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This paper presents novel Neural Nanowire Field Effect Transistors (υ-NWFETs) based

hardware-implementable neural network (HNN) approach for tactile data processing

in electronic skin (e-skin). The viability of Si nanowires (NWs) as the active material

for υ-NWFETs in HNN is explored through modeling and demonstrated by fabricating

the first device. Using υ-NWFETs to realize HNNs is an interesting approach as by

printing NWs on large area flexible substrates it will be possible to develop a bendable

tactile skin with distributed neural elements (for local data processing, as in biological

skin) in the backplane. The modeling and simulation of υ-NWFET based devices show

that the overlapping areas between individual gates and the floating gate determines

the initial synaptic weights of the neural network - thus validating the working of

υ-NWFETs as the building block for HNN. The simulation has been further extended to

υ-NWFET based circuits and neuronal computation system and this has been validated

by interfacing it with a transparent tactile skin prototype (comprising of 6 × 6 ITO

based capacitive tactile sensors array) integrated on the palm of a 3D printed robotic

hand. In this regard, a tactile data coding system is presented to detect touch gesture

and the direction of touch. Following these simulation studies, a four-gated υ-NWFET

is fabricated with Pt/Ti metal stack for gates, source and drain, Ni floating gate, and

Al2O3 high-k dielectric layer. The current-voltage characteristics of fabricated υ-NWFET

devices confirm the dependence of turn-off voltages on the (synaptic) weight of each

gate. The presented υ-NWFET approach is promising for a neuro-robotic tactile sensory

system with distributed computing as well as numerous futuristic applications such as

prosthetics, and electroceuticals.

Keywords: silicon nanowire, tactile skin, sparse coding, Nanowire Field Effect Transistor, neuro-robotics

INTRODUCTION: NEURO-MIMICKING TACTILE SENSING

Humans and other biological organisms use tactile feedback to interact with the environment
(Dahiya et al., 2010). Inspired by nature, numerous research groups are harnessing the
technological advances to develop artificial e-skin with features mimicking human skin (Boland,
2010; Tee et al., 2012; Bauer, 2013; Hammock et al., 2013; Wang et al., 2013; Yogeswaran et al.,
2015; Núñez et al., 2017). These works find application in prosthetics, potentially to bestow lost
sensory feelings to amputees (Raspopovic et al., 2014) and robotics to provide the touch sensory
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capability allowing them to interact physically and safely with
real-world objects (Dahiya et al., 2013b). Thus far, the major
focus of e-skin research has been on the development of various
types of sensors (e.g., contact pressure, temperature, humidity,
etc.) and their integration on large-area and flexible/conformable
substrates (Dahiya and Valle, 2013; Dahiya et al., 2013a, 2015;
Hammock et al., 2013; Lee et al., 2015; Yogeswaran et al., 2015;
Polishchuk et al., 2016; Núñez et al., 2017). However, processing
of a large amount of data from e-skin has remained a challenge,
especially in the case of large area skin where number of touch
sensors increase rapidly. As an example, to develop human
inspired e-skin for robotic and prosthetic limbs, an estimated
45 K mechanoreceptors (MRs) will be needed in about 1.5 m2

area, as shown in Figure 1 (details in Supplementary Section 1;
Johansson and Vallbo, 1979; Boniol et al., 2008; Mancini et al.,
2014; Goldstein and Brockmole, 2016). This number of sensors
will be much higher if we consider e-skin to have equivalents
of thermo-receptors and nociceptors (Goldstein and Brockmole,
2016). The large number of receptors in the skin indicates
that the tactile data will multiply rapidly, and therefore one
can understand the challenge associated with its compiling and
processing. With the recent shift in the focus of tactile skin
research in robotics from hands to whole-body tactile feedback,
a need has arisen for new techniques to manage the tactile data.
Currently, limited solutions are available to deal with large data
generated in tactile skin, let alone for the resulting touch based
perception, which is another dimension of tactile data handling.
For example, in the case of prosthesis, it is important not only to
collect the tactile data for critical feedback, but also to decode the
user’s intentions in real time (Raspopovic et al., 2014). Perhaps
a neuron-like inference to handle the tactile data early on could
help as indicated by a significant downstream reduction in the
numbers of neurons transmitting stimuli in the early sensory
pathways in humans (Barlow, 1981; Buck, 1996; Barranca et al.,
2014). Research suggests that distributed computing takes place
in the biological tactile sensory system (Barlow, 1981; Dahiya
et al., 2010, 2015). For example, the ensemble of tactile data from
peripheral neurons is considered to indicate both the contact
force and its direction (Johansson and Birznieks, 2004; Johansson
and Flanagan, 2009). Such distributed local processing of tactile
data is advantageous in practical terms as sending reduced
data to higher-perceptual level releases some pressure in terms
of complex and bulky sensory hardware. Thus, the hardware
implemented neuromorphic tactile data processing along with
neural networks like algorithms will be helpful. Currently, the
neuromorphic hardware is primarily targeted for vision and
hearing related applications. Since, vision and hearing are not
as distributed as tactile sensing, the neuromorphic hardware
developed for them is not optimal for tactile sensing and
dedicated solutions are needed. Few works on tactile sensing
have used software based neural networks approaches for tasks
such as object recognition via texture or materials (Decherchi
et al., 2011; Kaboli et al., 2015). However, due to the lack of
large-scale parallel processing, the software-programmed neural
networks are slower and less energy-efficient (Ananthanarayanan
et al., 2009; Misra and Saha, 2010) and hence the HNN
implementations will be interesting.

The hardware neuromorphic architecture implementations
reported in literature thus far are based on devices such as
memistor (Widrow and Hoff, 1960), spin-logic (Sengupta et al.,
2015; Grollier et al., 2016), memristor (Jo et al., 2010), neuron
MOSFET (Ishii et al., 1992; Kotani et al., 1998), analog circuit
based neurons (Mead and Ismail, 2012), field programmable gate
array (FPGA) (Misra and Saha, 2010) and software-programmed
neural networks (Cotton and Wilamowski, 2010). So far, these
technologies have not been used with tactile skin. But, they
could offer alternative to the υ-NWFET approach presented
here—even if υ-NWFET has many inherent advantages such
as possibility of printing devices on large area as discussed
in the next section. The above alternative technologies have
their own advantages and challenges in terms of complexity,
scalability, speed, reliability, repeatability, cost, non-bendability,
power consumption etc., which limit their use in the emulation
of biological systems. For example, the memistor, a 3-terminal
electrochemical cell element achieved limited success because
of scalability issues (Widrow and Hoff, 1960). Likewise, the
spintronic neurons are energy efficient (Grollier et al., 2016) but
it is challenging to realize practical large-scale neuromorphic
architectures and read-out. Recently, two-terminal memristive
devices have gained significant attention as the state of their
internal resistance could indicate the history of the voltage across
and/or current through the device (Yang et al., 2013). The
memristive approach is promising in terms of low-energy, high-
density memories and neuromorphic computing (Courtland,
2016), but as memristors are two terminal devices it may not
be possible to simultaneously execute the signal transmission
(computation or reading phase) and learning functions (writing
phase). Metal NWs finds application mainly as interconnects
and junction elements in crossbar memristors. Use of inorganic
semiconductor NWs for HNN is an interesting direction.

