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Narcolepsy with cataplexy, characterized by sleepiness and
rapid onset into REM sleep, affects 1 in 2,000 individuals1,2.
Narcolepsy was first shown to be tightly associated with
HLA-DR2 (ref. 3) and later sublocalized to DQB1*0602
(ref. 4). Following studies in dogs5 and mice6, a 95% loss of
hypocretin-producing cells in postmortem hypothalami from
narcoleptic individuals was reported7,8. Using genome-wide
association (GWA) in Caucasians with replication in three
ethnic groups, we found association between narcolepsy and
polymorphisms in the TRA@ (T-cell receptor alpha) locus, with
highest significance at rs1154155 (average allelic odds ratio
1.69, genotypic odds ratios 1.94 and 2.55, P o 10�21, 1,830
cases, 2,164 controls). This is the first documented genetic
involvement of the TRA@ locus, encoding the major receptor
for HLA-peptide presentation, in any disease. It is still unclear
how specific HLA alleles confer susceptibility to over 100
HLA-associated disorders9; thus, narcolepsy will provide
new insights on how HLA–TCR interactions contribute to

organ-specific autoimmune targeting and may serve as a model
for over 100 other HLA-associated disorders9.

An autoimmune etiology has been suggested for narcolepsy but
never proven despite decades of intensive research10,11. Narcolepsy
is recognized to be familial, and despite the strong association with
HLA-DQB1*0602, is not fully explained by the HLA locus1. To
identify additional susceptibility loci for narcolepsy, we undertook a
genome-wide association study. We selected Caucasian cases from
North America and Europe, together with geographically and ethni-
cally matched controls. All cases were HLA-DQB1*0602 positive and
all had clear-cut cataplexy. Among the 23% for whom we had
measurements of hypocretin-1, all were found to be hypocretin
deficient. Potential controls were typed using sequence-specific PCR,
and only those who were also HLA-DQB1*0602 positive were
included. The sample was comprised of 807 cases and 1,074 controls
of mixed European ancestry: 415 cases and 753 controls were recruited
from the United States and Canada; 392 cases and 321 controls were
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recruited from European centers. For the GWA study, subjects were
genotyped using the Affymetrix Mapping 500K array set or Genome-
Wide SNP Array 6.0. Homogeneity in ancestry and case-control
matching was verified by cluster and principal component analysis12.
In addition, we compared the allele frequency of 107 of 400 SNPs
known to predict European substructure and found no significant
differences after Bonferroni correction13.

We conducted allele-based association tests in SNPs with allele
frequency above 5% in controls using the Mantel-Haenszel test14

in three groups of subjects defined by platform and location of
typing (Affymetrix 500K typed at UCSF; Affymetrix 6.0 typed at
UCSF; Affymetrix 6.0 typed at Institut fur Humangenetik, Munich,
Germany). The w2 quantile-quantile plot showed a slight deviation
from the expected w2 distribution, and an inflation factor l of 1.11 was
estimated (Supplementary Fig. 1 online). However, the plot also
showed the presence of three extreme outlier w2 values of 47.7, 54.1
and 60.4 (Table 1 and Supplementary Fig. 1). These three SNPs,
all on chromosome 14, clearly exceeded the genome-wide significance
level of 9.1 � 10�8. Other nominally significant associations
(P o 10�6) are reported in Supplementary Table 1 online.

The three top markers were in high linkage disequilibrium (LD) and
are located within an 18-kb segment of the TRA@ locus containing the
TRA joining (J) segment subregion (14q11.2; Fig. 1). Of interest, one
of the markers of nominal significance (P ¼ 5.2 � 10–7), rs17231, is
located within the V segment region of the TRB@ (T-cell receptor beta)
locus (7q34). Genome-wide significant SNPs were genotyped using
TaqMan assays (Applied Biosystems) in an independent sample of
1,057 cases (using the same diagnostic criteria) and 1,104 controls
(matched by ancestry) as a replication study. The Caucasian replication
sample contained 718 individuals, of whom 542 were recruited
from the United States and Canada (259 cases, 283 controls), and

176 from Europe (104 cases, 72 controls). The Asian sample included
866 Japanese (433 cases, 433 controls) and 300 Koreans (128 cases,
172 controls). Finally, we studied 277 African Americans (133 cases,
144 controls).

As shown in Table 2, the three SNPs located within the TRA@ locus
replicated with high significance across the three major ethnic groups
combined and showed significant effects individually in the Caucasian
and Asian subsamples. In the African American sample, although the
odds ratios (ORs) trended in the same direction, formal significance
was not reached owing to small sample size and low allele frequencies
(Table 2).

