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Abstract 1	

Type 1 narcolepsy (T1N) is a neurological condition, in which the death of hypocretin-producing 2	

neurons in the lateral hypothalamus leads to excessive daytime sleepiness and symptoms of 3	

abnormal Rapid Eye Movement (REM) sleep. Known triggers for narcolepsy are influenza-A 4	

infection and associated immunization during the 2009 H1N1 influenza pandemic.  Here, we 5	

genotyped all remaining consented narcolepsy cases worldwide and assembled this with the 6	

existing genotyped individuals. We used this multi-ethnic sample in genome wide association 7	

study (GWAS) to dissect disease mechanisms and interactions with environmental triggers  8	

(5,339 cases and 20,518 controls). Overall, we found significant associations with HLA (2 GWA 9	

significant subloci) and 11 other loci. Six of these other loci have been previously reported (TRA, 10	

TRB, CTSH, IFNAR1, ZNF365 and P2RY11) and five are new (PRF1, CD207, SIRPG, IL27 and 11	

ZFAND2A). Strikingly, in vaccination-related cases GWA significant effects were found in HLA, 12	

TRA, and in a novel variant near SIRPB1. Furthermore, IFNAR1 associated polymorphisms 13	

regulated dendritic cell response to influenza-A infection in vitro (p-value =1.92*10
-25).  A 14	

partitioned heritability analysis indicated specific enrichment of functional elements active in 15	

cytotoxic and helper T cells. Furthermore, functional analysis showed the genetic variants in TRA 16	

and TRB loci act as remarkable strong chain usage QTLs for TRAJ*24 (p-value = 0.0017), 17	

TRAJ*28 (p-value = 1.36*10
-10

) and TRBV*4-2 (p-value = 3.71*10
-117

). This was further 18	

validated in TCR sequencing of 60 narcolepsy cases and 60 DQB1*06:02 positive controls, 19	

where chain usage effects were further accentuated. Together these findings show that the 20	

autoimmune component in narcolepsy is defined by antigen presentation, mediated through 21	

specific T cell receptor chains, and modulated by influenza-A as a critical trigger.	22	

 23	
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Main Text 1	

Type 1 narcolepsy (T1N) is a sleep disorder that affects 1/3,000 individuals across ethnic 2	

groups
1-3

. Onset is typically in childhood through early adulthood.  Symptoms are caused by the 3	

destruction of hypocretin/orexin neurons, a small neuronal subpopulation of the hypothalamus
4
 . 4	

Although the disease is considered autoimmune, the exact mechanism leading to hypocretin cell 5	

death is still unclear. Indeed, T1N is strongly associated with alleles encoding the heterodimer 6	

DQ0602 haplotype (HLA-DQA1*01:02~DQB1*06:02, 97% vs. 25%) across ethnic groups
5,6. 7	

Other loci previously associated with the disease include T cell receptor (TCR) loci alpha (TRA) 8	

and beta (TRB), receptors of HLA-peptide presentations, and other autoimmune associated 9	

genes (CTSH, P2RY11, ZNF365, IFNAR1 and TNFSF4)
7-10

 . 	10	

 11	

Triggers of T1N point to the immune system, including influenza and Streptococcus Pyogenes 12	

infections
9,11,12	, as well as immunization with Pandemrix®, an influenza-A vaccine developed 13	

specifically against the H1N1 “swine flu” strain	13-20 suggest a strong environmental modifier of 14	

disease risk for narcolepsy. Increased T1N incidence following the Pandemrix® vaccination was 15	

first seen in Northern Europe
13-20

 with 8-fold increase in incidence in (0.79/100,000 to 16	

6.3/100,000) in children. The specificity was striking, as increased T1N was later detected in all 17	

countries where Pandemrix® was used, whereas countries using other pH1N1 vaccine brands 18	

did not detect vaccination-associated increases in incidence
13-22

. 	19	

 20	

Despite the genetic and epidemiological evidence for T1N being an immune-system mediated 21	

disease, only a few genetic risk factors have been found or characterized so far. Furthermore, the 22	

functional consequence of these variants has remained unstudied. Therefore, we examine and 23	

characterize genetic factors for T1N across multiple ethnic groups in a sample three times larger 24	

than earlier studies finding novel mechanisms how these variants affect RNA expression and T 25	

cell receptor chain usage. Our novel findings show that the autoimmune component in narcolepsy 26	

is defined by antigen presentation, mediated through specific T cell receptor chains, and 27	

modulated by influenza-A as a critical trigger.	28	
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 1	

Results	2	

GWAS discovers five novel risk loci for narcolepsy. To discover novel narcolepsy loci, we first 3	

meta-analyzed a large multiethnic cohort of 5,339 T1N cases and 20,518 controls consisting of 4	

samples from nine independent cohorts across three ethnic groups. In addition to the strongest 5	

associations in the HLA locus (minimum p-value<10
-216

), we discovered additional 228 genome-6	

wide significant SNPs with no evidence of genomic inflation
23

 (λ=1.06) (meta-analysis p-value < 7	

5x10
-8

; Fig. 1). These results confirmed six out of eight previously identified loci (TRA, TRB, 8	

CTSH, IFNAR1, ZNF365 and P2RY11), and identified five novel loci near CD207, SIRPG, IL27, 9	

ZFAND2A and PRF1 (Fig. 1, Table 1, Supplementary Figs. 1-2). Further fine-mapping 10	

suggested more than one signal in TRB, ZNF365, TRA, SIRPG and IFNAR1 loci (Supplementary 11	

information). Furthermore, a GCTA gene based test
24

 showed association with three known 12	

autoimmune or inflammatory disease genes with GPR25
25,26

, C1ORF106 
27

and PD-128,29, 13	

suggesting that additional variants remain to be discovered using larger sample sizes (see 14	

Supplementary Tables 1-3) doubling the number of variants in T1N. 	15	

	16	

Next we examined the genetic architecture of T1N by calculating the narrow sense heritability 17	

explained by the typed variants. GCTA estimated the observed scale heritability to be h2SNP[ci] 18	

=0.403 [0.015] 
30

 and the population heritability to be h2SNP[ci]=	0.231 [0.0088] assuming a 19	

prevalence estimate of 0.03%
1,2

. One third of observed heritability was mediated by genetic 20	

variation within the extended MHC region and similar to other pediatric autoimmune diseases 
31

. 	21	

Narcolepsy shares variants with autoimmune diseases. We next examined genome-wide 22	

shared genetic correlation with other traits excluding variants at the extended HLA locus. 
32

