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Abstract: Infectious diseases caused by bacteria represent a global threat to human health. However,
due to the abuse of antibiotics, drug-resistant bacteria have evolved rapidly and led to the failure
of antibiotics treatment. Alternative antimicrobial strategies different to traditional antibiotics are
urgently needed. Enzyme-based antibacterials (Enzybiotics) have gradually attracted interest owing
to their advantages including high specificity, rapid mode-of-action, no resistance development, etc.
However, due to their low stability, potential immunogenicity, and high cost of natural enzymes,
enzybiotics have limitations in practical antibacterial therapy. In recent years, many nanomaterials
with enzyme-like activities (Nanozymes) have been discovered as a new generation of artificial
enzymes and perform catalytic antibacterial effects against bacterial resistance. To highlight the
progress in this field of nanozyme-based antibacterials (Nanozybiotics), this review discussed the
antibacterial mechanism of action of nanozybiotics with a comparison with enzybiotics. We propose
that nanozybiotics may bear promising applications in antibacterial therapy, due to their high stability,
rapid bacterial killing, biofilm elimination, and low cost.

Keywords: bacterial resistance; enzybiotics; nanozymes; nanozybiotics; biofilm

1. Introduction

The diseases caused by bacterial infection represent a serious threat to human health.
Antibiotics, as common chemical reagents against bacteria, have been widely used in
human patients. However, the resistance to antibiotics is a growing and serious problem,
with bacterial infection returning as a potential global threat. According to the Centers for
Disease Control and Prevention (CDC), drug-resistant bacteria causes nearly 23,000 deaths
per year on average in the United States [1]. The emergence of bacterial resistance is the
result of its own multiple drug-resistant mechanisms, which greatly increases the diffi-
culty of providing effective antibacterials and reduces the therapeutic effect of antibiotics.
Therefore, it is necessary to develop new antimicrobial strategies while avoiding bacterial
resistance.

In recent years, researchers have been devoted to discovering and developing new
drug targets and antimicrobial methods. Common antimicrobial strategies include antimi-
crobial peptides, bacteriophage therapy, antimicrobial enzymes and so on. Antimicrobial
peptides (AMPs) are generally polycationic amphiphilic peptides with less than 50 amino
acids found in a wide variety of life forms [2]. The cationic AMPs display bactericidal action
by disrupting the bacterial anionic cell membrane and by binding to intercellular targets,
causing bacteria death [3]. Though AMPs are active against a broad spectrum of bacteria,
the clinical translation of AMPs is limited by high manufacturing costs, unfavorable phar-
macokinetics and cytotoxicity in vivo [4,5]. Bacteriophages (phages) are viruses that infect
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bacteria and propagate in their bacterial host, resulting in cell lysis. Some phages also pro-
duce depolymerases that hydrolyze biofilm extracellular polymers. Phage therapy shows
great efficiency in lysing specific bacteria and degrading the biofilm matrix [6]. However,
treatment of bacterial infections with phages bears some disadvantages, including narrow
host range, bacterial resistance to phages and inactivation by the immune system [6,7].
Moreover, the phage cocktails strategy is limited by complicated procedures and strong
individual specificity [8].

However, enzymatic therapy can overcome almost all obstacles mentioned above.
Enzymatic therapy is a treatment that uses materials with catalytic activity to catalyze
critical biochemical reactions, fulfilling therapeutic effects in vivo to treat various compli-
cations [9]. Enzymatic methods mainly include the application of natural enzyme-based
antibacterials. Some natural enzymes, such as lysozyme or deoxyribonuclease, can hy-
drolyze the cell structure of bacteria and thus exhibit excellent antibacterial performance
as enzymes-based antibacterials (Enzybiotics). They are highly specific, effective, and
fast-acting. However, the proteinaceous character of enzybiotics results in low stability
and potential immunogenicity, which limits their practical applications [10]. To overcome
the limitations of proteinaceous enzymes, artificial enzyme mimics may represent a better
choice. Recently, nanozymes, a kind of nanomaterials or nanostructures with enzyme-like
activity, have attracted much attention as a new generation of enzyme mimics [11]. It has
been reported that nanozymes with peroxidase-like or oxidase-like activity could produce
a great number of reactive oxygen species (ROS) to fight bacteria [12–15]. Furthermore,
nanozymes with DNase-like activity also prevent spread of drug resistance by degrada-
tion of bacterial drug resistance genes [16,17]. Typically, compared with natural enzymes,
nanozymes show the characteristics of being more stable, economical, and practical [11].
Therefore, nanozyme-based antibacterial alternatives (Nanozybiotics) may have greater
application potential in the antibacterial field.

Herein, to understand and develop antibacterial strategies, we review the common
mechanisms of bacterial drug resistance. Subsequently, the mechanisms and applications
of enzybiotics and nanozybiotics as antibacterial agents, classified according to enzymatic
activity, are summarized, including the combined strategies of nanozybiotics through
enzymatic activities and specific physicochemical properties (e.g., photothermic or pho-
todynamic therapy). We hope that this review can provide ideas for the development
of a practical enzymatic therapy to combat the challenges of drug resistance in bacterial
infections.

2. Non-Antibiotic Strategy Is Needed to Fight against Rapid Evolution of Bacterial
Resistance

Antibiotics are considered one of the greatest achievements in the history of medicine,
laying the foundation for the prevention and treatment of bacterial infection [18]. How-
ever, bacteria have also developed a variety of drug-resistant mechanisms to respond to
them [19,20] (Figure 1). In order to maintain long-term effective antibacterial drugs, pre-
venting the formation of super resistant bacteria, broadening the development avenues of
antibacterial drugs, and a profound analysis of bacteria resistant mechanisms is necessary.
Thus, here we briefly introduce the main mechanisms of bacterial drug resistance, including
genetic, biochemical, and metabolic mechanisms.
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Figure 1. Mechanisms of bacterial resistance. The figure shows a brief overview of intrinsic resistance
mechanisms. Firstly, bacteria acquire drug-resistance through gene mutation at the genetic level.
The mutated gene can also spread through vertical and horizontal transmission (herein, plasmid
for example). Besides, biochemical mechanisms are a more common style of antidrug upon target
change, efflux or inactivation. Moreover, the formation of biofilm prevents bacteria from reaching the
antibiotic and enhances drug resistance.

