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Abstract

The correlated-k and scaled-k distribution methods for radiative heat transfer in molecular gases are de-
veloped based on precise mathematical principles, for both narrow band and full spectrum models. Their
di4erences and commonalities are high-lighted and discussed. Applications to narrow spectral bands of non-
homogeneous gases show both methods to be about equally accurate. For full-spectrum calculations, on the
other hand, the scaled-k distribution consistently outperforms the correlated-k model.
? 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Radiative transfer in absorbing–emitting gas mixtures can be most accurately predicted using the
line-by-line approach, but LBL calculations require large computer resources and computational time.
It has been known for some time that, for a narrow spectral range (i.e., a range over which the Planck
function Ib� � const.) in a homogeneous medium (i.e., absorption coe8cient 	� is not a function of
spatial location), the absorption coe8cient may be reordered into a monotonic k-distribution, which
produces exact results at a tiny fraction of the computational cost [1,2]. As with other narrow band
models, treatment of nonhomogeneous media was somewhat problematic. Two methods have been
commonly used to address nonhomogeneity: the scaling approximation and the assumption of a
correlated k-distribution. The former is somewhat more restrictive, by demanding that spectral and
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Nomenclature

a weight function of k-distributions (dimensionless)
fg k-distribution (cm)
I; Ib (blackbody) intensity (W=m2 cm)
k� absorption coe8cient at reference state (cm−1)
k absorption coe8cient variable at reference state (cm−1)
k∗ absorption coe8cient variable at other state (cm−1)
L length (cm)
Lm mean beam length (cm)
p pressure (bar)
ŝ unit direction vector (dimensionless)
T temperature (K)
u scaling function for absorption coe8cient (dimensionless)
V volume (cm3)
x mole fraction (dimensionless)

Greek

	�; 	P spectral or Planck-mean absorption coe8cient (cm−1)
� wavenumber (cm−1)
�s scattering coe8cient (cm−1)
� scattering phase function (dimensionless)
� composition variable vector �= (T; p; x)
� solid angle (sr)

Subscripts

0 reference state
k at a given value for the absorption coe8cient variable
g at a given value for cumulative k-distribution
� at a given wavenumber

spatial dependence of the absorption coe8cient be separable, i.e.,

	�(�; �) = k�(�)u(�); (1)

where � is a vector containing the composition variables that a4ect the absorption coe8cient (tem-
perature T , pressure p, and mole fractions x). An advantage of the scaling approximation is that
mathematical expressions for nonhomogeneous media k-distributions can be readily obtained. In
the correlated k-distribution method it is assumed that the maximum absorption coe8cients across
the spectrum under investigation always occur at the same wavenumber, regardless of composition
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variables �, and similarly for all intermediate values. This implies that the nondimensional, reordered
wavenumber g (or cumulative k-distribution) corresponds to identical sets of actual wavenumber
locations �, regardless of �. While less restrictive than the scaling approximation (a scaled ab-
sorption coe8cient always results in correlated k-distributions, but not vice versa), it has not yet
been formulated in precise mathematical terms. The method has been shown to be of great accu-
racy in meteorological applications, which are governed by strong total pressure variations (from
atmospheric to very low pressures at high altitude), and only small temperature changes (per-
haps between 200 and 300 K) [1,3,4]. If temperatures are relatively uniform, this implies that
the same spectral lines contribute to the radiative transfer everywhere, but that these lines have
strongly varying widths at di4erent pressures (altitude); nonetheless, maxima of the absorption co-
e8cients (at the line centers) are the same everywhere, and it is not surprising that the assumption
of a correlated absorption coe8cient gives extremely accurate result, indeed more accurate than
the heretofore popular Curtis–Godson narrow band approximation (based on a scaled absorption
coe8cient).

