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Abstract

While most natural language understanding sys-
tems rely on a pipeline-based architecture, certain
human text interpretation methods are based on a
cyclic process between the whole text and its parts:
the hermeneutic circle. In the task of automatically
identifying characters and their narrative roles, we
propose a feedback-loop-based approach where the
output of later modules of the pipeline is fed back
to earlier ones. We analyze this approach using a
corpus of 21 Russian folktales. Initial results show
that feeding back high-level narrative information
improves the performance of some NLP tasks.

1 Introduction
Computational narrative systems, especially story generators,
require the narrative content to be encoded in some form of
structured knowledge representation formalism. Currently,
authoring content in ways that computer systems can reason
about is mostly done by hand, a notoriously time-consuming
task requiring expertise in both storytelling and knowledge
engineering. We could alleviate this well-known “authorial
bottleneck” problem if systems were able to directly take
stories written in natural language and automatically extract
information into the appropriate knowledge representation.
More importantly, this would make it easier for computa-
tional narrative researchers and practitioners to utilize the vast
amount of existing literary work, making use of its narrative
content as well as storytelling techniques.

Except for a few recent exceptions, automatically extract-
ing high-level narrative information from unannotated text
has not received a lot of attention. Here we focus on the prob-
lem of automatically identifying characters and their roles
from unannotated Russian folktales translated into English.
In this domain, characters are sentient beings such as per-
sons, anthropomorphic animals and other magical beings
(e.g., a dragon or a talking oven). We use the roles identi-
fied in Vladimir Propp’s narrative theory of Russian folktales
[1973]. Consider the following excerpt:

The sister walked and walked underground and
saw a little hut. [...] Inside sat a lovely maiden

embroidering a towel with silver and gold. She re-
ceived her guest with kindness. [...] when the host-
ess knew that her mother was about to come she
turned her guest into a needle [...].

Based on Propp’s theory, the “maiden” character fulfills
the specific function of the “helper” role in the plot through
a specific “sphere of action” including key actions related to
interrogation and entreaty.

Elsewhere we presented a framework to identify character
roles in this domain [Valls-Vargas et al., 2013; 2014]. Our
experiments indicated that one of the bottlenecks is corefer-
ence and anaphora resolution (we will refer to both as coref-
erence resolution for simplicity). Notice the “helper” char-
acter (the referent) in the excerpt above is referred to with
several referring expressions: “maiden”, “she” and “hostess”.
The difficulty of identifying all the expressions of the same
referent, a well-known open problem in NLP, significantly
lowered our system’s performance. Moreover, we observed
that some coreference resolutions could be resolved if earlier
components were given the information of character roles de-
rived later in the process. For example, knowing that that both
the “maiden” and the “hostess” play the role of the helper is
a hint that they are referring to the same referent.

Our observation is aligned with certain methods in human-
istic interpretation of complex text. When making sense of
the text, humanities scholars tend to move back and forth be-
tween its individual parts and the larger whole. They believe
that our understanding of the text as a whole is hinged on
our understanding of the individual parts, which in turn is
shaped by how we understand the larger whole. This circu-
lar process of understanding text is the most basic form of
the hermeneutic circle [Spinoza, 2001]. This concept was
further developed into a broader philosophical level and di-
rectly influenced early NLP research [Mallery et al., 1986].
In this paper, the hermeneutic circle refers to the classical
text interpretation methodology whereby scholars are trained
to iteratively shifting their attention between the parts and the
entirety of the text in order to refine and deepen their under-
standing. By borrowing this terminology, we intend to call at-
tention to the inter-dependency between local linguistic-level
information (e.g., coreference) and the global narrative-level
information (roles) as well as the iterative understanding pro-
cess, neither of which has been sufficiently explored.