According to HapMap data15, the three SNPs are located within a
37-kb region of increased LD across ancestry groups (CEU, YRI, CHB-
JPT). The localized haplotype block structure among these popula-
tions differs, with highest LD between rs12587781 and rs1154155
extending in opposite directions in Europeans versus Asians. In all
ethnic groups, rs1263646, a SNP located closer to the TRAC gene,
showed a smaller OR, suggesting that the association peaks in the
TRAJ segment region (Fig. 1). Further, ORs differed significantly for
rs12587781 but not rs1154155 between Caucasians and Asians
(Table 2). This was likely explained by the difference in LD patterns
across the two ethnicities. Whereas rs1154155 and rs12587781 are in
almost complete LD in Caucasians (r2 ¼ 0.96), LD is substantially
weaker in Asians (r2 ¼ 0.57; Fig. 1). In Asians, rs1154155 had
a stronger impact on risk (OR ¼ 1.54) than did rs12587781
(OR ¼ 1.34).

To further evaluate this pattern, we estimated the frequency of
haplotypes AA, AC, CA, CC for rs12587781 and rs1154155 in Asian
cases and controls. For cases, the frequencies were 0.318, 0.003, 0.109
and 0.571, respectively. For controls, the frequencies were 0.381, 0.005,
0.154 and 0.460, respectively. We note that the OR is increased for
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Figure 1 Schematic representation of the TRA@

locus and of SNPs associated with narcolepsy.

The TRA@ locus consists of clusters of V and J

segments and exons of the C region. The T-cell

receptor delta locus (TRD@) resides within the

TRA@ locus. A 40-kb region of LD encompasses

half of the TRAJ segments and is flanked by

TRAJ32 and the second exon of the TRAC

gene. Within this region, three SNPs are highly

associated with narcolepsy, separated by 3

and 15 kb, successively. In Caucasians, the
association is equivalent with rs12587781

and rs1154155 (Tables 1 and 2), and LD is

extremely high (r2 ¼ 0.97 and 0.94; 1,154

cases and 1,425 controls, respectively). In

contrast, the association is stronger with rs1154155 than rs12587781 in Asians (Table 2), a phenomenon explained by the lower LD in this ancestry group

(r2 ¼ 0.62 and 0.52; 553 cases and 603 controls, respectively). Intermediate LD was seen in African-American individuals (r 2 ¼ 0.74 and 0.71; 124

cases and 142 controls, respectively). The association with rs1263646 is weaker across all ancestry groups, most notably Asians and African Americans

(Table 2). These results, depicted as values for cases and controls combined in this figure, illustrate the value of trans-ethnic mapping.
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Table 1 SNP markers of interest from the genome-wide association study

SNP Chr Position (bp) Minor allele Freq controls (n) Freq cases (n) w2 (MH) P (MH) OR (95% CI) w2 (BD) P (BD)

rs1154155 14 22072524 C 0.14 (1,067) 0.24 (796) 54.11 1.90 � 10�13 1.87 (1.58–2.21) 2.49 0.29

rs12587781 14 22069457 C 0.15 (917) 0.25 (622) 53.19 3.03 � 10�13 1.96 (1.63–2.35) 1.66 0.20

0.14 (1,066)a 0.24 (794)a 60.42a 7.65 � 10�15a 1.93 (1.63–2.28)a 1.61a 0.45a

rs1263646 14 22087370 G 0.16 (1,069) 0.25 (797) 47.74 4.86 � 10�12 1.77 (1.50–2.09) 0.40 0.82

rs5770917b 22 49364219 G 0.05 (1,063) 0.04 (796) 1.07 0.30 0.84 (0.61–1.16) 1.90 0.39

The top three genome-wide significant markers are listed, together with data obtained for rs5770917, previously found to be associated with narcolepsy in a Japanese population17.
We genotyped 1,074 controls and 807 cases using SNP Affymetrix Array platforms (500K and 6.0). MH, Mantel-Haenszel; BD, Breslow Day heterogeneity test; OR, odds ratio.
aAffymetrix 6.0K marker after genotypes were completed using TaqMan (see text). bNote that 388 of the 796 narcolepsy genotypes were previously reported for this marker by Miyagawa et al.17.
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haplotype CC versus AA (1.49, 95% CI ¼ 1.24–1.79) but not for
haplotype CA versus AA (0.85, 95% CI ¼ 0.64–1.12). Thus,
rs12587781 seems to have no effect after controlling for rs1154155,
suggesting that rs1154155 may have functional significance or is in
high LD with another causative SNP nearby. SNPs with r2 4 0.8 with
rs1154155 are known to exist from HapMap data. This SNP is located
176 bp 3¢ to TRAJ10, a J segment without known coding polymorph-
isms. Genotype analysis suggested a dosage effect (CC versus AA
Mantel-Haenszel OR ¼ 2.55, 95% CI ¼ 1.92–3.38; AC versus AA
Mantel-Haenszel OR ¼ 1.94, 95% CI ¼ 1.68–2.25) (Table 3).