Addressing the need for tactile HNN in e-skin, this paper
presents a novel Neural Nanowire Field Effect Transistor (υ-
NWFET) structure as the functional building block. The focus
of the paper is on modeling, simulation and first validation
with fabricated υ-NWFET structure prior to practical realization
of a large area e-skin. This paper is organized as follows:
The υ-NWFET device structure, working principle related to
a biological neuron, and specific advantages of using NWs for
HNN are presented in the Section υ-NWFET Based Neuro-
Mimicking e-skin. Various modeling and simulation tools,
and device fabrication methodology are presented in Section
Methods. The results of modeling, simulation and fabrication
are presented in Section Results along with experiment of e-
skin integrated on a 3D printed robotic/prosthetic hand. Section
Discussion discusses overall implementation and study of impact
of fabrication related variability over HNN performance. The
results are summarized in the concluding Section Conclusions.

υ-NWFET BASED NEURO-MIMICKING
e-SKIN

A simplified representation of biological and artificial neurons
are shown in Figures 2A,B, respectively (McCulloch and Pitts,
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FIGURE 1 | The distribution of mechanoreceptors in various parts of human body. (Inset: 100% glabrous area of hand, which corresponds to 1.2% of the total skin

area). The number of mechanoreceptors indicate the typical number of sensors required in various parts to achieve a full body touch/pressure sensing to mimic

human body.
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FIGURE 2 | E-skin neural element and proposed tactile data processing scheme: (A) illustration of a biological neuron, (B) block diagram of an artificial neuron

corresponding to the implemented weights. Complementary υ-NWFETs followed by an inverter are needed to realize this function, (C) symbolic representation of

υ-NWFET, and (D) illustration of υ-NWFET based tactile e-skin covering an artificial hand. The simulated tactile signal is shown as stimuli to the input layer of

υ-NWFET based network for coding of tactile information.

1943; Goldstein and Brockmole, 2016). The υ-NWFET devices
(symbol in Figure 2C and structure in Figure 5A) imitate the
working of biological neuron in a simplified manner. The
structure of υ-NWFET (Figure 5A) is a variant of a neuron
MOSFET with NWs providing the functional channel region
(Ishii et al., 1992; Shibata andOhmi, 1992; Taube et al., 2016). The
main floating gate, modulating the channel current is capacitively
coupled to several gates. The overlap width of the individual gates
over the floating gate determines the initial synaptic weight of
the neural input on which further schemes of plasticity operates.
This imitates the synaptic summation of weighted inputs in
the cell body (soma) of the biological neuron or the artificial
neuron. The activation function is performed at circuit level as
discussed later in Section Circuit Modeling. It may be noted that
the biological neural systems also have the plasticity or synaptic
modulation, which reflects their ability to strengthen or weaken
the synaptic weights over time. This modification of weights
results in various forms of memory [namely, Sensory Memory,

Short Term Memory (STM) and Long Term Memory (LTM),
(Atkinson and Shiffrin, 1968)] at different hierarchical levels of
the neural network. The sensory memory lasts for fraction of
a second and is associated with local distributed computation
involved in the tactile, smell or vision sensory system. Related
to tactile perception, sensory memory plays a role in the local
distributed computation such as force direction estimation, local
curvature estimation, downstream reductions. Sensory memory
on further hierarchical levels leads to STM which typically lasts
for few seconds to a maximum of 30 s. These STMs gradually
get transformed to LTMs at higher perceptual levels of neural
network which can last up to lifetime. The υ-NWFETs based
circuits presented here could exhibit similar behavior as discussed
later in Section Circuit Modeling.

The working of υ-NWFET can be explained with modulation
of the source-drain output curent by the voltage mode weighted
summation of all input voltages to individual gates (VGwi

).
Voltage-mode summation through an insulating dielectric has
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significant advantage over current-mode summation as the
standby power dissipation can ideally be avoided. The voltage in
the floating gate (VFG) is given by:

VFG =

∑3
i=0 CwiVGwi

CFG +
∑3

i=0 Cwi

+ VOffset (1)

WhereCwi corresponds to the capacitance between the individual
gate and the floating gate and determines the weighing factor
wi. VGwi

corresponds to the voltage at each gate, VOffset arises
from any non-ideal charges such as fixed-oxide or interface trap
charges (Shashank et al., 2011; Robinson et al., 2013).

The schematic illustration of proposed biomimetic tactile
sensory neuro-system is given in Figure 2D. It consists
of a prosthetic hand covered with a tactile e-skin; the
simulated/measured tactile signal are read out by the receptive
sensors to the input sensory layer of the υ-NWFET based
neural network for sparse coding of tactile information. In
bio-mimicking hardware, the sparse-coded output should
comprise of encoded information such as pressure/force and
temperature spatial and time distribution, force direction,
local curvature, vibration, slip, humidity, comfort feeling,
proprioception, reflex signals, pain, gestures. As a demonstration,
in this paper, sparse coding of gesture direction has been
presented based on υ-NWFET array architecture. Modeling
was carried out to understand whether NW could be effective
as a channel material for a neuron MOSFET as compared
to the implementation with bulk material (Shibata and
Ohmi, 1992). A combination of p-and n-channel υ-NWFET
cascaded with a CMOS inverter has been demonstrated to
represent a neuronal element. With multiple synaptic inputs
and an output, the proposed structure will contribute toward
building a computational architecture inspired by biological
systems. An integrated hardware-realized neuromorphic
tactile system could mimic or simulate biological activity
and lead to unidirectional or bidirectional bio-electronic
interfaces.