Genetic mechanisms enact drug resistance through gene mutations leading to a change
of drug target in bacteria which can survive treatment with antibiotics [19]. Moreover,
other strain bacteria can acquire these drug-resistant genes through vertical transmission
of chromosomes, horizontal transmission of plasmids or transposons or acquisition of
exogenous drug-resistant genes by integrons [21]. Biochemical mechanisms are a more
common style of antidrug. It mainly resists antibiotic treatment by target site mutation,
antibiotic inactivation, impaired permeability of antibiotics, and efflux of antibiotics [22].
In addition, bacteria within a biofilm are a great challenge in the treatment of bacterial
infection. Biofilms are bacterial self-generated protective communities, with an extracellular
polymeric substance (EPS) matrix mainly composed of extracellular bacterial DNA (eDNA),
exopolysaccharides, proteins and enzymes [23], and protects bacteria from attack by extra-
neous antibiotics. Besides, with the in-depth research on the mechanism of bacterial drug
resistance, it has been noticed that the change in bacterial metabolic pathways could also
affect susceptibility to antibiotics. To overcome drug resistance of bacteria, non-antibiotic
strategies are needed to avoid the above issues.

3. Enzybiotics Are Catalytic Antibacterials Based on Enzymes against Drug-Resistant
Bacteria

The overuse and misuse of traditional antibiotics have led to the emergence of drug
resistance worldwide. Hitherto, there is no current development of new antibiotic classes
by pharmaceutical companies. Thus, it is urgent to develop non-antibiotic alternatives to
fight against drug-resistant bacteria. Recently, enzybiotics represent a promising class of
antibiotics alternatives. Enzybiotics are derived from natural enzymes with antibacterial
performance, usually working by degrading the bacterial cell structure. They are character-
ized by a rapid and unique mode of action, a high specificity of killing pathogens, and a
low probability for developing new bacterial resistance [10].
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Enzybiotics with antibacterial effects are mainly classified into three categories: pepti-
doglycan hydrolases, proteases, and nuclease (antibacterial mechanisms shown in Figure 2).
Firstly, peptidoglycan hydrolase is a general term for many kinds of enzymes which cat-
alyze the hydrolysis of peptidoglycan, a major component of Gram-positive bacterial
cell wall, and can be obtained from various sources, for example, bacteriophages (lysins
or endolysins) and bacteria (bacteriocins and autolysins) [24]. The modular structure of
lysins contains an N-terminal enzymatically active domain (EAD) connected via a flexible
linker sequence to a C-terminal cell wall binding domain (CBD). The EAD is evolutionarily
conserved and responsible for the peptidoglycan lytic activity of the enzyme [25]. As a
bacteriocin whose antibacterial activity has been studied most thoroughly both in vitro
and in vivo, lysostaphin eradicates planktonic and quiescent bacteria as well as inhibit-
ing Staphylococcus aureus (S. aureus) growth in the biofilms as a result of hydrolyzing the
penta-glycine cross bridges of S. aureus peptidoglycan. In another words, lysostaphin kills
both dividing, non-dividing and encapsulated and unencapsulated S. aureus strains [26,27].
In addition, lysozymes are also an example of peptidoglycan hydrolase-based enzybi-
otics from hen egg and human. Though lysozymes exert poor killing effects on Gram-
negative bacteria due to the thin layer of peptidoglycan protected by outer lipid membranes
(Figure 2a) [28,29], additional modification can improve it [30,31]. Secondly, proteases are
a kind of enzymes present in all forms of life, and degrade proteins by catalyzing the
hydrolytic cleavage of the peptide chain. The major function of proteases in living organ-
isms is the cleavage of proteins resulting in the degradation of damaged, misfolded, and
potentially harmful proteins and therefore providing the cell with amino acids essential for
the synthesis of new proteins. Recently, the pharmaceutical application of proteases was
concerned. The purified protease from bacteria could be used for various purposes such
as antibacterial activity against clinical pathogens as well as degrading slime and biofilms
to limit bacteria. One of the most widely used proteases is subtilisin which is derived
from Bacillus species. Subtilisin is a non-specific serine protease that provides the preferred
cleavage on the carboxyl side of hydrophobic amino acid residues [32]. In addition, several
plant-derived proteases possess antibacterial activity. For example, papain and bromelain
showed bactericidal and effective inhibitory activity against a variety of pathogens [33,34].
Thirdly, nuclease, as the name suggests, are proteins that exhibit the enzymatic activity of
degrading nucleic acids. They are very common and play an important role in biological
activities. Moreover, the potential application of nuclease has also been considered in
the antibacterial and antibiofilm fields. For example, Eller et al. devised a strategy that
showed combination of RNase 1 and a secretory peptide, LL-37, displayed extraordinary
antimicrobial activity [35]. Banu et al. investigated the anti-biofilm effect of marine bacterial
DNase (MBD) by targeting the eDNA present in the biofilms of Candida spp. [36].



Antibiotics 2022, 11, 390 5 of 21Antibiotics 2022, 11, x FOR PEER REVIEW 5 of 23 
 

 
Figure 2. Schematic of the antibacterial mechanism of several typical enzybiotics. (a) Schematic of 
the action of the lysozyme on Gram-positive and Gram-negative bacteria. (b) Proteinase can de-
grade proteins by hydrolyzing peptide bonds. (c) Nuclease mainly consists of DNase and RNase, 
which degrade DNA and RNA, respectively. This figure uses DNase hydrolysis of phosphodiester 
bound as an example. The black arrow is the hydrolysis site of DNase and the red arrow is the 
hydrolysis site of RNase (e.g., RNase A family). 