In this paper, we present our first step toward a feedback-
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loop-based narrative text understanding approach for the task
of character role identification, incorporated in Voz, our fully
automatic narrative extraction system. Compared to our prior
work, this paper addresses two main questions: 1) how to in-
corporate information fed back from later stages of the NLU
pipeline, and 2) how the feedback loop impacts the perfor-
mance of the system on a corpus of 21 folktales. Although
we use the domain of Russian folktales, we believe that our
approach can be generalized to other types of stories where
character roles are closely tied to their actions. Our new ex-
periments show that feedback loops can indeed increase the
performance of some modules (coreference resolution), al-
though this does not translate into increased performance of
other modules in the system (e.g., role identification).

2 Related Work
Following early work in narrative understanding through
Schankian knowledge structures and cognitive processes
[Schank and Abelson, 1977; Cox and Ram, 1992], advances
in NLP and related disciplines have recently led to a renewed
interest in extracting and modeling narrative elements from
text. Character identification, related to named entity recog-
nition and nominal actor detection, is a crucial step in this
process. Goyal et al.’s AESOP system [2010] explored how
to extract characters and their affect states from textual narra-
tive in order to produce plot units [Lehnert, 1981] for a sub-
set of Aesop fables. The system uses both domain-specific
assumptions (e.g., only two characters per fable) and external
knowledge (word lists and hypernym relations in WordNet)
in its character identification stage. Chambers and Jurafsky
[2008] proposed using unsupervised induction to learn what
they called “narrative event chains” from raw newswire text.
Regneri et al [2011] worked on the specific task of identi-
fying matching participants in given scripts in natural lan-
guage text using semantic (WordNet) and structural similari-
ties with Integer Linear Programming [Wolsey, 1998]. More
recently, Calix et al. [2013] proposed an approach for detect-
ing characters in spoken stories. Based on features in the tran-
scribed textual content using WordNet and speech patterns
(e.g., pitch), their system detects characters through super-
vised learning techniques. Compared to these systems, our
work focuses on how the extraction of high-level narrative
information (characters and their roles) can help with lower-
level NLP tasks (coreference) via feedback loops.

Recent systems such as Story Workbench [Finlayson, 2012]
and Scheherazade [Elson, 2012] employ a mixed-initiative
approach to annotating text with narrative information via
semi-automatic assistance. These systems are flexible and en-
able the annotation of high level narrative information but the
process can still be time-consuming and requires the partici-
pation of human experts.

Pipelined architectures are used in many NLP tasks [Clarke
et al., 2012], specially, natural language understanding and
generation [Reiter and Dale, 2000]. Although the flexi-
ble modularity provided by pipelines can be very effective,
it is not best suited for all problems. Several researchers
have independently shown the advantages of non-linear ap-
proaches such as blackboard architectures [Erman et al.,

1980], global optimization [Marciniak and Strube, 2005;
Roth and Yih, 2004] (where the outputs of the individual
modules are considered by a global optimization process,
such as Linear Programming), or context awareness [Lee et
al., 2011]. Additionally, backtracking and re-interpretation
are known to be a key part in computational understand-
ing of humor [Attardo and Raskin, 1991] and figurative lan-
guage [Gibbs, 1994]. Finally, although the use of feed-
back loops on pipelined architectures has been suggested be-
fore [Samuelsson et al., 2008], to the best of our knowledge,
there has been very little existing work on implementing iter-
ative architectures for NLP-based information extraction.

3 Problem Statement
Propp categorized characters in Russian folktales into sev-
eral basic functional roles or character functions (roles from
now on): Hero, Villain, Dispatcher, Donor, (Magical) Helper,
Sought-for-person, and False Hero. Each role fulfills specific
narrative functions and performs its specific “sphere of ac-
tion.” Our goal is to capture this structural regularity and
identify roles regardless of the specificity of how characters
and actions are constructed at the story and discourse levels.

The problem we address is: given an unannotated story,
how to identify the set of characters {a1, ..., an} from the re-
ferring expressions in the text, and how to identify, from a
given set of roles {r1, ..., rm}, which is the most likely narra-
tive role that each character portrays.

Our hypothesis is that the feedback loop between high-
level role information and low-level linguistic information
can improve the overall system’s performance compared to
using a pipeline-based architecture.