METHODS

The viability of Si-NWs as an active material for HNN has
been investigated through modeling and simulation, followed
by the fabrication of first υ-NWFET device and tactile e-
skin interface. The work flow of methodology used in this
paper is summarized in Figure 3 and described below in
detail.

Modeling and Simulation
The structure of proposed υ-NWFET device is shown in
Figure 4. Themodeling and simulation of the proposed approach
was carried out at device, circuit and systems levels as shown in
Figure 3A. The software tools used for this purpose (also shown
in Figure 3A) include Silvaco ATLASTM for device modeling,
National Instruments (NI) MultisimTM for circuit modeling
and Matlab and SimBrain for training and testing (offline and
real-time) of the system model of NN. The implementation
of υ-NWFET at device and circuit levels are illustrated in

Figures 4A,B (top left inset) respectively. As shown in Figure 4A,
the active channel region of the υ-NWFET consists of a p-
type Si-NW with width, height and length (w × h × l) of 100,
100 nm and 15µm, respectively. The channel region has p-
type doping concentration of 1014 cm−3 and n-type source/drain
doping concentration of 1020 cm−3. Ni was used for floating
gate, top gate and source/drain contacts in this simulation.
Of the total 15µm length of the NW, the channel length
corresponds to 10µm. The simulated υ-NWFET comprises
of five gates as input. The cross section of the simulated
structure at the drain/source, gate and floating gate area are
represented in Figures 4a1–a3, respectively. A 20.5 nm thick
high-K dielectric such as HfO2 (or Al2O3), which corresponds
to an effective oxide thickness (EOT) of 4 nm, was used
between the input gates and floating gate and between the
floating gate and the channel. The gates cover the NWs from
three sides forming a tri-gated configuration. The individual
gates’ span is 1µm with 1µm separation gap between them.
The υ-NWFET device simulation was carried out in ATLAS-
3D to solve the fundamental semiconductor physics equations
in three dimension. Further, the concentration dependent and
the field dependent mobility models, and Shockley-Read-Hall
(SRH) recombination model were defined to be solved by the
solver. The default material parameters of Si were used in the
solver (details given in Supplementary Section 2) while material
parameters relevant to the simulation were given as input for user
defined materials such as HfO2 (or Al2O3) and Ni. The dielectric
permittivity for HfO2 and work function for Ni used in this
work are 20 and 5.01 eV respectively. Fixed oxide charge density
of 1011 cm−2 was defined between semiconductor/dielectric
interface. Newton method was used to solve all the equations
related to device simulation. All circuit simulations were carried
out in MultisimTM with υ-NWFET device model implemented
as a modified level-3 BSIM NW MOSFET model. This model
is similar to the one used by Lee et al. (2009), except that
the Schottky contact in source and drain were not considered
as we have used heavily-doped source/drain junctions in this
work. The parameters such as effective oxide thickness of high-
K dielectric, electron and hole mobility, effective width and
length etc., which were used in the device simulation, were
also used in the circuit simulation (Refer to Supplementary
Section 2).

Fabrication and Characterization of
υ-NWFET Device
The fabrication steps carried out for realizing the υ-NWFET are
shown in Figure 5. The device was realized on a Silicon-On-
Insulator (SOI) wafer using standard top-down fabrication steps.
The SOI wafer with the active layer thickness of 100 nm over
buried oxide (BOX) of thickness 3µm has been used as a starting
material (Figure 5A). The supporting bulk Si had a thickness
of ∼626µm. The active thin layer is p-type doped with boron
has a resistivity of 14–22 �-cm. Here, electron beam lithography
(EBL) has been used to define the pattern, with a double layer
of PMMA2010 4% and PMMA2041 4% as the e-beam resist
(Figure 5B). After EBL exposure (Figure 5C) and development,
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FIGURE 3 | The work flow of the research presented in this paper. (A) Three levels of modeling. (B) e-Skin. (C) Device fabrication.

FIGURE 4 | Modeling of υ-NWFET device. (A) 3D Structure of a simulated floating gate υ-NWFET. (a1–a3) Cross-sectional view of the υ-NWFET at drain/source

region, floating gate and gate region. (B) Equivalent circuit model of a υ-NWFET.

NiCr metal film of thickness 50 nm was deposited using an
electron beam evaporation technique (Figure 5D), followed by
a standard lift off process (Figure 5E).

The resulting NiCr nanoline (200 nm wide) acted as the
hard mask during dry etching to get Si NWs. During dry
etching process, a mixture of semiconductor grade SiCl4 and
Ar gas was introduced in Reactive Ion Etching (RIE) system.
The etching process used an optimized recipe to obtain a tilted
slope of etch with nearly 45◦ angle. A mixture of 7.5 sccm
SiCl4 and 15 sccm Ar was introduced in the etching process.
This resulted in a trapezoidal shape which led to conformable
coverage during subsequent processes. The hard mask was then
removed by using NiCr etchant. A high-k dielectric layer (Al2O3)
of thickness 50 nm was deposited conformably over the Si-NWs
(Figure 5G) using atomic layer deposition (ALD) to insulate the

forth-deposited Ni floating gate later in step shown in Figure 5I.
This was followed by source drain doping and actuation.
The source and drain were doped into targeted p+ doping
concentration of∼1020/cm3. Since the starting substrate is p-type
the above step resulted in a depletionmode υ-NWFET. Although
this contrasts with the enhancement mode FET explained in the
simulation section, it still serves the purpose when it comes to
demonstrating the working of the υ-NWFET. The morphology
of Si-NWwas characterized by using AFMbefore and after Al2O3

deposition (Figure 5G) and doping (Figure 5H). Thereafter, a
30-nm thick Ni film was deposited over S1818 photoresist on
an Al2O3 layer. This was followed by lift-off to obtain a floating
gate for the neural FET (Figure 5I). The floating gate was
encapsulated with another 30-nm thick Al2O3 layer deposited on
top by ALD (Figure 5J). This was followed by the definition of
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FIGURE 5 | Schematic illustration of fabrication steps for υ-NWFET, using a SOI wafer as substrate (A), and comprising (B) PMMA spin-coating, (C) e-beam

lithographic patterning of lines on PMMA, (D) deposition of NiCr on the pre-patterned substrate, (E) PMMA lift-off, (F) Si sloped etching resulting in a trapezoidal

shape Si NW, (G) ALD deposition of Al2O3 on top of the NW, (H) doping of drain and source, (I) Deposition of floating gate, (J) ALD Al2O3 deposition, (K) Definition of

Source/Drain windows, and (L) Lift-off based patterning of Drain, Source and Multi-gates.

source, drain and multi gate electrodes with 100 nm/10 nm Pt/Ti
evaporated over UV lithography patterned photoresist and lift
off (Figures 5K,L). Finally, the devices were sintered in forming
gas (5% H2 + 95% N2) at 400◦C for 20 min to conclude the
device fabrication process. Since the capacitance plays a crucial
role in the υ-NWFET, the Pt/Ti-Al2O3 (80 nm)-Si stack was
studied using Capacitance-Voltage (C-V) characterization with a
Keysight 1,520 A capacitance measure unit. The Current-Voltage
(I-V) characteristics of υ-NWFET was also measured using
Keysight 1,500 A semiconductor parameter analyzer. Analysis of
the I-V characteristics indicates some device induced variation
in gate weights, which could potentially lead to variations in the
performance of the HNN.