Population attributable risks16 for TRA@ rs1154155C in Caucasians
and in Asians were 20% and 42%, respectively. The increased
frequency of rs1154155[C] in Asians likely contributes to the reported
increased prevalence in Japan1 despite lower HLA-DQB1*0602
frequency4. Our identified TRA@ rs1154155[C] polymorphism
showed no interaction with the nominally significant TRB@
rs17231[T] polymorphism in the GWA data in our preliminary
analyses (OR interaction ¼ 1.2, P ¼ 0.24). In our much larger
sample, we also did not replicate a previously published rs5770917
association in Japanese narcolepsy (Table 1), suggesting an ancestry-
specific effect17. Further, interactions between rs5770917 and

rs1154155 were nonsignificant in Caucasians, Asians and African
Americans (OR interaction ¼ 0.88, P ¼ 0.66 in all samples).

The TRA@ locus encodes the a-chain of the TCRab-heterodimer, a
protein expressed by T lymphocytes18. The T-cell receptor is a unique
protein that interacts with both HLA class I (CD8 in cytotoxic T cells)
and HLA class II (CD4 in helper T cells), including the DQab
heterodimer denoted DQ0602, encoded by HLA-DQB1*0602 and
the closely linked HLA-DQA1*0102 allele. The TRA@ locus, like the
TRB@ and the immunoglobulin variable heavy and light chain loci, is
unusual in undergoing somatic cell recombination. TRA@ and TRB@
recombination occurs in the thymus, resulting, after deletion of
autoreactive clones and positive selection, in the generation of T-cell
clones with unique TRA@ and TRB@ recombined loci. In the TRA@
locus, recombination occurs between the 5¢ area of one of the
46 functional variable (V) segments19 and the 3¢ area of one of the
49 functional J segments20–22, with additional amino-acid junctional
diversity generated by N and P additions in the V-J border region. In
the TRB@ locus, diversity is even more complex and generated by
recombination of 48V, 2D and 13J segments22. This mechanism
produces a diverse repertoire of distinct TCRab idiotype–bearing
T cells21, which can be called upon to recognize antigens presented
by HLA class I or class II molecules23.

Unlike most other autoimmune diseases9, narcolepsy is almost
completely associated with a single HLA allele, DQB1*0602, across
Caucasians, Asians and African Americans4. Considering the tight
DQB1*0602 association in narcolepsy, it is logical to hypothesize
that the DQB0602 heterodimer should interact with a specific
TCRab receptor subtype whose occurrence is marked by
rs1154155[C], and less strongly by rs17231[T] at both TCR loci.
This TCR idiotype would bear specific VJa and VDJb recombi-
nants, with recognition of a peptide that also binds DQ0602,
mediating further immune reaction leading to the destruction of
hypocretin-producing cells. Precisely how a J segment region
polymorphism such as rs1154155[C] could increase the risk of
occurrence of this narcolepsy associated T-cell clone is unknown,
but could involve nonrandom VJa choices in recombination21, as
previously reported. Similarly, a polymorphism in the TRB@ V
region could influence VDJ recombination for the complementary
TCRb chain. Less probably, the TCR-DQ association could also
occur without the need for peptide binding, through superantigen-
like bridging of TCR and DQ, although most known superantigens
interact with TCRb rather than TCRa chains24. Further, super-
antigen bridging typically results in stimulation of large systemic
lymphocyte populations carrying specific TRB@ segments such as
that seen in toxic shock syndrome.

Notably, of over ten HLA associated autoimmune diseases that have
been subjected to genome-wide analyses and candidate gene
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Table 2 Replication of SNP markers discovered in the GWA study

Ancestry rs12587781 rs1154155 rs1263646

Caucasian C C G

Freq controls (n) 0.14 (352) 0.14 (348) 0.16 (351)

Freq cases (n) 0.22 (353) 0.22 (343) 0.24 (353)

w2 17.08 17.04 13.66

P 3.58 � 10�5 3.67 � 10�5 2.19 � 10�4

OR (95% CI) 1.79 (1.36–2.37) 1.80 (1.36–2.39) 1.65 (1.26–2.15)

Asians C C G

Freq controls (n) 0.61 (601) 0.47 (599) 0.45 (600)

