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Abstract: Recent years have witnessed a rapidly expanding use of artificial intelligence and machine 

learning in medical imaging. Generative adversarial networks (GANs) are techniques to synthesize images 

based on artificial neural networks and deep learning. In addition to the flexibility and versatility inherent in 

deep learning on which the GANs are based, the potential problem-solving ability of the GANs has attracted 

attention and is being vigorously studied in the medical and molecular imaging fields. Here this narrative 

review provides a comprehensive overview for GANs and discuss their usefulness in medical and molecular 

imaging on the following topics: (I) data augmentation to increase training data for AI-based computer-

aided diagnosis as a solution for the data-hungry nature of such training sets; (II) modality conversion to 

complement the shortcomings of a single modality that reflects certain physical measurement principles, 

such as from magnetic resonance (MR) to computed tomography (CT) images or vice versa; (III) de-noising 

to realize less injection and/or radiation dose for nuclear medicine and CT; (IV) image reconstruction for 

shortening MR acquisition time while maintaining high image quality; (V) super-resolution to produce 

a high-resolution image from low-resolution one; (VI) domain adaptation which utilizes knowledge such 

as supervised labels and annotations from a source domain to the target domain with no or insufficient 

knowledge; and (VII) image generation with disease severity and radiogenomics. GANs are promising tools 

for medical and molecular imaging. The progress of model architectures and their applications should 

continue to be noteworthy.
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Introduction

Recent years have witnessed the rapidly expanding use of 

artificial intelligence (AI) and machine learning (ML) in 

medical imaging. However, as a “data-hungry” technology, 

large datasets are indispensable to meet the increasing 

demand of high-quality images (1) as training sets, preferably 

addressing all aspects of radiology, including interventional, 

neuroradiology, and molecular imaging. As such, extensive 

imaging datasets must be pooled from various centers, 

reviewed, and appropriately annotated by experts. Given the 

increasing number of different imaging techniques applied 

to a wide variety of disease conditions, new approaches are 

needed to overcome the hurdles of traditional data collection 

and to provide an appropriate number of scans that can be 

utilized for training of AI methods. 

In this regard, Goodfellow and coworkers have introduced 

generative adversarial networks (GANs), which generate 

synthetic data with similar characteristics as their “real” 

counterparts (2). Such artificially created images can be 

added to existing datasets and may provide a larger number 

of images to enhance the variety within a dataset and, 

ultimately, to improve ML algorithms. Further applications 

of GANs in medical imaging include augmenting datasets 

of patients afflicted with orphan diseases (3) or to duplicate 

rare presentations of more common diseases that would 

not be encountered to the extent that an effective ML 

algorithm could be trained from real images (4-8). Moreover, 

in laboratory animal research, replacement is seen as the 

ultimate goal to further reduce the use of live animals (9) 

enabling GANs to open doors for a practical implementation 

potentially simulating disease onset or progression. 

Given the increasing number of applications for GANs 

in medical imaging, this narrative review aimed to provide 

a comprehensive overview of established methods for 

estimating generative models via an adversarial process 

(including data augmentation, domain translation, de-

noising, super-resolution (SR), domain adaptation, and 

image generation with disease severity and radiogenomics) 

and to highlight future aspects in the highly innovative 

and rapidly developing field of AI. GANs for natural 

images has been proposed and its usefulness has been 

validated. However, to the best of our knowledge, there 

are no published review papers on GANs for medical and 

molecular imaging. 

We present the following article in accordance with the 

Narrative Review reporting checklist (available at http://

dx.doi.org/10.21037/atm-20-6325).

General techniques of deep learning with GANs

Convolutional neural network (CNN)

Based on Huber-Wiesel’s hierarchical hypothesis of visual 

information processing, a CNN consists of convolutional 

layers that extract the patterns in images and pooling layers 

to provide shift-invariance of the patterns. In a multi-

layered CNN, local features can be extracted from shallow 

layers and global features from deep layers (10). 