 Note 23	

that we performed this analysis using samples of Whites as reflecting the genetic makeup of the 24	

population for which public data is available.  The strongest correlations were seen between T1N 25	

and autoimmune diseases (Wilcox signed rank p-value = 0.031). Of all autoimmune traits 26	
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examined using LD Score Regression
33

, the shared heritability was largest with type-1 diabetes 1	

(T1D) (rg=0.3261 (se=0.1015), p-value = 0.0013). 	2	

 3	

We next examined whether genome wide significant T1N associations are shared with other 4	

autoimmune diseases, suggesting shared mechanisms at single loci. Significant associations in 5	

T1N were compared with autoimmune disease associations using published studies and GWAS 6	

central
37-39	. Most notably, co-localization of signals using coloc anaysis 

40
 was found at IL27 7	

between T1N and both ankylosing spondylitis (posterior probability [pp] = 0.96) and Crohn’s 8	

disease (pp=0.93).	9	

 10	

We also discovered strong overlap between T1N and T1D at CTSH pp=0.998 and SIRPG 11	

pp=0.999, as well as evidence for partial sharing at IL27 pp=0.71, while signals were independent 12	

for P2RY11 (pp=0.02). T1D is also the only autoimmune trait besides narcolepsy where any 13	

association was seen near the TRA locus, although the T1D signal (rs7145202, beta = 0.1, p-14	

value = 4*10
-6

)
41 

is independent from the narcolepsy signal (r
2
<0.5) and located  ~100 kb 15	

upstream of the TRA loci per se. While previous studies have shown either a small increase or no 16	

increased risk for autoimmune diseases in T1N patients, 
34-36

 we found statistical evidence of 17	

global genetic correlation between T1N and other autoimmune diseases and co-localization of 18	

individual associations.	19	

 20	

Genetics of vaccination-triggered narcolepsy. We have previously shown that both influenza 21	

infections and, in rare cases, immunization with Pandemrix® can trigger narcolepsy
13,18,19,42,43. 22	

The baseline for narcolepsy in unvaccinated vs. Pandemrix® vaccinated individuals was 23	

0.7/100,000 vs. 9/100,000 person years with on average 10-fold increase in risk 
13,18,19,42-44

. We 24	

therefore recruited Pandemrix® vaccination-related narcolepsy cases in five countries and 25	

examined the genetic load for narcolepsy (Table 2). All Pandemrix® vaccination cases were 26	

carriers also for HLA-DQB1*06:02. Weighted genetic risk score (GRS) excluding HLA showed a 27	

strong association in Pandemrix® vaccination related narcolepsy in each sub cohort (p<0.01 for 28	
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all cohorts) and with combined vaccination related narcolepsy sample (p-value = 7.96*10
-10

). 1	

(Table 2, and Supplementary Table 8 and Supplementary Figs. 3-4).   2	

 3	

Similarly to GRS evidenced shared signal, we found GWA significant signal with HLA-4	

DQB1*06:02, TRA rs1154155 and a variant between SIRPB1-SIRPG locus (rs76958425, OR= 5	

2.49 [1.82 - 3.41], p-value = 1.12*10-8, Table 2) not present in regular cases (rs76958425, p-6	

value=0.15, beta = -0.0694, OR=0.93). The overall association of GRS and two shared loci 7	

indicate that vaccination related narcolepsy is fundamentally the same disorder as idiopathic T1N.	8	

 9	

Functional analyses highlight effects on immune cells.  Analysis using GARFIELD
45

 showed 10	

the variants with p-value<0.00001 have a 5.9-fold enrichment for missense variants and 5.3 fold 11	

enrichment for 5’UTRs (Fig.2, Supplementary Figs 5-7). Further, many associated variants in 12	

Table 1 are in tight linkage with non-synonymous substitutions in the corresponding genes, such 13	

as variants in CTSH (rs2289702 G11R), TRA (rs1483979, F8L), PRF1 (rs35947132, A91V), 14	

SIRPG (rs6043409, V263A), CD207 (rs13383830, N288D and rs57302492, K313I, r2 =1) and 15	

IL27 (rs181206 L119P) as well as variants marking different HLA-alleles. 	16	

 17	

We confirmed that variants within CTSH are also important in the predisposition of T1N. Among 18	

immune cells, CTSH is only expressed in Class II positive antigen presenting cells (B cells, 19	

dendritic cells and monocytes), and is known to process antigen for HLA presentation, thus 20	

furthering a role for HLA-DQ presentation in T1N. Of note, we also observed a sub threshold 21	

association with another cathepsin gene, CTSC (rs3888798, C allele frequency =0.06), OR = 22	

1.276 [1.169-1.394] p-value =5.8*10
-8

), which was not associated with vaccination related 23	

narcolepsy (rs3888798,
 
OR=0.76, p-value=	0.336).  24	

	25	

In PRF1, the leading variant rs35947132 causes an amino acid change A91V that acts as a 26	

hypomorph and disrupts cytotoxicity of the immunological HLA class I synapse
46,47	. This 27	

relatively rare variant (allele frequency 0.03 in Whites) has been shown to prevent perforin, a 28	
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protein expressed only by natural killer (NK) and cytotoxic (CD8
+
) T cells, to form functional 1	

complexes, thus preventing cytotoxic cells from destroying target cells
46,48

 . These findings 2	

indicate direct involvement	of cytotoxic T cells, most likely CD8
+ 

T cells, in hypocretin cell 3	

destruction. 	4	

  5	

In addition, we discovered associations is in signal-regulatory protein gamma SIRPG (rs6110697, 6	

V263A) a receptor-type transmembrane glycoprotein known to interact with CD47, an anti-7	

autophagy signal for the immune system that has shown success in cancer immunotherapy
59

. 8	

Although V263 is conserved in all SIRP family members, it is also located within an alternate 9	

exon.  Unlike other members of the SIRP family, SIRPG is almost exclusively expressed in CD4
+
 10	

and CD8
+
 T cells.  Furthermore, the SNP is also a strong eQTL in thymus and whole blood

60
.  11	

Interestingly, vaccination-associated cases displayed an additional GWAS significant association 12	

with rs76958425, a strong QTL for SIRPB1, another SIRP family member known to interact with 13	

CD47. This association is not present in the overall narcolepsy sample  (rs76958425, beta = -14	