4 Feedback loop-based Role Identification
In this section we describe our fully-automated system called
Voz. Figure 1 illustrates the information workflow in Voz and
the feedback loop. Below, we briefly describe each module,
with the emphasis on the feedback loop and how the corefer-
ence resolution module is designed in order to take into ac-
count information produced by later modules in the pipeline.
A more in-depth description of the other modules in the sys-
tem can be found in [Valls-Vargas et al., 2014].

Voz uses the off-the-shelf Stanford CoreNLP suite [Man-
ning et al., 2014], to segment the input text into sentences
and to annotate them with the following information: part-
of-speech (POS) tags (i.e., noun, verb.), syntactic parse trees,
typed dependency lists and lemmatization. Voz also retrieves
the output of the Stanford Deterministic Coreference Resolu-
tion system [Lee et al., 2013].

Then, a custom component extracts the referring expres-
sions (“mentions” from now on) from the text. A mention
is a phrase that refers to a specific entity (i.e., the referent)
in the story. For example “the sister”, “she”, or “her guest”
are separate mentions to the same character. Voz traverses the
sentences’ parse trees looking for “noun phrase” (NP) nodes,
traversing the subtrees of these nodes in case there is an enu-
meration (e.g., a conjunction). For each mention, Voz com-
putes a vector of features based on the following information:
the parse tree of the sentence where the mention is found, the
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Figure 1: Architecture of the Voz system. Arrows represent the information workflow.

subtree representing the mention, the leaves of the subtree
(i.e., word-level tokens with POS tags) and the dependency
lists that contain a reference to any node in the mention’s
subtree. When looking at the word-level tokens, Voz queries
knowledge bases such as WordNet and ConceptNet. The fea-
ture vectors encode both local information and the “sphere of
action” described in our previous work [Valls-Vargas et al.,
2014]. The output is a set of mentions E = {e1, ..., en},
represented as feature vectors. In the experiments reported
in this paper, each mention consists of 332 numeric features1

with values are in the interval of [0, 1].
Coreference Resolution. The goal of coreference reso-

lution is to group the mentions E into a set of coreference
groups, where each coreference group is a set of mentions that
refers to the same character or entity in the story. We designed
a coreference resolution approach based on aggregating the
output of a number of base coreference resolution methods.
This aggregation approach allows the feedback loop to take
place, since the information fed back from role identification
is used as one of the base methods to be integrated.

To represent the results from multiple base coreference res-
olution methods, the output of each of those methods is en-
coded as a coreference preference matrix (CP matrix). A CP
matrix m is an l × l matrix. m(i, j) = 1 means that the cor-
responding method believes that ei and ej are expressions for
the same referent; m(i, j) = −1 means the method believes
they are not; and m(i, j) = 0 means the method is unsure
(intermediate values are allowed, to indicate degrees of con-
fidence). These matrices are then aggregated cell by cell into
a joint coreference assignment using the method described
shortly below. Figure 2 illustrates the entire process.

Currently Voz uses six coreference resolution methods, rep-
resented as six CP matrices:

• m1 is derived from the output of the Stanford corefer-
ence resolution system, and only yields -1s and 1s.

• m2 computes coreference by assigning a 1 to a pair of
mentions when there are matching common nouns and
proper nouns in the leaves of the extracted parse trees
for each mention. m2 only contains 0s and 1s. m2 in-
tends to consolidate mentions that use similar referring
expressions (e.g., “a girl” and “the girl”).

1The dataset and feature descriptions are available at:
https://sites.google.com/site/josepvalls/home/voz