GAN and DCGAN

Proposed by Goodfellow et al. (2), GANs consist of two 

sub-networks, a generator and a discriminator. The 

generator takes a latent (random) vector as an input and 

generates an image that is very similar to the training data 

(real image). The discriminator takes the generated or real 

image as an input and determines whether the input is 

fake or real. By training the generator and discriminator to 

compete with each other, the GAN will be able to generate 

images that more closely resemble real data. GAN has 

become a remarkable technology because of its success in 

generating clearer images than the conventional method of 

variational auto-encoding.

Deep convolutional GAN (DCGAN) is a model that 

applies a CNN to a GAN to improve the quality of the 

generated images (11). In order to improve authenticity 

judgment, the discriminator uses convolution to extract 

features from the image. For discriminators, convolution 

technique to extract features of the image and the generator 

has a high resolution to generate the image, while for 

generators, a type of transposed convolution is employed 

for generating high-resolution images. 

Conditional GAN (cGAN)

Aiming at generating images of a certain modality, disease 

condition, or specific region of the human body by 

exclusively using typical GANs or DCGANs, a separate 

network model for each condition has to be established and 

appropriately trained. The generator in the cGAN takes 

not only latent vectors but also conditional labels as input 

and thus, the cGAN is capable of learning the relationship 

between real and fake (12). As the training proceeds, the 

generator can create an image with a given conditional 

label corresponding to situations such as brain magnetic 

resonance images (MRI) after stroke, computed tomography 

(CT) images displaying lung nodules, or oncologic positron 
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emission tomography (PET) images (3,13,14).

Pix2Pix

As an image-to-image translation, Pix2Pix is a GAN that uses 

images instead of labeled features, such as specific disease 

conditions (15). Using real image pairs and pairs of real and 

generated images, Pix2Pix learns the relationships between 

images and such a pair-wise learning approach allows the 

conversion of an image from one domain (modality) to 

another. For instance, in medical imaging, the Pix2Pix is 

utilized to convert MRI to CT images for the same subject 

and region (16).

CycleGAN

The Pix2Pix method requires a large amount of paired data 

to perform pair-wise learning. Paired training data, however, 

will not always be available and thus, recent developments 

of GANs allow for the translation of an image from a source 

domain to a target domain, even if paired datasets are not 

available (17).

For the two domain datasets A and B, CycleGAN 

provides two generators and two discriminators, that is, 

generators that converts an image of domain A (or B) into 

domain B (or A), and discriminators that determine whether 

an image for domain B (or A) is real or generated one from 

domain A (or B). For instance, CycleGAN could generate 

a CT image from an MR image of another subject without 

the need of additional imaging.

Progressive growing GAN (PGGAN)

As a major drawback, high-resolution images cannot be 

generated by using GANs and DCGANs. PGGANs, 

however, start with generation of low resolution images 

(overall features), and gradually increase the resolution of 

the generated images (detailed features) (18). In addition 

to continuous training to reach higher resolution of the 

duplicated images, the so-called minibatch standard 

deviation was also developed to guarantee diversity of 

generated images.

Super-resolution GAN (SRGAN)

SRGAN enables SR processing, generating high-resolution 

images, also described as photo-realistic natural images 

for 4x upscaling factors (19). Such a deep residual network 

allows for recovery of photo-realistic textures, even from 

heavily down sampled images (19). 

GANs in medical and molecular imaging

PubMed, IEEE, Google Scholar and arXiv were searched 

for relevant literature from January 2017 to May 2020 

using with the following keywords: “artificial intelligence”, 
“neural network”, “deep learning”, “generative adversarial 

networks”, “GAN”, “GANs”, “medical image”, “medical 

imaging”, “molecular imaging”, “nuclear medicine”, 

“MRI”,  “CT”, “PET”, “SPECT”, “X-ray”,  “data 

augmentation”, “modality conversion”, “de-noising”, 

“image reconstruction”, “super-resolution”, “domain 

adaptation”, “image generation”. The selected language 

is English. Therefore, database and language biases are 

limitations of this review articles. Although literatures 

from arXiv were preprints, those were cited in order to 

keep up with the lasted trends of GANs. Thirty-eight 

literature was reviewed in the following sections. Twenty-

one of them reported that publicly available datasets were 

utilized as training data.

