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Abstract—Probabilistic roadmap (PRM) planners have been
successful in path planning of robots with many degrees of
freedom, but sampling narrow passages in a robot’s configuration
space remains a challenge for PRM planners. This paper presents
a hybrid sampling strategy in the PRM framework for finding
paths through narrow passages. A key ingredient of the new
strategy is the bridge test, which reduces sample density in many
unimportant parts of a configuration space, resulting in increased
sample density in narrow passages. The bridge test can be imple-
mented efficiently in high-dimensional configuration spaces using
only simple tests of local geometry. The strengths of the bridge test
and uniform sampling complement each other naturally. The two
sampling strategies are combined to construct the hybrid sampling
strategy for our planner. We implemented the planner and tested
it on rigid and articulated robots in 2-D and 3-D environments.
Experiments show that the hybrid sampling strategy enables
relatively small roadmaps to reliably capture the connectivity of
configuration spaces with difficult narrow passages.

Index Terms—Motion planning, probabilistic roadmap (PRM)
planner, random sampling, randomized algorithm, robotics.

I. INTRODUCTION

D
URING the past decade, probabilistic roadmap (PRM)

planning [1]–[10] has emerged as a powerful framework

for path planning of robots with many degrees of freedom

(DOFs). The main idea of a classic PRM planner [7] is to

sample at random a robot’s configuration space, and connect

the sampled points to construct a roadmap graph that captures

the connectivity of the free space, the collision-free subset of

the configuration space. Due to its efficiency and simplicity,

PRM planners have found many applications in addition to

robotics, including virtual prototyping and computational

biology (see, e.g., [11]–[15]).
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Despite the success of PRM planners, path planning for

multiple-DOF robots is difficult. Several instances of the

problem have been proven to be PSPACE-hard [16] or even

undecidable [17], [18]. It is unlikely that sampling, the key idea

behind PRM planners, can overcome such difficulty entirely.

Indeed, narrow passages in the configuration space pose signif-

icant difficulty for PRM planners. Intuitively, narrow passages

are small regions whose removal changes the connectivity of

the configuration space. We can also give formal characteri-

zations [6], [19] using the notion of visibility sets, where two

points in the configuration space are considered visible to each

other if they can be connected by a collision-free straight-line

path. To capture the connectivity of the configuration space

well, PRM planners must sample in the narrow passages. This

is difficult, because narrow passages have small volumes, and

the probability of sampling from small sets is low.

In this paper, we propose a hybrid sampling strategy in the

PRM framework in order to find paths through narrow passages

efficiently. Our goal is to build a good roadmap by sampling

a small number of well-placed points from the configuration

space. We pay a slightly higher computational cost in sampling

than simpler alternatives, but our roadmap requires much fewer

points to capture the connectivity of the configuration space,

thus saving a lot of time in checking collision-free connections

between the sampled points.

A key ingredient of our new strategy is the bridge test, a

specialized sampling strategy for narrow passages. It rejects a

large fraction of samples in unimportant parts of a configura-

tion space, thus resulting in increased sample density in narrow

passages. In a bridge test, we check for collision at three sam-

pled points: the two endpoints and the midpoint of a short line

segment . If the two endpoints are in collision and the midpoint

is collision-free, the midpoint is accepted as a new node in the

roadmap graph being constructed. We call this a bridge test, be-

cause the line segment resembles a bridge: the endpoints of ,

located inside obstacles, act as piers, and the midpoint hovers

over the free space.

The bridge test saves computation time by filtering out those

sampled points that are unlikely to contribute to an improved

roadmap. For a point inside a narrow passage, building short

bridges through it is easy, due to the geometry of narrow pas-

sages; for a point in the middle of wide-open free space, doing

so is much more difficult. By favoring short bridges, we filter out

many sampled points in wide-open free space, as most of these

points do not improve the connectivity of the roadmap. At the

same time, points inside narrow passages easily pass the bridge

test and are retained in the roadmap to improve its connectivity.

See Fig. 1.
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Fig. 1. Example of sample points generated with the bridge test. In this and
all later figures, shaded regions indicate obstacles. Black dots indicate sample
points.

The bridge test uses only collision checking as a primitive

operation, and does not require complex geometric processing

in the configuration space. It is simple to implement and can be

easily applied to high-dimensional configuration spaces.

Since the bridge test focuses almost solely on the narrow pas-

sages, it may fail to sample an adequate number of points to

cover the entire free space [19]. Interestingly, the difficulty en-

countered by the bridge test can be overcome by uniform sam-

pling, which tends to place many samples in wide-open free

space. The strengths of the bridge test and the uniform sam-

pler complement each other naturally, and the two sampling

strategies are combined to produce a hybrid sampling strategy

to achieve better results.

In the following, Section II reviews related work. Section III

gives an overview of our planner. Sections IV and V present

the bridge test and show how to combine it with uniform sam-

pling to construct a hybrid sampling strategy. Section VI dis-

cusses practical implementation issues. Section VII reports ex-

periments with our planner on rigid and articulated robots in 2-D

and 3-D environments. Section VIII discusses the limitation of

the bridge test and possible generalization. Section IX summa-

rizes the main results.

II. RELATED WORK

The difficulty posed by narrow passages and its importance

were noted in early work on PRM planners (see, e.g., [7]) and

were later articulated in [20]. Several sophisticated sampling

strategies can alleviate this difficulty, but a satisfactory answer

remains elusive.

