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Nanowire-supported plasmonic waveguide for remote
excitation of surface-enhanced Raman scattering

Yingzhou Huang1,2,*, Yurui Fang3,*, Zhenglong Zhang4,5,*, Ling Zhu6 and Mengtao Sun2,1

Due to its amazing ability to manipulate light at the nanoscale, plasmonics has become one of themost interesting topics in the field of

light–matter interaction. As a promising application of plasmonics, surface-enhanced Raman scattering (SERS) has been widely used

in scientific investigations and material analysis. The large enhanced Raman signals are mainly caused by the extremely enhanced

electromagnetic field that results from localized surface plasmon polaritons. Recently, a novel SERS technology called remote SERS

has been reported, combining both localized surface plasmon polaritons and propagating surface plasmon polaritons (PSPPs, or called

plasmonic waveguide), whichmay be found in prominent applications in special circumstances compared to traditional local SERS. In

this article, we review the mechanism of remote SERS and its development since it was first reported in 2009. Various remote metal

systems based on plasmonic waveguides, such as nanoparticle–nanowire systems, single nanowire systems, crossed nanowire systems

and nanowire dimer systems, are introduced, and recent novel applications, such as sensors, plasmon-driven surface-catalyzed

reactions and Raman optical activity, are also presented. Furthermore, studies of remote SERS in dielectric and organic systems

based on dielectric waveguides remind us that this useful technology has additional, tremendous application prospects that have not

been realized in metal systems.
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INTRODUCTION

As a branch of nano-optics, plasmonics has attracted the increasing

interest of researchers worldwide with the rapid development of nano-

fabrication in recent decades.1–3 The most amazing property of plas-

monics is that it can manipulate light at subdiffraction wavelengths

and hence opens interesting avenues to study light–matter interac-

tions at the nanoscale.4 The collective oscillation of free electrons at

a metal surface is called surface plasmons. When excited by light, the

hybridized excitations of surface plasmons and coupled photons are

called surface plasmon polaritons (SPPs). Because SPPs can confine

the energy of an electromagnetic (EM) field near the metal surface and

decay exponentially with vertical distance, two fundamental excita-

tions of SPPs, propagating SPPs (PSPPs, plasmonic waveguide) and

localized SPPs, have tremendous application prospects. The former

could overcome the traditional diffraction limit in dielectric optics

and be the key approach to overcoming the bottleneck of the mini-

aturization of nanophotonic devices and large-scale on-chip inte-

grated circuits for next-generation information technology.5–11 The

extremely enhanced EM field caused by the latter has great application

values in various fields, such as surface-enhanced spectrum,12–15

surface plasmon resonance sensors,16–19 ultra transmission,20,21 plasmo-

nic trapping,22,23 plasmonic-enhanced emission,24,25 quantum commun-

ication,26,27 super-resolution microscopy,28 cloaking,29 photothermal

cancer therapy,30,31 steam generation,30,32,33 holography,34 photovol-

taics35–37 and water splitting.38–40

One of the most promising applications of SPPs, especially localized

SPPs, is surface-enhanced Raman scattering (SERS), which has been

studied both theoretically and experimentally for many decades.12–14,41–57

As an optical fingerprint, Raman spectra, which could be used to

analyze chemical structures, are widely used in scientific investigations

and material analysis. However, as a weak process, the small Raman

scattering cross-section makes the detection of a small number of

molecules a problem even after the laser power is increased. An up

to 1010–1011 enhancement over the typical Raman scattering cross-

section in SERS solves this problem and enables the detection of

Raman spectra at the single molecule level, which is commonly per-

formed at noble metal surfaces such as rough surfaces or nanoparticle

aggregates.13,14 The dominate contribution to this enhancement is

generally thought to be the EM fields greatly enhanced by localized

SPPs.12,52,58 In addition, the charge transfer processes, which are the
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electronic structure variation of molecules adsorbed onmetal surfaces,

also play an important role in the SERS effect.45–48,54 The area where

the highest EM field enhancement is generated in a nanostructure is

called a ‘hot spot’, such as the nanogap between the nanoparticle

dimer and the gaps between nanoparticles and wires. The Raman

signals in most SERS experiments are obtained at the tiny hot spots.12

In this article, we review themechanism and development of remote

SERS since it was first reported in 2009,59,60 and discuss several advan-

tages compared to traditional SERS that may find prominent applica-

tions in special circumstances. In a traditional SERS, the incident light

is directly focused on the detecting target, which is called ‘direct mode’

or local SERS. In contrast, the ‘remote SERS’ refers to the illumination

spot of incident light that is far away from the target, and excited by the

energy guided by the PSPPs in a ‘remote mode’. The energy transfer

between the illumination spot and the hotspot is mainly supported by

the plasmonic waveguide (PSPPs) in various remote systems, as illu-

strated in Figure 1. PSPPs are the propagation of charge-density waves

at themetal/dielectric interface, which emit photons into the free space

at defects such as nanoparticle-wire gaps and the terminal of the wire,

while some of the energy is lost as ohmic damping in the metal. PSPPs

could of course excite the hot spot remotely.5The remotely excited hot

spot is of nanoscale dimensions; it avoids background noise due to a

large excitation area created by the incident illumination spot, isolates

the heat from the focused incident light area to the target illumination

in the subdiffraction wavelength area and, naturally, reduces the pos-

sibility of damage to the sample caused by the high laser intensity. The

remote SERS provides a novel way to perform sensing measurements

based on surface-enhanced optical signals and may have applications

in systems where traditional SERS is unsuitable, such as the Raman

detection of biomolecules in vivo in cells.