0.0694138,OR=0.93, p=0.15). SIRPB1 is mostly expressed in antigen presenting cells and has 15	

been shown to modulate neuronal killing in Alzheimer’s disease
61

, suggesting it could also be 16	

important for hypocretin-cell survival, though it may play a role in the modulation of T cell 17	

population survival. 	18	

 19	

One of the strongest novel factors associated with narcolepsy is rs2409487 in the IFNAR1 gene, 20	

a gene mediating interferon α/β inhibition of virus replication type 1 interferon response 21	

associated with T1N.  We observed that this SNP is a strong eQTL for IFNAR1 expression in 22	

various tissues in GTEx
68

. In addition, a different lead variant (e.g. rs2284553) has been 23	

associated with other autoimmune diseases. IFNAR1 controls dendritic cell responses to viral 24	

infections, notably influenza A
69

.  We therefore examined IFNAR1 expression in DC following 25	

H1N1 infection (PR8 delta NS1) finding that our predisposing SNP (rs2409487) is a major eQTL 26	

for this effect (p-value = 1.92*10
-25

, beta =0.140), and in perfect LD with the leading variant for the 27	

signal (rs6517159, D’=1, r
2
=0.995, coloc pp = 0.964 Supplementary Fig. 8). The findings 28	
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suggest that rs2409487 in INFAR1 mediates predisposition to T1N by modulating response to 1	

Influenza-A infection. 	2	

 3	

Overlap of risk with cell-type specific chromatin regions.  We examined whether associations 4	

with narcolepsy were enriched genome-wide on specific enhancer elements using stratified LD 5	

score regression on Epigenome Roadmap cell type specific annotations (n=216 cell types)
71

.	 6	

Partitioned heritability by functional categories enriched in the hematopoietic cell lines 7	

(Supplementary Fig. 2b and 2c, Supplementary Fig 8.). Consistent with our model, association 8	

was driven by CD4
+
 T cells, with leading effects in CD3+ primary H3K27ac, CD4+/CD25-/IL17- 9	

PMA&ionomycin stimulated primary H3K4me1, and CD4+/CD25- primary H3K4me1 (each 10	

enriched over 35-fold in predicted heritability per SNP).  Additional effects were seen in Th17 11	

CD4
+
 T cells and CD8

+
 T cells, confirming the importance of these cell types in narcolepsy. 12	

Importantly, no enrichment was seen in neuronal cell types. While immune cells have been 13	

suggested to play a role in the predisposition to T1N
72

, these novel findings show that the effects 14	

are specific to both helper and cytotoxic T cells, and that individual variants genome-wide are 15	

substantially enriched in specific T cell lineages predisposing to T1N.	16	

 17	

Risk variants in T cell receptor loci modulate αβ T cell receptor repertoire. T1N is the only 18	

autoimmune disease with significant association in HLA and T cell receptor (TCR) loci (TRA and 19	

TRB).  TCR molecules are formed through VDJ somatic recombination at the genomic level, a 20	

process that allows for substantial TCR sequence diversity.  The recombinant T cell clones are 21	

later subjected to negative and positive selection in the thymus in order to optimize pathogen 22	

responses while avoiding auto-reactivity.  As a consequence, most of TCR binding diversity is 23	

ensured by selection in the context of specific HLA molecules. TCRα and β chains heterodimerize 24	

to form biologically functional molecules that recognize peptides presented by the Major 25	

histocompatibility complex (MHC) encoded by the highly variable classical HLA genes. On one 26	

hand, T1N is associated with the DQB1*06:02 allele of the MHC class II β subunit and the highly 27	

linked DQA1*01:02 allele of MHC class II α subunit. On the other hand, T1N is strongly 28	
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associated with TCR α and b chains. Notably, this association is also seen in cases with 1	

vaccination-triggered narcolepsy (Table 2). This suggests that T1N is directly linked with 2	

autoimmunity that is mediated by T-cell activation. 	3	

 4	

Clearly the strong association of T1N with the HLA locus will affect the presented epitope and the 5	

TCR repertoire
73

, however how does the association with TRA and TRB affect the TCR 6	

repertoire? In the TRB region, association peaks over 32 SNPs (from hg19 chr7:142025523-7	

142248636) over a 22kb segment. The association signal within TRA locus spans over several J 8	

genes over 18 kb, with 5 SNPs (rs1154155, rs1483979, rs3764159, rs3764160) in perfect LD 9	

across ethnic groups. Among TRA SNPs, rs1483979, a SNP changing F8L in the peptide 10	

recognizing groove of CDR3 region of TRA J24 is an obvious candidate defining two J24 alleles 11	

we denote as J24*01 and J24*02 respectively.  We next examined the effects of these SNPs on 12	

T-cell receptor V or J gene chain usage using RNA sequencing in 895 individuals73.   Strikingly, 13	

rs1154155 with TRA J28 expression in total RNA sequencing from blood (p-value=1.36*10
-10

, 14	

beta = -0.212, Fig. 3) with the same lead variants that associated with narcolepsy and posterior 15	

probability for shared variant was pp=0.958 suggesting that rs1154155 in T1N predisposition 16	

mediates its action through effects on TRA J28 repertoire (See supplementary Table S5 for all 17	

rs1154155 effects).  J24 usage is also among the top associations for rs1154155 effects, 18	

although in this case correlation is opposite and the associated SNP increases usage (p-19	

value=0.0017, beta=0.104, pp=0.54). Associations with multiple target variants within the same 20	

haplotype have been defined with complex traits with both regulatory and non-coding effects 21	

before and are likely to have a role in T1N predisposition
74

. 22	

	23	

To further investigate the mechanism of the TRA variants specifically on CD4
+ 

T cells, which are 24	

the most likely causal cell type because of their interactions with DQB1*0602, we performed T 25	

cell receptor sequencing of CD4
+
 memory T cells in 40 individuals with T1N and 61 DQ0602 26	

matched controls (Fig. 3).  Although we found no significantly over-represented T cell clones, we 27	

discovered a similar effect of rs1154155 on J28 usage in CD4+ in T1N and healthy controls (beta 28	
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= -0.32, p-value<0.001, Fig. 3). Furthermore, the effect was stronger in individuals with T1N that 1	

had significantly lower expression level of TRA J28 than healthy controls (beta = - 0.20, p-value = 2	

0.027). Similarly, the effect of rs1154155 on J24 usage was also similar population cohort (beta = 3	

0.33, p-value<0.001). We also confirmed that these effects were cis mediated, and the ratio of 4	