Image synthesis

Some of the aforementioned techniques have already been 

applied to different imaging modalities and diseases. Given 

the relatively static and invariable anatomy of the brain 

compared to other body parts such as the lower abdomen, 

the vast majority of these studies have been applied to brain 

disorders. 

2D-sectional images—GANs applied to MRI

First, data augmentation techniques have been proposed 

for 2D sectional images derived from MRI. For instance, 

a DCGAN was utilized to synthesize artificial MR images 
using T1W images of healthy subjects and patients 

afflicted with recent stroke. The likelihood that images 

were DCGAN-created versus acquired was evaluated by 

a mix of neuroradiologists and radiologists from other 

subspecialties in a binary fashion to identify real vs. created 

images. In this quality control study, DCGAN-created 

brain MR images were able to convince neuroradiologists 

that they were viewing true images instead of artificial 

brain MR images. Thus, DCGAN-derived brain MRI 

may be nearing readiness to be implemented for synthetic 

data augmentation for data-hungry technologies, such 
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as supervised ML, which in turn can pave the way to 

incorporate these techniques in even highly complex 

medical imaging cases (3). 

In a separate study, a GAN-based network model was 

trained with brain MR images from T1-weighted (T1), post-

contrast T1-weighted (T1Gd), T2-weighted (T2), and T2 

fluid attenuated inversion recovery (FLAIR) sequences (20) 

demonstrating semantic segmentation of enhancing tumor, 

peritumoral edema, and necrosis (non-enhancing tumor core) 

regions on gliomas. Supervised data including generated 

images improved the segmentation performance, again 

potentially addressing the scarcity of readily available medical 

images (20). 

CycleGAN is one of the standard methods for learning 

the relationships between different datasets. Ideally, when 

an image IB is generated for dataset B using an image IA 

in dataset A, the image IA is the same as I’A generated 

using the image IB. However, it is not guaranteed that 

the mapping between the two image datasets is unique. 

A so-called one2one CycleGAN was proposed to realize 

the mapping uniqueness (21) and the results showed 

the superiority of the opposed method over the baseline 

CycleGAN. Using a small sample size dataset in training 

GANs could result in synthesizing low diversity and/

or low-quality images. A network model was developed 

for tumor image generation with even a limited sample 

dataset as the training data (22). That model consisted 

of components with clear roles generating shape and 

texture of tumors, and produced tumor images by 

merging the generated tumor into background tumor-

free images. Experiments on FLAIR images with 19/20 

co-gain absent/present (control/mutated) classes showed 

that the proposed method generated high quality images 

compared to conventional network models, and captured 

the characteristics of the two tumor classes. 

Reflecting clinical reality, datasets consisting of multiple 
diseases have recently been investigated, but resulting 

inter-class imbalances in sample sizes have to be addressed. 

As such, a recently introduced GAN was conditioned 

on global information such as acquisition configuration 

(scanner type, protocol, etc.) or lesion type in addition to 

local information from segmentation masks on the lesions. 

The learning of the developed GAN was performed 

with brain glioma MR images (FLAIR, T2, and T1) and 

dermoscopic images of skin lesions (melanoma, seborrheic 

keratosis, and nevus), respectively. The GAN succeeded 

in synthesizing realistic images for both MR imaging and 

dermoscopic imaging (23). 

2D-sectional images—GANs applied to chest X-ray, 

mammography, and PET

Apart from MRI, data augmentation of 2D images by GAN 

has also been used in conventional X-ray. For instance, a 

combination of real and artificial images to train a deep 

convolutional neural network (DCNN) to detect pathology 

across five classes of chest X-rays (cardiomegaly, normal, 

pleural effusion, pulmonary edema, and pneumothorax) was 

used. Augmenting the original dataset with GAN-generated 

images significantly improved performance of chest 

pathology classification when compared to the accuracy of 
the original dataset (24). 

