell thickness downregulated the sensitivity
of nanowire [90]. Hence, a trade-off must be made between performance and long-term stability.
Regardless, this strategy can significantly improve the long-term stability of the nanowires in complex
environments, opening up the further investigation of using nanowire as a platform for in vivo
injectable electronics [91]. On the other hand, cells can physically sense the nanowires in vivo,
leading to certain concerns of nanowires’ cytotoxicity and their effects on cell behavior. So far, the cell
response to nanomaterials has not yet been systematically examined. Some preliminary studies
indicate that nanowires do not significantly affect cell viability and proliferation [92]. On the contrary,
more studies suggest that 1D nanostructures have a certain level of impact on cellular behavior,
including cell viability, elongation, and differentiation [93]. For instance, Chen et al. reported a
study on the toxicity of silicon carbide (SiC) nanowires, as shown in Figure 4B, and nanospheres on
human mesenchymal stem cells (hMSCs) and cancer cells [94]. The impact of toxicity on metabolism,
viability, proliferation, migration, oxidative stress, and differentiation potency were comprehensively
examined. Interestingly, it was found that SiC nanowires are toxic to hMSCs, but not to breast
cancer cell line MCF-7. The presence SiC nanowires, 200 nm in diameter, were seen to significantly
reduce the adhesion and proliferation of hMSCs (Figure 4C) and to hamper their differentiation
potency toward osteoblasts and adipocytes (Figure 4D). The toxicity is applied through the stress from
altered morphology by nanowires, as proven by the significant changes of cytokine genes. Similarly,
Alaraby et al. found that the Ni nanowire can cause DNA damage, gene alteration, and oxidative
stress to cells, although the authors did not find a direct correlation between these negative effects to
cytotoxicity and mutagenesis [95]. In summary, existing results suggest that the interaction between
nanowires and cells is very sophisticated. It is, therefore, important for more research to be carried
out in order to systematically understand and prevent the potential toxicity of nanowires during
in vivo applications.



Micromachines 2018, 9, 679 10 of 19

 

 
Figure 4. Design nanowires for in vivo sensing. (A) Improving long-term stability by Al2O3 shell coating
(adopted with permission from [89]). (B–D) Cytotoxic effects of SiC nanowires to cell behavior
and differentiation (adopted with permission from [89]). (B) SEM pictures of SiC nanowires.
(C) Quantification of adhesion and proliferation of hMSCs on nanowires and nanoparticles.
(D) Quantification of differentiation potency of hMSCs on SiC nanowires. Alizarin Red S and Oil Red O
stain was utilized to quantify the differentiation toward osteogenic and adipogenic lineage, respectively.

4.2. Integration with Paper-Based Devices

In addition to the traditional channel-based microfluidic devices, nanowires have recently been
integrated with paper-based analytical devices (PADs) in order to facilitate biomarker detection in a
portable fashion. The main advantages of PADs include low material and fabrication costs, as well
as good biodegradability, as compared to silicon-based chips [96]. Li et al. reported a pioneering
study using zinc oxide (ZnO) nanowires in PADs for glucose detection [97]. They printed the whole
PADs using a conductive ink (i.e., carbon ink) and used it as a substrate to grow ZnO nanowires
from deposited ZnO nanoparticle (Figure 5A). The ZnO nanowires were grown in a low-temperature
(~70 ◦C) hydrothermal manner. The hydrothermal method is compatible with mass-production setups
and exhibits good control over the size of ZnO nanowires (300 ± 50 nm, Figure 5B). This may facilitate
several downstream applications. The authors then demonstrated the application of this sensor by
detecting glucose level. The sensor was found to have a LOD of 94.7 µM and a linear range of up
to 15 mM (Figure 5C,D). Although this is not comparable to some traditional sensors that can go
all the way down to a LOD of 0.5 µM, this sensor holds great potential for applications in remote
biosensing. However, there are many critical issues that need to be addressed before implementation.
Firstly, the detection of many proteins relies on the presence of enzymes. Preserving enzymes at room
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temperature for a long time is a key challenge needed to be addressed for the successful implementation
of PADs with nanowires. Secondly, to have a smaller LOD, the high surface roughness that significantly
hampers detection at low concentrations in PADs must be addressed (Figure 5B). Nanofibrillated
cellulose (NFC) paper [98,99] has recently come up as a solution to provide nanometer level surface
roughness that could potentially improve the LOD of ZnO PADs. Lastly, to fulfill the demand for
remote sensing, it is important to make these devices wireless and power-free. This demand can be
met by the self-powering technology discussed in the following section.

 

 
Figure 5. Integrate nanowires with disposable devices (adopted with permission from [97]). (A) Schematic
and photograph of paper-based analytical devices (PADs) with ZnO nanowires. (B) Characterization
of ZnO nanowires. From left to right: (1) SEM image of rough carbon surface before the growth
of nanowire; (2) SEM image of nanostructured carbon surface with deposited ZnO nanowires;
(3) TEM image for quantification of nanowires. (C) Calibration of sensor (output current vs. glucose
concentration) in buffer. (D) Quantification of detected limits and linear range of the PADs in serum.