J24*01 (F) over J24:02(L) was only 0.4 in heterozygotes, indicating lower allele specific 5	

expression with F-narcolepsy associated alleles, with similar effects in other T cell subpopulations 6	

(Supplementary Fig. 10). The findings suggest that the predisposition to T1N is mediated either 7	

by decreasing usage of TRA J28, or by increasing TCR recognition through J24*01, although in 8	

this case the effect would be mitigated by decreased expression of this allele.	9	

 10	

Within the TRB region, rs1108955 was the leading variant for TRBV4-2, TRBV3-1 and TRBV2 11	

expression (Supplementary Table 6). While it has been observed that individual variants can 12	

affect multiple target genes	75, the strongest evidence was seen with TRBV4-2. The leading T1N 13	

variant was in perfect LD with the lead variant for TRBV4-2 expression, and the association of 14	

same variants for eQTLs in TRB expression for TRBV4-2, TRBV3-1 and TRBV2 pp>0.95 with 15	

strongest evidence for TRBV4-2 usage pp=0.99 (Supplementary Fig. 11).   	16	

 17	

We finally examined whether usage of specific TRAJ, TRAV, TRBJ or TRBV genes in CD4
+
 T 18	

cells was associated with seasonal influenza vaccination (12 cases versus 5 cases) or with 19	

narcolepsy case/control status (59 narcolepsy cases versus 47 DQ0602 controls). Unique T cell 20	

receptor gene usage was not associated with influenza vaccination (Appendix 1, Table 1-16). 21	

However, we did see a statistically significant difference between narcolepsy and controls with 22	

TRBJ1-3*01 usage (p=0.0012, beta=0.00425). Similarly, although TRAJ28 was the second most 23	

significantly associating clone between narcolepsy and control with both protective and 24	

predisposing clones the association was not statistically significant (p<0.0001, corrected p=1, 25	

Appendix 1. Table 23 and Table 24). These findings are in line with usage effects seen with 26	

narcolepsy risk variants. 	27	

 28	
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To summarize, the finding that specific TRA and TRB variants associate with narcolepsy 1	

suggests specificity for the autoimmune pathology through the T cell receptors. The co-2	

localization of signal at the population sample with expression suggests a direct effect on the 3	

specific usage of TRAJ28 expression coding effect on TRAJ24 (F8L) variation as well as TRBV4-4	

2 gene expression. This was also is seen specifically in T cell receptor sequencing in CD4+ T 5	

cells and is stronger in patients (p<0.05) suggesting for direct causal effect for disease 6	

pathophysiology through expression and autoantigen recognition.  7	

 8	

Multi-loci association of narcolepsy within the HLA region. The strongest association in 9	

narcolepsy is within the HLA locus.  Strikingly, T1N is one of the few diseases where nearly all 10	

affected individuals carry at least one copy of exactly the same HLA allele, DQB1*06:02
5,6

.  To 11	

fine map this association, we imputed HLA haplotypes using HIBAG 76
 and HLA IMP:02

77
. We 12	

then performed ethnic specific HLA association and combined them using fixed effects meta-13	

analysis. As expected
5,6

, the strongest association was with the DQA1*01:02~DQB1*06:02 14	

(DQ0602) haplotype.	15	

 16	

To look for additional independent signal, we performed conditional analysis using stepwise 17	

forward regression. We detected (1) a strong protective effect of DQA1*01:01 and DQA1*01:03 18	

alleles (OR=0.30, p-value<10
-15

 and OR =0.30, p-value<10
-20

, respectively) with combined 19	

protective OR=0.41, p-value<10
-40

; (2) predisposing effects for DQB1*03:01 and DQA1*01:02 20	

across ethnic groups as shown before 
5,6,78,79

(OR=1.36, p-value<5*10
-8

 and OR=1.68 p-21	

value<5*10
-8

, respectively) (Supplementary table 7).  The protective effects of DQA1*01:01 and 22	

DQA1*01:03 have been suggested to be mediated via heterodimerization with DQB1*06:02, 23	

indirectly reducing cis encoded DQA1*01:02/DQB1*06:02 (DQ0602) heterodimer availability
5,79

.   24	

 25	

Controlling for both DQB1 and DQA1 effects, a strong protective association was seen with 26	

DPB1*04:02 allele (p-value<10
-20

) whereas smaller predisposing effect was found with 27	

DPB1*05:01 allele, a mostly Asian subtype (p-value <10
-3

). Finally, after adjusting for the DQ and 28	
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DP effects significant associations were seen at HLA class I with A*11:01, B*51:01, B*35:01 and 1	

B*35:03 and with A*03:01 (p-value <0.01, Supplementary table 7).  These findings confirm and 2	

extend results of two previously publications
6,81

, with effects of B*51:01 likely secondary to LD 3	

with A*11:01 in whites.	4	

	  5	
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Discussion 1	

In this study, we explored genetic risk for narcolepsy and potential disease mechanisms of 2	

identified genetic risk factors. The strongest associations were seen with the HLA region. In 3	

addition, we confirmed six previously described risk loci (TRA, TRB, CTSH, IFNAR1, ZNF365 and 4	

P2YR11) and discovered five novel associations in PRF1, CD207, SIRPG, IL27 and ZFAND2A. 5	

Analysis of functional consequences of these loci in a multi-ethnic sample discovered remarkable 6	

association with immune loci evidenced by individual associations and partitioned heritability 7	

enrichment. A notable example is the effect of both missense and regulatory variants in the TRA 8	

and TRB regions that had a substantial effect on the T cell receptor chain usage. All these 9	

findings strongly suggest specific risk factors in genes controlling immune reactions. 10	

 11	

Two loci in addition to the HLA region were implicated in vaccination-associated narcolepsy 12	

(TRA, SIRPB1). Findings indicate that although genetic factors predisposing to regular and 13	

vaccine-triggered narcolepsy are largely shared, there are slight differences. These findings may 14	

reflect a primary role for genetic factors in immune response per se versus infection and immune 15	

response in other cases. A detailed analysis of the loci where the leading variants for T1N are 16	

located suggests both antigen presentation and recognition. Indeed, the majority of variants have 17	

effects in antigen presenting cells (HLA, CTSH), e.g. dendritic cells (IFNAR1, CD207), T cells 18	

(TRA, TRB, P2YR11, SIRPG), e.g. T helper cells (HLA-DQ, HLA-DP, IL27), and cytotoxic T cells 19	