The situation is reversed in high-temperature combustion applications, which generally operate at
relatively constant total pressure, but which are accompanied by extreme changes in temperature and
concentration levels. Spectral lines from higher vibrational levels are negligible at room temperature
but, with rising temperature, higher vibrational levels become more and more populated giving rise
to so-called “hot lines”. For example, the HITRAN96 database [5] contains 75,000 lines for CO2

(valid up to 600K), while the HITEMP database [6] (valid up to 1000 K) contains almost an
additional 1,000,000 lines! Therefore, at signiOcantly di4erent temperatures, totally di4erent spectral
lines dominate the radiative transfer, and the assumption of a correlated absorption coe8cient breaks
down. This was Orst recognized by RiviQere et al. [7–9]. Similarly, in a mixture of gases the correlation
breaks down in the presence of strong, independent changes in concentrations, as recognized by
Modest and Zhang [10], i.e., at one spatial location the absorption coe8cient may be dominated by
one specie, and by another (with totally di4erent lines) at a di4erent location. For such cases the
scaling approximation can produce superior results, since the scaling function can be optimized for
the problem at hand.

More recently, the reordering concept has also been applied to the full spectrum. Denison and
Webb [11,12] developed the spectral-line-based weighted-sum-of-gray-gases (SLW) model, in which
line-by-line databases are used to calculate weight factors for the popular WSGG model [13,14]; for
nonhomogeneous gases they used the correlated-k approach. A similar method, called the absorption
distribution function (ADF) approach, was developed by RiviQere et al. [15,16]. Very recently, Mod-
est and Zhang [10] demonstrated how k-distributions can be obtained for the entire spectrum, calling
it the FSCK method. Their approach di4ers from the SLW and ADF approaches in two respects:
(1) they obtained a continuous k-distribution, rather than the stepwise WSGG method [showing that
the SLW=ADF=WSGG methods are crude step implementations of the full-spectrum k-distribution
(FSCK) method]; and (2) they used the scaling approximation, to make a clear mathematical devel-
opment of the method possible for inhomogeneous media. In addition, they introduced a somewhat
more elaborate scheme for establishing a reference state, which further improves accuracy.

It is the purpose of the present paper (a) to show that a precise mathematical formulation is possi-
ble also for correlated-k distributions (for narrow bands as well as for the entire spectrum), and (b)
to compare the accuracy of the two approaches in the context of narrow band transmissivities as well
as the full-spectrum k-distribution applied to a water vapor–carbon dioxide mixture.
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2. Theoretical analysis

2.1. Narrow band analysis

Consider the radiative transfer equation (RTE) for an absorbing, emitting and scattering medium
[17]:

dI�
ds

= 	�(�; �)[Ib�(T )− I�]− �s�

[
I� − 1

4�

∫
4�
I�(ŝ′)��(ŝ; ŝ′) d�′

]
; (2)

where it is assumed that Planck function Ib�, scattering coe8cient �s�, and scattering phase function
�� are essentially constant across a small wavenumber interval U�. We will reorder the absorption
coe8cient in Eq. (2) by multiplying the equation with Dirac’s delta function �(k − 	�(�; �0

)), fol-
lowed by integration over, and division by, U�. Here 	�(�; �0

) is the absorption coe8cient evaluated
at some (as of yet arbitrary) reference state �

0
= (T = T0; p= p0; x = x0). This leads to

dIk
ds

= k∗(�; k)[f(�
0
; k)Ib� − Ik)]− �s�

(
Ik − 1

4�

∫
4�
Ik(ŝ′)��(ŝ; ŝ′) d�′

)
(3)

provided that at every wavenumber where 	�(�; �0
) has one and the same value k, 	�(�; �) always

also has one unique value k∗(�; k). If the absorption coe8cient behaves in such a way, then the
intensity I� will also always be the same for all these wavenumbers, and

Ik =
1
U�

∫
U�

I�(�)�(k − 	�(�; �0
)) d�= Ik(k)f(�0

; k); (4)

where f(�
0
; k) is the k-distribution, and is evaluated as

f(�
0
; k) =

1
U�

∫
U�

�(k − 	�(�; �0
)) d�=

1
U�

∑
i

∫
�(k − 	�(�; �0

))
d�
d	�

d	�

=
1
U�

∑
i

∣∣∣∣ d�d	�

∣∣∣∣ (�i; �0
): (5)