Regarding other modalities, for mammography, 

generating synthetic full field digital mammograms of 

1280×1024 pixels was accomplished with a progressive 

growing GAN (25). For PET imaging, a cGAN and 

DCGAN-based model (RADIOGAN) succeeded in 

generating maximum intensity projection images of 

normal, head & neck cancer, esophageal cancer, lung 

cancer, and lymphoma with a small sample size for each 

class of lesion (14).

3D images—GANs applied to MRI

Over time, volumetric imaging has become increasingly 

important in modern medical imaging. It has been reported 

that the generation of 3D brain MR images was possible 

with a small set of training data from a network model with 

a combination of a variational auto-encoder (VAE) and 

a GAN (26). The model outperformed baseline models 

in both quantitative and qualitative measurements for 

generating normal brain images, and also successfully 

generated FLAIR, T1W images for tumor and T2W 

images for stroke as shown in Figure 1.

Other groups have used similar techniques for other 

imaging modalities. For example, with FDG-PET images, 

a 3D cGAN model with 3D U-Net like generator was 

developed to convert low injected dose images to high dose 

images (27). After training with full-dose (an average of 203 

MBq) and low-dose (about a quarter of full-dose) images, 

the proposed model outperformed the state-of-the art 

methods in both qualitative and quantitative measures.

A GAN-based technique was utilized to produce smooth 

CT interpolations with high quality and accuracy of human 

organ structures in order to fill the gaps between adjacent 
CT slices (28). The experiments that were performed 

showed great improvement on two difference matrix sizes 
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(256×256 and 512×256) when compared quantitatively 

and qualitatively with conventional methods based on 

optimizing mean squared error or a perceptual loss between 

ground truth and interpolated slices.

Modality conversion (domain translation, image-

to-image)

Generation of CT images from MR images

Methods for conversion of MR images to CT images or vice 

versa are an area that is being actively studied. A number 

of GAN-based methods have been proposed, and in this 

section, we will discuss the most recent advances.

MR to CT conversion is a particularly salient example 

of where modality conversion could be utilized in routine 

clinical practice. Potential applications include bone 

segmentation in MR images and estimation of attenuation 

maps in PET imaging (i.e., improved attenuation correction 

for PET/MR). For example, Hiasa et al. performed a 

conversion in 2D from MR to CT images by applying a 

CycleGAN technique trained with T1W MR and CT images 

of lower abdominal regions including the hip joints (29).

Again, emphasizing the importance of volumetric 

imaging, conversion in 3D has also been accomplished. A 

GAN based on a 3D fully CNN was used (30). The method 

significantly outperformed state-of-the-art methods in 

prediction of brain and pelvis CT images with measurement 

of mean absolute error and peak signal-to-noise ratio.

With  the  growing  ins ta l l ed  base  o f  PET/MR 

scanners, the need for accurate methods to perform 

attenuation correction from MR is acute. Estimation of 

attenuation maps from non-attenuation corrected data 

have been investigated. Briefly, the generator received 

a non-attenuation corrected PET (NAC PET) image 

and synthesized the pseudo-CT image (31). Training 

data consisted of 50 paired CT and NAC PET images 

and validation data of 20 paired CT and NAC PET 

images. Minimal underestimation was present (<5%) for 

standardized uptake values (SUVs) in all brain regions on 

the NAC PET images corrected for attenuation with the 

synthesized CT images when compared to the attenuation-

corrected PET images. 

Another GAN succeeded in generation of attenuation-

corrected PET from non-attenuation-corrected PET 

images for whole-body 18F-FDG PET imaging (32). 

Training data were 25 pairs of whole body 18F-FDG images 

with and without attenuation correction. In comparing 

deep-learning-based attenuation-corrected PET with 

original attenuation-corrected PET, average mean error 

and normalized mean square error of the whole-body were 

0.62%±1.26% and 0.72%±0.34%.

Other application in image-to-image translation

A GAN trained with 17 PET/CT pairs for liver regions 

was used to synthesize PET images from CT images (33). 

Using a test set consisting of 8 CT scans with a total of 

26 liver tumors, 92.3% of all tumors were detected in the 

synthesized PET images compared to the real PET images.