(HLA-A, PRF1), sketching a remarkably narrow disease pathway (Fig. 4). Accordingly, a direct 20	

effect of TRA and TRB associations with T cell receptor expression was seen; TRA lead variant 21	

was an eQTL for TRAJ28 and TRAJ24 expression whereas strongest eQTL effect for TRB lead 22	

variant was seen with TRBV4-2. The effect was accentuated in T1N cases, suggesting for the 23	

first time that specific T cell receptor chains such as TRAJ24, TRAJ28 and TRBV4-2 are strong 24	

risk factors for narcolepsy and potentially causal factors recognizing and binding the autoantigen. 25	

This association is unique to T1N and has not to our knowledge been seen with other 26	

autoimmune diseases.	27	

 28	
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In addition, a strong functional connection with Influenza A infection in dendritic cells was found at 1	

IFNAR1, furthering the role of this virus as a common trigger for the disease. We also discovered 2	

associations with ZNF365 and ZFAND2A, ubiquitously expressed transcription factors with, in the 3	

case of ZNF365, strong known associations with other autoimmune diseases
82,83

.   The 4	

ZFAND2A association (also called Arsenite-inducible RNA-associated protein AIRAP) is unique 5	

to narcolepsy, and was opposite in post vaccination cases, an effect that could suggest 6	

differential effects on influenza infection and immune response modulation.  The ZFAND2A 7	

associated SNP, is in perfect linkage disequilibrium (r
2
=1) with a very large number of SNPs over 8	

a 250 kb region that encompasses and regulates many genes. Of possible interest in this region 9	

is GPR146, a gene highly enriched in unstimulated macrophages and dendritic cells, whose 10	

reduced expression is associated with the INFγ response and suppresses HCMV replication in 11	

infected dendritic cells
84

.	We were able to examine for the effects of these variants in post 12	

Pandemrix® cases. TRA association was particularly strong, suggesting involvement of T cell 13	

receptor oligoclonallity in autoantigen recognition. 	14	

 15	

Based on these observations, we propose that narcolepsy is the result of an autoimmune process 16	

triggered primarily by influenza-A on an HLA-DQA1*01:02~DQB1*06:02 (DQ0602) background. 17	

The involvement of influenza-A is likely to explain why the genetic associations we found are 18	

universal.  Indeed, influenza is one of few viruses that act worldwide on a seasonal basis.  The 19	

universal association is especially clear for DQ0602 as it is found with different HLA-DRB1 20	

alleles, DRB1*15:01 in White (Europe and USA) and Asians (China, Korea, Japan and India), but 21	

DRB1*15:03 or DRB1*11:01 in Blacks (confusion of ancestral continent of origin and sample 22	

location?) 
5,6

.  The primacy of DQ0602 over DRB1*15:01 is also demonstrated by the fact 23	

DRB1*15:01~ DQA1*01:03~DQB1*06:01 haplotype is not associated with narcolepsy in China 24	

and by the fact additional DQ effects are mostly mediated by DQA1 alleles that interact in trans 25	

with DQB1*06:02.  In contrast to narcolepsy, other autoimmune diseases commonly have 26	

different HLA associations or disease presentations across countries, and resulting HLA 27	

associations are more complex. Type 1 diabetes, for example, is well known to be primarily 28	
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associated with HLA-DQ in Whites whereas DRB1*04:05 specific effects are evident in Japan 1	

where the disease is rare
83,85,86

 
77

.   	2	

 3	

Other autoimmune diseases, unlike narcolepsy, are also associated with a plethora of 4	

autoantibodies and known autoantigen targets. For example Insulin, GAD, IA-2 and ZNT8 are 5	

involved in T1D and β-cell antigen targeting, suggest that these other diseases involve multiple B 6	

and T cell mechanisms and antigens, likely explaining the weaker and more complex HLA effects 7	

and a lack of association with any specific TCR polymorphisms. It is our hypothesis that the 8	

strong effects of TCR polymorphisms in narcolepsy likely represent the fact autoimmunity in this 9	

disease is oligoclonal and limited to one or a few hypocretin cell antigen epitopes. These epitopes 10	

may bind DQ0602 specifically and involve a few αβTCR receptors containing TRAJ24, TRAJ28 or 11	

TRBV4-2 (Fig 4). Other groups have suggested involvement of TRIB2, prostaglandins and 12	

HCRTR2
87-91

. However, these associations have not been universal.  Systematic studies of T-cell 13	

reactivity with TCR identification in the context of DQ0602 and flu or autoantigen epitopes are 14	

ongoing in various laboratories to address this issue.	15	

 16	

In this study, perforin, a gene of critical importance to NK and CD8
+ 

T cell cytotoxicity was 17	

strongly protective of narcolepsy, whether or not it was triggered by vaccination. In the context of 18	

compound null heterozygotes of the perforin gene, A91V has been is associated with late onset 19	

hemophagocytic lymphohistiocytosis (HLH) type 2
49

, a recessive disorder associated PRF1 null 20	

alleles.  HLH type 2 is characterized by excessive T cell activation that may involve abnormal 21	

reactivity to viral pathogens 
50

or decreased CD8+ T cytotoxic pruning of dendritic cells
51

.  22	

Interestingly, Prf1 knock-out mice do not develop the syndrome unless infected with viruses such 23	

as murine lymphocytic chorio-meningitis virus or murine cytomegalovirus, a phenomenon 24	

involving CD8
+
 T cells and increased IFNγ

50
. Other perforin-damaging mutations have also been 25	

anecdotally associated with susceptibility to multiple sclerosis
52

 and T1D
53

. Importantly, the allele 26	

associated with narcolepsy impairs cytotoxicity and cell killing, suggesting that the effect of the 27	

variant on cytotoxicity may be targeting hypocretin cells directly.  28	
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 1	

Although it is conceivable NK cells could be involved, the most likely explanation is involvement 2	

of CD8
+
 T cell in hypocretin cell killing in collaboration with CD4

+ 
T cells

 
or microglia.  This was 3	

also supported by CTSC association, an enzyme of critical importance to cytotoxic CD8
+ 