Fabrication of Tactile Sensitive e-Skin
To demonstrate the real-time working of proposed approach,
we fabricated a flexible and transparent e-skin comprising of
6 × 6 capacitive tactile sensor array and integrated over 3D
printed hand developed in house. This is a step toward our
future goal of obtaining a large scale υ-NWFET based printable
electronic skin. The skin was interfaced with the SimBrain model

through a capacitive array readout circuitry. The capacitive touch
sensor array and the readout circuit was similar to our recently
reported work (Núñez et al., 2017). However, in the present
case we have used laser-ablation based patterning of indium
tin oxide (ITO) on polyethylene terephthalate (PET) substrate
instead of blade-cutting based patterning of Graphene on Poly-
Vinyl Chloride (PVC) substrate. The touch sensor layer was
fabricated using commercial ITO coated PET sheet from Sigma
Aldrich, comprising of ITO film of thickness 130 nm and sheet
resistance of 60 �/� over PET of thickness 200µm. The 6 ×

6 touch sensor array has interlaced diamond patterns of ITO
over an area of ∼3 × 3 square inches. The sensing structure
was designed to cover the palm of 3D printed prosthetic hand.
Finally, the tactile sensitive e-skin was interfaced to SimBrain
model and was tested in real time. To achieve this, the source
code of SimBrain was modified to include a capacitive e-skin
readout module programmed in Java. This final model was also
used to understand the potential impact on neural function of
the resulting network due to the deviation in gate weights arising
from the line-edge roughness during fabrication, as described in
previous subsection.
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FIGURE 6 | (A) Transfer characteristics from simulation of υ-NWFET device (dotted) and circuit (continuous) based on them. (B) Drain current (ID) vs. D-S voltage

(VDS) as the gates are turned on one by one.

RESULTS

Modeling Results
Device Modeling
The weighted sum of voltages in the input gates determines the
current IDS between the drain and source. Figures 6A,B show
the transfer and output characteristics of υ-NWFET respectively
as the gates are turned-on one by one. In Figure 6A, the VGS

sweeps were carried out with common mode VGS applied to
a single gate and then progressively up to five gates. Working
in the enhancement mode, the υ-NWFET is normally off. As
the common-mode voltage is applied to two or more gates, the
effective voltage in the floating gate of the transistor (Equation 1)
increases and results in an increased current flow IDS through the
transistor. Figure 6B, shows VDS vs. IDS characteristics as 5 V is
applied progressively from one gate to five gates.

Circuit Modeling
The equivalent circuit of a υ-NWFET was also implemented
in NI MultiSim with equal weights by connecting capacitances
(corresponding to the dimensions of a υ-NWFET used in the
device simulation) to an n-MOSFET (Figure 4B). To realize the
logistic output typical of an artificial neuron, a complementary
υ-NWFET-based inverter and complementary NWFET-based
inverter were connected in series, as shown in Figure 7A to
provide the activation function. All weights were kept equal, with
a capacitance of 0.052 pF corresponding to a gate span of 10µm.
Rest of the parameters were unchanged from the simulated device
in Figure 7. The output of this circuit (Figure 7A), shown in
Figure 7C, shows that as the commonmode input passes through
more gates the neuron turns on at lower voltages. This indicates
that the proposed υ-NWFET based neuron can provide a logistic
output and could be used directly to realize neural network
circuits—with the area of the capacitor’s overlap with the channel

determining the synaptic weight of the input. Figure 7B further
highlights this with a circuit such as the one in Figure 7A,
except that the non-equal gate weighted υ-NWFET neuron has
been implemented. The common mode input is passed through
synaptic weights (1.5, 1.5), (0.5, 1.0, 0.5, 1.0), (0.5, 1.0, 1.5),
considering 3 as the maximum weight. The weights were realized
with 3 capacitor values (0.026 pF, 0.052 pF, and 0.078 pF) at each
of the n-type and p-type υ-NWFETs. Figure 7D shows that for all
these cases (where weight is∼3), the neuron turns on at the same
voltage of ∼3.12 V. Also Figure 7D shows that the doubling of
the total weight to ∼6, results in the neuron turning on at ∼1.59
V. Thus, a neural network implemented with a complementary
υ-NWFET based inverter will have the weights hard-wired by the
area of the gate span over the channel.

For neuromorphic computing, plasticity or ability to modify
the weights of the neurons is also needed. In this regard, the
next two circuit level simulations (Figures 8, 9) are relevant as
they indicate the steps toward synapses with plasticity using υ-
NWFET approach. In both these cases, υ-NWFET based neurons
act as a soma of the neuron while schema proposed for synapses
are different. First approach (Figure 8) presents simulation of
an EEPROM-like programmable υ-NWFET synapse to emulate
the long term biological memory (Shibata and Ohmi, 1992; Yan
et al., 2011). The second approach (Figure 9) shows simulations
that are designed to emulate a sensory memory synapse utilizing
passive components such as NW based resistors and capacitive
structures along with υ-NWFET. Further directions have been
proposed for this approach to extend it toward STM and LTM
exploiting recent work on nanoionics transistors or memristors
(Pillai and De Souza, 2017).

