
NAPSAC: HIGH NOISE, HIGH

DIMENSIONAL ROBUST

ESTIMATION - IT’S IN THE BAG

D.R. Myatt P.H.S. Torr S.J. Nasuto J.M. Bishop R. Craddock

Abstract

A number of the most powerful robust estimation algorithms, such as
RANSAC, MINPRAN and LMS, have their basis in selecting random
minimal sets of data to instantiate hypotheses. However, their perfor-
mance degrades in higher dimensional spaces due to the exponentially
decreasing probability of sampling a set that is composed entirely of
inliers. In order to overcome this, rather than picking sets at random, a
new strategy is proposed that alters the way samples are taken, under
the assumption that inliers will tend to be closer to one another than
outliers. Based on this premise, the NAPSAC (N Adjacent Points
SAmple Consensus) algorithm is derived and its performance is shown
to be superior to RANSAC in both high noise and high dimensional
spaces.

1 Introduction

Robust estimation has found many uses in computer vision. Indeed, one of the
most powerful robust estimation algorithms, RANSAC [1] was developed for reg-
istering 3D to 2D point sets. RANSAC has also been used extensively for such
tasks as estimation of epipolar geometry[2] and motion model selection [3], and
has spawned a variety of robust algorithms all with their basis in random sam-
pling being used to minimize different criteria e.g. LMS [4], MINPRAN [5],
MLESAC [2].

Whilst the robust estimation problem has been largely solved in low dimen-
sional cases by random sampling methods, there is no known generic robust esti-
mator that will work for large numbers (>10) of parameters. This paper explores
one way of extending the random sampling formalism to higher dimensions.

Random sampling methods are explained in Section 2. These algorithms sam-
ple minimal sets1 of the data, such that each point has an equal likelihood of being
selected. These sets are then used to form hypotheses as to the parameters of the
model, θ. A cost function, C(θ̂), is used to determine the fit of the estimated hy-
persurface to the data. The idea is to draw m minimal sets, assuming at least one
set will be found with all inliers, and thus yield optimal C(θ̂). As the proportion
of outliers and the minimal set size increase, m must be increased exponentially
to retain a significant chance of selecting good θ̂.

1A minimal set is the minimum number of data, n, required to estimate the parameters θ of
the manifold.
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The key concept introduced in Section 3 is that, given the outliers possess a
diffuse distribution, the selection of minimal sets based on proximity can signifi-
cantly improve the probability of selecting a set of inlying data, and thus drastically
reduce the samples, m, required.

This selection method is investigated more formally in Section 4, leading to a
proof showing how it is beneficial in 2 dimensions. In Section 5 it is then shown
experimentally that this approach is valid in higher dimensions. An enhanced
point selection algorithm is described and integrated into the RANSAC algorithm
- the result is named N Adjacent Points SAmple Consensus (NAPSAC). This
algorithm is compared with standard random sampling algorithms, showing the
superior behaviour of NAPSAC in high noise and higher dimensions. Section 6
presents conclusions and avenues of future work discussed.
Conventions: presented here is a clarification of the conventions used throughout
this paper.
x - bold type indicates a vector.
x - an underline represents noise free data.
θ̂ - a hat indicates an estimate.

2 Robust Estimation

Fundamentally, the problem is that of trying to estimate the parameters, θ, of
some manifold, M, defined by g(xi, θ) = 0, i = 1 . . . n, where (xi) are the noise
free points. Outliers are points of gross error generated independently of θ with
distribution ψo(x), which in absence of any information are assumed to be uni-
form. The overall data set is therefore a mixture containing a proportion, µ, that
arise from the manifold, but are perturbed by noise xi = xi + ψ (here assumed
Gaussian), the inlier distribution is denoted ψi(x, θ). In order to estimate θ effec-
tively it is necessary to data generated by ψi(x, θ). Let γi be an indicator variable,
such that

γi =

{
1 if the ith datum is generated by ψi(x, θ),
0 if the ith datum is generated by ψo(x)

(2.1)

and therefore the actual probability of selecting an inlier from a data set with size
S is γ = 1/S

∑
γi. However, if we assume S is large then this probability will

tend towards µ.
RANdom SAmple Consensus (RANSAC)[1], MINimise Probability of RAN-

domness (MINPRAN)[5] and Least Median Squares (LMS) are among the most
effective algorithms in this field. They all use the same general paradigm which
can be summarised as follows:

for i = 1 to m
Sample a minimal set of data to create an estimate of θ, θ̂i.
Use a cost function, C(θ̂i), to determine the robust error of θ̂i.