Enzybiotics show highly antibacterial properties owing to its rapid and unique mode 
of action and specificity of killing pathogens. Considering the working features of enzybi-
otics that destroy bacterial cell structures, enzybiotics not only kill metabolically active 
bacteria, but also those in a dormant state, even when embedded in biofilm (Figure 3). 
Moreover, this feature also ensures enzybiotics bear a low probability to develop bacterial 
resistance. These advantages indicate that enzybiotics are very ideal antibacterial agents. 
However, enzybiotics have a short half-life and raise neutralizing antibodies in vivo be-
cause of their proteinaceous nature, which seriously limits their clinical transformation. 
Moreover, the widespread application of enzybiotics in industrial processes is considered 
restricted due to poor stability of enzymes outside optimum operating conditions (pH, 
temperature, salts, surfactants) and high loading requirements [37]. Although immobi-
lized enzymes and additional modification can improve the stability and antibacterial ef-
fect of enzybiotics to a certain extent [30,31,37,38], it increases the complexity and cost of 
preparation. Therefore, it might boost the catalytic therapy in antibacterial applications if 
the above problems are solved.  

Figure 2. Schematic of the antibacterial mechanism of several typical enzybiotics. (a) Schematic of
the action of the lysozyme on Gram-positive and Gram-negative bacteria. (b) Proteinase can degrade
proteins by hydrolyzing peptide bonds. (c) Nuclease mainly consists of DNase and RNase, which
degrade DNA and RNA, respectively. This figure uses DNase hydrolysis of phosphodiester bound as
an example. The black arrow is the hydrolysis site of DNase and the red arrow is the hydrolysis site
of RNase (e.g., RNase A family).

Enzybiotics show highly antibacterial properties owing to its rapid and unique mode of
action and specificity of killing pathogens. Considering the working features of enzybiotics
that destroy bacterial cell structures, enzybiotics not only kill metabolically active bacteria,
but also those in a dormant state, even when embedded in biofilm (Figure 3). Moreover,
this feature also ensures enzybiotics bear a low probability to develop bacterial resistance.
These advantages indicate that enzybiotics are very ideal antibacterial agents. However,
enzybiotics have a short half-life and raise neutralizing antibodies in vivo because of their
proteinaceous nature, which seriously limits their clinical transformation. Moreover, the
widespread application of enzybiotics in industrial processes is considered restricted due
to poor stability of enzymes outside optimum operating conditions (pH, temperature, salts,
surfactants) and high loading requirements [37]. Although immobilized enzymes and
additional modification can improve the stability and antibacterial effect of enzybiotics to a
certain extent [30,31,37,38], it increases the complexity and cost of preparation. Therefore,
it might boost the catalytic therapy in antibacterial applications if the above problems are
solved.
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Figure 3. Mechanisms of enzybiotics eradicating bacterial biofilm. The biofilm consists of a combina-
tion of glycoproteins, carbohydrates, lipids, eDNA, and bacterial cell. When treating with enzybiotics,
different enzymes bind to their respective targets for degradation. In this figure, lysins, proteases and
nucleases bind to polysaccharides, proteins and eDNA in the biofilm and degrade them, respectively,
thus promoting the disintegration of the biofilm. Besides, lysins also decompose the peptidoglycan,
one of the important components of bacteria cell walls, to kill bacteria, especially for Gram-positive
species. The peptidoglycan of Gram-negative bacteria is difficult to degrade due to the protection of
the outer membrane, while modified lysins may take effect.

4. Nanozybiotics Are Catalytic Antibacterials Based on Nanozymes with Enzyme-like
Activities

Nanozymes are a new generation of artificial enzymes which have unique physic-
ochemical properties and enzyme-like catalytic activity. They catalyze the substrate of
natural enzymes under physiological conditions and follow similar enzymatic reaction
kinetics [39–42]. The enzyme-like catalytic activity comes from the intrinsic nano-structure
of the nanozyme itself, without the need to introduce additional catalytic functional groups
or natural enzymes.

Nanozyme was first reported in 2007 by Gao et al. [43] who found that the ferromagnetic–
oxide nanoparticles (Fe3O4 MNPs) had an intrinsic peroxidase-like activity, could catalyze
the peroxidase substrate 3,3,5,5-tetramethylbenzidine (TMB), o-phenylenediamine (OPD)
and di-azo-aminobenzene (DAB), systematically studied from the perspective of enzymol-
ogy characteristics of nanomaterials, established the response measurement standards, and
used it as a substitute for natural peroxidase in immunoassay. Compared with natural
enzymes and other artificial enzymes, nanozymes have better stability, lower cost and
adjustable catalytic activity [44,45]. Taking inspiration from natural enzymes–enzybiotics
as antibacterial reagents [46,47], we propose use of nanozybiotics to term nanozymes with
antibacterial activity. Compared to enzybiotics, nanozybiotics have a broad spectrum
and high durability, which is superior for tackling the challenge of antibiotic resistance
of bacteria. Moreover, a variety of nanozybiotics have been developed for antibacterial
application (partly summarized in Table 1). Therefore, in this section, the antibacterial
mechanisms and applications of nanozybiotics based on nanozymes modeled by multiple
enzyme-like activities are systematically introduced.
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Table 1. An overview of nanozybiotics as antibacterials.