4.3. Self-Powering

The self-powering strategies can be divided on to two categories, those using triboelectric
nanogenerators and others using biofuels. Since its discovery in 2006, the piezoelectric effect of
ZnO nanowires has been widely applied to generate power for various devices [100]. In principle,
by applying a mechanical force to a well-aligned, serially connected ZnO nanowire array, a 1.26-volt
output voltage has been achieved, which is enough to power the nanowire-based pH sensor [101] and
the wireless data transmission system [102]. However, the mechanical energy generated by significant
physical motion is mostly limited to lung, muscle, and cardiac tissues in vivo [103,104]. Hence,
biofuels are a more popular power source in vivo. Researchers have also examined glucose-mediated
strategies like glucose/O2 [105–107] and glucose/air for in vivo powering [108]. Additionally, Hansen et al.
have demonstrated the potential of using a combination of piezoelectric effects and biofuels to build a
self-powered system in vivo [109]. On the one hand, poly(vinylidene fluoride) nanofibers were utilized
to harvest mechanical energy generated by the lung and heart (i.e., the breathing motion of the lung
and the beating motion of the heart) while, on the other hand, biochemical energy was collected by a
flexible enzymatic biofuel cell from biofluids. The synergetic effects of these two strategies lead to a
higher output power and, potentially, a longer operating time.

4.4. Signal Processing and Data Analysis

Disease diagnostics usually involve the detection and analysis of multiple markers. Although there
are many multiplexing biosensors being proposed, the majority of the research is still in the
proof-of-concept stage, where the characterization of devices using spiked samples remains the
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gold standard. To fully claim the advantages of multivariable and multiplexing biosensors for
practical diagnostics, signal processing techniques must be introduced to extract useful diagnostic
information from the detected values. The idea of using signal processing for more meaningful data
from nanowire sensor array originated from work in gas sensing [110]. For example, Cho et al. used
a nanowire sensor array that consists of platinum, copper, indium, and nickel to detect vapors from
explosive precursors including acetone, nitrobenzene, nitrotoluene, and octane [111]. They applied
decision tree learning to classify the signals from the sensor array to predict the concentration of
explosive precursors and access the risk of explosion with an accuracy beyond 90% and an error rate of
less than 1%. In 2016, Shehada et al. brought this concept to diagnostic applications by using an array
of Si nanowires to detect the disease breathprints of cancers [112] (Figure 6A). In this study, they first
fabricated functionalized the Si nanowires by a single-step or a two-step modification. The array
was then characterized by a simulated breath from a mixture of eleven disease markers linked with
gastric cancer (GC), lung cancer (LC), asthma, and chronic obstructive pulmonary disease (AC).
Upon successful characterization, an artificial neural network (ANN) was built, where the sensing
features are the inputs of the model, and the sample classification label is the output. The ANN
was then trained by a dataset with sensing features and a known disease state under examination.
The trained ANN, together with the array of nanowire biosensors, was applied to analyze the real
patient breath (n = 374). It was found that the array with ANN could distinguish almost all binary
comparison of disease with an accuracy higher than 80%. However, the potential of machine learning
is not fully realized in this study as the sample size is still limited, which results in poor accuracy rate
(i.e., ~60%) for specific diseases with limited samples. Following the study, a clinical big dataset of the
exhaled molecules for 17 diseases was generated from 1404 subjects measured by nanobiosensors [113]
(Figure 6B). This study revealed 13 new volatile organic compounds that were associated with
certain diseases. The success of these clinical studies has demonstrated a great model to translate
the potential of nanobiosensors from proof-of-concept experiments to practical clinical diagnostics.
In addition, with advances in unsupervised deep learning [114], more information could be extracted
from the arrayed data in an automated but accurate fashion.

 

 
Figure 6. Signal processing strategy for multivariable nanowire biosensors. (A) Disease diagnostics
based on machine learning: multivariable nanowire sensors were utilized to provide input for artificial
neural networks (adopted with permission from [112]). (B) Big data strategy to correlate exhaled
molecules detection by nanowire sensors with specific disease (adopted with permission from [113]).
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5. Summary and Perspective

With specific receptors, nanowire sensors have shown great potential to become a practical
detection platform in biological and medical applications. The presented devices have several
advantages, such as real-time transduction to electrical signal with high sensitivity and feasibility of
label-free detection, as summarized in Table 1. In spite of these attractive features, some improvements
are still required for commercialization. Even though its sensitivity is impressively high compared
with other methods, its analytical signal intensity is still too low to be contaminated by high
background noise, especially seen with in vivo environments. Improvements in receptor binding
methods could resolve this higher sensitivity issue as well as more simple fabrication processing issues.
In addition, a higher yield ratio of the current top-down fabrication methods enables a lower cost
of commercialized products. Nevertheless, the success of a nanowire sensor will depend on how
advanced it is compared with the current gold standards, such as PCR and ELISA, in terms of simplicity,
sensitivity, specificity, and reliability. In particular, nanowire is expected to result in the development
of promising wearable biosensors [115–119].

Table 1. Summary of the salient features and the target application of nanowire-based biosensors.

Features Application Reference

Top-down fabrication process using SCS wafer Photodiode and FET for the retinal
prosthetic systems [52,53]

High sensitivity using PEG cross-linker Detection of protein and DNA [62]
Long-term stability using Al2O3 shell coating In vivo sensing [89]
Integrating nanowires with disposable device Glucose detection [97]
Multivariable detection using machine learning Multiple disease diagnosis [112,113]
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