next
Select the model, θ̂′, for which C(θ̂i) was minimal, i = 1 . . . m

Use classified inliers to make a final estimate of θ̂.
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3 Minimal Set Sampling

It is apparent that, in order to estimate θ effectively, the set of inliers must be
obtained. This is achieved through the repeated sampling of minimal sets of n
points, where n is the minimum number of data points required to instantiate
the model’s free parameters. The probability of selecting n inlying points at ran-
dom is monotonically decreasing with respect to increasing n, thus the minimal
set paradigm maximises the probability of selecting a set of inliers from which a
hypothesis may be derive. Currently, these minimal sets are selected uniformly
over all data, giving each datum an equal probability of selection - uniform point
sampling. So, given that there is a probability, µ, of selecting an inlier generated
by ψi(x, θ), then the probability of selecting all inliers, from n point selections,
is clearly µn, and consequently the efficacy of uniform point sampling degrades
exponentially as dimensionality increases. Table 1 shows the theoretical number
of samples required for an algorithm using uniform point sampling to have a 95%
chance of selecting one of more sets of inliers. This can be calculated using simple
binomial distribution and is a reformulation in higher dimensionality of a table
found in [6]. It is evident that the required number of samples increases expo-
nentially with dimensionality, and therefore this technique is impractical in higher
dimensions.

Dimensionality Percentage of outliers
30% 40% 50%

2 5 7 11
3 8 13 23
4 11 22 47
5 17 38 95
6 24 63 191
7 35 106 382
8 51 177 766
9 73 296 1533
10 105 494 3067
20 3753 81936 3.1 × 106

30 132910 1.4 × 107 3.2 × 109

40 4.7 × 106 2.2 × 109 3.3 × 1012

Table 1: The number of samples, using uniform point sampling, required to achieve
a probability 0.95 of selecting one or more sets of inliers, for three levels of outlying
noise

The failure, in higher dimensions, of uniform point sampling may be related to
its neglect of the spatial relationship between the inlying data points. Using the
distribution of the inlying data within the multi-dimensional space to modify the
point sampling may improve hypothesis selection. Such models are already used
to determine the quality of an estimation. The method proposed here is to use a
similar technique to select hypotheses through improved point selection.
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4 Mathematical derivation

Within this section we analyse the probability of selecting inliers based on proxim-
ity in 2D. It is assumed that a point, x0, has already been selected that lies on the
manifold, so therefore the marginal density of inliers at a distance r from x0 can
be calculated, and similarly for the outlier distribution. Then, by comparing these
marginal densities, it can be determined whether selecting by proximity increases
the probability of sampling inliers over uniform random sampling. Without loss
of generality the manifold is taken to be the line y = 0, such that the noise free
points xi = (xi, yi

) satisfy y
i
= 0. We shall examine the worst case scenario, where

the points are uniformly distributed on the manifold between limits −v < x < v,
such that the probability density function of x is pi(x) = 1

2v . The inliers are
then independently perturbed orthogonally to the manifold by Gaussian noise, so
x = x, y = y + δy, where δy is generated by N(0, σ). This distribution is trun-
cated −v < y < v, but because it is assumed that v � σ, the truncation will have
negligible effect on subsequent calculations. Thus, the joint probability density of
the inliers is

pi(x, y) =

{
1

2vσ
√

2π
exp

(
− y2

2σ2

)
if − v < x < v,−v < y < v,

0 otherwise.
(4.1)

Outliers are distributed uniformly in a hypersphere centred on the origin with
radius v. Their density is given by

po(x, y) =

{
1

πv2 if
√

x2 + y2 < v,

0 otherwise.
(4.2)

The overall distribution of data is therefore a mixture of pi(x, y) and po(x, y) with
inlier component, µ:

p(x, y) = µpi(x, y) + (1 − µ)po(x, y) (4.3)

In order to find the conditional probability density of selecting an inlying point
from a given point on the manifold as a function of their mutual distance, a co-
ordinate transform from Cartesian to Polar is required:

pi(r, φ) = pi(r cos φ, r sin φ)
∣∣∣∣
[

cos φ −r sinφ
sinφ r cos φ

]∣∣∣∣ (4.4)

pi(r, φ) = Kr exp
(
−r2 sin2 φ

2σ2

)
, where K =

1
2vσ

√
2π

(4.5)

The marginal density, mi(r), is the integral wrt φ.

mi(r) =
∫ 2π

0

Kr exp
(
−r2 sin2 φ

2σ2

)
δφ (4.6)

However, using the trigonometric identities sin2 φ = sin2(φ + π) and sin2 φ =
1
2 (1 − cos 2φ) this can be rearranged to
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mi(r) = 2Kr exp
(
− r2