Nanozybiotics Enzyme Like Activity Pathogens Ref

PMCS Peroxidase Pseudomonas aeruginosa (P. aeruginosa) [48]
2D Cu-TCPP(Fe)

nanosheets Peroxidase E. coli, S. aureus [49]
biohybrid CARs Peroxidase Streptococcus mutans UA159 [50]
MoS2-hydrogel Peroxidase E. coli, S. aureus [51]

AA@Ru@HA-MoS2 Peroxidase MDR S. aureus, P. aeruginosa [52]
SAF NCs Peroxidase E. coli, S. aureus [53]

hydrogel-based artificial
enzyme Peroxidase Drug-resistant (DR) S. aureus, DR-E.

coli [54]

IONzymes Peroxidase Streptococcus mutans (S. mutans) [55]
Fe3C/N-C Peroxidase E. coli, S. aureus [56]

N-MoS2, N-WS2 NSs Peroxidase
ampicillin resistant Escherichia coli
(AmprE. coli), endospore-forming

Bacillus subtilis (B. subtilis)
[57]

N-SCSs Peroxidase MDR S. aureus, E. coli [58]
UsAuNPs/MOFs Peroxidase E. coli, S. aureus [59]

FNPs Peroxidase Helicobacter pylori (H. pylori) [60]
CuMnO2 NFs Peroxidase E. coli, S. aureus [61]

AIronNPs Peroxidase E. coli, S. aureus [62]
NH2-MIL-88B(Fe)-Ag Peroxidase E. coli, S. aureus [63]

IrNPs Peroxidase E. coli [64]
CDs@PtNPs Peroxidase MRSA [65]

Fe3O4@MoS2-Ag Peroxidase
E. coli, S. aureus, Bacillus subtilis (B.
subtili), MRSA, Candida albicans (C.

albicans)
[66]

Au-BNNs, Ag-BNNs Peroxidase E. coli, S. aureus [67]
oxygenated

nanodiamonds (O-NDs) Peroxidase
Fusobacterium nucleatum (F.

nucleatum), Porphyromonas gingivalis
(P. gingivalis), S. sanguis

[68]

Dex-IONP Peroxidase S. mutans [69]
MoO3−x NDs Peroxidase MRSA, ESBL-producing E.coli [70]

MTex Peroxidase E. coli, S. aureus [71]
Au/MnFe2O4 Peroxidase S. aureus, B. subtilis, E. faecalis, S.

pyogenes [72]
AuNPTs Peroxidase MRSA, E. coli, S. aureus [73]

rough C–Fe3O4 Peroxidase MRSA, E. coli, S. aureus [12]
Cu-PBG Peroxidase E. coli, S. aureus [74]

PdFe/GDY Peroxidase E. coli, S. aureus [75]
ultrasmall TA-Ag

nanozyme Peroxidase E. coli, Staphylococcus epidermidis (S.
epidermidis) [76]

Cu-SA@BCNW/PNI Peroxidase E. coli, S. aureus [77]
PEG@Zn/Pt–CN Peroxidase E. coli, S. aureus [78]
Fe-N-C SAzyme Peroxidase E. coli, S. aureus [79]
SA-Pt/g-C3N4-K Peroxidase E. coli, S. aureus, Bacillus cereus, P.

aeruginosa [80]
PDA/Fe3O4 Peroxidase E. coli, S. aureus [81]

CuFeSe2 Peroxidase S. aureus [82]
pFe3O4@GOx Peroxidase E. coli, S. aureus [83]
Cu SASs/NPC Peroxidase E. coli, MRSA [84]

QCS-RuO2@RBT Peroxidase P. aeruginosa [85]
FerIONP Peroxidase S. mutans [86]

w-SiO2/CuO Peroxidase E. coli [87]
PdCu-Urchin Peroxidase E. coli, S. aureus [88]

Au@Cu2−xS NPs Peroxidase E. faecalis, Fusobacterium nucleus [89]
Cu2WS4 nanocrystals

(CWS NCs) Peroxidase, oxidase MDR S. aureus, E. coli [90]

3CoV-400 Peroxidase, oxidase
E. coli, Bacillus algicola, Staphylococcus

sciuri (S. sciuri), Vibrio harveyi,
Pseudoalteromonas

[91]

VOxNDs Peroxidase, oxidase E. coli, S. aureus [92]
GO NSs, CuS/GO NC Peroxidase, oxidase E. coli, S. aureus, MRSA [93]

Co4S3/Co3O4 NTs Peroxidase, oxidase E. coli, S. sciuri [94]
Cu2MoS4 NPs Peroxidase, oxidase MDR E. coli, MDR S. aureus [95]

WS2QDs Peroxidase, oxidase
Mu50 (a vancomycin-intermediate

Staphylococcus aureus reference
strain), E.coli

[96]

Pd@NPs Peroxidase, oxidase S. aureus, P. aeruginosa [97]
NiCo2O4-Au Peroxidase, oxidase E. coli, S. aureus [98]

CS-Cu-GA NCs Peroxidase, oxidase E. coli, S. aureus [99]
MSPLNP-Au-CB Peroxidase, oxidase Helicobacter pylori (H. pylori), MRSA [100]

CSG-MX Peroxidase, oxidase E. coli, S. aureus [13]
Cu2−xS Peroxidase, oxidase AmprE. coli 1, S. aureus [101]

CuO NPs/AA Peroxidase, oxidase E. coli, S. aureus [102]
HvCuO@GOx Peroxidase, catalase E. coli, S. aureus, E. coli with

streptomycin resistance (SR-E. coli) [103]
FePN SAzyme Peroxidase, catalase E. coli, S. aureus [104]

Au-Au/IrO2@Cu
(PABA)

Peroxidase, glucose oxidase
(GOx) E. coli, S. aureus [105]
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Table 1. Cont.