The schematic and the outputs of simulation of a neuron
with a programmable synapse are shown in Figures 8A,B with
complementary υ-NWFET and inverter to form a soma. The
EEPROM-like programmable υ-NWFET forms an element of
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FIGURE 7 | Equivalent circuit implementation of (A) equally and (B) non-equally weighted υ-NWFET based neurons and (C,D) their respective input-output

characteristics.

the synapse. Programming is carried out by selecting the
VROW and VCOL and then applying the tunneling voltage
VT to let electrons tunnel through the tunnel capacitor CT

and program the floating gate voltage VP. This programmed
voltage VP determines the synapse weight and modulates the
output VSynapse (= (VX,1 + VY,1)/2). It can be observed from
Figure 8B that the gated p-MOS (left) and n-MOS (right)
source followers are off whenever the output from the previous
layer neuron (VIN) is off. This results in VX,1 (V+) = 5 V
(i.e., VDD), VY,1 (V−) = 0 V (i.e., VSS) and VSynapse =

2.5 V (VDD/2), as shown in the output in Figure 8B. When
the output from the previous layer neuron (VIN) is on, the
VSynapse results in an excitatory response for VP > 2.5 V

and an inhibitory response for VP < 2.5 V. The graph in
Figure 8B shows the result for VP of values of 3.75 and
1.25 V corresponding to excitatory modulation and inhibitory
modulation, respectively. This validates the υ-NWFET based
circuit through simulation based on NI MultiSim. These neurons
could be connected in various configurations to realize systems.
However, one drawback of the above approach is that it requires
2 complementary υ-NWFETs per neuron, 2 complementary
tunnel υ-NWFET and 4 NWFET per synapse. The EEPROM
programming results in a non-volatile long term storage or long
term memory. Further a high field is needed across SiO2 to
achieve the tunneling, which could result in some reliability
issues.
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FIGURE 8 | (A) Schematic and (B) output of a floating gate programmable synapse simulation.

FIGURE 9 | (A) Schematic of a neuron with sensory memory and adaptable toward STM and LTM. (B) Post synaptic current vs. time graph demonstrating sensory

memory. (C) Post synaptic current vs. time graph demonstrating short term memory (STM).

For tactile data processing, neurons with sensory memory
like biological skin are preferred. In Figure 9A, we propose
a circuit that takes advantage of NW processing to achieve
neurons with sensory memory. The features include processing
strategies to obtain a controlled array of NWs (McAlpine et al.,
2005, 2007; Wang et al., 2008), the effectiveness of an array
architecture (DeHon, 2003) and the inherent length of NWs.
By taking advantage of the high aspect ratio of NWs, suitable
resistance (RSM) and the capacitance (CSM) values can be

obtained to realize a pattern designable RC delay operating in
non-switched or switched mode. This could be further used
to realize both sensory memory and short term memory. For
example, a Si-NW with 100 �-cm resistivity, 100µm length and
square cross section with a width of 50 nm will have resistance
∼40 G�. A monolithically integrated 20.5 nm thick HfO2-
based dielectric between two 100µm long and 500 nm wide
metal NWs will give a capacitance of ∼1.7 pF. Together these
two components will lead to a RC delay of ∼69 ms, which
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is of the order of a typical sensory memory (Atkinson and
Shiffrin, 1968). Figure 9A shows the scheme of this approach
with a sensory synapse implemented with a thresholder tactile
sensory receptor (considered as a presynaptic input). The output
of the presynaptic neuron passes through the voltage divider
formed by the internal channel resistance of NWFET Qforward

and NW resistor Rforward. This, along with the capacitance Cw1,
decides the synaptic weight. Cw1 − Cwn might have equal values
acting just as a summing unit (soma) as in Figure 7A or non-
equal value as in Figure 7B. To avoid bootstrapping effect, it
is best to have a depletion mode NWFET for Qforward. As
per Hebbian learning, the correlation between firing of pre-
and post-neuron strengthens the synaptic weight between these
two neurons. This is achieved by the feedback path, from the
output of post-neuron through Qpost−neuron and Qpre−neuron to
sensory memory element CSM . When the pre- and the post-
neuron fire together, the latter charges the CSM and causes the
Qforward NWFET’s internal resistance to decrease. This eventually
increases the synaptic weight between the pre- and post-neuron.
Figure 9B shows a typical output when the sensory memory NW
resistor’s (RSM) value is changed between 100, 50 and 10 G�,
for a pulsed pre-synaptic firing of a neuron with a duration of
500µs. As soon as the post neuron fires (500µs) along with
pre-neuron, the CSM gets charged. The excitatory post synaptic
current decays exponentially as the CSM discharges through RSM.
The neuron will continue to get pre-synaptic input through the
voltage divider between Qdecay and Rdecay. The actual effective
capacitance contributing to the sensorymemory is a combination
of gate capacitance of Qforward as well as CSM. Depending on
the timing requirement of the sensory memory, CSM could
even be avoided, thus making use of the internal capacitance of
Qforward. The output of the neuron (Vυ−out) is a function of VFG,
which depends on the gate inputs (VGn) incident on the various
capacitors as given by Equation (1). VGn is given by the internal
resistance RQ−forward of QForward and the resistance RForward:

VGn(t) =Vυ−in

RQ−forward (VMEM (t))

RForward
(1− e−

t
τ1 ) (2)

RQ−forward depends on VMEM (t) across CSM which is given by:

VMEM(t) =Vυ−in
RSM

RTotReverse

(

1− e−
t

τ2

)

(3)

Where,

RTotReverse = RQ−Pre−neuron+RQ−Post−neuron + RSM (4)

To demonstrate the effectiveness of the proposed approach and
to advance it to system level, a tactile information processing
problem was simulated as explained in the next section.

System Modeling
The schema of the sparse coding system shown in Figure 10A

comprises of an array of tactile sensors (6 × 6) which acts
as an input to the NN system model. The target of the
current sparse coder is to encode the tactile input or gesture
into three outputs “TouchPresence,” “GestureDirection,” and
“GesturePolarity.” The outputs are considered as bits depending