4σ2

)∫ π

0

exp
(

r2

4σ2
cos 2φ

)
δφ (4.7)

Integrating (4.7) gives

mi(r) = µ
1
v

√
π

2

[
r

σ
exp

(
− r2

4σ2

)
I0

(
− r2

4σ2

)]
(4.8)

where Io is a Modified Bessel Function of the First Kind. Similarly, transforming
the outlier joint density (4.2) from Cartesian to Polar co-ordinates yields

po(r, φ) =
1

πv2
r (4.9)

Thus, integrating (4.9) wrt φ results in the outlier marginal density:

mo(r) =
∫ 2π

0

1
πv2

rδφ =
2
v2

r (4.10)

The left panel of figure 1 shows a plot of the marginal inlier and outlier densities.
It can be seen that the inlier density is indeed higher closer to the manifold. Also,
mi(r) tends to a constant value that is independent of σ, as can be seen from the
right panel.
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Figure 1: Left panel - Plot of marginal densities, given v = 100, σ = 3, µ = 0.5.
Right panel - Plot of mi(r) for σ = i2, i = 1 . . . 5, when µ = 0.5, v = 200

It can be shown geometrically that, as r increases, mi(r) → 1
v . Consequently,

if rc denotes a distance at which both marginal densities are equal, then

rc ≈ v

2
µ

(1 − µ)
(4.11)

Figure 2 shows that the estimation of rc given by (4.11) is very accurate, given that
σ � v. However, for large σ or low µ (<0.1) this estimate will degrade significantly.
For uniform sampling, the probability of selecting an inlier is constant at µ, the
inlying component of the mixture. Therefore, by selecting a single point A initially
and then selecting the rest of the points based on their relative proximity to A, the
probability of achieving a set of all inliers will be greatly increased over unguided
random selection. For tutorial purposes this section has concentrated on a 2D
analysis. However, the result can be generalised to higher dimensions.
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Figure 2: Accuracy of estimation of rc, for v = 100, σ = 5, µ = 0.4

5 NAPSAC

Non-uniform sampling has been shown to provide a theoretical advantage over
uniform sampling, but will now be shown experimentally to be just as effective
in high noise and higher dimensions. To demonstrate this, a simple enhanced
sampling algorithm was created. The following algorithm can be used in place
of the uniform point sampling process in any of the robust estimation algorithms
discussed.

1. Select an initial point x0 randomly from all points
2. Find the set of points, Sx0 , lying within a hypersphere of radius r centred on
x0.
3. If the number of points in Sx0 is less than the minimal set size then fail.
4. Select points from Sx0 uniformly until the minimal set has been selected,
inclusive of x0.

This results in a cluster of points being selected from a ball. If the initial
point, x0, lies on the manifold, then the rest of the points sampled adjacently
will theoretically have a significantly higher probability of being inliers. If there
are not enough points within the hypersphere to estimate the manifold, then that
sample is considered a failure.

The enhanced sampling algorithm was integrated with the RANSAC consensus
set cost function [1] to facilitate experimentation. This amalgamation was named
N Adjacent Points SAmple Consensus (NAPSAC).

5.1 Experimental results

In order to estimate the epipolar geometry of a scene at least two images are re-
quired from different positions. In general, most vision applications use images
from a video sequence or similar, such that the disparity is small and a given
feature moves only a few pixels. This allows feature matching methods to find
correspondences effectively. In wide baseline stereo matching applications [7], or
in the case of object recognition [8], however, the motion between images is large
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Figure 3: The images used for testing, with the manually defined correspondences
shown
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Figure 4: Left Panel - the 50 manually defined inlying correspondences. Right
Panel - a test data set with 200 outlying correspondences

e.g. a 90 degree rotation and scaling, and this results in a very large proportion
of incorrect correspondences, as only a weak metric can be used for matching.
Also, because matches can be found between features detected anywhere on the
image, the outlying data will tend towards uniformity [8], which has the advan-
tage of making the problem simpler when using NAPSAC. This is because the
inliers and outliers will be more separated in the 4D joint image space created by
concatenating the 2D co-ordinate vectors from both images [9]. On small baseline
matching problems, conversely, the outliers distribution will contain more struc-
ture and consequently NAPSAC will not be as effective.