Nanozybiotics Enzyme Like Activity Pathogens Ref

Ti3C2 MXene/MoS2
(MM) 2D

bio-heterojunctions

Peroxidase, glutathione
oxidase E. coli, S. aureus [106]

MoS2/rGO VHS Peroxidase, oxidase, catalase E. coli, S. aureus [107]

Cu-HCSs, CuO-HCSs Peroxidase, catalase,
superoxide dismutase

Cu-HCSs: Gram-positive and
negative bacteria (S. aureus, S.

typhimurium, E. coli, P. aeruginosa)
CuO-HCSs: Gram-negative bacteria
(S. typhimurium, E. coli, P. aeruginosa)

[108]

CNT@MoS2 NSs Peroxidase, superoxide,
catalase E. coli, S. aureus [109]

MoS2-PDA nanozyme
composite hydrogel

(MPH)

Peroxidase, catalase,
superoxide dismutase E. coli, S. aureus [15]

Tb4O7 NPs Oxidase S. aureus, E. coli [110]
Pd@Ir octahedra (or

cubes) Oxidase E. coli, S. aureus, Bacillus subtilis,
Salmonella enteritidis [111]

Co4S3/Co(OH)2 HNTs Oxidase E. coli, P. aeruginosa, S. sciuri, Bacillus [112]
Mn/Ni(OH)x LDHs Oxidase E. coli, S. aureus [113]

SPB NCPs Oxidase S. aureus, P. aeruginosa [114]
AgPd0.38 Oxidase S. aureus, B. subtilis, E. coli, P.

aeruginosa, MRSA [115]
PtCo@Graphene Oxidase H. pylori [116]
MoS2/TiO2 NFs Oxidase E. coli, S. aureus [117]

Cu3/ND@G Oxidase E. coli [14]
Pd@Pt-T790 Catalase MRSA [118]

DMAE DNase S. aureus [16]
PIL-Ce DNase E. coli, S. aureus, MRSA [17]

CeO2−x nanorods Haloperoxidase E. coli [119]
Ce1−xBixO2−δ Haloperoxidase P. aeruginosa, Phaeobacter gallaeciensis [120]

Cu-HCSs Nuclease/protease MRSA [121]
1 Ampr E. coli: Ampicillin-resistant E. coli.

4.1. Peroxidase-like Nanozymes

Peroxidase (POD), such as horseradish peroxidase (HRP), is a kind of hemosiderin
enzyme that catalyzes the decomposition of H2O2. It has many applications in wastewater
treatment, environmental science, biosensing and organic synthesis. Since the peroxidase-
like activity of Fe3O4 MNPs was first reported in 2007, other nanozymes with such activity
have been discovered successively (Table 1), and the application of nanozymes has also
been extended to many important fields including antibacterial treatment.

Peroxidases catalyze the decomposition of H2O2 and produce free hydroxyl radicals
(·OH) with strong oxidation. Hydroxyl radicals are one of the most destructive reactive oxy-
gen species (ROS). It not only decomposes nucleic acid, protein, polysaccharide, and other
bacterial biofilm components, but also destroys the structural integrity of bacteria, leading
to their death (Figure 4a,c) [122]. Typically, high concentrations of H2O2 (3% or more) are re-
quired for sterilization, but higher concentrations of H2O2 may cause cytotoxicity to normal
physiological tissues [123]. In contrast, lower concentration of H2O2 (0.5% or less) is needed
in the presence of the nanozyme to reach the great antibacterial efficacy [122,124]. So far,
many nanozymes with peroxidase-like activity have been regarded as promising antibacte-
rial nanozybiotics [59,110,125–127]. For example, iron–oxide nanozymes (IONzymes) were
demonstrated to suppress the survival of intracellular Salmonella Enteritidis (S. Enteritidis)
via its intrinsic peroxidase-like activity [125].
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Figure 4. Schematic illustration of the catalytic reaction and antibacterial (and antibiofilm) mech-
anism of nanozybiotics based on nanozymes with peroxidase- or oxidase-like enzyme activities.
(a) Nanozymes with peroxidase-like activity catalyze the reduction of H2O2 and produce free ·OH.
(b) Nanozymes with oxidase-like activity catalyze O2 to 1O2, even single oxygen atoms. Both ·OH and
1O2 are strong oxidant, which oxidize the substrate (S) to ox-substrate (Sox), for example, membrane
lipid. (c) Nanozymes with peroxidase- or oxidase-like activity destroy the membrane structure or
degrade the biofilm matrix to kill bacteria.

Moreover, Sun et al. showed that graphene quantum dots (GQDs) with peroxidase-like
activity, in the presence of low concentration of H2O2, could produce a large amount of ·OH
and effectively kill Gram-negative E. coli and Gram-positive S. aureus. Accordingly, GQDs-
Band-Aids were designed to prevent wound infection and promote wound healing [128]. Li
et al. prepared one efficient peroxidase-like Fe3C/N-doped graphitic carbon nanomaterial
(Fe3C/N-C), which could enable the decomposition of H2O2 to ·OH, resulting in higher
broad-spectrum antimicrobial activity than H2O2 alone. Compared with the HRP, Fe3C/N-
C exhibited excellent catalytic activity in a wide range of pH (1.0–11.0) and temperature
(25–70 ◦C) [56]. In this model, the Fe3C/N-C nanozyme endowed efficient antibacterial
treatment (E. coli and S. aureusas) of wound infection in vivo even in the presence of a much
lower-concentration of H2O2 (1.0 mM). Thus, accelerated wound healing in vivo can be
achieved without using high concentrations of H2O2.
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The antibacterial capacity of nanozybiotics is closely associated with their composition
and nanostructure by adjusting enzyme mimic abilities [129]. Xi et al. [108] designed
two types of copper/carbon nanozymes including two Cu states (Cu0 and Cu2+). They
found that the copper/carbon nanozymes displayed multi-enzyme activities and their
antibacterial mechanisms depended on Cu states. Hollow carbon spheres (HCSs) modified
with CuO (CuO-HCSs) nanozymes would induce Gram-negative bacteria death (E. coli
and P. aeruginosa) when releasing Cu2+. While Cu-HCSs nanozymes killing both Gram-
positive (Salmonella typhimurium, S. typhimurium) and Gram-negative bacteria (E. coli and P.
aeruginosa) were based on POD-like activity which is responsible for ROS generation.