Because of their good capability as plasmonic waveguides, chem-

ically synthesized metal nanowires with micrometer-scale lengths and

nanoscale diameters play a primary role in most previous reports of

remote SERS. In this review, we first illustrate the synthesis and fab-

rication of metallic nanowires and the corresponding physical mech-

anism of the plasmonic waveguide. Second, various remote metal

systems, such as a nanoparticle–nanowire system,60 single nanowire

system,61 crossed nanowires system,62 nanowire dimer system63 and
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Figure 1 A sketch of the local SERS and the remote SERS in anAgnanoparticle–nanowire system (Ramanmolecule adsorbed on theAg nanowire). TheRaman signals

obtained at the illuminating terminal are local SERS, while the signals collected at the junction whose energy come from the propagating SPPs are remote SERS. The

insets are the three-dimensional distribution of the Raman intensity and spectra. SERS, surface-enhanced Raman scattering; SPP, surface plasmon polariton.
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nanowire bundle system,64 as well as a remote semiconductor sys-

tem49,65 and a remote organic system,66 are presented. Third, fields

of applications of remote SERS, such as sensitive sensors for in vivo

cells,59,60,67 plasmon-driven surface-catalyzed reactions62,68,69 and

Raman optical activity,70 are introduced. Finally, we summarize this

article and give a tentative outlook.

MECHANISM OF A PLASMONIC WAVEGUIDE ON METAL

NANOWIRES

To efficiently couple light into and out of PSPPs by compensating for

the momentum difference between light and the PSPPs, various metal

nanostructures have been investigated in previous reports,5 such as

nanogrooves,71 nanoparticle chains72 and nanowires.73,74 Among

them, the chemically synthesized noble metal nanowires with subdif-

fraction-limited diameters may be a preferable structure because of

their smooth crystalline surface, which is unachievable by other phys-

ical nanofabrication methods, such as electron beam lithography and

extreme ultraviolet lithography. On such wires, the SPPs could prop-

agate over tens of microns with relative low energy loss in the visible

spectrum and even longer in the infrared.5,10,75–79 Therefore, most of

the remote systems in remote SERS experiments adopt gold or silver

nanowire systems, as in the previous report.

Synthesis and fabrication of metal nanowires

Because of the smooth surface on the atomic scale and good crystal

form, chemically synthesized single crystal noble nanowires exhibit

improved capability as plasmonic waveguides compared to polycrystal-

line nanowires fabricated by lithography.74 Among noble metal nano-

wires, the Ag nanowire synthesized by the polyol method80 played a key

role in plasmonic waveguides due to its small dissipative loss. In this

method, silver nitrate was reduced into a nanowire by heated ethylene

glycol and poly (vinyl pyrrolidone), which were both acting as reducing

and capping agents. The length of the produced Ag nanowire was

several to hundreds of micrometers, and the diameter was tens to

hundreds of nanometers, which could be controlled by the reaction

condition.80 Considering the low coupling efficiency of very thin nano-

wires (,50 nm) and the propagating length, the Ag nanowires with

diameters of 100–250 nm and lengths of 10–20 mm played key roles in

the studies of plasmonic waveguides. In addition to chemical synthesis,

nanowires fabricated by electron beam lithography showed the capabi-

lity for use as plasmonic waveguides, with a nearly 10-mm propagation

distance in an Ag-branched nanowire under 780-nm laser excitation.81

Despite the lesser capability of these plasmonic waveguides compared to

those produced by chemical synthesis, nanowires fabricated by electron

beam lithography have much more extensive application prospects due

to their ability of precise modulation.

Mechanism of a plasmonic waveguide

PSPPs on metal nanowires could be easily excited by illumination at

one terminal with an evanescent field produced by total internal

reflection or a simply focused laser beam.5,73,74 The momentum mis-

match requires the conversion between photon and SPP and only

occurs at a position of symmetry breaking, such as terminals or

defects. Therefore, the light emits at the distal terminal once the

ohmic-damped PSPPs arrive. This plasmonic waveguide on metal

nanowires could be understood by the Fabry–Pérot resonances

because the PSPPs could also be reflected back at the terminal and

interfere with the incoming PSPPs to form standing waves.75,82 The

emission intensity at the distal terminal is dominated by both incident

light and nanostructures, which affect the coupling efficiency and

ohmic damping. The distribution of the near field on the nanowire

and the periodic fluctuation of intensity exhibited in the emission

spectrum in Figure 2 showed the wavelength dependence of the incid-

ent light, which confirmed the Fabry–Pérot resonance behavior.74,75

The polarization dependence of incident light in a plasmonic wave-

guide has also been studied for both Ag and Au nanowires.61,76

All of the results showed that the emissionwas greatly affected by the

incident polarization and that a significantly larger propagation dis-

tance was achieved by illuminating light with the polarization parallel

to the nanowire (Figure 3). This result is becausemultiple PSPPmodes

with different propagating efficiency were produced in the plasmonic

waveguide in a thick nanowire. Different SPP modes and their excita-

tion conditions are indicated in Figure 4. The incident light, whose

polarization is represented by the angle h, is a paraxial Gaussian beam

with an instantaneous electric field of the form Einc5E0e
2iw, where E0

and w are themode profile and phase of the incident light, respectively.