4	

activation of pro-granzymes
58

. Bernard-Valnet et al.
92

 used transgenic mice with expression of a 5	

neoantigen in hypocretin neurons, and found that infusion of CD8
+
 T cell targeting the neoantigen 6	

were able to cause hypocretin cell destruction while infusion of neoantigen-specific CD4
+
 T cell 7	

alone was insufficient, although CD4
+
 T cells migrated closely to the target neurons. These earlier 8	

experiments together with genetic association with PRF1 variants suggest a direct role of CD8+ T 9	

cells in hypocretin cell destruction.  CD8+ mediation of cell killing has also been suggested by 10	

observation of a CD8 T cell infiltrate in a paraneoplastic anti-Ma2 encephalitis case with 11	

symptomatic hypocretin cell destruction 
93

.	12	

 13	

In summary, although the culprit autoantigen has not been identified, genetic data indicate 14	

autoimmunity in T1N with strongest genetic overlap with T1D, another organ-specific autoimmune 15	

disease suggesting shared pathophysiology.  A particularity of the disease is involvement of 16	

polymorphisms such as in IFNAR1 that regulate response to influenza-A infection, a result that 17	

complement epidemiological studies indicating seasonality of disease onset
42

 and increased 18	

incidence that has occurred following vaccination with Pandemrix® in Europe 
13,18,19

.  Other 19	

genetic factors implicate dendritic processing of antigens, presentation by DQ0602 to CD4
+ 

T 20	

cells and subsequent cell killing of hypocretin neurons by CD8
+
 cells, with likely involvement of 21	

only a few autoantigen epitopes and a restricted number of T-cell receptors. The lack of 22	

detectable autoantibodies has made objective demonstration of autoimmunity challenging, but will 23	

likely made the eventual discovery of the culprit T cell antigen even more informative to our 24	

understanding of T cell immunity in the brain. 	25	

	  26	

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 22, 2018. ; https://doi.org/10.1101/373555doi: bioRxiv preprint 

https://doi.org/10.1101/373555
http://creativecommons.org/licenses/by/4.0/


	

Methods 1	

Study subjects: 5,339 unrelated individuals with type 1 narcolepsy
8,9

, and 20,518 ethnicity-2	

matched controls were included in the study. In addition, 245 individuals with vaccination related 3	

narcolepsy and 18862 controls were recruited in Finland (N=76 cases and 2796 controls), 4	

Sweden (N=39 and 4894 controls), Norway (N=82 cases and 429 controls), and United Kingdom 5	

and Ireland (N=48 cases and 10743 controls) 
13,16,94,95

. All cases had documented immunization 6	

with Pandemrix®. All cases had narcolepsy with clear-cut cataplexy and were DQB1*06:02 7	

positive, or had narcolepsy with documented low hypocretin-1 in the cerebrospinal fluid. Informed 8	

consent in accordance with governing institutions was obtained from all subjects. The research 9	

protocol was approved by IRB Panels on Medical Human Subjects at Stanford University, and by 10	

respective IRB panels in each country providing samples for the study.	11	

 12	

Genotyping: Subjects were genotyped using Affymetrix Affy 5.0, Affy 6.0
8
, Affymetrix Axiom 13	

CHB1
9
, Affymetrix Axiom EUR, Axiom EAS, Axiom LAT, Axiom AFR, Axiom PMRA and Human 14	

Core Exome chip platforms. Genotypes were called with Affypipe
96

, Affymetrix genotyping 15	

console or Genome Studio. Markers with genotyping quality (call rate < 0.95) or deviation from 16	

Hardy-Weinberg equilibrium (p-value<10
-6

) were discarded from further analysis. Samples were 17	

checked for relatedness with filtering based on proportion of identity-by-descent using cut off >0.2 18	

in PLINK 1.9 PI_HAT score	88. One pair of related individuals was removed. If related individuals 19	

were a case and a control, cases were retained in the analysis. Three first principal components 20	

within each cohort were visualized and outliers were removed. Supplementary Table 1 shows 21	

for each cohort N QCed original genotypes, N for those passing the QC and N for individuals 22	

removed during QC.	23	

 24	

Imputation: We imputed samples by prephasing cases and controls together using SHAPEIT 25	

v2.2
89

 and imputed with IMPUTE2 v2.3.2	97,98 and 1000 genomes phase 1v3 build37 (hg19) in 26	

5Mb chunks across autosomes. For variants having both imputed and genotyped values, the 27	
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genotyped values were kept except for those individuals where the genotype was missing. In this 1	

case imputed values were kept. 	2	

 3	

Analysis: Analyses for all data sets were performed at Stanford University except for the Finnish 4	

and Swedish vaccination related cases and European Narcolepsy Network samples, which were 5	

analyzed by respective study teams using exactly the same analysis. Genome-wide association 6	

analysis was first performed in each case control group separately using SNPTEST v.2.5.2
99	. We 7	

used linear regression implemented in SNPTEST method score adjusting for ten first principal 8	

components in order to adjust for cohort specific population stratification. Standard post 9	

imputation quality control was done: Variants with info score <0.7 and minor allele frequency 10	

(MAF) <0.01 were removed from the analysis. Signals specific for one genotyping platform only 11	

and variants in each locus with heterogeneity p-value<10
-20

 were removed. We used fixed effects 12	

model implemented in METAv1.7 with inverse-variance method based on a fixed-effects model 13	

for combining the association results
100

. In total 12,600,187 markers across the studies were 14	

included in the final case control meta-analysis. Significance level for statistically significant 15	

association was set to genome-wide significance (p-value<5*10
-8

) controlling for multiple testing. 16	

Overall test statistics showed no genomic inflation. GCTA was used for heritability and gene 17	

based tests 
101

. Coloc analysis was done using coloc package in R version 3.4.2 (2017-09-28) 
40

, 18	

Manhattan and QQ-plots were created with QQman or FUMA 
97

. Shared heritability was 19	

estimated using LD score regression
32

.	20	

 21	

Typing and imputation of HLA variants: High resolution HLA imputation in 4-digit resolution (2-22	

field, amino acid level) for HLA A, B, C, DRB1, DQA1, DQB1, DPA1 and DPB1 was performed 23	

using HLA*IMP:02 as implemented in Affymetrix HLA or the HIBAG package in R version 3.1.2 24	

(2014-10-31). HIBAG is an HLA imputation tool that uses attribute bootstrap aggregation of 25	

several classifiers (SNPs) to select groups of SNPs that predict HLA type and allows the use of 26	

own HLA reference panels
76

. Reference HLA types were used from published imputation models 27	

and for Asian and Blacks obtained with Sirona sequencing	102in ethnic specific populations 28	
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N=500 Blacks, N=2,000 Whites and N=368 Asians. Imputation accuracy was further verified by 1	

Luminex HLA typing in a subset of samples and accuracy was over 95% for all ethnic groups and 2	

common alleles with > 5% frequency in population. For all alleles the accuracies were for Whites: 3	