• m3 captures gender or number (singular vs plural) dis-
agreement between pairs of nouns and pronouns (e.g.,
“girl” and “him”). The matrix contains a -1 for those
pairs of mentions for which a disagreement is detected,
and 0 for all others. 15 lexical and syntactic features are
used to infer the gender and number of each mention.
• m4 computes coreference by considering 8 lexical and

syntactic features and computing the similarity between
these features in the two mentions. This captures seman-
tic similarities between mentions (e.g., “girl” and “sis-
ter”), and contains values in the interval [0, 1].
• m5 computes coreference based on the roles and charac-

ters fed back via the feedback loop described below. It
assigns a 1 to a pair of mentions when they correspond
to characters with the same role (except if they have the
other role), and 0 otherwise. m5 intends to consolidate
mentions to the same character, assuming not too many
characters share the same role.
• m6 is similar to m5, but assigns a 0 to a pair of men-

tions when they correspond to characters with the same
role (except if they have the other role), and -1 other-
wise. The reason for having both m5 and m6, even if
they capture the same information, is for being able to
assign different weights to the 1s and -1s in these matri-
ces in the aggregation process described below.

In the first iteration of Voz , only m1, m2, m3 and m4 are
available. In subsequent iterations, the character and role la-
bels predicted in the previous iteration are used to generate
m5 and m6. Note that coreference can be understood as a
graph G = 〈A,L〉 where the A is the set of mentions, and
L ∈ A × A contains those pairs of mentions that refer to
the same character or entity. Cliques (fully connected sets of
nodes) in this graph represent coreference groups. Voz cur-
rently does not consider the directionality of the graph and
therefore split antecedents (i.e., plurals) are ignored (split an-
tecedents represent only 142 instances out of the 2,781 char-
acter mentions annotated in our dataset).

The CP matrices are then aggregated in the following way.
First, a new matrix mmerged is generated as:

mmerged(i, j) =

{
1 if 0 ≤∑k wi ×mk(i, j)
0 otherwise

However, this merged matrix might not be fully consistent
(e.g., if mmerged(1, 2) = 1 and mmerged(2, 3) = 1, then
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Figure 2: Example pair-wise coreference preferences (CP) matrices. Independent weights are assigned to each of the matrices,
which are then aggregated to determine pair-wise coreference grouping between mentions.

mmerged(1, 3) should be also 1). This matrix is thus made
consistent by adding the missing 1s, and turned into a graph
G, where each clique represents a coreference group.

Character Identification. Given a mention e, Voz uses a
case-based reasoning (CBR) approach to classify e into a set
of classes S = {character ,non-character}. As a CBR sys-
tem, Voz contains a case-base C = {c1, ..., cl}, where each
case ci = 〈ei, si〉 is composed of a mention ei (represented
by the feature vector described above) and a class si ∈ S.
When classifying a new mention, the most similar instance to
e from the case-base is selected, and the class of e is predicted
as that of the retrieved case. To determine the most similar
case, we use a Weighted Continuous Jaccard Distance, shown
in our previous work to outperform other common measures
in this task [Valls-Vargas et al., 2014].

Once all the mentions have been classified, the output of
the coreference resolution is used to refine the results. Given
a mention e ∈ E, we identify its coreference group coref (e),
i.e., all the other mentions that are linked to e in the corefer-
ence graph G. Then, the class assigned to e is replaced by the
majority class in the coreference group coref (e). For exam-
ple, if two mentions in coref (e) were labeled as character
and only one as non-character , then e will be labeled as
character . The output is the set A = {a1, ..., an} ⊆ E of
mentions that were classified as character .

Role Identification. Similar to the previous module, given
a character a ∈ A, Voz uses a case base to predict a class for
each character from a set of classes representing roles. The
same Weighted Continuous Jaccard Distance is used for this
prediction task. As in the previous process, the coreference
group is used to perform a voting process, and the role of
each character is assigned as the role assigned to the majority
of the mentions in its coreference group.

Feedback Loop. Voz implements an architecture inspired
by the idea of hermeneutic circles by incorporating a feed-
back loop from the output of the system to the input of the
coreference resolution process, as shown in Figure 1. Thus,
the execution of Voz requires not just one run through the
pipeline, but several iterations. As described above, the coref-
erence resolution process uses several base coreference reso-
lution methods, whose output is aggregated to produce the
final prediction. After character and role identification are
complete, this information is fed back to the coreference res-
olution module, resulting in matricesm5 andm6, and starting
a new iteration of the execution of Voz.

