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NAP: The Network Analysis Pro�ler, 
a web tool for easier topological analysis 
and comparison of medium-scale biological 
networks
Theodosios Theodosiou1†, Georgios Efstathiou1†, Nikolas Papanikolaou1, Nikos C. Kyrpides2, Pantelis G. Bagos3, 

Ioannis Iliopoulos1* and Georgios A. Pavlopoulos1,2*

Abstract 

Objective: Nowadays, due to the technological advances of high-throughput techniques, Systems Biology has seen 

a tremendous growth of data generation. With network analysis, looking at biological systems at a higher level in 

order to better understand a system, its topology and the relationships between its components is of a great impor-

tance. Gene expression, signal transduction, protein/chemical interactions, biomedical literature co-occurrences, 

are few of the examples captured in biological network representations where nodes represent certain bioentities 

and edges represent the connections between them. Today, many tools for network visualization and analysis are 

available. Nevertheless, most of them are standalone applications that often (i) burden users with computing and 

calculation time depending on the network’s size and (ii) focus on handling, editing and exploring a network interac-

tively. While such functionality is of great importance, limited efforts have been made towards the comparison of the 

topological analysis of multiple networks.

Results: Network Analysis Provider (NAP) is a comprehensive web tool to automate network profiling and intra/inter-

network topology comparison. It is designed to bridge the gap between network analysis, statistics, graph theory 

and partially visualization in a user-friendly way. It is freely available and aims to become a very appealing tool for 

the broader community. It hosts a great plethora of topological analysis methods such as node and edge rankings. 

Few of its powerful characteristics are: its ability to enable easy profile comparisons across multiple networks, find 

their intersection and provide users with simplified, high quality plots of any of the offered topological characteristics 

against any other within the same network. It is written in R and Shiny, it is based on the igraph library and it is able 

to handle medium-scale weighted/unweighted, directed/undirected and bipartite graphs. NAP is available at http://

bioinformatics.med.uoc.gr/NAP.
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Introduction

Metabolic reactions, signal transduction, gene expression, 

gene regulation, protein interactions and other biological 

concepts are often captured in network representations 

showing individual bioentities as nodes and their inter-

connections as edges. Each network is characterized by a 

different topology. In small-world networks for example, 

any node in the graph can be reached from any other node 

in a small number of steps. In scale-free networks, highly 

connected nodes can be identified as hubs. Networks with 

densely connected neighborhoods have high clustering 

coefficient and tend to form clusters. In social networks, 

the robustness is sensitive upon edges with high between-

ness centrality, necessary to bridge distant communities. 

Protein–protein interaction networks (PPIs) are captured 

as undirected connected graphs following a scale-free 

topology with hierarchical modularity [1, 2].

While existing visualizations often comply with topo-

logical network analysis [3–6], only few of them purely 

focus on topological analysis, comparison and edge/node 

ranking. Cytoscape’s [7] Network Analyzer [8] as well 

as Gephi [9], offer similar functionality but do not sup-

port direct comparison between topological features of 

multiple networks. ZoomOut [10] and Network Analy-

sis Toolkit (NEAT) [11] on the other hand are mostly 

focused on graph clustering. Stanford Network Analysis 

Platform (SNAP) [12] and igraph [13] offer a wide spec-

trum of functions and modules related to topological 

analysis but are offered as command line libraries, thus 

making them less accessible to non-experts.

To overcome these barriers, we offer NAP, a modest 

web application, dedicated to make network topological 

analysis and inter/intra-network topological comparison 

simpler and more appealing to the broader community.

Main text

The GUI

NAP comes with a self-explanatory web interface, organ-

ized in several tabs.

Upload �le tab

It is dedicated to file uploading and network nam-

ing (Fig.  1a). Once one or more networks have been 

uploaded, three sub-tabs will appear. In the first sub-tab, 

users can see the network as a binary list in the form of 

searchable tables (Fig. 1b), in the second sub-tab a static 

visualization of the network and in the third sub-tab an 

interactive network visualization (Fig. 1c).

Topology tab

�e second tab is dedicated to network topological analy-

sis. Once one or more networks are loaded, users can 

interactively choose between several topological features. 

While, here, users can explore one network at a time, in a 

second sub-tab users can automatically generate an inter-

network topological analysis plot in order to directly 

compare one or more networks. Examples of these cases 

can be depicted in Fig. 1d, e.

Ranking tab

�is part is dedicated to node and edge ranking. Users 

can interactively choose between several node and edge 

topological features and sort the relevant nodes/edges 

accordingly. Moreover, users can plot the distribution of 

any topological feature of a network against any other 

and visualize it in a matrix-like plot. Examples are pre-

sented in Fig. 1f, g.