0.98 in HLA-A, 0.97 in HLA-B, 0.98 in HLA-C, 0.96 in HLA-DRB1, 1.00 in HLA-DQA1, 1.00 in 4	

HLA-DQB1, 1.00 in HLA-DPA1, and 0.92 in HLA-DPB1 and for Asian for alleles where typing was 5	

also available 0.95 for HLA-DRB1, 0.94 for HLA-DQA1, and 0.98 for HLA-DQB1. 	6	

 7	

Analysis of HLA variants: HLA effects in narcolepsy were analyzed as described before
6
. We 8	

examined altogether variation from 23,410 individuals with 9,789 Asians, 13,621 Whites. In each 9	

ethnicity HLA alleles were analyzed using additive model under logistic regression adjusting for 10	

10 first population specific principal components to adjust for local population stratification. We 11	

identify independent associations using conditional analysis (stepwise forward regression in each 12	

cohort). Fixed effects meta-analysis was used to combine associations using Plink 1.9
103	and R 13	

version 3.2.2. We considered alleles sustaining Bonferroni correction for correction of number of 14	

alleles with minor allele frequency over 2% (N=110 HLA alleles) significant resulting in Bonferroni 15	

cut-off p=0.00045.	16	

	17	

Analysis of expression quantitative trait loci (eQTL): We used tissue specific summary statistics 18	

from the GTEx consortium and from Westra et al. to examine total blood specific effects of 19	

associating variants on gene expression
75,104

. Furthermore, we examined how the genetic 20	

variants modulated T cell and antigen presenting (dendritic cell and monocyte) gene expression 21	

by RNA sequencing and RNA expression. To examine environment specific triggers for eQTLs 22	

we challenged the dendritic cells on influenza-A infection, or stimulated them with interferon or 23	

LPS
105,106

. Finally, we identify short range (cis) SNPs and trans HLA alleles association with TCR 24	

V and J usage estimated from total peripheral blood RNA sequencing as described before
73

. 	25	

 26	

T cell receptor RNA sequencing in matched narcolepsy case control data set and in population 27	

cohorts: We performed RNA sequencing in 895 individuals with total blood RNA sequencing and 28	
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in T cells from 60 individuals with narcolepsy and 60 healthy individuals from using total CD4+ T 1	

cells, CD4+ T memory and CD8+ T cell populations. We used fastqc to infer quality and trimmed 2	

low quality reads. We then performed barcode demultiplexing, after which local blast was used to 3	

align and extract CDR3s. Linear regression was fit for TRA usage ~ Genotype adjusting for age 4	

and gender, RNA sequencing lane and case/control status as covariates. We also analyzed 5	

separately coding consequences for each TRAJ24 containing productive CDR3 fragment as one 6	

of the most significantly associating SNPs was a coding SNP (rs1483979) was changing an 7	

amino acid Leucine to Phenylalanine. These 'LQF' and ‘FQF’ were extracted and their 8	

frequencies were computed. Ratio of FQF/(LQF+FQF) was further computed across all the 9	

samples. 10	

 11	
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Table	1		Genome-wide	significant	associations	observed	in	T1N	across	ethnic	groups.	1	

Closest 
Gene 

chr	 rsid pos 
non-coded 

allele 
coded 
allele 

p-value 
coded 

af 
OR 

 [CI lower - upper] 
beta se 

CD207 
(Langerin) 

2 rs13383830 71058306 T C 2.65E-09 0.078 1.285 [1.184-1.396] 0.251 0.042 

ZFAND2	 7 rs75674288 1195322 A C 4.05E-08 0.913 0.778 [0.711-0.851] -0.251 0.046 

TRB 7 rs1008599 142038782 A G 6.63E-12 0.332 0.813 [0.767-0.862] -0.207 0.03 

ZNF365 10 rs4237304 64407845 C T 8.40E-10 0.824 1.233 [1.154-1.319] 0.21 0.034 

PRF1 10 rs35947132 72360387 G A 1.40E-09 0.04 0.570 [0.475-0.684] -0.562 0.093 

TRA 14 rs1154155 23002684 T G 1.48E-73 0.255 1.643 [1.559-1.733] 0.497 0.027 

CTSH 15 rs34593439 79234957 G A 1.44E-08 0.09 1.246 [1.154-1.345] 0.22 0.039 

IL27 16 rs200840505 28539396 GTGTGTA G 4.70E-08 0.281 0.849 [0.801-0.901] -0.163 0.03 

P2YR11 19 rs34849604 10229098 T TG 4.26E-09 0.537 1.232 [1.148-1.323] 0.209 0.036 

SIRPG 20 rs6110697 1615661 T C 1.83E-10 0.74 1.206 [1.138-1.28] 0.188 0.03 

IFNAR1 21 rs2409487 34684958 C T 1.23E-15 0.754 1.214 [1.158-1.273] 0.194 0.024 

	2	

Leading	SNP	of	loci	associated	with	T1N	at	a	genome	wide	significant	level	(p-value<	5x10-8).		Heterogeneity	p-value	is	calculated	between	3	

the	nine	cohorts	in	this	study.	Altogether	228	variants	were	significantly	associated	with	T1N.	Associations	tested	using	SNPtest,	and	4	

META	with	fixed	effects	test	statistics	are	shown99,107.		Positions	are	shown	for	genome	build	human	genome	build	37	(GRCh37/hg19).	5	
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Table	2	|	Locus	specific	(from	Table	1)	and	Genome-Wide	significant	associations	observed	in	vaccination-triggered	T1N	cases.	1	

Closest Gene 

chr rsid pos 

non-coded 
allele 

coded 
allele 

p-value OR beta se 

p-value 
heterogeneity 

CD207 
(Langerin) 