The Stanford coreference resolution system, which is the
main source of coreference resolution in Voz , tends to be con-
servative and generates small coreference groups. Based on

the assumption that some of the roles are only portrayed by
one or at most a very small set of characters (e.g., “hero”, or
“villain”), it is our hypothesis that the additional m5 and m6

matrices should significantly improve the coreference resolu-
tion process as we explore in our evaluation below.

5 Experiments
This section reports a series of experiments to test: 1) the
performance of the system as a pipeline in identifying char-
acters and roles, 2) the effect of the feedback loop in the per-
formance of the different modules of the system, and 3) the
effect of varying the weight applied to the CP matrices that
come form the feedback loop during coreference resolution.
Before presenting such experiments, we describe our dataset.

5.1 Dataset
Our dataset contains 21 Russian folk stories translated to
English text, collected by other researchers [Malec, 2010;
Finlayson, 2012]. To reduce NLP preprocessing issues at
the discourse level, we manually removed quoted and di-
rect speech (i.e., dialogues and passages where the narrator
addressed the reader directly). Our edited dataset contains
914 sentences. The stories range from 14 to 69 sentences
(µ = 43.52 sentences, σ = 14.47).

Despite their relatively short lengths, understanding these
stories requires significant commonsense knowledge and con-
textual inference. For example in our Story S13, there are
two young female characters, who are both referred as “she”,
“daughter” and “maiden” throughout the story while they ful-
fill different narrative roles.

To quantify the performance of separate modules in Voz,
we hand-annotated different aspects of the dataset as the
ground truth. Specifically, we annotated all noun phrases
(NP) representing referring expressions (mentions). There
are 4791 annotated mentions, 2781 of which are characters.

Coreference groups are annotated for characters and men-
tions to groups of characters. Then the characters were anno-
tated with character role labels described in the 31 Proppian
functions and subfunctions [Propp, 1973]. We merged the
roles of Donor and Helper since, in our dataset, they mostly
correspond to the same character. We also merged Dispatcher
with several other minor roles into an Other role. This re-
sulted in six role labels. Additionally, we created an even
coarser classification including only Hero, Villain and every-
thing else as Other. The annotations were performed by two
researchers independently and disagreement resolved manu-
ally by consensus. The experiments below are reported using
both the set of six, and the set of three roles.
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5.2 Experiment 1: Pipeline Performance
This experiment assesses the system’s performance before
closing the feedback loop. The weights used for the different
CP matrices during coreference resolution were w1 = 1.0,
w2 = 1.1, w3 = 10 and w4 = 0.9 (specific values are not im-
portant, and the only important aspect is that w2 > w1, and
that w3 is sufficiently large as for canceling all other weights
out). Our dataset only contains coreference annotations for
characters, and thus we only evaluate the performance of
coreference resolution on the 2781 mentions that are anno-
tated as characters. Our coreference process groups those
2781 mentions into to 1359 coreference groups. To evaluate
the accuracy of the process, based on our ground truth annota-
tions, we compute the average number of different characters
found per coreference group (C/Gr), and the average number
of different groups a single character is spread across (Gr/C).
Perfect coreference would score C/Gr = 1.00, and Gr/C = 1.00
meaning that each group only contains mentions to one char-
acter and a character is mentioned in only one group respec-
tively. Errors in coreference resolution will make these values
higher. Voz obtains C/Gr = 1.07, and Gr/C = 6.00. This means
that while Voz is relatively good at separating mentions from
different characters, it does not work so well at merging dif-
ferent mentions of the same character.