Clustering tab

�is tab is dedicated to network clustering. While NAP is 

not intended to be a network clustering application, MCL 

Markov Clustering is incorporated [14]. �is way, user 

can cluster medium-sized networks (Fig. 1h).

Intersection

�is tab is dedicated in calculating the intersection 

between any pair of selected networks. Results are shown 

as Venn diagrams and can an export function to down-

load the intersecting network is offered (Fig. 1i).

Input �le

NAP supports loading of multiple weighted/unweighted, 

directed/undirected and bipartite graphs. Each network 

can be loaded as a two-column binary list of connections 

as a tab delimited text file. After uploading, users must 

manually give a name and define the type of each network. 

In addition, random networks of various sizes (100, 1000, 

10,000 nodes) and types (Barabási–Albert, Erdos–Renyi, 

Watts–Strogatz small-world and bipartite graphs) can be 

automatically generated and used as examples. Notably, 

NAP currently accepts networks of up to 50,000 edges.

For this article, we used two yeast protein–protein 

interaction (PPI) networks: Gavin 2006 [15] and Gavin 

2002 [16], the first consisting of 6531 edges and 1430 

vertices and the second consisting of 3210 edges and 

1352 vertices. For the first dataset, large-scale tandem 

affinity purification and mass spectrometry were used 

to characterize multiprotein complexes in Saccharomy-

ces cerevisiae whereas the second dataset shows the first 

genome-wide screen of complexes in Yeast.

Basic visualization

Nodes and edges can be presented as dynamic, easy to 

filter, excel-like tables, as well as static and dynamic 2D 

network visualizations. Tables are sortable by name and 

searchable using simple substring matching.
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Fig. 1 NAP’s web interface. a Users can upload several networks in the form of a list (pairwise connections) and subsequently name them. Users 

can also generate graphs of various sizes (50, 100, 1000, 10,000) based on the Barabási–Albert, Erdos–Renyi or Watts–Strogatz small-world model. 

Additionally, users can generate bipartite graphs of various sizes. b Network contents in the form of searchable and sortable tables. c-left Static 

network visualization. c-right Interactive Cytoscape.js network visualization. d Selection of topological features and their values. e Inter-network 

comparisons of topological features. f Node/edge ranking in the view of searchable tables. g Intra-network topological feature comparison in the 

form of a matrix. h Implementation of MCL clustering algorithm. i Intersection of any two chosen networks
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Static visualization

While NAP is not designed to be a visualization tool, its 

2D static network visualization comes with a plethora of 

traditional layout algorithms (Random, Circle, Sphere, 

Fruchterman–Reingold, Reingold–Tilford, Kamada–

Kawai, Grid, Lgl and SVD). After a completed layout, 

nodes and their coordinates, along with their connec-

tions can be exported as simple text files and imported to 

other, more advanced visualization tools [3–6].

Dynamic visualization

NAP utilizes CytoscapeWeb/Cytoscape.js [17, 18]. to 

additionally provide a dynamic network visualization. 

Users can interactively zoom in/out, relocate the nodes 

and select them and choose between various edge/node 

colors and shapes and among very standard graph layouts.

We chose to provide both static and dynamic vis-

ualization at a basic level so that the user can get an 

at-a-glance view of the loaded network. Notably, NAP’s 

visualization cannot scale very well due to browser 

limitations but is fair for middle-sized networks. For 

higher quality visualization, graph editing, manipu-

lation and interactive network exploration, users 

are encouraged to use other available tools such as 

Cytoscape and Gephi. �e input file format for NAP, 

Cytoscape and Gephi is the same (2 column tab delim-

ited file).

Topological features

NAP is able to calculate several topological features for 

a selected network taken from the igraph library. While 

in igraph’s manual pages one can find more detailed 

information about the calculations, most formulas and 

definitions are also explained in [19]. Table  1 summa-

rizes a simplified explanation of NAP’s aforementioned 

metrics.