Given the acidic microenvironment in bacterial accumulation due to large amounts of
organic acid produced during anaerobic fermentation, Yu et al. [130] developed a novel
acid-responsive ROS generator for biofilm removal by fabricating Zeolitic imidazolate
framework-8 (ZIF-8) co-encapsulating the antibacterial ligand (lysine carbon dots, Lys-
CDs) and targeted drug (folic acid, FA). The synthesized ZIF-8@Lys-CD@FA nanozybiotics
showed peroxidase-like activity in an acid environment, and produced extremely active
hydroxyl radicals to effectively destroy mature biofilms, resulting in the significantly
improved bacteriostatic rate against E. coli and S. aureus. In addition, in the acidic environ-
ments, S. aureus and E. coli were more sensitive to ZIF-8@Lys-CD@FA with MIC values at
32 µg mL−1 and 62.5 µg mL−1 at pH 5.5, and 62.5 µg mL−1 and 125 µg mL−1 at pH 6.5,
respectively. Moreover, the pH-dependent catalytic activity of nanozybiotics may limit
their antimicrobial application under neutral pH. Therefore, the enhanced catalysis ability
of citrate modified with Fe3O4 NPs has been developed by using ATP as a synergist [131].
In this work, Fe3O4 NPs exhibited superior antibacterial performance against E. coli and
Bacillus subtilis (B. subtilis, Gram-positive) in the presence of H2O2 under a neutral pH
environment with the assistance of ATP.

Recently, catalytic nanozybiotics were shown to disrupt biofilms but lacked a stabi-
lizing coating required for clinical applications. Dextran-coated iron–oxide nanozymes
(Dex-NZM) [132] displayed strong peroxidase-like activity at acidic pH values, targeted
biofilms with high specificity, and prevented severe caries without impacting surrounding
oral tissues in vivo. The Km values for H2O2 were found to be 27 µM and 2.5 mM for Dex-
NZM and HRP, respectively. Besides, Dex-NZM/H2O2 treatment significantly reduced the
onset and severity of caries lesions (vs control or either Dex-NZM or H2O2 alone) without
adverse effects on gingival tissues or oral microbiota diversity.

4.2. Oxidase-like Nanozymes

Oxidase is an important enzyme that catalyzes redox reaction of oxygen. In oxidase-
catalyzed reactions, the molecular oxygen (O2) is oxidized and converted to H2O or H2O2
(in certain cases to superoxide radicals, O2

−) (Figure 4b) [40]. The active free radicals
produced simultaneously in the catalytic process exert antibacterial activity. Due to its
strong reactivity, H2O2 directly oxidizes the outer structure of bacteria, destroys the perme-
ability barrier of bacteria, and leads to an imbalance of the electrochemical balance between
internal and external substances of bacteria, resulting in bacterial death [47]. Similarly, O2

−

can react directly with nucleic acids, proteins, etc., causing bacterial death.
In particular, the oxidase- and peroxidase-like activities have shown to be major

mechanisms of the antimicrobial efficiency for noble-metal-based nanozymes [133]. For
example, Tao et al. [133] found firstly AuNPs as the oxidase mimic and then constructed the
AuNPs supported on bifunctionalized mesoporous silica (MSN) (MSN-AuNPs) to achieve
dual enzyme activities similar to those of peroxidase and oxidase. They evaluated the
antibacterial potency and found that MSN-AuNPs not only exhibited striking antibacterial
properties against both Gram-negative (E. coli) and Gram-positive (S. aureus) bacteria, but
also degraded the existing biofilm and prevented formation of new biofilm efficiently.

In addition, Ge Fang and co-workers found that palladium (Pd) nanocrystals exhibit
facet-dependent oxidase- and peroxidase-like activities that endow them with excellent
antibacterial properties [134]. In this work, Pd cubes with higher activities killed Gram-
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positive drug-resistant Staphylococcus aureus (S. aureus) and Enterococcus faecalis, while
Pd octahedrons displaying stronger penetration into bacterial membranes exerted higher
antibacterial activity for Gram-negative Escherichia coli (E. coli) and Salmonella enteritidis.
Pd-based nanostructures also exhibit excellent oxidase-like activity [134]. It is reported
that Pd@Ir octahedra demonstrates powerful bactericidal activity against both E. coli
and S. aureus due to significant enhancement of oxidation byproducts [111]. While the
application of noble-metals is limited due to high prices, a study reported that terbium
oxide nanoparticles (Tb4O7 NPs) with oxidase-like activity at acidic pH values can be easily
synthesized with low cost [110]. Moreover, Tb4O7 NPs were able to quickly oxidize a series
of organic substrates and produce hydroxyl radicals. Not surprisingly, Tb4O7 NPs exhibited
potent antimicrobial activity against both S. aureus and E. coli. When the concentration of
Tb4O7 NPs increased to 100 µg/mL, nearly 90% of the S. aureus were killed. The application
of the antibacterial activities of Tb4O7 NPs also were validated in a wound infection mouse
model.

Recently, He et al. [135] synthesized bamboolike nitrogen-doped carbon nanotubes
encapsulating cobalt nanoparticles (N-CNTs@Co) which showed 12.1 times higher oxidase-
mimicking activity than that of the most reported CeO2. They demonstrated that N-
CNTs@Co exerted a great antibacterial effect against Gram-positive (S. aureus) and Gram-
negative (E. coli) in vitro and in vivo by catalyzing oxygen to produce a large number of
ROS under acidic condition. Notably, during antibacterial experiments (20 days), neither S.
aureus nor E. coli developed resistance to N-CNTs@Co.