In this relation, the summation is over all occurrences where 	�(�; �0
) = k, as illustrated in Fig. 1

(the absolute value signs stem from the fact that, if d�=d	� ¡ 0, then also d	� ¡ 0). Similarly, one
can obtain the k-distribution for the local state �, or

f(�; k∗) =
1
U�

∑
i

∣∣∣∣ d�d	�

∣∣∣∣ (�i; �); (6)

which has identical k∗–	� intersection wavenumbers �i, as also indicated in Fig. 1. Eq. (6) may also
be rewritten as

f(�; k∗) =
1
U�

∑
i

∣∣∣∣ d�d	�

∣∣∣∣ (�i; �0
)

∣∣∣∣∣
d	�(�0

)

d	�(�)

∣∣∣∣∣ : (7)
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Fig. 1. Extraction of k-distributions from spectral absorption coe8cient data (thick line is for CO2 in nitrogen, across a
small portion of the CO2 15 �m band, p= 1:0 bar, T = 296 K; thin line is artiOcial).
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Fig. 2. Reordered absorption coe8cients from Fig. 1 vs. cumulative k-distribution g.

Since 	�(�)(=k∗) is a unique function of 	�(�0
)(=k), we have

f(�; k∗) dk∗ = f(�
0
; k) dk (8)

provided that dk∗=dk¿ 0 everywhere, i.e., 	�(�) must be a uniformly increasing function of
k = 	�(�0

). The cumulative k-distribution g is then identical for both cases, i.e.,

g(�
0
; k) =

∫ k

0
f(�

0
; k) dk =

∫ k∗

0
f(�; k∗) dk∗ = g(�; k∗): (9)

Eq. (9) may be inverted for both k and k∗, with both being a function of the same cumulative
k-distribution g, as indicated in Fig. 2. This is the deOnition of correlated k-distributions. Intensity
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averaged over the interval U� then follows as

1
U�

∫
U�

I� d�=
∫ ∞

0
Ik dk =

∫ 1

0
Ig dg; (10)

where Ig is the solution to the standard RTE

dIg
ds

= k∗(�; g)(Ib� − Ig)− �s�

(
Ig − 1

4�

∫
4�
Ig(ŝ′)��(ŝ; ŝ′) d�′

)
: (11)

A special case of the correlated-k distribution occurs when the absorption coe8cient is scaled: this
implies that, from Eq. (1), the ratio k∗=k is independent of k, and Eq. (11) reduces to

dIg
ds

= k(�
0
; g)u(�; �

0
)(Ib� − Ig)− �s�

(
Ig − 1

4�

∫
4�
Ig(ŝ′)��(ŝ; ŝ′) d�′

)
: (12)

At Orst glance, Eq. (11) looks superior to Eq. (12), since the assumption of a scaled absorption
coe8cient is more restrictive. However, in practice one needs to approximate an actual absorption
coe8cient, which is neither scaled nor correlated: if the scaling method is employed, the scaling
function u(�; �

0
) can be freely chosen and, thus, optimized for a problem at hand. On the other

hand, if the correlated-k method is used, the absorption coe8cient is simply assumed to be correlated
(even though it is not), and the inherent error cannot be minimized.

2.2. Full spectrum analysis

Following the treatment of Modest and Zhang [10] for a scaled absorption coe8cient, the analysis
is quite similar for full-spectrum, correlated k-distributions. As for any global method, we must now
assume that scattering properties (and wall reWectances) are gray. We then reorder Eq. (2) by Orst
multiplying with �(k − 	�(�; �0

)), followed by integration over the entire spectrum. This leads to

dIk
ds

= k∗(�; k)[f(T; �
0
; k)Ib(T )− Ik]− �s

(
Ik − 1

4�

∫
4�
Ik(ŝ′)�(ŝ; ŝ′) d�′

)
(13)

again provided that at every wavenumber across the entire spectrum, where 	�(�; �0
) = k, we must

also have a unique value for 	�(�; �) = k∗(�; k) (which may be a function of k, but not of �). In
Eq. (13) Ik and f are deOned as