For the polarization of incident light parallel to the nanowire (h506),

the fundamental m50 SPP mode (charge oscillations along the wire
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Figure 2 The near field distribution of the plasmonic waveguide in the Ag nanowire and the corresponding emission spectrum. Figure reproduced with permission:

Ref. 74, � 2005, APS.
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axis) orm521 SPPmode (charge oscillations in the vertical plane) are

selectively excited by aligning the input phase to w50 or w5p/2. For

the polarization of incident light perpendicular to the nanowire

(h5906), the m51 (charge oscillations in the horizontal plane) and

m52 SPP mode are generated for w50 and w5p/2, respectively.9,83

The structures of the nanowire also play important roles in the

plasmonic waveguide, such as the diameter and the geometrical shape

of the terminal. The shape of the illuminated terminal or the emission

terminal has a significant effect on the in-coupling and out-coupling

efficiency and results in a spatial distribution and polarization vari-

ation in the emission.61,76 The diameter of the nanowire has a direct

relation to the excited multiple SPP modes in that a thicker nanowire

could support additional high-order SPP modes.9 Interestingly, for

the nanowires that could only support the three lowest SPP modes

( mj jƒ1), as shown in Figure 5, the plasmonic waveguide would

exhibit a helix behavior.6,9 Due to a constant phase delay of p/2

between them51 andm521 SPPmodes, a circularly polarized prop-
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Figure 3 (a) An optical image of the plasmonic waveguide in a single Au nanowire. (b, c) An SEM image of a Au nanowire and the corresponding emission intensity with

various incident polarizations. (d, e) An SEM image of another Au nanowire with a different geometric shape of the terminal and the corresponding emission intensity

with various incident polarizations (blue arrow in a). Figure reproduced with permission: Ref. 61, � 2011, ACS. SEM, scanning electron microscopy.
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agating SPP could be generated by the coherent interference when the

two SPPmodes have equal amplitude. This circularly propagating SPP

is stretched by the simultaneously excited m50 SPP mode into a

helical SPP wave at the nanowire surface.

The time-averaged power flow and surface charge distribution in

Figure 5 illustrate the energy of the electromagnetic field near the

nanowire at the metal/dielectric interface in the plasmonic waveguide.

A larger helical period is generated on a thicker nanowire because the

propagation constant of them561 SPPmode increases and them50

SPP mode decreases,83 resulting in the formation of beating period

variations (Figure 5c). For very thin nanowires (diameter D,50 nm),

there is only them50 SPP mode, and the helical behavior disappears.

For very thick nanowires (D.400 nm), complicated field distribu-

tions are generated for the excitation of higher order SPP modes

(mo2), which countermand the helix plasmonic waveguide. The

large tenability of the plasmonic waveguide in the metal nanowire is

also caused by other factors, such as the spacer layer between the

nanowire and the substrate, surrounding dielectrics and the bending

angle of the nanowire. In the plasmonic waveguide, a coupling

between the PSPPs and the photonic modes of the substrate occurs

and is dominated by the thickness of the spacer. The relation could be

illustrated by the following formula:82

Ie~I0C dð Þe{L=c D,dð Þ

where I0 is the intensity of the incident light, d is the thickness of

the spacer layer between the substrate and the nanowire, C(d) is the

coupling coefficient of the light to the SPPs, L is the length of the

nanowire, D is the diameter of the nanowire and r(D,d) is the 1/e

PSPP damping length. The variation in the coupling efficiency is

due to the interference between the incident light and the light

reflected by the substrate. Both the formula and the experimental

results in Figure 6 indicate that the average emission intensity varies

with the spacer thickness, even for nanowires of the same length.

Similar to the metal nanoparticle and the metal surface, the pro-

perties of the SPP in a plasmonic waveguide on a metal nanowire

are largely modulated by the surrounding dielectrics. The beat

period of the near-field distribution at the nanowire surface, which

was generated by the coherent interference of the two lowest SPP

modes, was found to increase by 90 nm per nanometer of Al2O3

coating or by 16 mm per refractive index unit variation in the

surrounding dielectric medium (Figure 6).8 When the wire is not

straight, there will be an energy attenuation purely due to bending,

which follows an exponential function of the bending radius. If it is

simply assumed that the intensity of the emission at the bend

terminal decays exponentially with the curved length of the nano-

wire, but with a different attenuation coefficient related to the

bending radius, the pure bending loss could be mathematically

calculated (Figure 7).84 Even including the loss, both straight and

bending wire can support PSPPs and transfer energy to remote

locations.

REMOTE SYSTEMS

Nanoparticle–nanowire metal system

The localized SPPs and PSPPs on noble metal nanoparticle–nanowire

systems have been widely studied in the past.58,85 The nanogap

between a nanoparticle and a nanowire could be the hotspot of

SERS for a sensitive sensor. In addition, a disruption point in this

system, such as a sharp corner or the terminals in the nanowire, or a

nanoparticle-adjoined nanowire could be the position for the efficient

coupling of light into and out of PSPPs.5,86 Therefore, the Ag nano-

particle–nanowire system was adopted in the first report of remote

SERS in 2009.59,60 In the report by Fang and co-workers,60 malachite

green isothiocyanate (MGITC) was used as a Raman molecule at the

single-molecule level in the Ag nanoparticle–nanowire junction that
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served as a hotspot while being remotely excited by laser light with a

wavelength of 632.8 nm (Figure 8).