Image-to-Image translation has also been applied to correct 

voxel intensity non-uniformity of MRI images (34). In order 

to estimate a corrected MR image from an uncorrected one, a 

GAN was trained using pairs of uncorrected and corrected MR 

images. Experiments showed higher accuracy and better tissue 

uniformity compared to a clinically established algorithm.

Furthermore, instead of individual network modes for 

each task of image-to-image translation, a comprehensive 

framework, named MedGAN has been proposed (35). For 

three different tasks of PET/CT translation, correction 

of MR motion artefacts, and PET image denoising, the 

MedGAN outperformed other existing approaches in 

regards to perceptual analysis by 5 experienced radiologists, 

as well as quantitative evaluation.

De-noising

In CT and nuclear imaging, from the perspective of 

reducing the exposure dose and/or shortening acquisition 

time, GANs have been applied to noise reduction on images 

scanned under low-dose conditions. For single-photon 

emission computed tomography (SPECT) imaging, de-

noising techniques based on GANs have been explored (36). 

When an image of high noise level is given, the generator 

estimates an image from the noisy image that is equivalent 

to the real low noise image in terms of signal-to-noise ratio. 

From an experiment on abdominal simulated images with 

low (128 MBq) and high (987 MBq) injected dose using an 

XCAT phantom (37), region-of-interest analysis of noise 

level demonstrated that the GAN-based method has the 

potential to decrease the noise level of SPECT images.

For CT images that are expected to provide anatomic 

information, it is important to remove noise while preserving 

the shape and contrast of the organs. In order to achieve 

this requirement, GANs that introduce perceptual loss and 

sharpness loss have been developed. The former class of 
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GANs introduces perceptual loss using a pre-trained network 

known as a VGG, and was evaluated on abdominal CT 

images with normal dose and simulated quatre-dose (38). The 

generator has the role of denoising the low-dose CT images. 

The discriminator judges whether the input is a normal dose 

image or a denoised one. In practice, that approach solved 

the over-smoothing problem and denoised the images with 

increased contrast for lesion detection.

In the latter type of GAN, an additional sharpness 

detection network was introduced to measure the sharpness 

of the denoised image (39). The networks were trained with 

pairs of high and low dose CT images, in which effective 

dose for high and low were 14.14, 7.07, and 0.71 mSv, to 

generate noise-reduced versions of the low-dose images. 

Figure 2 demonstrated the denoised images comparable 

with high-dose CT images in term of peak signal-to-noise 

ratio and structured similarity index.

In regards to EKG-gated cardiac CT scans without 

contrast enhancement for coronary calcium scoring, de-

noising in low dose CT images is useful to avoid excessive 

radiation dose for the patient (40). Jelmer and colleagues 

trained networks with pairs of low- and routine-dose CT 

images to generate noise-reduced images based off of the 

low-dose images. The GAN-based noise reduction allowed 

accurate quantification of coronary artery calcification from 
low dose cardiac CT images.

Image reconstruction

In addition to conventional analytical and iterative image 

reconstruction methods, GANs may be utilized for this task. 

In this section, we discuss GANs for reconstruction of MR 

images with compressed sensing (CS-MRI), which enables a 

reduce acquisition time while maintaining image quality.

A model referred to as RefineGAN provided faithful 

interpolation in k-space and outperformed the state-of-

the-art CS-MRI methods in terms of both running time 

and image quality for open-source MRI databases of brain, 

chest, and knee. That was true even for low sampling rate, 

i.e., 10% of fully acquired data (41).

Another GAN-based framework,  GANCS, was 

developed which was applicable to reconstruction of CS-

MRI (42). In a study on a contrast-enhanced MR dataset 

of pediatric patients, expert radiologists rated images by 

the GANCS as high quality in regards to improvement of 

fine texture details when compared to the conventional CS 
methods. Processing times of reconstruction were faster 

than the current state-of-the-art CS-MRI schemes by two 

orders of magnitude.