Ik =
∫ ∞

0
I��(k − 	�(�; �0

)) d�; (14)

f(T; �
0
; k) =

1
Ib

∫ ∞

0
Ib�(T )�(k − 	�(�; �0

)) d�: (15)

Therefore, in this context f is a Planck function weighted, full-spectrum k-distribution, which—
besides the reference conditions �

0
—depends on temperature through the Planck function. Similar

to the narrow band case we Ond

f(T; �
0
; k) =

1
Ib(T )

∑
i

Ib�i(T )
∣∣∣∣ d�d	�

∣∣∣∣ (�i; �0
) (16)
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Fig. 3. k-distribution equivalence of correlated absorption coe8cients for varying Planck function temperatures.

and again, if 	�(�; �) is a monotonically increasing function of k = 	�(�; �0
), then

f(T; �
0
; k) dk = f(T; �; k∗) dk∗ (17)

and the k-distributions are correlated, i.e.,

g(T; �
0
; k) =

∫ k

0
f(T; �

0
; k) dk =

∫ k∗

0
f(T; �; k∗) dk∗ = g(T; �; k∗): (18)

Total intensities I can then be obtained by integrating the Ik found from Eq. (13) over k-space. This
is inconvenient, in particular since f(T; �

0
; k) is a very ill-behaved function [10], just like narrow

band k-distributions. On the other hand, because of its dependence on local temperature, f cannot
be divided out as was done in the narrow band case, in order to integrate over the more convenient
g-space. This can be overcome by dividing Eq. (13) by the k-distribution evaluated at the reference
temperature, f(T0; �0

; k), leading to

dIg
ds

= k∗(T0; �; g0)[a(T; T0; g0)Ib(T )− Ig]− �s

(
Ig − 1

4�

∫
4�
Ig(ŝ′)�(ŝ; ŝ′) d�′

)
(19)

together with

Ig = Ik=f(T0; �0
; k) =

∫ ∞

0
I��(k − 	�(�; �0

)) d�=f(T0; �0
; k); (20)

g0(T0; �0
; k) =

∫ k

0
f(T0; �0

; k) dk; (21)

a(T; T0; g0) =
f(T; �

0
; k)

f(T0; �0
; k)

=
dg(T; �

0
; k)

dg0(T0; �0
; k)

: (22)

In Eq. (22) numerator and denominator are both evaluated at identical values of k (as indicated in
Fig. 3), which in turn is related to g0 through Eq. (21). Note also that the weight function a(T; T0; g0)
is independent of �

0
(for a truly correlated absorption coe8cient) from Eq. (17).
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Fig. 4. (Lack of) k-distribution equivalence for varying Planck function temperatures for real gas mixtures
(CO2–H2O–nitrogen mixture at di4erent temperatures using HITEMP: Th = 1000 K, Tc = 300 K, uniform p = 1 bar,
xCO2 = 0:1, xH2O = 0:2).

While k∗ is, for a truly correlated absorption coe8cient, a function of composition variables �
and k only, such a relation is not known; instead we assume an actual absorption coe8cient to be
correlated. I.e., we assume Eq. (18) to hold for the actual absorption coe8cient, or

k∗(�; k) = k∗(T; �; g); (23)

where g is the cumulative k-distribution for the absorption coe8cient at reference state �
0
[left

half of Eq. (18)]. However, the reordered spectral variable for Eq. (19) is g0, i.e., the cumulative
k-distribution for, both, absorption coe8cient and Planck function evaluated at the reference state.
Since k(T; �

0
; g) and k(T0; �0

; g0) are both reordering the same absorption coe8cient (but using
di4erent weight functions), k(T0; �0

; g0) is simply stretched in g-space, as shown in Fig. 3 (The four
k-distributions in Fig. 3 where obtained from the two absorption coe8cient distributions of Fig. 3,
after spreading their spectral range across the entire spectrum, for Planck function temperatures of
300 and 1000 K). Since Eq. (18) can be applied at any temperature, including T = T0, it is clear
that k∗(T0; �; g0) is stretched in exactly the same way, or

k∗(�; k) = k∗(T; �; g) = k∗(T0; �; g0): (24)