A scanning electron microscopy (SEM) image of a nanoparticle–

nanowire system and a high magnification image of the Ag nanopar-

ticle–nanowire junction are shown in Figure 8a. The corresponding

optical bright field image, the optical image of the PSPPs, and the

Raman image are shown in Figure 8b, 8c, 8d and 8g, where the laser

was focused on one terminal of the nanowire, and the incident polar-

ization is represented by the white arrow. The bright spot in Figure 8c

shows the emitted photons from the PSPPs, whose propagation dis-

tance was approximately 6 mm. The image of the 436-cm21 Raman

peak (Figure 8d) clearly shows that strong SERS signals were collected

from the junction. Because of the single molecule level, the spectra in

Figure 8e show the Raman signals obtained at the junction but not at

the terminal of the nanowire. This could exclude the possibility that

the Raman signal at the junction may come from the terminal via

PSPPs. Eliminating the fluorescence background on the substrate in

Figure 8f, the clear red spot in Figure 8g shows the pure Raman signal

of the MGITC at the single-molecule level with remote excitation

(approximately 6 mm away). The corresponding remote SERS spec-

trum is presented in Figure 8h, which clearly shows the Raman features

of malachite green isothiocyanate. If the focused laser spot deviated

slightly from the terminal of the nanowire, but the other experimental

conditions remained the same, there were no Raman signals from the

junction. This fact could exclude the influence of the background

scattering and confirm a real remote SERS. Similar experimental

results in a very similar remote system were achieved by Hutchison

and co-workers59 in the same year, where the Raman molecule was

para-aminothiophenol.

Single metal nanowire system

Because of the simple structure, numerous studies on PSPPs in single

noble nanowires have been reported since 2000 in an attempt to

understand the corresponding physical mechanism.10,73–76 Remote

SERS in a single metal nanowire system had also been investigated

in 2011. We studied the remote SERS of MGITC and its pola-

rization dependence on a single Au nanowire with a quasispherical

terminal, which was excited by a laser with a wavelength of 632.8 nm

(Figure 9).61 A sketch of this remote SERS experiment is illustrated in

Figure 9a. The red, blue and orange arrows indicate the incident laser,

PSPPs on the Au nanowire and the Raman scattering ofMGITC on the

terminal, respectively. The SEM image and the corresponding optical

image in Figure 9b and 9c indicate that a plasmonic waveguide was

successfully achieved in an individual Au nanowire with a length of

6.5 mm and a diameter of 210 nm.

The remote SERS (red line) and local SERS (black line) spectra are

shown in Figure 9d and demonstrate that the vibrational features of

the malachite green isothiocyanate molecule were clearly depicted in

both spectra, although the intensity of the remote SERS was approxi-

mately 150 times weaker than that of the local SERS. The remote SERS

was also measured with different incident polarizations, and the max-

imal Raman signal was obtained, while the incident polarization was

parallel to the nanowire. In such single nanowire remote systems, if the

polarization of the target location needs to be set to a specific direction,

it could be manipulated simply by changing the polarization of the

incident light, but a measurement is needed in advance (Figure 10).76

Because of its anti-oxide property, a much longer working time under

ambient environments could be achieved for Au plasmonic devices

compared to Ag ones.

Crossed metal nanowires system

In the single nanowire system of remote SERS, the distance of the

remote excitation is decided by the fixed length of the nanowire,

and the Raman signal achieves a much lower level of enhancement.

In nanoparticle–nanowire systems, although the hot spot at the nano-

gap formed by the nanoparticle adjacent to the nanowire was adjus-

table by varying the position of the nanoparticle along the nanowire

and thus ensured the enhancement, the distance of the nanogap to the

excitation end was not easily controlled experimentally. A crossed

metal nanowire system formed by two nanowires at different direc-

tions may overcome the disadvantages mentioned above. The nano-

wire–nanowire junction of crossed nanowires as a hot spot could be

readily positioned with a micromanipulator system, which could also

be found easily with an optical microscope. Therefore, remote SERS in

a crossed Ag nanowires system was investigated in our recent work.62

The spectra of remote SERS at a junction demonstrated that p,p-

dimercaptoazobenzene (DMAB) could be generated from 4-nitroben-

zenethiol (4NBT) induced by PSPPs, while an illumination laser with a

wavelength of 632.8 nm was focused at the terminal of the nanowire

(Figure 11). The SEM image and the corresponding optical image of
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the PSPPs are shown in Figure 11a and 11b. The enlarged images of

Figure 11a indicate that the diameters of the two crossed nanowires are

110 and 126 nm, respectively. The tiny white spot at the junction indi-

cates the coupling photons from the PSPPs while the laser was focused at

the terminal of one nanowire approximately 3.6 mm away. The obvious

vibrational features of DMAB were represented by corresponding

remote SERS spectra with different incident polarization in Figure 11d,

which demonstrated that the surface catalysis reaction had been remo-

tely induced by the PSPPs. The maximal intensity of the remote SERS

was achieved while the incident polarization was parallel to the nano-

wire, which could be understood by the larger SPP propagating effi-

ciency along the nanowire axis mentioned in the single Au nanowire

system. To exclude the possibility that Raman signals obtained at the

junctionmay have come from background scattering or the propagation

of the SPPs at the illumination terminal, the corresponding Raman

image at the peak of the Ag17 vibrational mode of the DMAB was

measured, as shown in Figure 11c. The only color area, seen at the

junction, meant that this remotely induced reaction only occurred in

the hot spot because of the enhanced EM field. The time-dependent

properties of this remote surface catalysis reaction in crossed Ag nano-

wires system was also confirmed in this work.