Table 1 shows the precision, recall, f-measure and accu-
racy of the predictions for character and role identification,
showing both the performance of these modules before and
after voting (recall that these modules predict characters and
roles for each individual mention, and then a voting process
is performed among all the mentions of each coreference
group). Precision, recall and f-measure values were com-
puted for each class (character/non-character and each of
the roles) comparing the predicted and annotated value for
each mention. The reported values are averages weighted
by the total number of annotated mentions for each class in
the ground truth. Accuracy corresponds to the proportion of
properly classified mentions of the total number of annotated
mentions. Role predictions are shown both when trying to
predict all six roles (Roles 6), and when trying to predict
the abstracted set of three roles (Roles 3). When predict-
ing roles, characters can be assigned any of the six or three
role labels, and non-characters are assigned a special label
(non-character). As we can see, character prediction is very
accurate (reaching an accuracy of 0.866 before voting and
0.873 after voting). Role prediction accuracy is 0.645 for the
six role prediction, and slightly higher for the three role pre-
diction (both benefiting slightly from voting via coreference
information). These numbers might seem low, but are sig-
nificantly higher than those previously reported for similar
datasets [Valls-Vargas et al., 2013].

Moreover, since the dataset is biased towards non-
characters, the role prediction accuracies are biased. So, the
bottom two rows of the table include the performance when
only considering those mentions classified as characters by
Voz. The accuracy in predicting roles for the six role predic-
tion is 0.438, which might appear low, but is again higher than
previously reported, and way above a baseline predictor that
just predicts a role at random. Table 2 reports the confusion
matrix for this process (after voting) using six roles.

Table 1: Performance of the character and role identification
processes over the 4791 extracted mentions.

P R f Acc
Characters (no voting) 0.844 0.877 0.860 0.866
Roles 6 (no voting) 0.639 0.618 0.624 0.639
Roles 3 (no voting) 0.664 0.654 0.655 0.664
Characters (voting) 0.874 0.883 0.878 0.882
Roles 6 (voting) 0.681 0.642 0.658 0.645
Roles 3 (voting) 0.667 0.657 0.658 0.667
Roles 6 (voting, filt.) 0.438 0.357 0.386 0.438
Roles 3 (voting, filt.) 0.484 0.430 0.448 0.484

Table 2: Confusion matrix for the six character roles as pre-
dicted by the first iteration of Voz. The roles are: False
Hero (FH), Hero (H), Other (O), Sought-for-person (SP),
Donor/Helper (D/H), and Villain, plus an additional Non-
character (N/C) role,.

N/C. FH H O SP D/H V
N/C 2087 0 77 179 1 0 9
FH 0 0 5 0 0 1 3
H 102 1 362 271 3 5 106
O 124 2 160 432 20 10 50
SP 10 0 10 15 28 0 13
D/H 69 0 46 55 0 2 17
V 109 0 83 116 23 6 179

5.3 Experiment 2: Feedback Loop Performance
Experiment 2 assesses the efficiency of the feedback loop de-
scribed in Section 4. Now the coreference resolution pro-
cess will have access to all six CP matrices which results in
a different coreference assignment that will be used in the
next iteration, yielding a different set of characters and poten-
tially different roles for each. Weights for the first four ma-
trices are the same as in the previous experiments, w5 = 0.9,
and w6 = 10.0. The rationale for these weights is that
w4 + w5 > w1, thus when both m4 and m5 predict that two
mentions should be grouped, that can overrule the decision
made by the Stanford parser (m1). w6 is just set to a very
large weight, since mentions with different roles cannot refer
to the same character. Specific values for the weights do not
have a strong impact as long as these relationships are kept.

Tables 3 and 4 show the obtained results when trying to
predict the six-role annotations and the three-role annota-

Table 3: Performance of the first three iterations of Voz using
6 role classes. Last two rows display the theoretical upper
bound using the ground truth and a random baseline.

Coref. Resolution Char. Role
|Gr| C/Gr Gr/C Acc Acc Acc (F)

It 1 1359 1.07 6.00 0.87 0.64 0.44
It 2 888 1.21 4.36 0.87 0.64 0.44
It 3 888 1.21 4.36 0.87 0.64 0.44
GT 6 642 1.24 2.90 0.88 0.73 0.46
Rnd. 642 1.93 3.11 - - -

2521



Table 4: Performance of the first three iterations of Voz using
3 role classes. Last two rows display the theoretical upper
bound using the ground truth and a random baseline.