As a means to improve fidelity between the CS reconstructed 
image and the fully sampled image, a GAN with an adaptation 

algorithm of trained generative model parameters to the 

complete data was created (43). The use of the GAN allowed 

the reconstruction of high fidelity MR images of knee from 
noisy and/or incomplete measurement data.

At times in diagnostic imaging, only one region of the 

image is important. In the case of cardiac MRI, the cardiac 

region is more important to radiologists than are other 

regions. From that perspective, a network called Recon-

GLGAN utilized region-of-interest features from full-

sampling reconstructed images as prior information to 

improve quality in the CS-MRI reconstructions (44) as 

shown in Figure 3. A study with cardiac MR images showed 

better reconstruction quality in terms of peak signal-to-

noise ratio, structural similarity index, and normalized mean 

square error metrics as compared to those of conventional 

methods. Segmentation tests of heart regions from the 

whole image showed similar results to fully sampled images.

SR

SR is a technique for producing a high-resolution image 

from a low-resolution image. While the main processing 

in the conventional method is to increase the image size by 

interpolation and emphasize the edges by filtering, noise 

in the image is also emphasized. GAN-based approaches, 

on the other hand, learn patterns in the same region of 

paired low- and high-resolution training images to improve 

resolution in the low-resolution images. In this field, there 
is a lot of research on MR images that provide anatomic 

information. Basically, the generator receives a low-

resolution image as input and generates a SR image. The 

discriminator receives the generated image or the true high-

resolution image and determines its authenticity.

Meta-SRGAN, which is a network model that utilizes 

SRGAN and a Meta-Upscale Module. This architecture 

produces SR for 2D MR images with arbitrary scale and 

high fidelity (45). Meta-SRGAN outperformed traditional 

interpolation methods and achieved competitive results with 

the state-of-the-art method with low memory usage.

Instead of a single GAN, an ensemble learning approach 

was applied for SR of MR images of knees by training multiple 

GANs and combining their outputs to final output (46). 

The ensemble approach outperformed some state-of-the-

art methods based on deep learning in terms of structural 

similarity index and peak signal-to-noise ratio. This method 
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was also able to suppress artifacts and keep more image details.

Extending SR technology from 2D to 3D would be 

expected to increase computation time and memory 

consumption, the so-called “curse of dimensionality”. Along 

with techniques to suppress the computational cost as well 

as patch-wise (small region) learning, SR technique for 3D 

images has been developed. A network model based on 

SRGAN with improved upsampling techniques succeeded 

in generating realistic images from normal control T1W 

images down-sampled by a factor of 4 when compared to 

results by classical interpolation (47).

To generate high resolution 2D and 3D images, a multi-

scale GAN with patch-wise learning was developed (48). 

Starting from a low-resolution scale of the image, the 

training was repeated and conditioned on the previous scale 

to produce a higher resolution. The GAN suppressed the 

artifacts that occur in patch-wise training and produced 

3D chest CT and chest X-ray images with matrix sizes of 

512×512×512 and 2,048×2,048, respectively. In addition 

to SR, the GAN was also used for medical image domain 

translation, such as low dose to high dose chest CT images 

and T1W to T2W 3D brain MR images.

In another approach, a network referred to as mDCSRN-

GAN realized SR for brain MR images of 3D volume 

and preserved continuous structures by estimating multi-

level structure information and adding it on low resolution 

images of inputs (49,50). For images down-sampled by a 

factor of 4, the method recovered local image textures and 

details more accurately as shown in Figure 4, and quickly 

than current state-of-the-art deep learning approaches by a 

factor of 6.

Domain adaptation

Supervised learning for medical image analysis requires 

appropriate labels and annotation by medical experts, which 

takes an enormous amount of time and effort. Domain 

adaptation is a method for constructing high-performance 

neural networks in a target domain by adapting knowledge 

such as supervised labels and annotations from a source 

domain to the target domain with no or insufficient 

knowledge.