Note that Eq. (24) is exact only for a truly correlated absorption coe8cient: Fig. 4 shows the
equivalent four k-distributions for a 10% CO2–20% H2O–70% nitrogen mixture evaluated from the
HITEMP database [6]: if the k-distributions k(T=300 K, T0=1000 K; g) (Planck function evaluated
at 300 K, absorption coe8cient at 1000 K) and k(T = 300 K, T0 = 300 K; g) (Planck function at
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300 K, 	� at 300 K) were correlated, then, from Eq. (18), they should also be correlated for a
Planck function evaluated at 1000 K. This implies that for any value of g (here shown for g= 0:3)
the two k-values at one Planck function temperature (here 300 K) should map to identical g0-values
at any other Planck function temperature (here T0 = 1000 K). This is clearly not the case for the
given carbon dioxide–water vapor mixture. However, a graph such as Fig. 4 can be employed to
investigate how close to correlatedness an absorption coe8cient actually is.

Returning to Eq. (19), the total intensity is evaluated from

I =
∫ ∞

0
I� d�=

∫ ∞

0
Ik dk =

∫ 1

0
Ig dg0: (25)

As for the narrow band k-distributions the problem is reduced to a single k-distribution if a scaled
absorption coe8cient is employed. Then the k∗-term in Eq. (19) is replaced by

k∗(T; �; g) = k(T; �
0
; g)u(�; �

0
) = k(T0; �0

; g0)u(�; �0
): (26)

3. Reference state and scaling function

Whether the assumption of a correlated absorption coe8cient is to be used, or whether the ab-
sorption coe8cient is to be scaled, the exact k vs. g behavior can be employed for only a single
reference state �

0
. Therefore, the choice of �

0
is very important and should be optimized for any

given problem. Modest and Zhang [10] suggest, for a medium at constant pressure p,

x0 =
1
V

∫
V
x dV; (27)

	P(T0; x0) =
1
V

∫
V
	P(T; x)Ib(T ) dV; (28)

i.e., volume-averaged mole fraction and a Planck-mean temperature based on average emission from
the volume. Similar arguments can also be used for narrow band distributions, for which Eq. (28)
is then replaced by

	�(T0; x0)Ib�(T0) =
1
V

∫
V
	�(T; x)Ib�(T ) dV; (29)

where 	� =
∫
U� 	� d�=U� is the average absorption coe8cient.

In the correlated-k method, the k(T; �
0
; g) are then determined, followed by evaluation of

k∗ = k(T; �; g) making the assumption of corresponding g-values (and its resulting errors). If a
scaled absorption coe8cient is to be used, scaling functions must be found, and Modest and
Zhang [10] suggest the implicit relation∫ ∞

0
Ib�(T0) exp(−	�(�; �)Lm) d�=

∫ ∞

0
Ib�(T0) exp[− 	�(�; �0

)u(�; �
0
)Lm] d�; (30)

i.e., equating radiation leaving from a homogeneous slab of mean beam length, Lm. Using
k-distributions this becomes∫ 1

0
exp[− k∗(T0; �; g)Lm] dg=

∫ 1

0
exp[− k(T0; �0

; g0)u(�; �0
)Lm] dg0: (31)
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Eq. (31) is readily inverted through a Newton–Raphson scheme: Orst the left-hand-side integral is
evaluated (requiring about 10 quadrature points), and similarly the right-hand-side integral, starting
with a guess of u=1; u and the right-hand-side integral are then updated until convergence (requiring
some 3–5 iterations).

Both methods are about equally e8cient numerically: besides the evaluation of k(T; �
0
; g) [needed

for both methods to evaluate k(g0) and the weight function a], for a correlated absorption coe8cient
k-distributions must be evaluated for all states � (with a Planck function based on the reference
temperature). For a scaled absorption coe8cient, the same k-distributions are needed, but here for
the evaluation of the scaling functions u. The computational e4ort of inverting Eq. (31) is essentially
negligible compared to the e4ort required for the evaluation of the k-distributions.