Metal nanowire dimer system

The nanowire dimer system includes end-to-end serially coupled

nanowire pairs. The end-to-end junction formed by the terminals of

different nanowires in this system could be the hot spot in the SERS

measurement necessary to achieve a significantly enhanced Raman

signal. Kumar’s group has conducted interesting studies in local and

remote SERS in an Ag nanowire dimer system in the last two years.63,87

In the previous reports on remote SERS, a single laser beam was

focused through a microscope to excite PSPPs in remote systems,

which could be called single-path excitation. In their reports on

remote SERS in Ag nanowire dimer systems, two laser beams were

simultaneously focused at the terminals of different nanowires, which

was called dual-path excitation, to obtain the PSPPs that were even-

tually converted into radiating free photons at the end-to-end junc-

tion (Figure 12). The experimental and theoretical results indicated

that stronger Raman signals could be obtained in dual-path excitation
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compared to that in single-path excitation at the same junction for

equal values of excitation-laser powers.

Figure 12 shows the remote SERS spectra of Nile Blue-A at a junc-

tion with single- and dual-path excitation in the same Ag nanowire

dimer system and the corresponding optical image of the PSPPs, in

which the scattered light from the junction was visible as a bright red

spot (indicated by a dotted circle). The two laser beams with wave-

lengths of 632.8 nm, whose polarization are indicated as blue arrows in

the images, were generated by a single laser beam with the help of a

polarizing beam splitter. The two nanowires in this nanowire dimer

system were 10- and 11-mm long, having an obtuse angle of 1506

between them. Figure 12a and 12b shows the experiment results with

single-path remote excitation of end 1 or 2, which were separately

illuminated with a laser power of 8 mW with polarizations along the

wires. In addition, Figure 12c illustrates the result with the dual-path

remote excitation of both ends 1 and 2, which were simultaneously

illuminated with a laser power of 4 mW, each with the same polariza-

tions. Interestingly, for the same excitation power (8mW in total), the

dual-path excitation (Figure 12c) resulted in stronger Raman signals

compared to the single-path configurations (Figure 12a and 12b),

whichwas approximately 70% larger according to the calculated integ-
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ral intensity of the 590-cm21 peak in the spectra. The local SERS was

also measured at the illuminating terminals, and the corresponding,

albeit much fewer in numbers, detectable signals demonstrated that

the collected remote SERS signals in the experiments were not Raman

scattered light that had propagated from the illuminating terminals to

the junction.

The polarization dependence of the remote SERS had also been

investigated in the nanowire dimer system with dual-path excitation.

The minimal Raman intensity was obtained, while both polarizations

of the two illuminating laser beams were perpendicular to the nano-

wire individually. The maximal Raman intensity was achieved, while

those were parallel to the nanowire individually. However, consider-

ing the interference of the two meeting PSPPs at the junction, the

signal is not always the strongest when the system is excited by two

beams from the same laser, but by controlling the phase difference of

the two beams, strong or weak signals could be obtained up to the

PSPPs from the two branches by coherent superposition or coherent

cancellation.86A similar study on dual-path excitation of remote SERS

in an Ag nanoparticle–nanowire system has been reported by the same

group.88The enhanced Raman intensity from the dual-path excitation

in these studies greatly improves the application of remote SERS.

Metal nanowire bundles system

The nanowire bundle system consists of a nanowire array produced by

electrochemical deposition in a porous anodic alumina template. The

large enhanced EM field in the tiny internanowire gaps of this system

has numerous applications for plasmonics, such as plasmonic-

enhanced water splitting.39,40,89,90Remote SERS in this system has also

been recently report by Lee andMoskovits,64 in which the Ag nanowire

bundles are treated as a probe. This probe could be attached to an

optical fiber or a catheter to collect SERS signals in liquid or biotissue

(Figure 13). The experiment setup and the structure of the probe are

illustrated schematically at the top of Figure 13. The top of the anodic

alumina film was slightly dissolved to ensure the attachment of the SERS

molecule (4-aminobenzenethiol) to the Ag nanowire (Figure 13a).

To reduce the reflection at the interface of the whole system and the

glass substrate, an index matching adhesive was necessary for the SERS

detection.