Unsupervised domain adaptation using adversarial 

training of 3D multi-scale CNNs was demonstrated for the 

segmentation of traumatic brain injuries (TBI) on brain MR 

images (51). Their network model leaned features of TBI 

Low Resolution 

26.88/0.8112

mDCSRN 

35.531 0.9471

mDCSRN-GAN 

32.83/ 0.9065

Original Resolution 

PSNR / SSIM

Figure 4 Effects of SR on a low resolution image (2×2×1 resolution degrading) by the mDCSRN-GAN on brain MR image with peak 

signal-to-noise ratio and structural similarity index (50).
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lesions on gradient-echo with MPRAGE, FLAIR, T2W, and 

proton density (PD) images without binary labels. The features 

were adapted to detect TBI lesions on images of MPRAGE, 

FLAIR, T2W, and PD for other patients. Figure 5 showed 

similar accuracy to results by supervised learning using binary 

labels for TBI lesions.

An unsupervised domain adaptation method based 

on Cycle-GAN has also been developed (52). Using the 

network model and tissue region labels of gray matter, white 

matter, and cerebrospinal fluid in a brain MRI dataset, the 
Alzheimer’s Disease Neuroimaging Initiative dataset was 

adopted to another brain MRI dataset, BaTS. The adopted 

tissue labels contributed to improved accuracy of brain 

tumor segmentation significantly in the BaTS dataset.
An unsupervised domain adaptation method based 

on Cycle-GAN was investigated for image registration 

independent from training dataset (53). The networks 

trained with chest X-ray images were applied to brain MR 

or multimodal retinal image registration. The investigated 

method outperformed conventional methods without 

domain adaptation in registration performance.

Image generation with disease severity and 

radiomics

Finally, it is appropriate to discuss some examples of the 

future of the GAN in medical and molecular imaging. 

Visualization of the progression of chronic obstructive 

pulmonary disease (COPD) in X-ray chest images were 

studied with VR-GAN, which learned features of X-ray 

chest images with quantitative COPD severity based on 

forced expiratory volume/forced vital capacity (54). Inputs 

to the generator are an X-ray image with two conditions 

of real severity for the image and desired severity. The 
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Figure 5 Effects of domain adaptation in segmentation of TBIs. Images in 6th column show regions of TBIs defined manually. The domain 
adaptation GAN learned features of TBI lesions in the source domain, and succeeded in detecting TBI lesions in other imaging protocol and 

patients (5th column) (51).
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generator makes a disease effect map between the desired 

severity and the baseline (top row in Figure 6). Final output 

image is obtained by summing the effect map to the baseline 

image (bottom row in Figure 6). The generated images 

agreed with radiologists’ expectations and produced realistic 

images.

A GAN was developed for elucidation of the relationship 

between gene expression and CT image for lung  

nodules (55). When background image without nodules and 

the gene expression profile are given, the GAN can generate 
a nodule image with characteristics such as size and shape 

reflected by the genomic information. That model can 

separate genetic code to clusters remarkably with effective 

reducing data of the code from 5,172 to 128 dimensions. 

As shown in Figure 7, the generated images corresponding 

to representative three clusters showed the features such as 

nodule shape and boundary smoothness for each cluster.

Conclusions

As introduced above, the many different GAN architectures 

were developed as powerful and promising tools for 

medical and molecular imaging. GANs have realized image 

synthesis, modality conversion, and SR for volumetric 

imaging. The achievement of low-dose imaging and 

shortening acquisition time while maintaining image 

quality were considered to be important clinically. Domain 

adaptation that utilizes existing expertise is expected to be a 

rapid solution to emerging problems with less work. Further 

improvements in computational power and network models 

Figure 6 Example of visualizing the progression of COPD with chest X-rays (54). (A) original image with COPD severity, y of 0.72; (B) 

generated images with several desired severities.

Figure 7 Radiogenomic map learning and generated nodule images (55). Three groups of samples are drawn in 4th column from clustered 

gene code in 3rd column.
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will enable new applications for higher dimensional images, 

such as volumetric and temporal imaging. As reviewed in 

the last topic, not only images but also various types of data 

as inputs could be one of the future directions of GANs in 

medical and molecular imaging. Use of public/open datasets 

for high verifiability and evaluation in large-scale studies 

will make the role of GANs more important.
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