Standard RANSAC was compared against NAPSAC on a general wide base-
line stereo matching problem: figure 3 shows two 240 × 240 images, where the
second is a 90 degree rotation and 75% scaling of the first. Fifty correct cor-
respondences between the images were added manually, thus allowing varying
amounts of outlying data to be added. Incorrect correspondences were generated
uniformly within the entire span of the image. A number of outlying matches
ranging from 0 to 450 were added to the inlying correspondences that resulted in
outlier proportions from 0 to 0.9, in increments of 0.05. The left panel of figure 4
shows the inlying correspondences, and the right panel a data set with 0.8 outly-
ing noise. Although the transformation between the images can be described by a
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Figure 5: Left Panel - mean number of samples required to select a set of inliers for
NAPSAC and RANSAC. Right Panel - standard deviation of number of samples
required to select a set of inliers.

homography, which can be defined by 4 correspondences, 7 data were selected to
demonstrate the possibility of estimating epipolar geometry in appropriate cases.
The experiment was designed to show that the enhanced sampling of NAPSAC
has a much greater probability of selecting an inlying set than RANSAC. Fur-
ther, it will be shown that the inlying sets selected are not degenerate and can
effectively recover the inlying data.

The number of samples required for RANSAC and NAPSAC (using a hyper-
sphere of radius 50) to select a fully inlying set was recorded over 1000 trials for
each level of noise. Figure 5 shows the mean and standard deviation of the number
of samples required for a successful estimation with respect to the proportion of
outliers.

As the proportion of noise increases the number of samples required by RANSAC
follows an exponential increase as expected, and reaches 6000 for 70% noise. NAP-
SAC, by comparison, shows much more graceful degradation and requires less than
200 samples on average even in 90% noise. The standard deviation for both algo-
rithms follows a similar pattern. So, this example shows that NAPSAC requires
many fewer samples than RANSAC to select an inlying set. For simplicity, the
breaking point criteria here will be assumed to be the proportion of noise for which
the mean required samples exceed 200. These values are approximately 50% and
90% for RANSAC and NAPSAC respectively. However, the optimal radius of
the NAPSAC hypersphere varies slightly for different data sets. Further work is
in progress to address this issue. Also, since NAPSAC relies on hyper-spherical
clusters there needs to be regions on the image that have several good correspon-
dences, rather than a uniform scattering. This assumption is already made by
several algorithms, including MINPRAN [5]. NAPSAC was also used to esti-
mate a homography for the hospital data set to demonstrate that the minimal sets
were not degenerate despite their selection by proximity (estimating the funda-
mental matrix would be inappropriate as all F would be degenerate in this case).
Figure 6 shows the best minimal sets selected by NAPSAC in three consecutive
trials and the resulting inlying set. Out of 100 trials, 94% yielded a homography
that recovered 20 or more inlying data with at maximum one Type II error (an
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Figure 6: Three examples of minimal sets selected by NAPSAC to form a homog-
raphy in 80% outlying noise and the recovered inlying set
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Figure 7: A comparison between the RANSAC and NAPSAC algorithms in
higher dimensions. Upper Panel - Mean error of NAPSAC and RANSAC esti-
mated hyperplanes. Lower Panel - Standard deviation of errors.

outlier classified as an inlier). This is sufficient inlying data to accurately recover
the homography through post-processing. It could mistakenly be concluded that
NAPSAC performs effectively on this example because of a tendency to bias in
2D - this is because the 2D transform exactly preserves the adjacency of the fea-
tures between the images. Figure 6 shows that, on the contrary, the minimal set
correspondences can cover a significant region of the image densely populated by
outliers, and consequently many 3D transforms could be tolerated with an appro-
priately sized hypersphere.

NAPSAC is also more effective in high dimensionality than RANSAC. Figure
7 shows a comparison of the two approaches on a simulated hyperplane estimation
problem in 50% outlying noise over 1000 trials - it can be seen that NAPSAC
is more robust. Selecting points based on proximity increases the probability of
sampling inliers both when a large sample of inliers is required and when a smaller
sample is required in high noise.

466



6 Conclusions

This paper has introduced a new method for sampling points for minimal set al-
gorithms such as RANSAC and LMS. Currently such algorithms rely on uniform
sampling from the data, Using NAPSAC, a modification of RANSAC, which
samples sets of adjacent points in a hypersphere, it has been shown experimen-
tally that the probability of selecting an inlying set is significantly increased in both
high outlying noise and higher dimensions, as demonstrated using a wide baseline
stereo matching application and a high-dimensional hyperplane estimation prob-
lem, respectively. This suggests a shift from research into effective robust error
functions to an exploration of how minimal set selection, and therefore hypothesis
selection, may be most effectively enhanced using the distribution of the data in
higher dimensional space, and an alternative approach to NAPSAC has already
been proposed by Tordoff, 2002 [10]. Possible further work includes calculation of
the optimal hypersphere radius for a given data set. An exploration of different
methods of selecting points to enhance inlier selection, not just hyperspherical, is
also suggested.
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