Table 1 NAP’s supported topological features and their explanation

Topological feature Simpli�ed explanation

Number of edges Shows the number of edges in the network. Moderate network of several thousand connections are very acceptable

Number of nodes Shows the number of nodes in the network. There is no limitation on the number of nodes

Diameter Shows the length of the longest geodesic. The diameter is calculated by using a breadth-first search like method. The 
graph-theoretic or geodesic distance between two points is defined as the length of the shortest path between them

Radius The eccentricity of a vertex is its shortest path distance from the farthest other node in the graph. The smallest eccen-
tricity in a graph is called its radius. The eccentricity of a vertex is calculated by measuring the shortest distance from 
(or to) the vertex, to (or from) all vertices in the graph, and taking the maximum

Density The density of a graph is the ratio of the number of edges and the number of possible edges

Number of edges Shows the number of edges in the network. If the has more than 10,000 edges it will take into account the first 10,000

Average path length The average number of steps needed to go from a node to any other

Clustering coefficient A metric to show if the network has the tendency to form clusters

Modularity This function calculates how modular is a given division of a graph into subgraphs

Number of self-loops How many nodes are connected to themselves

Average eccentricity The eccentricity of a vertex is its shortest path distance from the farthest other node in the graph

Average eigenvector centrality It is a measure of the influence of a node in a network

Assortativity degree The assortativity coefficient is positive is similar vertices (based on some external property) tend to connect to each, 
and negative otherwise

Is directed acyclic graph It returns True (1) or False (0)

Is directed It returns True (1) or False (0) depending whether the edges are directed or not

Is bipartite It returns True (1) or False (0) depending whether the graph is bipartite or not

Is chordal It returns True (1) or False (0). A graph is chordal (or triangulated) if each of its cycles of four or more nodes has a chord, 
which is an edge joining two nodes that are not adjacent in the cycle. An equivalent definition is that any chordless 
cycles have at most three nodes

Average number of neighbors How many neighbors each node of the network has on average

Centralization betweenness It is an indicator of a node’s centrality in a network. It is equal to the number of shortest paths from all vertices to all 
others that pass through that node. Betweenness centrality quantifies the number of times a node acts as a bridge 
along the shortest path between two other nodes

Centralization closeness It measures the speed with which randomly walking messages reach a vertex from elsewhere in the graph

Centralization degree It is defined as the number of links incident upon a node

Graph mincut It calculates the minimum st-cut between two vertices in a graph The minimum st-cut between source and target is 
the minimum total weight of edges needed to remove to eliminate all paths from source to target

Motifs-3 Use of igraph to searches a graph for motifs of size 3

Motifs-4 Use of igraph to searches a graph for motifs of size 4
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Fig. 2 Direct comparison of the topological features of two yeast protein–protein interaction datasets. a Gavin 2002 dataset [16] consists of 3210 

edges and 1352 vertices, whereas Gavin 2006 [15] consists of 6531 edges and 1430 vertices. b Comparison of the networks’ clustering coefficient, 

density, closeness, betweenness and degree
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Inter-network topological feature comparison

Selected topological features of a single network can be 

visualized as a multi-column bar chart. �is way, a user 

can for example, see the average closeness centrality, the 

average clustering coefficient and the average shortest 

path length of the whole graph as numerical values or as 

a bar chart. Notably, the chart is dynamic and gets auto-

matically updated upon a selection set of features. When 

users want to directly compare one or more networks, a 

combined bar chart with adjusted colors indicating the 

selected networks, can capture the average topological 

features of all selected networks next to each other.

For example, a straight comparison of the aforemen-

tioned yeast protein–protein interaction datasets is pre-

sented in Fig. 2. While both networks significantly vary in 

the number of edges, as shown in Fig. 2a, and despite the 

fact that they have similar density, they have significantly 

different clustering coefficient as shown in Fig.  2b. �is 

way Gavin 2006 dataset tends to form tighter clusters 

compared to Gavin 2002.

Intra-network topological feature comparison

Users can select one network at a time and see the distri-

bution of each topological metric. Figure 3a, b for exam-

ple show the degree distribution for Gavin’s 200 and 2002 

PPI network respectively.

In addition, users have the ability to generate a distri-

bution plot showing any topological feature against any 

other within a selected network. A high-resolution 2D 

scatterplot is generated on the fly, displaying the distri-

bution of a chosen topological parameter in a histogram-

like view. Should the user desire to explore more than 

one topological parameter at a time, NAP gives the user 

the opportunity to generate on-the-fly advanced plots by 

pairwise comparing any topological feature of a network 

against any other feature within the same network. �is 

matrix-like plot showing pairwise correlations of any 

combination between the selected topological features 

is not limited to the number of features to be plotted. 

�e upper triangular part of the plot shows the numeri-

cal correlation between any pair of topological features 

whereas the lower-triangular part of the matrix the scat-

terplot of one feature against another. �e diagonal shows 

the topological feature which corresponds to that column 

and row. Like before, two all-against-all plots comparing 

the degree, the clustering coefficient, the closeness and 

the betweenness centrality of Gavin 2002 and 2006 PPI 

datasets are shown in Fig. 3c, d respectively.

Notably, figures can be downloaded as jpeg from the 

browser while scatter plot coordinates can now be down-

loaded as CSV files and visualized by external applica-

tions like Excel or STATA.