Freq cases (n) 0.68 (552) 0.57 (549) 0.51 (553)

w2 11.09 26.76 9.81

P 8.70 � 10�4 2.30 � 10�7 1.73 � 10�3

OR (95% CI) 1.34 (1.13–1.59) 1.54 (1.31–1.82) 1.30 (1.10–1.53)

African Americans C C G

Freq controls (n) 0.11 (142) 0.08 (138) 0.133 (139)

Freq cases (n) 0.13 (124) 0.10 (113) 0.165 (124)

w2 0.70 0.74 1.08

P 0.40 0.39 0.30

OR (95% CI) 1.25 (0.74–2.13) 1.31 (0.71–2.42) 1.29 (0.80–2.09)

Within the subset of Caucasian controls with HLA information, allele frequencies at
the three SNPs did not differ between DQB1*0602 positive (n ¼ 469) and negative
(n ¼ 1,352) individuals.

Table 3 Analysis of rs1154155 genotypes in three replication cohorts and combined

Ancestry AA Case/Ctrl AC Case/Ctrl CC Case/Ctrl ORAC ORCC ORC

African American 90/117 23/20 0/1 1.50 (0.74,3.04) 0.00 (0.00,22.90) 1.31 (0.68,2.52)

Asian 86/161 296/318 167/120 1.74 (1.27,2.39) 2.61 (1.81,3.76) 1.54 (1.30,1.83)

Caucasian 201/259 132/83 10/6 2.05 (1.45,2.89) 2.15 (0.70,6.77) 1.80 (1.35,2.41)

Three replication samples (MH) 1.83 (1.48,2.27) 2.50 (1.80,3.48) 1.59 (1.38,1.83)a

All samples (MH) 1.94 (1.68,2.25) 2.55 (1.92,3.38) 1.69 (1.52,1.88)b

ORAC is the odds ratio for genotype AC versus AA; ORCC is the odds ratio for genotype CC versus AA; ORC is the odds ratio for allele C versus A.
aw2 ¼ 42.9, P ¼ 5.9 � 10�11. bw2 ¼ 94.2, P ¼ 2.8 � 10�22.
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studies, none has shown consistent association with either TCR
locus25. Further studies of the TCR loci in narcolepsy may for the
first time reveal a role for a specific TCR receptor idiotype in the
pathophysiology of an autoimmune disorder.

METHODS
Subjects. Narcolepsy cases were selected as described, 98% of whom are

predicted to be hypocretin deficient. The initial sample was comprised of

807 cases and 1,074 Caucasian controls: 415 cases and 753 controls were

recruited from the United States and Canada; 392 cases and 321 controls were

recruited from European centers.

The Caucasian replication sample contained 718 individuals, of whom 542

were recruited from the United States and Canada (259 cases, 283 controls) and

176 from Europe (104 cases 72 controls). The Asian sample included 866

Japanese (433 cases, 433 controls) and 300 Koreans (128 cases, 172 controls).

Finally, we studied 277 African Americans (133 cases, 144 controls). All subjects

had given written informed consent approval.

HLA-DQB1*0602 typing. The presence or absence of DQB1*0602 was

determined using DQB1 exon 2 sequence-specific primers (Supplementary

Table 2 online). These primers amplify DQB1*0602 and a few exceptionally

rare DQB1*06 alleles (allele frequency o0.5%) as a 218-bp PCR product. The

assay includes a DRB1 internal positive control.

Analysis of Affymetrix data. We obtained Cel file data for all samples and

carried out genotyping using the Birdseed-dev algorithm for Affy 6.0 (Affyme-

trix Power Tools \apt-1.8.5) (n ¼ 1544), and BRLMM for Affy 500K array set

chips (n¼ 337). In each genotype-calling group, individual chips with poor call

rates (typically o97%) or high heterozygosity were excluded from further

analysis. For each Birdseed calling run, SNPs with call rates o0.9, or Hardy-

Weinberg P o 0.01 in controls were excluded. A total of 549,596 SNPs passed

all quality control filters and were included in the final analysis. Genotype data

was maintained in our database (Progeny Lab 7), and analyses were done using

the PLINK software package (v1.04 26/Aug/2008)14. Interaction studies were

conducted in the initial set and in replication sets (cases and controls) using

PLINK epistasis, which performs a logistic regression including main genotype

effects plus an interaction term.

URLs. Birdseed-dev algorithm, http://www.affymetrix.com/products/software/

specific/birdseed_algorithm.affx; BRLMM, http://www.affymetrix.com/support/

technical/whitepapers/brlmm_whitepaper.pdf; Progeny Lab 7, http://www.

progenygenetics.com; PLINK, http://pngu.mgh.harvard.edu/Bpurcell/plink/.

Note: Supplementary information is available on the Nature Genetics website.
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