4. Sample calculations

To illustrate the validity of, both, correlated-k and scaled-k distributions, as well as their di4er-
ences, a few simple (yet severe) examples will be considered, for narrow band as well as for full
spectrum calculations. In all cases we will consider a slab of a hot gas (usually at 1000 K, unless
stated otherwise), adjacent to a slab of cold gas (at 300 K). Both layers are at the same total and
partial pressures.

For the narrow band calculations we will assume both layers to have equal thickness, and both
a slab transmissivity and emissivity will be evaluated. The transmissivity for a blackbody beam
Ib�(Th = 1000 K), through such a double layer is [17]

Z�� =
I�(L)tr
Ib�(Th)

=
1
U�

∫
U�

exp[− 	�(Th; x)Lh − 	�(Tc; x)Lc] d�; (32)

while the emissivity is deOned here as the intensity of emitted radiation exiting the cold layer, as
compared to the Planck function of the hot layer, or

Z�� =
I�(L)em
Ib�(Th)

=
1
U�

∫
U�

[
e−	�(Tc ; x)Lc − e−	�(Tc ; x)Lc−	�(Th ; x)Lh +

Ib�(Tc)
Ib�(Th)

(1− e−	�(Tc ; x)Lc)
]
d�: (33)

Note that, while transmissivities are more regularly shown in the narrow band literature, the emis-
sivity is generally more descriptive of heat transfer problems. Fig. 5 shows these narrow band
transmissivities and emissivities for the 2:7 �m band of CO2, as calculated by the LBL, scaled-k
and correlated-k methods, using the HITEMP database [6], and all for a resolution of U�=5 cm−1

(lines) and 25 cm−1 (symbols). The thickness of the layer is Lh =Lc =50 cm, total pressure is 1 bar,
and mole fraction is xCO2 =0:1. Both correlated and scaled k-distributions predict transmissivity very
accurately with the exception of small discrepancies near the minima at 3600 and 3700 cm−1. In ab-
solute terms the error never exceeds 0.04 but, in relative terms, the error goes as high as 15%, since
the error is largest near the band center, where transmissivities are small. Similar errors also show
up in the emissivity, but the relative errors are somewhat ampliOed (with a maximum error of about
45%), since the emissivities are even smaller near the band centers. For both, transmissivity and
emissivity, results from the two k-distributions are virtually identical, although correlated-k performs
slightly better for the 2:7 �m band (in the case of the 4:3 �m band, not shown, roles are reversed
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Fig. 5. Narrow band transmissivities and emissivities for the 2:7 �m band of CO2, as calculated by the LBL, scaled K
and correlated K methods.

and scaled-k slightly outperforms correlated-k). Fig. 6 shows transmissivities and emissivities for the
wide 6:3 �m water vapor band. Conditions are the same as for Fig. 5, except that xH2O=0:2 and only
a U�=25 cm−1 resolution is shown (a resolution of 5 cm−1 results in a very irregular shape which,
while the k-distributions follow this behavior accurately, makes them di8cult to compare). Again,
both k-distributions predict transmissivities rather accurately, and the relative errors are somewhat
ampliOed in the emissivities. And, again, both k-distributions give virtually the same results, both
about equally accurate for this band. In summary, one may say that both models perform about
equally well; this implies that—for narrow bands and for temperatures not exceeding 1000 K—the
absorption coe8cients for water vapor and carbon dioxide are relatively well correlated. Note also
that the present case, with a sharp step in temperature, is rather extreme; accuracy can be expected
to be signiOcantly better in more realistic combustion systems.