To study the diameter influence on the SERS signal, Ag bundles with

11- (Figure 13b) and 33-nm (Figure 13c) internanowire gap distances

were prepared, while the center-to-center distance between the nano-

wires remained 100 nm. The SEM images of Figure 13d and 13e indi-

cated that the length of the Ag nanowire bundles was approximately

2.2 mm (33-nm gap, 68-nm diameter) and approximately 1 mm (11-

nm gap, 88-nm diameter) individually. As shown in the sketch, the

laser was directly illuminated on the top where the molecule was

located for the local SERS (direct mode) and on the bottom (glass

substrate) for the remote SERS (remote mode). Interestingly, in con-

trast to the previous remote SERS mentioned above, the PSPPs on the

Ag nanowire were from the illuminating light as well as from the

Raman scattering of molecules in the remote mode, which meant that

the remote distance was two times the nanowire length. Largely, as a

result of electrical resistance, the PSPPs along the Ag nanowire were

attenuated exponentially as a function of the nanowire length. This
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fact was confirmed by the experimental results of the remote SERS in

systems with nanowire lengths ranging from less than 1 mm to over

3 mm. The results also indicated that a stronger Raman signal was

obtained with a larger nanowire (88-nm diameter) compared to that

with a smaller nanowire (68-nm diameter). This result was because the

narrower internanowire gap functioned as better hot spots and because

less attenuation was achieved by the larger nanowire.

Semiconductor system

Although the remote metal systems were dominant in studies of

remote SERS, there were also several studies in semiconductor sys-

tems. We demonstrated that remote SERS was successfully performed

using a dielectric waveguide in a quasi-one-dimensional (Q1D)MoO3

ribbon, not by PSPPs.49,65 Both remote SERS of 4NBT in individual

Q1DMoO3 ribbon systems (Figure 14)49 and that in Ag nanoparticle-
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Q1DMoO3 ribbon system (Figure 15)65 had been investigated, where

the former exhibited chemical enhancement (charge transfer process)

and the latter exhibited both chemical and physical (EM field)

enhancement. A sketch of the remote SERS on an individual Q1D

MoO3 ribbon is illustrated in Figure 14a. A laser with a wavelength

of 632.8 nmwas focused at one end of the Q1DMoO3 ribbon (A), and

the SERS signal was collected on the other place 12.6 mmaway (B). The

optical image in Figure 14b indicated this property of the dielectric

waveguide on the Q1D MoO3 ribbon, whose length and width were

52mmand 3mm.A similar feature of the corresponding Raman spectra

in Figure 14c confirmed that the remote SERS was executed on the

Q1D MoO3 ribbon, although its intensity was much weaker (,0.5%)

compared to that of the local SERS.

The polarization dependence on the remote SERS of 4-mercapto-

benzoic acid (4-MBA) was not observed in this experiment because

the width of the ribbon was much larger than the wavelength of the

laser. Similar results were achieved in the Ag nanoparticle-Q1DMoO3

ribbon as illustrated in Figure 15.65 The SEM image and the corres-

ponding optical image showed that the remote distance was 7.3 mm.

The laser was focused at the terminal of the Q1DMoO3 ribbon (A and

B), while the Raman signals were collected at points 4 and 6, where the

Ag nanoparticles was located as shown in the sketch in Figure 15d. The

spectra of the local and remote SERS are presented in Figure 15e and 15f.

The stronger Raman intensity at point 6 was a result of the hot spots

formed by the aggregation of Ag nanoparticles, which is shown in

Figure 15b. Both the chemical and EM field mechanism contributed

to the remote SERS in this study. The former came from the charge

transfer between the 4NBT and the MoO3 ribbon, and the latter arose

from the SPPs of the Ag nanoparticles whose energy was transferred by

the propagating dielectric waveguide on the Q1D MoO3 ribbon.

Organic system

The optical waveguide could be realized in metal and semiconductor

systems as well as in an organic system. The studies of optical wave-

guides on one-dimensional organic submicron-structures has been an

interesting topic in recent years for their potential future applications

in the areas of nano-/microscale organic photonic devices, sensors,

light-concentrating devices, waveguides, etc.91–93 A typical optical

waveguide in an organic system is illustrated in Figure 16, which is

performed on a submicrowire assembled by a 1,5-diaminoanthraqui-

none molecule.94 The substantial influence on the output light intens-

ity due to the existence of silica microspheres indicates that the

structure also plays a key role in this waveguide. Recently, remote

SERS has also been achieved on self-assembled organic submicrotubes

with various geometries (linear, C-bent, X-ben and tip-to-tip)

(Figure 17).66 The diameter and length of the tubes in this study were

0.8–1.5 mm and 7–400 mm, respectively. The low Rayleigh and scat-

tered Raman light had been collected at one terminal of the organic

tube while a laser with a different wavelength had been focused at the

distal terminal. Unlike in the remote metal system, the remote Raman

signal appeared not only at the terminal but also at the other position

along the organic tubes. This result was obtained because the

momentum mismatch mentioned in the plasmonic waveguide is not

needed in both organic and dielectric systems based on traditional

optical waveguides.

Figure 17 illustrates the remote SERS in three types of organic tubes

(I represents the linear tube, II the bent one and III the crossed tubes, as

shown in the bright field images in Figure 17a). The wavelength of the

excited laser was 532 nm and had a spot size of approximately 5 mm.

The red and blue circles represent the input and output light areas. It

was very clear that the optical waveguide had been realized in all types

of organic system in Figure 17b (bright field image) and 17c (dark field

image). Equipped with a 570-nm long-pass edge filter, the distribu-

tions of low Rayleigh and Raman photons were 3Dmapped, as shown

in Figure 17d and 17e. The image of a strong 1609-cm21 (C5C

stretch) Raman peak indicated the optical waveguide path along the

organic tubes. Dividing by the input intensity, the output intensity of

light was estimated as a function of time. A preferential interaction

between input photons and molecules, generating more Raman sig-

nals, was revealed by the experimental result and indicated that the

Raman intensity was much stronger than the low Rayleigh intensity.