Coref. Resolution Char. Role
|Gr| C/Gr Gr/C Acc Acc Acc (F)

It 1 1359 1.07 6.00 0.87 0.67 0.48
It 2 952 1.18 4.56 0.87 0.67 0.48
It 3 952 1.18 4.56 0.87 0.67 0.48
GT 3 788 1.18 3.44 0.88 0.73 0.47
Rnd 788 1.75 3.21 - - -

tions respectively. Each of the first three rows of the tables
shows the performance of the system during the first three
iterations: “It 1” just runs Voz as a pipeline, “It 2” runs the
feedback loop once, and “It 3” runs it twice. Accuracy for
character and role identification is reported after voting, and
“Acc (F)” is the accuracy when measured only for those men-
tions classified as characters. We observed how the num-
ber of coreference groups decreases over the first iterations
and remains stable afterwards. From the initial 2781 men-
tions, the Stanford deterministic coreference system yields
1359 groups. Considering results in Table 3, a second itera-
tion, using the six CP matrices further reduces the number of
coreference groups to 888 while improving coreference per-
formance. The average groups per character is greatly re-
duced to Gr/C = 4.36, while the average characters per group
only grows slightly to C/Gr = 1.21. Although still far from the
ideal 173 coreference groups in the ground truth, the feed-
back loop clearly increases the performance of coreference
resolution. Moreover, we observed no significant impact of
the feedback loop on character and role predictions, which
improved only marginally (an improvement smaller than the
precision shown in the tables). The output of the system sta-
bilized in the third iteration which obtained the same exact
results as the second.

Moreover, in order to calculate the upper-bound for the im-
provement in performance achieved by the feedback loop, we
experimented by feeding back the ground truth for role labels.
This is shown in the row labeled “GT 6” in Table 3, showing
an even better coreference resolution performance: reducing
Gr/C further to 2.90 while C/Gr increased only slightly to
1.24, and reducing the number of groups from 1359 to 642,
which is a significant improvement. Character and role pre-
dictions also improved (from 0.87 to 0.88 for characters and
from 0.67 to 0.73 for roles), showing further potential of our
feedback loop approach. Finally, in order to validate that
the role information is useful, we tried joining coreference
groups randomly (starting with the coreference groups ob-
tained in iteration 1) until the same number of groups (642)
were reached. This resulted in really worsening results, fur-
ther indicating that role information is indeed useful in im-
proving coreference resolution. Table 4 shows similar trends
in the three-role prediction setting.

5.4 Experiment 3: CP Matrix Weights
Finally, we experimented with different values for weight w5,
which is the weight given to the CP matrix generated from the

Table 5: Performance comparison with different weights for
m5, built form the feed back role information.

Coref. Resolution Char. Role
|Gr| C/Gr Gr/C Acc. Acc.

w5 = 0.1 933 1.17 4.46 0.87 0.65
w5 = 0.25 894 1.20 4.36 0.87 0.65
w5 = 0.5 890 1.21 4.36 0.87 0.65
w5 = 0.9 888 1.21 4.36 0.87 0.65
w5 = 1.5 879 1.22 4.34 0.87 0.65

fed-back roles. This has the expected effect: higherw5 results
in role predictions having a stronger effect, and thus result in
a lower coreference group count. Table 5 shows the results of
different values for w5 after the second iteration using the 6
roles. As the table shows, the main effect of increasing w5 is
reducing the number of coreference groups. From 1359 (with
w5 = 0.1) to 879 (with w5 = 1.5) while only increasing
the ratio of characters per group (C/Gr) slightly (from 1.17
to 1.22). Effects on character and role prediction are smaller
than the precision shown in the table.

6 Conclusions and Future Work

This paper has presented one step toward achieving the goal
of automatically extracting narrative information from natural
language text. Our long term goal is to create computational
narrative systems, and in particular story generation systems
that feed directly from stories written in natural language. We
presented an experimental evaluation of the effectiveness of a
feedback loop inspired in the hermeneutic circle to improve
the performance of Voz, a system to identify characters and
their roles in natural language stories. We reported an empiri-
cal evaluation on a corpus of 21 Russian stories using Propp’s
narrative theory [1973] to annotate characters and roles.