To illustrate and compare the two k-distribution versions on a global or full-spectrum scale we
will look at a mixture of xCO2 = 0:1 CO2 and xH2O = 0:2 H2O, with a total pressure of 1 bar. As
in the narrow band examples, we consider a hot layer (Th = 1000 and 2000 K, respectively; Oxed
thickness Lh = 50 cm) adjacent to a cold layer (Tc = 300 K; varying thickness Lc). Both sides of
the slab are bounded by cold black walls. The heat Wux leaving from the cold end of the slab is
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Fig. 6. Narrow band transmissivities and emissivities for the 6:3 �m band of water vapor, as calculated by the LBL, scaled
K and correlated K methods.

then [17]
q

�T 4
h
=

1
Ibh

∫ ∞

0
{2[E3(	�(Tc)Lc)− E3(	�(Tc)Lc + 	�(Th)Lh)]Ib�(Th)

+ [1− 2E3(	�(Tc)Lc)]Ib�(Tc)} d�: (34)

In terms of k-distributions, this becomes from Eqs. (19) and (26)

q
�T 4

h
=
∫ 1

0

{
2[E3(�gc)− E3(�gc + �gh)]ag(Th) + [1− 2E3(�gc)]

(
Tc
Th

)4

ag(Tc)

}
dg; (35)

where

�gi(Ti) =

{
k∗(T0; Ti; g0)Li for correlated-k;

k(T0; T0; g0)u(Ti; T0)Li for scaled-k;

where i = c or h, and with ag from Eq. (22), T0 from Eq. (28), and u(T; T0) from Eq. (31).
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Fig. 7. Radiative Wux exiting from the cold column of a two-column CO2–H2O–nitrogen mixture at di4erent temperatures
using HITEMP (Th = 1000 and 2000 K, Lh = 50 cm; Tc = 300 K, Lc variable; uniform p= 1 bar, xCO2 = 0:1, xH2O = 0:2,
cold and black walls).

The results are shown in Fig. 7 for varying cold layer thickness. When there is no cold layer
(Lc=0), we only have a homogeneous hot layer, and both k-distribution versions reduce to the exact
LBL results. For Lc¿ 0 correlated-k will always overpredict absorption in the cold layer and, thus,
underpredict exiting heat Wux. This is due to the fact that, for a correlated absorption coe8cient,
spectral regions with strong hot layer emission (large 	�) are assumed to have also large absorption;
this, however, is violated by the many “hot lines” at 1000 K and (much more so) at 2000 K. The
scaled-k approximation, on the other hand, can optimize the (still correlated) k-distribution with
the scaling function u, resulting in considerably smaller errors. Comparing with the narrow band
results one may conclude that, while k-distributions are relatively correlated over small parts of the
spectrum, this assumption becomes more tenuous when the entire spectrum is considered. Again,
one should keep in mind that Fig. 7 depicts rather extreme examples. Modest and Zhang [10]
have shown that, in two-dimensional combustion systems, the anticipated maximum error for FSSK
is mostly below 3%.

5. Summary

In this paper a precise mathematical development of the correlated-k method has been given for
narrow bands as well as for a global model. Di4erences and similarities between correlated and scaled
absorption coe8cients and their resulting k-distributions have been high-lighted and discussed. It was
found that both methods require roughly the same numerical e4ort, although the correlated-k approach
is perhaps a little more straightforward to implement. Narrow band results for CO2 and H2O, based on
the HITEMP database, indicate that the absorption coe8cient is relatively well correlated across small
spectral regions, resulting in roughly equal accuracies for correlated and scaled k-distributions. It was
observed that, for media with severe temperature nonuniformity, both methods predict transmissivity
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of a gas column with great accuracy. Emissivities for such layers (of importance in combustion
applications), exhibit slightly larger errors of up to 0.04 (which may result in locally relatively large
errors on a percentage basis). For global models the absorption coe8cient becomes less correlated,
and the scaled k-distribution method (FSSK) distinctly outperforms its correlated cousin (FSCK).
The reason for this is that, in the correlated-k method, the actual absorption coe8cient, with its
“hot lines” as given by HITEMP, is assumed to be correlated (although it is not). In the scaled-k
method the scaling function is optimized, to mimic actual absorption coe8cient behavior as closely
as possible, resulting in more accurate results.
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