The difference in the Raman intensity between the linear and bent
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tubes explains the variation of the molecular environment on tubes.

The strongRaman signal exhibited for the bent tubes was a result of the

favorable molecular orientation and defect sites caused by bending.

APPLICATIONS

As a novel technology invented in only 5 years, fascinating properties

of remote SERS have already been applied in several fields, such as

sensitive sensors, plasmon-driven surface-catalyzed reactions and

Raman optical activity.

Sensor for in vivo cells

Because of the sensitivity at the singlemolecule level and the resolution

at the nanoscale, sensitive sensors are the most frequently mentioned

application of remote SERS in previous reports.59–61,63,64 Specifically,

it has been treated as a novel, powerful sensing technology to monitor

bioreactions in vivo in cells.59,60 Although this interesting design has

not been realized yet, we introduce some exploratory work here to

provide a method of improvement. In 2012, Yang’s group67 reported

nanowire based endoscopy in single in vivo cells (Figure 18). As shown

in Figure 18a, this endoscopy consists of a SnO2 nanowire attached to

the tapered tip of an optical fiber. With the help of a three-axis micro-

manipulating system, the inserted nanowire could be the optical wave-

guide supporter at designated positions in a single in vivo cell. The

optical coupling through a nanowire could be treated as either a local

light source for a subcellular image or as a spectrometer for local

optical signal collection. Using the nanowire endoscope, the sche-

matics of the subcellular image and the local fluorescence of quantum

dots (emission, 655 nm) in an in vivo cell are presented in

Figure 18b and 18c. In the remote detection of the subcellular spec-

trum, the nanowire was located near the preloaded quantum dot,

which was excited by a blue light (442 nm). The fluorescence of the

quantum dot was then collected through the nanowire coupling to a

spectrometer. The dark field image in Figure 18d and the remote

collected fluorescence spectrum with a single peak at 655 nm in

Figure 18e confirmed the realization of remote spectrum detection

in vivo in cells.
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This result has great significance to the application of remote SERS

for in vivo cells such that we can adopt similar equipment with some

improvement so that the excitation and detection could occur simul-

taneously. Light emission at the terminal of a nanowire based on a

waveguide could be treated as the excitation source, and the Raman

spectra could also be collected by the spectrometer through the same

nanowire based on a waveguide. To achieve a greater intensity of the

spectra, the semiconductor nanowire could be replaced by the noble

metal nanowire for the electromagnetic enhancement of SPPs. We are

sure that this remote SERS device has broad application prospects for

monitoring bioreactions in vivo in cells.

Plasmon-driven surface-catalyzed reactions

Surface catalysis reactions of 4NBTor para-aminothiophenol convert-

ing to DMAB could be induced by SPPs, which are also called

plasmon-driven surface-catalyzed reactions. This reaction was first

reported theoretically in 2010 and subsequently demonstrated in a

series of studies by local SERS.95–98 Furthermore, remote SERS was

introduced into this surface catalysis reaction in our previous reports,

where the PSPPs were carriers for both catalysis and sensing.62,68,69We

demonstrated for the first time in 2011 that DMAB could be produced

by PATA at Ag nanoparticle–nanowire junctions through remote SERS

technology in the nanoparticle–nanowire system (Figure 19).69 The

SEM image and optical image of the PSPPs present in Figure 19a and 19b

indicated that the remote distance was 3.4 mm and the diameter of the

nanowire that the SPPs propagated on was 130 nm. The polarization

of the 632.8 nm incident laser was parallel to the nanowire to obtain a

maximal signal. The tiny white spot at the junction indicates light

radiation converted by PSPPs from the distal terminal of the nanowire

illuminated by the laser.

a

b c

d e

Helacell

Hela cell

Blue light

QD
QDs

Blue lig
ht

Q
D

 f
lu

o
re

s
c
e
n
c
e
 (

a
.u

.)

630 640 650 660

Wavelength (nm)

670 680 690

Figure 18 (a) A sketch of the nanowire endoscope system for single in vivo cells. (b, c) A sketch of subcellular imaging and local spectrum remotely collected in an in

vivo cell through the system. (d) The dark field image of the remote detection of quantum dot fluorescence in an in vivo cell. (e) The corresponding spectrum remotely

collected through the nanowire end scope system. Figure reproduced with permission: Ref. 67 � 2013, NPG. QD, quantum dot.

Nanowire supported plasmonic waveguide for RE-SERS
YZ Huang et al

13

doi:10.1038/lsa.2014.80 Light: Science & Applications



The measured remote SERS spectra at the junction in Figure 19d

exhibited the Raman feature of DMAB and demonstrated that the

plasmon-driven surface-catalyzed reaction did occur. The intensity

fluctuation of different incident polarizations in the spectra could be

understood by the polarization dependence of the PSPPs mentioned

above. The local SERS spectrum in Figure 19e shows that the plasmon-

driven surface-catalyzed reaction did not take place at the illuminating

terminal of the nanowire. This was because of the much weaker

enhanced EM field at the illuminating terminal compared to that at

the junction, which was essential in the plasmon-driven surface-cata-

lyzed reactions. The Raman image of the Ag17 vibrational mode of the

DMAB in Figure 19f and the corresponding optical image in Figure 19c

confirmed that this surface catalysis occurred only at the junction

through remote SERS.