on whether the neuron is on or off. “TouchPresence” is a single
bit output which signifies downstream reduction i.e., whenever
one of the tactile sensor (out of the 6 × 6 sensors) is touched,
the output should be on, as shown in the second column of
Figure 10B. This could be used as an event driven triggering
stage for triggering the higher stages of a neural network.
“GestureDirection” is a 4-bit data output for which the values
0001, 0010, 0100, 1000 correspond to the directions NE to SW,
N to S, NW to SE, and W to E respectively. The reverse direction
for each case has the same output value for “GestureDirection”
except that “GesturePolarity” is set to 1 instead of 0, as shown in
Figure 10B. Themodel was implemented in two levels. The lower
NN level (Simbrain snapshot shown in Figure 10C) acquires
input from a 3 × 3 sub-array of the e-skin to a 9 thresholded
tactile receptor decay neurons. Since, the feeling of gestures on
the skin depends on sensory memory, the above application
serves as an effective way of testing the proposed approach.
Hence, the sparse coder was modeled as a combination of a
Decay Neuron Network forming an input layer followed by a
feedforward neural network. The simulations were performed
on SimBrain (Tosi and Yoshimi, 2016). The decay time depends
on the time of the sensory or short term memory decay in
Equation (3). (Supplementary Section 3 shows the snapshot of
the time series plot of decay of the simbrain simulation of
four neurons with different decay constants). The decay neuron
forms the input to a sparse coder. From a system viewpoint,
this 3 × 3 sparse coder could be considered as a low-level
cell. In a hardware implementation, this could be realized with
NWs-based lower level cellular structure in the backplane of 3
× 3 tactile sensors sub-array. This approach enables achieving
hierarchical upstream reductions. The level 1 sparse coder was
modeled and trained in Matlab using the Levenberg-Marquardt
method with 9 logistic hidden layer neurons corresponding to 9
sensory neurons feed forwarded to 6 output neurons. The input
and target for training, validation and testing the sparse coder
as per Figure 10B was generated using a Matlab code generating
various tactile gestures based on a random number generator. A
total of 5,000 samples were generated out of which 3,500 samples
were used for training, 750 samples for validation and further
750 samples for testing the system. After training, the weight
and bias matrices were transferred to SimBrain for testing and
visualization. Based on the simulation, training and validation,
it was found that the dataset was linearly separable and was
implementable with a single layer neural network with the output
converged to a mean squared error of 0.02 for linear output
neurons-implying a zero error as with the logistic or binary
output stage. Figure 10C shows the typical implementation on
SimBrain where the output of the receptor is passed to the
sensory neuron through the decay inputs. The sensory neuron
and the higher level logistic neurons together perform the sparse
coding of the input to outputs as in Figure 10B. The first 3 blocks
in Figure 10C together mimic the functionality of the sensory
neuron of the circuit given in Figures 9A, 10D shows the mean
squared error vs. epochs during training of the network. The
network converged within 30 epochs, giving a mean squared
error of 0.02. In the next section, the interface of a tactile skin
to a higher level NN (level 2) through many such level 1 cells to
emulate tactile gesture recognition is presented.
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FIGURE 10 | (A) Schematic illustration of sparse coding of tactile data from e-skin neural information. (B) Goal of the sparse coding. (C) Typical implementation of

one Level 1 sub neural network cell on SimBrain; the output of the decay sensory neuron is passed to the input of the sparse coder which gives the sparse coded

output. (D) Mean squared error vs. epochs during training of the network.
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FIGURE 11 | System model interface with e-skin on prosthetic hand (A) Flexible and transparent touch sensitive e-skin (B) Image of the prosthetic/robotic hand with

e-skin (C) Snapshot of SimBrain model showing mechanoreceptors layer and associated sensory processing level 1 NN cells are connected to higher hierarchical

level 2 NN block. Video of the demonstration in Supplementary Video 1.

Experimental Results
e-skin on Prosthetic Hand Interfaced to System

Model
The fabricated flexible and transparent touch sensitive e-skin
is shown in Figure 11A. The fabricated passive tactile sensitive
e-skin integrated on a 3D printed prosthetic/robotic hand
(Figure 11B) was interfaced to the system model and tested
in real time. Figure 11C shows the snapshot of SimBrain
model showing mechanoreceptor layer comprising of 6 ×

6 elements. The 3 × 3 overlapping window of receptor
elements are connected to individual local processing level

1 NN cells as shown in Figures 10A, 11C. The output of
all level 1 NN cells correspond to an array of 96 elements
form the input layer for another hierarchical level of the
feed forward neural network comprising of 48 neurons in the
hidden layer and 6 neurons in the output layer. The value
of the output layer of NN shown in Figure 11C indicates
touch or direction events given in Figure 10B. The output
signals corresponding to the value of the output layer are
graphically represented in the third window of Figure 11C.
The video of the demonstration is included in Supplementary
Video 1.
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FIGURE 12 | (A) SEM image of NiCr nanoline in low magnification. This pattern is subsequently etched into trapezoidal NWs (Inset: High magnification).

Three-dimensional AFM scan of SiNW taken (B) before atomic layer deposition (ALD) and (C) after ALD & thermal annealing processes; (D) Line profile corresponding

to the AFM image (B) where a ∼45◦ trapezoidal structure is observed. (E) Optical microscopy image of the fabricated υ-NWFET. (F) Symbolic representation and

weights of the fabricated υ-NWFET.

Characterization of υ-NWFET
The structural and electrical characteristics of Si υ-NWFET
are presented in this section. As shown in the SEM images in
Figure 12A, the fabrication process (described in Figure 5A–l)
results in a NiCr nanoline of width 200 nm which was used
as a hard mask during dry etching for obtaining the Si NWs.
After fabrication step shown in Figure 5F, the Si-NW was
characterized by using AFM before and after Al2O3 deposition
and doping (Figure 12B–D). The Si-NW has a thickness of∼100
nm after etching, as shown in the AFM image in Figure 12B.
After ALD processing and doping, the surface is smoothened
as depicted in Figure 12C. The optical microscopy image of
a fabricated prototypical υ-NWFET is shown in Figure 12E.
In the fabricated four-gated υ-NWFET, the gates spanned 25,
20, 15, and 10µm over the floating gate electrode, result in
synaptic weights of around 5/14, 4/14, 3/14, and 2/14 respectively
as illustrated in Figure 12F. Here, CFG is not included as the
capacitance between the floating gate and the NW is negligible
compared to the capacitances formed by the metal gates.
Hereafter, the gates are referred, based on their synaptic weights,
as G5/14, G4/14, G3/14, and G2/14.