All of the above indicate that nanozybiotics with oxidase-like activity bear great
development potential in the field of antibacterial application. Moreover, given that oxidase
can generate hydrogen peroxide, which is the substrate of peroxidase, it also suggested
that the enzyme cascade reaction may be another choice for efficient antibacterial activity
for nanozymes with multiple activities.

4.3. Deoxyribonuclease-like Nanozymes

Drug-resistant genes from dead bacteria can remain in the environment and spread to
other microbes via horizontal gene transfer. Drug-resistant genes are essentially DNA, a
complementary double strand composed of deoxynucleotide units, which are connected
by 3′,5′-phosphodiester bonds. As the carrier of life genetic information, DNA is highly
stable with a half-life of 521 years in the environment [136–138]. Even if ultraviolet, chlo-
rine, ozone, and other physical methods are used, the destructive effect of DNA is not
ideal [139–141]. However, DNA can be decomposed by natural nucleases, such as de-
oxyribonuclease (DNase), which acts on 3′,5′-phosphodiester bond (Figure 2c). Therefore,
development of antimicrobial materials with the ability to degrade DNA can prevent the
dissemination of released drug-resistant genes from dead bacteria (Figure 5a). In addition,
considering that eDNA is an important part of biofilm, nanozybiotics based on nanozymes
with DNase-like activity also demonstrate an antibiofilm effect (Figure 5b). Recently, artifi-
cial nucleases have been developed to mimic the hydrolytic cleavage of phosphodiester
bond by taking advantage of multinuclear metal complexes, including transition metals
and rare earth elements such as Cu(II), Cr(III), Zn(II), Ce(IV) [142–146]. Among them,
cerium complex has attracted considerable attention due to its high catalytic efficiency and
good biocompatibility [16,147].
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Zhaowei Chen and co-workers designed a DNase-mimetic artificial enzyme (DMAE)
for anti-biofilm application. DMAE effectively prevented more than 90% bacterial adhesion
and inhibition by degrading eDNA in S. aureus extracellular polymeric substances (EPS) [16].
In addition, imidazolium type poly (ionic liquid) (PIL)/cerium (IV) ion-based electrospun
nanofibrous membranes (PIL-Ce) showed a DNase-like activity [17]. The PIL-Ce was able
to cleave the phosphodiester bond of BNPP and performed the characteristics of nucleases
(Km value = 0.2656 mM). The antibacterial test of PIL-Ce showed the high efficiencies to
eradicate bacteria and disintegrate drug-resistant genes. The wound treatment test using
MRSA infected mice as the model further demonstrated that PIL-Ce membranes combined
both antibacterial and DNase-mimic properties, and may have potential application as
a new “green” wound dressing to block the drug resistance spread in a clinical setting.
Furthermore, rare earth elements and cerium can be complexed as artificial nucleases with
a mechanism of action on the phosphodiester bond. Upon the addition of a Ce-containing
complex, two adjacent Ce ions can interact with one phosphodiester bond, and render the
phosphate bond susceptible to a nucleophilic species.

4.4. Combination Therapy

Various antibacterial alternatives have been developed to overcome the drug-resistant
behavior of microorganisms, such as peptides, metal–sulfide/oxides and carbon-based
nanostructures [124,148,149]. However, they still suffer from biotoxicity, high costs, cumber-
some preparation processes and/or pollution. Though nanozybiotics, possessing long-term
storage, good stability, and tunable catalytic properties, could be applied to construct a
range of antibacterial systems, there is still a large space to improve their antimicrobial
performance [150]. Therefore, combination therapy seems to potentially be the better option
to improve antibacterial effects as much as possible while minimizing side effects [151]. In
various antimicrobial therapies, photo-activated strategies such as photothermal therapy
(PTT), photodynamic therapy (PDT) have attracted widespread attention, owing to their
less-invasive nature, low side effects, and good controllability compared to other antibacte-
rial agents [152–154]. The antibacterial mechanism of combination therapy is summarized
in Figure 6 with more details.
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Figure 6. Schematic illustration of the antibacterial mechanism of combination therapy using nanozy-
biotics. Here, for example, nanozybiotics based on peroxidase (POD)-like nanozymes can catalyze
the decomposition of hydrogen peroxide (H2O2) to produce bactericidal ·OH. With the radiation of
light (visible or near-infrared light), photo-activated therapy (PTT and PDT) is active with excellent
hyperthermia, singlet oxygen (1O2) and more ·OH production. The produced ·OH and 1O2 interact
with bacteria to induce membrane peroxidation and damage cell integrity, making bacteria more
vulnerable. In addition, the alternating magnetic field (AMF) exposure also can enhance the catalytic
activity of nanozymes and generate more toxic ·OH.

Recently, Yin et al. [155] reported that polyethylene glycol functionalized MoS2
nanoflowers (PEG-MoS2 NFs) with peroxidase-like catalytic activity and high photother-
mal conversion efficiency in the near-infrared (NIR) region combined the catalysis with
PTT to provide a rapid and great antibacterial effect. In this work, PEG-MoS2 NFs could
eliminate both Gram-negative ampicillin resistant Escherichia coli (Ampr E. coli) and Gram-
positive endospore-forming Bacillus subtilis (B. subtilis) with a low concentration of H2O2
and 808 nm irradiation. Such a combination not only improved the cell wall damage
induced by ·OH, but also minimized the side effects of PTT with a large shortening the
treatment time.

Zhang et al. [70] combined photodynamic, photothermal and peroxidase-like enzy-
matic activities to maximize the antibacterial efficiency by using oxygen-vacancy molyb-
denum trioxide nanodots (MoO3−x NDs). The synergistic combination of multiple ther-
apies enabled MoO3−x NDs to possess a lower Km value and a higher Vmax value com-
pared with other peroxidase mimics. In vitro antibacterial tests showed that MoO3−x
NDs/H2O2/808 nm NIR decreased viability of MRSA and ESBL-producing E. coli, by
destroying the bacterial cell surface. In particular, with H2O2 at low concentration (100 µm)
and upon NIR exposure, the MoO3−x NDs was heated to the optimum enzymatic tempera-
ture of peroxidase-like activity and released utmost ·OH through the intrinsic photothermal
effect for killing bacteria and accelerating wound healing.