2 rs13383830 71058306 T C 0.757 

1.106  

[0.584 - 2.097] 0.101 0.326 0.421 

ZFAND2  
7 rs75674288 1195322 A C 4.92E-04 

3.189 [1.66-
6.122] 1.160 0.333 0.673 

TRB 
7 rs1008599 142038782 A G 0.099 

0.798  
[0.61 - 1.043] -0.226 0.137 0.822 

ZNF365 
10 rs4237304 64407845 C T 0.410 

1.116  

[0.85 - 1.450] 0.110 0.133 0.948 

PRF1 10 rs35947132 72360387 G A 4.48E-04 0 [0 - inf] -10.879 50.123 1* 

TRA 
14 rs1154155 23002684 T G 1.58E-13 

2.531 
 [1.978 - 3.239] 0.929 0.126 0.365 

CTSH 
15 rs34593439 79234957 G A 0.074 

1.418  
[0.967 - 2.079] 0.349 0.195 0.614 

IL27 
16 rs200840505 28539396 

GTGTGTA 
G 0.318 

0.834  

[0.583 - 1.191] -0.182 0.182 1** 

P2YR11 
19 rs34849604 10229098 T TG 0.024 

1.515  
[1.057 - 2.171] 0.415 0.184 1** 

SIRPG 
20 rs6110697 1615661 T C 0.050 

1.336 [1.00-
1.785] 0.290 0.148 0.737 

IFNAR1 
21 rs2409487 34684958 C T 0.720 

1.077  
[0.719 - 1.614] 0.074 0.206 0.964 

SIRPB1-

SIRPG 20 rs76958425 1602668 C T 1.12E-08 

2.491  

[1.821 - 3.408] 0.913 0.16 0.078 

	2	

Association	with	vaccination	related	narcolepsy	is	shown	for	loci	having	genome	wide	significant	association	with	T1N	or	those	loci	being	3	

genome-wide	significant	with	vaccination	related	narcolepsy.		Associations	tested	using	SNPtest	or	Chisq	test	(Irish)	with	meta-analysis	4	

using	META	with	fixed	effects	test	statistics	are	shown99,107.		Positions	are	shown	for	genome	build	human	genome	build	37	5	
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(GRCh37/hg19).	*	SNP	imputed	in	Finnish	cohort	only	**	SNP	imputed	in	Norwegian	cohort	only.	For	cohort	specific	association	see	1	

Supplementary	Table	8.2	
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	1	

	2	

Fig.	1. Multi ethnic genetic	analysis	of	type	1	narcolepsy.	Multi-ethnic	analysis	conducted	in	5,339	cases	and	20,518	controls	reveals	3	

genome-wide	significant	associations	in	11	loci	plus	HLA.	The	x-axis	shows	genomic	location	by	chromosome	and	the	y-axis	shows	-log10	4	

p-values.	Red	horizontal	line	indicates	genome-wide	significant	p-value	threshold	of	5*10-8.	P-values	smaller	than	10-75	were	set	to	10-75	5	

(HLA	locus	has	many	SNPs	with	p-value<10-216).6	
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Fig. 2 Narcolepsy risk variants are enriched in immune cells and for missense variants.  1	

a) GARFIELD analysis of narcolepsy associated variants shows a 6 fold enrichment for exon variants and a 5.2 fold enrichment in 5’UTRs located 2	

variants. b) overall enrichment in DNA hypersensitivity regions is seen specifically in circulating hematopoietic (blood) cells c) Epigenome 3	

roadmap data shows that the majority of narcolepsy heritability is enriched in hematopoietic cell lineages, with changes most pronounced in 4	

immune cells notably T helper and cytotoxic cells. Statistically significant enrichment is marked with a line corresponding to an Benjamin 5	

Hochberg enrichment p-value = 0.001.6	
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 1	

	2	

Fig. 3. TRA lead variant rs1154155 is associated with repertoire usage of TRAJ24 and 3	

TRAJ28 genes. (a) T1N association with TRA. T1N association with T cell receptor alpha chain 4	

locus spans a region that contains 5 SNPs with almost perfect LD (rs1154155, rs1483979, 5	

rs3764159, rs3764160) and high LD over 18kb. (b) Usage of TRAJ28*01 in 895 individuals 6	

shows similar association with T1N lead variant rs1154155 with posterior probability of 0.958 7	

between narcolepsy and TRAJ28 usage. T cell receptor sequencing in CD4+ T memory cells in 8	

60 type-1 narcolepsy patients and matched controls confirmed the effect of rs1154155 on usage 9	
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of both (c) TRAJ24*01 and (d) TRAJ28*01 with higher effect seen in the type-1 narcolepsy 1	

cases.  2	

 3	

 4	
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Fig.  4.  Postulated disease mechanisms in autoimmune narcolepsy.   1) Peripheral response: 1	

Influenza virions or vaccine protein debris are ingested by DCs facilitated by CD207; flu proteins 2	

are processed by cathepsins CTSH and CTSC for presentation by HLA molecules to specific 3	

TCRα/β bearing CD4+cells, initiating an immunological synapse and responses to influenza. 4	

Presentation by DC is modulated by IFNAR1 in the context of influenza infection. Cross 5	

presentation of influenza antigens processed via the MHC class I pathway in DCs is necessary 6	

activate CD8+ cells that mature into cytotoxic lymphocytes (CTLs), initiating cell killing of viron 7	

infected cells. Activated CD4+ cells produce cytokines such as IFNγ,  IL-2 and IL27 which 8	

augment cytotoxic activity of CTLs via perforin (PRF1). On the other hand, activated CD4+ cells 9	

interact with B-cells via the MHC class II pathway and initiate influenza-specific antibody 10	

production, class switching and somatic hypermutation. SIRPG and P2RY11 on activated T cells 11	

may also promote cell-cell adhesion and proliferation in this response. 2) CNS Autoimmunity: 12	

Activated and primed specific CD4+ cells migrate to the CNS where they interact with microglia 13	

and resident DCs via DQ0602 bound to an influenza-mimic autoimmune-epitope (derived from 14	

hypocretin cells) initiating a secondary memory response.  Hypocretin cell proteins are processed 15	

by cathepsins CTSH and CTSC for presentation by DQ0602 to specific TCRα/β bearing 16	

CD4+cells, initiating an immunological synapse and autoimmune responses. Chain usage for 17	

TRAJ24-2, TRAJ28, and TRBV4-2 is associated with narcolepsy risk and may be crucial for 18	

autoantigen recognition. Further, cross presentation by resident DCs and microglial cells activate 19	

specific CD8+cells via MHC class I binding of another hcrt neuron-derived peptides. These 20	

primed cytotoxic CD8+ then kill hcrt neurons after recognizing MHC class I (such as A*11:01, 21	

associated with narcolepsy independently of DQ0602) bound cognate hcrt neuron derived peptide 22	

on hcrt neurons. SIRPB1 on DC or microglia and SIRPG plus P2RY11 on activated T cells may 23	

also promote cell-cell adhesion and proliferation in this response.  The role of ZFN365 and 24	

ZFAND2A is unknown. 25	
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