Raman optical activity

The Raman optical activity (ROA) resulted in differences in the

Raman spectra excited by right- and left-circularly polarized light,

which is ultrasensitive to the chirality of the molecule structure and

therefore indicates that this activity could reveal the absolute molecular

configuration and conformation.99,100 Although this amazing phenom-

enon is widely used in biological technology, such as chiral-sensitive

vibrational spectroscopy, the weak ROA intensity becomes the bottle-

neck of applications, which is almost 1023–1025 times the intensities of

the parent Raman scattering.101 SERS was reported by several groups to

enhance ROA for the extremely enhanced EM field.102–108 We have

demonstrated that this enhancement could also be realized through

remote SERS of fmoc-glycyl-glycine-OH in an Ag nanowire system in

rapid communications (Figure 20).70 The SEM image and the optical

image of the PSPPs present in Figure 20a and 20b indicated that the

crossing angle between the nanowires was determined to be approxi-

mately 206and released light at the terminals of the nanowire. The local

and remote Raman images of fmoc-glycyl-glycine-OH at 1593 cm21,

excited by left- and right-circularly polarized light, are shown in

Figure 20c and 20d, respectively. This vibrational mode exhibited large

Raman and ROA intensities without the influence of chemical

enhancement. Due to the chiral properties of the nanowire structure

and the PSPPs, they exhibited different local and remote intensities of

the Raman imaging at 1593 cm21. It was obvious that the Raman

intensities at four terminals were much stronger while being excited by

the left-circular polarization.

To quantify the ROA, the dimensionless circular intensity differ-

ences (CIDs) at different terminals, which was defined as the result of

the difference between the Raman scattering intensities of right- and

left-circularly polarized light divided by their sum, are presented

in Figure 20e. The CIDs were significantly enhanced compared to

the intrinsic molecular powder, which was approximately 0.57%.

Furthermore, different CIDs were obtained at three remote terminals

(b, c, d). The small difference between the CID at the illuminating

terminal a and that at terminal b (the distal terminal of the same Ag

nanowire) indicated that the chirality of both the PSPPs and the

molecule did not change in an individual nanowire. However, the

larger difference between CIDs at terminals of another nanowire (c

or d) and the illuminating terminal showed that the CID could be

manipulated by the chirality of a nanostructure, such as through the

coupling angle between two Ag nanowires, the morphology of the Ag

terminals, and the distance of the coupling.6–9 In this system, the CID

increased while the crossing angle was less than 906 (terminal c) and
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Figure 19 (a) The SEM image of the Ag nanoparticle and nanowire system. (b) The bright field optical image of the plasmonic waveguide with the incident polarization

along the nanowire to obtain the maximal signal. (d) The incident polarization dependence of the remote SERS spectra in this system. (e) The local SERS spectrum

collected at the illuminating terminal. (c, f) The bright field optical image and the corresponding Raman image of the Ag17 vibrational mode of DMAB. Figure

reproduced with permission: Ref. 69 � 2011, Springer. DMAB, p,p-dimercaptoazobenzene; SEM, scanning electron microscopy; SERS, surface-enhanced

Raman scattering.
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decreased, while the crossing angle was larger than 906. These experi-

mental results demonstrated that the ROA could be remotely excited

and enhanced by chiral PSPPs, which had the potential to remotely

determine the molecular chirality or the absolute configuration or

conformation of a chiral living cell.

CONCLUSION AND OUTLOOK

Combining propagating and localized SPPs, remote SERS was first

realized experimentally in 2009. Significant progress has been made

to further support and develops this novel technology. Various remote

systems have been investigated to enlarge its application field, includ-

ing metal systems based on plasmonic waveguides, semiconductors

and organic systems based on dielectric waveguides. In remote metal

systems, such as the Ag nanoparticle–nanowire system, the large EM

field at the hot spot that is coupled to the PSPPs could effectively

enhance the intensity of remote SERS to achieve singlemolecule levels.

This useful property of remote SERS presents a new approach to

sensing surface-enhanced optical signals in special environments

where common optical sensing technology is unsuitable, such as

Raman detection in vivo in cells.

In the Ag nanowire system, the chirality of the PSPPs on the Ag

nanowire in remote SERS, which could be affected by the coupling

angle between two Ag nanowires, the morphology of the Ag terminals,

the distance of the coupling, etc., makes the modulation of enhanced

ROA of chiral molecules a reality. In an Ag crossed nanowire system,

the enhanced EM field at a hot spot in the remote SERS could improve

the surface catalysis reaction of converting 4NBT or para-aminothio-

phenol to DMAB, which introduces a new way to synthesis molecules

at the nanoscale. Using an optical waveguide in a Q1D MoO3 ribbon

dielectric and in organic submicrotubes, remote SERS has been

achieved in semiconductor and organic systems, which demonstrates

another method of realizing remote SERS without

plasmonic waveguides. Therefore, it is expected that further studies

on remote SERS could be performed in various remote systems that

consist of the materials mentioned above as well as other suitable ones,

such as graphene, ZnO and Si.
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