Our experiments confirm that the idea of feedback loops
can increase the performance of some of the modules of the
system, specifically coreference resolution, but not others,
such as character or role identification. The feedback loop in-
troduced in the NLP pipeline of our system has been demon-
strated to be particularly successful in reducing the number
of coreference groups in the output of the system.

Feeding back role information to coreference resolution is
only our first step. As part of our future work, we plan to ex-
plore the possibilities of feeding back additional information
(such as Proppian functions) to additional modules besides
coreference resolution. We are particularly interested in im-
proving the performance of semantic role labeling, which is
the next bottleneck in the performance of our system. We also
plan on generalize our approach to other narrative domains by
incorporating Campbell’s monomyth theory [2008].
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Daumé, III. Automatically producing plot unit representa-
tions for narrative text. In Proceedings of the 2010 Con-
ference on Empirical Methods in Natural Language Pro-
cessing, pages 77–86, Stroudsburg, PA, USA, 2010.

[Lee et al., 2011] Heeyoung Lee, Yves Peirsman, Angel
Chang, Nathanael Chambers, Mihai Surdeanu, and Dan
Jurafsky. Stanford’s multi-pass sieve coreference resolu-
tion system at the conll-2011 shared task. In Proceed-
ings of the Fifteenth Conference on Computational Nat-
ural Language Learning: Shared Task, pages 28–34. As-
sociation for Computational Linguistics, 2011.

[Lee et al., 2013] Heeyoung Lee, Angel Chang, Yves Peirs-
man, Nathanael Chambers, Mihai Surdeanu, and Dan Ju-
rafsky. Deterministic coreference resolution based on
entity-centric, precision-ranked rules. 2013.

[Lehnert, 1981] Wendy G. Lehnert. Plot units and narrative
summarization. Cognitive Science, 5(4):293–331, 1981.

[Malec, 2010] Scott Malec. Autopropp: Toward the auto-
matic markup, classification, and annotation of russian
magic tales. In Proceedings of the First International AMI-
CUS Workshop on Automated Motif Discovery in Cultural
Heritage and Scientific Communication Texts, pages 112–
115, 2010.

[Mallery et al., 1986] John C Mallery, Roger Hurwitz, and
Gavan Duffy. Hermeneutics: from textual explication to
computer understanding? 1986.

[Manning et al., 2014] Christopher D. Manning, Mihai Sur-
deanu, John Bauer, Jenny Finkel, Steven J. Bethard, and
David McClosky. The Stanford CoreNLP natural language
processing toolkit. In Proceedings of 52nd Annual Meet-
ing of the Association for Computational Linguistics: Sys-
tem Demonstrations, pages 55–60, 2014.

[Marciniak and Strube, 2005] Tomasz Marciniak and
Michael Strube. Beyond the pipeline: Discrete opti-
mization in nlp. In Proceedings of the Ninth Conference
on Computational Natural Language Learning, pages
136–143. ACL, 2005.

[Propp, 1973] Vladimir Propp. Morphology of the Folktale.
University of Texas Press, 1973.

[Regneri et al., 2011] Michaela Regneri, Alexander Koller,
Josef Ruppenhofer, and Manfred Pinkal. Learning Script
Participants from Unlabeled Data. RANLP, 2011.

[Reiter and Dale, 2000] Ehud Reiter and Robert Dale. Build-
ing Natural Language Generation Systems. 2000.

[Roth and Yih, 2004] Dan Roth and Wen-tau Yih. A linear
programming formulation for global inference in natural
language tasks. Technical report, DTIC Document, 2004.

[Samuelsson et al., 2008] Yvonne Samuelsson, Oscar
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Ontañón, and Jichen Zhu. Toward character role assign-
ment for natural language stories. In Proceedings of
the Ninth Artificial Intelligence and Interactive Digital
Entertainment Conference, pages 101–104, 2013.

[Valls-Vargas et al., 2014] Josep Valls-Vargas, Santiago
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