The turn-off voltage of the υ-NWFET is influenced by
the presence of various charges and interface trap density
in the dielectric. The Pt/Ti-Al2O3 (80 nm)-Si stack was
studied using Capacitance-Voltage (C-V) characterization with
a Keysight 1520A Capacitance Measure Unit. The Capacitance
was measured for a gate voltage in the range of −5 to 5 V at
1 MHz frequency with a 50 mV-rms a-c signal. Both the ideal

C-V and the experimental C-V curves are plotted in Figure 13A.
Here, we used a Matlab code to obtain the ideal C-V curve
by solving Poisson’s equation (Sze and Ng, 2006). The work
function of the electrode (Ti), average doping concentration and
the oxide thickness are defined as input parameters in this code.
The value of flat band capacitance (CFB) was obtained from
the ideal C-V curve at Vg = 0 V. This CFB was used to get
the flat band voltage (VFB) the experimental C-V curve (VFB =

1.6 V). The fixed oxide charge density was calculated (QOX =

−1.43 × 1012 e-cm−2) by finding the flat band voltage shift. The
interface trap density DIT , calculated using the Terman method,
was found to be in a range of 1.39–7.89 × 1012 eV−1cm−2.
The ideal and practical threshold voltages (Vth) are ∼0.6 and
∼2.2 V, respectively. In the case of a floating gate structure,
the effective voltage needed on the floating gate (50 nm from
channel) is less than the inversion voltage observed from the C-
V characteristics. Further, the additional charges in the floating
gate dielectric interface will result in deviation from the ideal
turn off voltage (expected ∼1.4 V). Figure 13B shows the VGS

vs. IDS characteristics with voltage sweep applied to the gates
of the υ-NWFET one at a time, while others kept at 0 V.
Since the presented υ-NWFET works in depletion mode like a
gated resistor, the channel depletes with an increase in the gate
voltage, finally inverted, resulting in a decrease in the current. The
dependence of the observed turn-off voltage (i.e., 6.1, 7.7, 9.8, and
16.8 V (rounded to 1 decimal point for gates 1–4 respectively)
on the synaptic weight of each gates demonstrates the working
of the υ-NWFET. Figure 13C shows the transfer characteristics
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FIGURE 13 | Electrical characteristics of Si υ-NWFET. (A) Ideal (blue) and experimental (red) C-Vg relationship. (B) VGS vs. IDS characteristics for G5/14 to G2/14 at

VDS = 4 V (C) VDS vs. IDS characteristics while applying 6 V to each gate, one by one.

of the υ-NWFET as each gate is given 6 V, one at a time. The
gate with higher synaptic weight suppresses the current more
compared to the gate with the lower synaptic weight in the order
G2/14 to G5/14 with current reduced ∼54 times from 1.0772
± 0.01 nA to 19.6 ± 0.1 pA at VDS = 4 V and VGS = 6 V.
The difference between the trend in the simulation presented in
Figures 6A,B and actual data Figures 13B,C could be attributed
to the fact that the υ-NWFET presented here works as a gated
resistor in depletion mode in contrast to the simulation. The
gates with non-equal width were given voltage one at a time
while the rest were at zero potential in contrast to the simulated
device. Further, from the current values, the contacts appear to
be Schottky-type, whereas simulation considers a perfect ohmic
contact. The early saturation observed in this long channel υ-
NWFET could also be attributed to the saturation in one of the
Schottky mode contacts. Higher performance could be obtained
in a sub-50 nm υ-NWFET with optimized contacts. The results
herein clearly indicate the expected neuronal function from the
υ-NWFET device.

Effect of Fabrication Induced Gate Weight Variability

on the Performance of System Model
The system model given in Section System Modeling were
used to understand the potential impact on neural function
of the resulting network due to the deviation in gate weights
arising from the line-edge ughness during fabrication (seen in
Figure 12E). This is schematically illustrated in the Figure 14A.
The line-edge roughness results in variation in the capacitances
compared to the design value. By fitting the cut-off voltage
obtained in the previous section, the experimental capacitances
were obtained. The results are compared with the design
capacitances in Table 1. A deviation of ∼ <0.1% are observed
between design and experimental capacitances. The weights
of the system model were changed using a random number
generator to maximum of 10% to check its effect on the
sparse coder. The results are plotted as confusion matrices in
Figure 14B. The class values in the x and y-axis namely, X,
T, N, NE, E, SE, S, SW, W, NW, and NA corresponds to No
Touch, Touch, North, North East, East, South East, South, South
West, West, North West and Not Applicable respectively. With

0.01% weight deviation, only 2 out of 25,000 classifications were
misclassified. For 0.5, 1, and 10% deviations the number of
samples that were misclassified were 9, 14, and 2,546 samples out
of 25,000 were misclassified which shows the inherent robustness
in NN.

DISCUSSION

The υ-NWFETs based approach for realizing HNN has several
advantages for tactile data processing in electronic skin (e-
skin). For example, it allows implementation of neural circuits
in a compact array architecture (DeHon, 2003). With good
subthreshold control of a tri-gated or gate all around NWFETs
(Kuhn, 2012), it would also be possible to develop highly
power efficient devices or circuits. Further, the possibility of
printing NWs (Shakthivel et al., 2015; Yogeswaran et al., 2015;
Navaraj et al., 2017) means with υ-NWFETs it will be possible
to develop bendable or conformable systems, which is much
needed for better integration of e-skin on curved surfaces such
as the body of a robot or prosthetic hand (Dahiya et al., 2015).
Such e-skin could have printed υ-NWFETs in the backplane
(Yogeswaran et al., 2015; Shakthivel et al., 2016) to communicate
with higher perceptual levels. It is possible to have 3D integration
or stacking of NWs based circuit (Javey et al., 2007) and if such
work is extended for e-skin then we may see more advantages,
particularly, in terms of mimicking biological tissues and brain.
The integration of υ-NWFET based neural processing circuits
with NW-based neural recording/mapping and stimulation
circuits is another direction that could significantly advance
the research in neuro-prosthetics, bio-neuro interfaces and
electroceuticals (Patolsky et al., 2006; Qing et al., 2010; Robinson
et al., 2013; Thomson et al., 2017).

While the direction is interesting and promising, there
are significant challenges associated before realizing a fully
biomimicking artificial tactile skin. The tactile data processing in
biological e-skin is much complicated and has complex pathways.
The notion of neurons being represented as entities performing
weighted summation followed by actuation itself is a significant
approximation far from a real neuron, and a slightly more
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FIGURE 14 | (A) Schema to study impact on neural function of the NN due to the deviation in weights. (B) Effect of weight deviations on the NN’s performance.
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TABLE 1 | Comparison of designed capacitances with experimental capacitance

for various gates.

Capacitance G5/14 G4/14 G3/14 G2/14

Design 1.3812pF 1.1050pF 0.8287pF 0.5525pF

Experimental (Fit) 1.3932pF 1.1037pF 0.8672pF 0.5059pF

Deviation (%) 0.00869 0.00118 0.04887 0.08434

closer approximation uses time-domain differential equations to
explain biological neuron’s membrane dynamics and interaction
(Marder and Taylor, 2011).