Sun et al. [118] developed an antibacterial strategy by combining sonodynamic ther-
apy and catalase-like activity of Pd@Pt nanozymes. Sonodynamic therapy (SDT) uses
ultrasound to activate acoustic sensitizer and triggers ROS to produce antibacterial ef-
fects, which has the advantages of a non-invasive mode and good tissue penetration. A
nanoplatform (Pd@Pt-T790) was constructed by bridging Pd@Pt nanoplates with the or-
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ganic sonosensitizer meso-tetra(4-carboxyphenyl)porphine (T790). The modification of
T790 onto Pd@Pt could offer Pd@Pt-T790 a “blocking and activating” enzyme-like activity,
namely upon US irradiation, the nanozyme activity was effectively recovered to catalyze
the decomposition of endogenous H2O2 into O2. This elaborate strategy was helpful to
decrease the potential toxicity and side effects of nanozymes on normal tissues and had po-
tential to realize active, controllable, and disease-loci-specific nanozyme catalytic behavior.
Moreover, the anti-bacterial test of the Pd@Pt-T790-based SDT nano-system demonstrated
therapeutic effects to eradicate methicillin-resistant S. aureus (MRSA)-induced myositis.

Collectively, compared with enzybiotics, nanozybiotics bear a greater and broader
application prospect, which may overcome the limitations of natural enzymes and combine
other antibacterial strategies easily (Table 2). In addition, with the characteristics of being
more stable, economical, and practical, nanozybiotics are more suitable for widespread
application in industrial processes. However, it is worth noting that the catalytic efficiency
of nanozybiotics is still not very high compared with natural enzymes, and the types of
enzyme activities are fewer. Moreover, it is interesting that enzybiotics usually kill bacteria
by directly catalyzing the destruction of bacterial cell structure, whereas nanozybiotics
realize antibacterial effects by producing toxic ROS to destroy the cell structure. Thus, to
improve the antibacterial performance of nanozybiotics, developing a new catalytic activity
and enhancing antibacterial targeting are necessary in future studies.

Table 2. Comparison between enzybiotics and nanozybiotics for antibacterial application.

Enzybiotics Nanozybiotics

Derivation natural enzymes nanozymes (nanomaterials)

Catalytic activity peptidoglycan hydrolases,
proteases, and nuclease

peroxidase, oxidase, catalase,
deoxyribonuclease

Main antibacterial
mechanism destroy bacterial cell structure catalyze the production of ROS

Application advantages

rapid and unique mode of
action, high specificity of kill

pathogens, low probability for
bacterial resistance
development and a

proteinaceous nature

economical, stable, with catalytic
function without additional

modification, easy to integrate a
variety of antibacterial strategies

Application disadvantages

environmentally sensitive and
unstable, high cost, short

half-life and immunogenicity
of proteins

low enzyme activity, limited types
of enzyme catalysis and

complicated toxicological profile

As an antibacterial strategy, the ultimate goal of nanozybiotics is in vivo application
and clinical transformation. However, the current research mainly focuses on in vitro biolog-
ical experiments or skin surface wound infection models [56,65,73,83,92,93,110], and there
are only a few studies on antibacterial application of nanozybiotics
in vivo [60,85,96,100,116]. For example, some nanozybiotics are designed to exert an
excellent effect on Helicobacter Pylori (H. pylori) eradication in vivo via pH-responsive
peroxidase-and oxidase-like activity [60,100,116]. Zhu et al. constructed a cationic chitosan
coated ruthenium dioxide nanozyme (QCS-RuO2@RBT, SRT NSs) for the management of
biofilm-associated infections, including chronic lung infection [85]. Although nanozybiotics
bear biological enzyme activity and have shown excellent therapeutic efficacy in some
animal models of in vivo diseases, most nanozymes are inorganic nanomaterials. Due
to nanomaterials properties or function varies with the size, composition, morphology
and shape, surface modification and surface charge, the studies of biological safety and
toxicology is very complex, especially in clinical applications, more special attention and
efforts need to be given. Moreover, it represents an important research direction in the field
of nanozybiotics in the future.
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5. Conclusions and Perspective

Enzymatic therapy represents a promising strategy to combat challenges posed by the
drug resistance of bacteria. Natural enzyme-based enzybiotics, originate from nature with
great environmental friendliness and exhibiting a high catalytic antibacterial ability. The
antibacterial mechanism of enzybiotics usually describes the enzymatic degradation of the
bacterial cell structure or biofilms leading to bacterial death. But their disadvantage is that
most natural enzymes are unstable in the process of industrial production, which limits
their large-scale application and increases costs. Although immobilization and additional
modification can improve the stability of natural enzymes to some extent, it increases the
production cost and the complexity of production operation. Nanozymes are a kind of
nanomaterial with enzyme-like activity, and are economical and stable compared with
natural enzymes. At present, nanozyme-based nanozybiotics have shown great antibacte-
rial application prospects against resistant bacteria by mimicking enzyme-like activities of
natural enzymes. Their antibacterial performance can be further improved by combining
enzyme-like properties with other physiochemical properties of nanozymes such as PTT
and PDT. In addition, most antibacterial tests were validated under in vitro environments
or topically administered with in vivo models, which means there remains a long road
before reaching clinical transformation. Thus, exploring new biocompatible nanozybiotics
using enzyme-like nanozymes equipped with multiple antibacterial capabilities and appli-
cable scenarios is of great importance. Altogether, we believe that nanozybiotics based on
nanozymes with enzyme-like activity represent a new class of antibiotics alternatives.
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