Fig. 3 Intra-network comparison of selected topological features within the Gavin 2002 yeast PPI dataset [16]. a The degree distribution for Gavin 

2002 dataset. b The degree distribution for Gavin 2006 dataset. c An all-against-all distribution matrix comparing the degree, the closeness, the 

betweenness and the clustering coefficient for Gavin 2002 PPI network. d An all-against-all distribution matrix comparing the degree, the closeness, 

the betweenness and the clustering coefficient for Gavin 2006 PPI network
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Node/edge ranking

Nodes and edges of a selected network (accessible as 

a drop-down menu) can be sorted according to a pre-

ferred topological feature and using dynamic easy-to-

filter excel-like tables. Nodes and edges can be sorted 

in both descending and ascending order. Figure  4a for 

example shows the proteins of Gavin 2006 PPI network 

sorted in descending order according to their degree. It 

is obvious that PWP2 (YCR057C) protein, a conserved 

90S pre-ribosomal component essential for proper endo-

nucleolytic cleavage of the 35 S rRNA precursor at A0, 

A1, and A2 sites is the protein with most connections. 

Similarly, Fig.  4b shows that the connection between 

SEC8 (YPR055W) and RPC17 (YJL011C) has the high-

est betweenness centrality, thus making a very impor-

tant connection as it acts as a bridge connecting different 

neighborhoods.

Clustering

While NAP is not a clustering visualization tool, MCL 

Markov clustering algorithm has been implemented 

(Fig. 1h). Users can select a network and adjust the infla-

tion value of MCL. A two-column searchable matrix will 

be generated showing the node name and the cluster 

each node belongs two. �is way, users can easily find 

whether two nodes belong in the same cluster or not. 

�is feature is recommended for small and medium-size 

networks and must be avoided for larger networks. For a 

deeper clustering analysis, users are encouraged to users 

command line tools or try the ClusterMaker Cytoscape 

plugin [20].

Intersection

Users can automatically find the intersection between 

any pair of selected networks. Once two networks have 

Fig. 4 Node and edge ranking. a Proteins of the Gavin 2006 PPI datasets are sorted according to their degree. PWP2 (YCR057C) protein has many 

neighbors and might behave as hub. b Interactions of the Gavin 2006 PPI datasets are sorted according to their betweenness centrality. Edge 

between SEC8 (YPR055W) and RPC17 (YJL011C) behaves as a bridge between communities
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been selected, two Venn diagrams will be generated 

showing the node and the edge overlap between the two 

selected networks. In order to visualize the intersecting 

part of the networks, users can download the network in 

a CVS format and import it to third-party applications 

such as Cytoscape or Gephi. Figure 5 shows an example 

of how to find the intersection between Gavin 2002 and 

Gavin 2006 PPI datasets.

Bipartite graphs

NAP is able to manage bipartite graphs. Given a bipartite 

graph, users can automatically extract its two monopar-

tite projections and analyze them separately. In a gene–

disease bipartite graph for example, one can generate a 

disease–disease network through common genes and 

vice versa, a gene–gene network through common 

diseases.

Implementation

NAP’s web interface is written in Shiny and back-end 

functions implemented in R. Topological features are cal-

culated with the use of igraph-R library [13] and plots are 

generated through R and plotly [21]. Static network visu-

alizations are offered by the d3 library whereas dynamic 

network visualization is provided by CytoscapeWeb/

Cytoscape.js [17, 18].

Discussion

Network Analysis Provider (NAP) is designed to comple-

ment existing state-of-the-art visualization and analysis 

tools. It emphasizes on topological network analysis and 

inter-/intra-network topological feature comparison. 

Overall, we believe that NAP can reach users beyond 

the broader network analysis community and aid non-

experts in analyzing their networks in a simplified and 

highly interactive way.

Limitations

NAP runs on a browser and therefore, it is not opti-

mized for large-scale networks. NAP’s future versions 

will include a much richer and optimized set of clustering 

algorithms [22], richer motif extraction algorithms, net-

work alignment methods such as Corbi [23] and GraphA-

lignment [24], more scalable visualization, user account 

profiles to store and load the networks, incorporation of 

Arena3D [25, 26] for 3D multilayered network visualiza-

tion and better handling of bipartite graphs taking into 

account their special topological properties.

Fig. 5 NAP’s functionality to find the intersection between ant pair of selected networks. a Gavin 2006 and 2002 PPI datasets visualized by 

Cytoscape 3.4.0 using the Prefuse layout. b NAP’s generated Venn diagrams showing the overlapping nodes and edges of the two networks. c NAP’s 

intersection export function and visualization with Cytoscape
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