Biological neurons are highly energy efficient compared
to most artificial implementation of neurons (Boahen, 2017).
To achieve energy efficiency and better performance, a υ-
NWFET should have lower leakage current, higher drive current
and higher on-to-off ratio. High-K dielectric used as a gate
dielectric to avoid gate leakage while still having lower EOT
ensures better coupling and control of gates over the channel.
Further, the gates formed in a trigate configuration around
the NW offers better subthreshold performance. On-to-off
ratio of up to 2.6 × 104 was achieved for the simulated
device structure with all gates ON vs. all gates OFF. For
packing more neurons per unit area and improving performance
further, the υ-NWFET must be scaled in all dimensions such
as the width, length of the NW, the gate span of each
gates.

When such intense scaling is carried out, the process
variations such as variations in doping concentration, NW
dimension, gate width, line edge roughness may influence
the synaptic weights and performance of the neural network.
However, neural networks are known to be inherently fault
tolerant and robust. In the presented work, comparison
of designed capacitances with experimental capacitance
shows a maximum fabrication induced weight variation
∼0.1%. Allowing up to 1% change in the weights of the
system model lead to misclassification of the data set by
only ∼0.06% which shows the robustness of NN for such
applications.

The various circuit approaches presented could be used as
sub-components for neuro-mimicking tactile e-skin and based
on system requirement, choice can be made between hardwired-
neuron with no plasticity (as in Figure 7), neuron with plasticity
having sensory memory or STM (as in Figure 9) or LTM
(as in Figure 8) to be used at different hierarchical levels of
the tactile sensing NN. Synaptic plasticity finds application
both in data storage/memory as well as neural computation.
In the first approach, i.e., hardwired-neurons, learning and
circuit/layout synthesis will be through software tools which will
be followed by practical fabrication forming a hardwired neural
network. By introducing additional plastic synapse schemes
(as in Figures 8, 9), the weight could be modulated over the
initial value set by the capacitances. In this case the synaptic
weight initially set by the capacitances could be considered as
a phyletic memory (Fuster, 1997) because it is hardwired over
which further schemes of plasticity operates. Such an approach

could be considered as a semi-plastic neural network. For
such a network, the quantization arising from layout synthesis
(For example rounding-off the weight equivalent capacitance
dimensions to 1µm) followed by lithography process for
fabricating the capacitors will lead to k-levels of possible discrete
synaptic weights (Obradovic and Parberry, 1992; Obradović and
Parberry, 1994). The approach proposed in Figure 9 results in
a programmable synapse, which could be used to implement
hardware-in-the-loop learning. It is to be noted that in the
initial stage of tactile sensing the sensory data need to be
stored only for a short time and hence a neural circuit with
sensory memory is sufficient for earlier tactile data handling as
in Figure 9. This circuit could be further modified for higher
hierarchical levels to have STM and LTM associated plasticity.
A transitionary circuit from sensory memory to STM can
be achieved either by replacing the CSM with an element of
higher value (as in Figure 9C) or by replacing Qforward with
a nanoionic-like transistor (Pillai and De Souza, 2017) for use
in higher hierarchical level of neural network beyond tactile
skin. Beyond that, increasing CSM may not be a practical option
as it becomes bulkier in the process of realizing longer times.
Possible strategies for transition from STM to LTM at different
stages of the network include replacing Qforward by a nanoionic-
like transistor (Pillai and De Souza, 2017), or with a NW-
based programmable floating gate transistor (Yan et al., 2011),
or replacing Rforward with a memristive device (Yang et al.,
2013).

The system model interfaced with a flexible and transparent
touch sensitive e-skin with 6 × 6 tactile elements and tested in
real-time demonstrates the working of the proposed approach.
However, since the SimBrain model involves software NN
programmed in java to mimic the HNN, a delay of ∼1.12–1.54
s was observed per cycle for the implementation with Intel R©

CoreTM i7-4500U CPU @ 2.4 GHz with 8GB RAM and a delay
per cycle of ∼0.394–0.470 s was observed for implementation
in Intel R© CoreTM i7-4790K CPU @ 4 GHz with 32GB RAM.
While this could be improved by approaches such as use of GPU,
dedicated HNN such as the proposed approach will be optimal
for real-time tactile data processing. The delay with software
NN will be much substantial if the number of tactile elements
are increased for example to a human palm ∼18,675 MRs as
shown in Figure 1. Further advancements in the system model
is required toward advanced tactile perception tasks such as
schematically shown in Figure 2D.

One of the potential application of this technology could be in
an industrial task such as fruit or object sorting, where the bio-
mimicking neural networks in the skin of robotic hands could
classify and held objects based on the physical parameters such
as pressure, temperature etc. as well as optical parameters from
special optical sensors from tactile e-skin (Dahiya andValle, 2013;
Dahiya et al., 2015).

CONCLUSIONS

A novel υ-NWFET based approach for realizing hardware neural
networks has been presented and validated through device,
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circuit and system-level modeling and simulation. Two different
approaches, STM and LTM, have been simulated to implement
the memory or neuroplasticity. Fabrication of a υ-NWFET has
been carried out with a Si-NW as the channel material. The I-
V characteristics of the υ-NWFET demonstrates the neuronal
function of the device with synaptic weights modulating the
output current. For example, for a given drain (VDS = 4 V)
and gate voltage (VGS = 6 V), the drain current at output
was reduced by ∼54 times with a gate weight of 5/14 as
compared to 2/14. The proposed structure is a step toward
realizing flexible power-efficient bio-inspired neural sensing and
circuit architectures as a backplane for tactile e-skin in robotics
or prosthetics. To this end, the system model interfaced with
a flexible and transparent touch sensitive e-skin (having 6 ×

6 tactile elements) and tested in real-time demonstrates the
working of the proposed approach. Up to 1% change in the
weights of the system model lead to misclassification of the
data set by <0.06% which shows the robustness of NN for
tactile sensing application. In principle, the approach could be
adapted for spiking neural networks and further exploration in
that direction should be extremely interesting. Multilayer or deep
learning hardware neural networks could be used for further
additional sparse coding to enable advanced tactile perception
tasks such as schematically shown in Figure 2D. Future work will
include large area fabrication of the proposed e-skin system in a
flexible form factor and its subsequent testing.
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