One possibility is to sample more densely near obstacle

boundaries [1], [3], [21], because points in narrow passages

lie close to obstacles. The Gaussian sampler [3] is a simple,

efficient algorithm that uses this idea. However, in some cases,

many points near obstacle boundaries lie far away from narrow

passages and do not help in improving the connectivity of

roadmaps. So despite the improvement, sampling near obstacle

boundaries may waste many samples in uninteresting regions.

In some special cases, the Gaussian sampler can be extended

to reduce the number of wasted samples by paying a higher

computational cost.

Other approaches to narrow passage sampling include di-

lating the free space [20] and retracting to the medial axis of

free space [22]. Both require geometric operations that are

expensive to implement in high-dimensional configuration

spaces. To reduce the computational cost, various approxi-

mation techniques have been proposed [5], [23], [24]. The

visibility-based PRM [10] is related to the narrow passage

problem. It tries to reduce the number of unnecessary roadmap

nodes by checking their visibility.

Some of the above approaches and others are compared

through systematic experiments [25], [26]. The comparison indi-

cates that the various approaches all have their own strengths for

different situations. Thus, it is natural to combine them [27]–[29].

This idea, which we call hybrid sampling, is also used here.

III. OVERVIEW OF THE PLANNER

The configuration of a robot with DOFs can be represented

as a point in an -dimensional space , called the configuration

space. A configuration is free if the robot placed at does

not collide with the obstacles or with itself. We define the free

space to be the set of all free configurations in , and define

the obstacle space to be the complement of .

A classic multiquery PRM planner proceeds in two stages. In

the first stage, it randomly samples in a set of points, called

milestones. It uses the milestones as nodes to construct a graph

, called a roadmap, by adding an edge between every pair

of milestones that can be connected via a simple collision-free

path, typically, a straight-line segment. After the roadmap has

been constructed, multiple queries can be answered quickly in

the second stage. Each query consists of an initial configuration

and a goal configuration , and asks for a collision-free path

connecting and . The planner first finds two milestones

and in the roadmap , such that ( , respectively) and ( ,

respectively) can be connected by a collision-free path in , and

then searches for a path in between and .

In this paper, we follow this general framework, but address

mainly the first stage, roadmap construction. Methods for the

second stage are well understood [7], [25].

An important property of a good roadmap is coverage: for

any given (initial or goal) configuration , there is a colli-

sion-free path between and a milestone in with high proba-

bility. This implies that the milestones in collectively “covers”

a significant portion of . Another important property is con-

nectivity. The roadmap should capture the connectivity of the

underlying free space that it represents. Any two milestones

in the same connected component of should also be connected

by a path in . Otherwise, the planner would give many false

negative answers.

A main difficulty in constructing good roadmaps results from

narrow passages in . Narrow passages are small regions whose

removal changes the connectivity of : they may change the

way different regions are connected, or even change the number

of connected components. To capture the connectivity of in

the roadmap, it is essential to sample milestones in narrow pas-

sages. This, however, is difficult, because of their small vol-

umes. Any volume-based sampling distribution is likely to fail.
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In particular, the uniform distribution does not work well. Fur-

thermore, when dealing with many-DOF robots, we do not have

an explicit representation of and cannot locate narrow pas-

sages directly by processing the global geometry of .

Our goal is to build a good roadmap by sampling a small

number of well-placed milestones. To obtain milestones in

narrow passages, we pay a higher cost for sampling a milestone

than do simpler methods, such as uniform sampling. However,

the intuition is that our roadmap would require much fewer

milestones to cover and capture its connectivity, thus saving

a lot of time in checking collision-free connections between the

milestones.

More precisely, the running time of roadmap construction

is given by

where

average cost of sampling a milestone;

number of milestones in the roadmap;

average cost of checking collision-free connections be-

tween two milestones;

number of calls to check collision-free connections be-

tween two milestones.

To illustrate the potential benefits of our approach, let us look

at a numerical example. Assume that and ,

as the cost of checking collision-free connections between two

milestones is much higher than that of sampling a milestone.

Assume also that , and every milestone is checked for

connection with two nearby milestones, i.e.,

. The total running time is then .

Now suppose that we pay a higher cost in sampling, but are

able to reduce the number of milestones needed. For example,

, and . Then we have the total running

time , which is roughly

half of the original running time. By paying a higher cost ,

we reduce the number of milestones needed in the roadmap, and

thus reduce . Since is usually much larger than ,

the cost of checking connections between milestones dominates,

and reducing results in reducing the total running time.

Although the numerical values in this example are chosen for

the purpose of illustration and should not be taken literally, the

intuition behind holds more generally and is supported by the

experiments (see Section VII). However, we must be careful in

balancing the cost and the benefit. If the increase in is much

higher than the decrease in , the benefit of our approach will

be diminished. Therefore, should be kept small, if possible.

The sampling distribution that we use for our planner is a

weighted mixture of , the distribution generated by the bridge

test, and , the uniform distribution. We describe how to con-

struct and combine the two distributions in the next two

sections.

After sampling a new milestone , our planner tries to con-

nect to nearby milestones via collision-free straight-line paths.

Like other PRM variants, our planner tries to connect two mile-

stones only if they lie in different connected components of

the roadmap and the distance between them is smaller than

a threshold, according to a suitable distance metric. However,

Fig. 2. Building short bridges is much easier in narrow passages (left) than in
wide-open free space (right).

when the size of is large, there may still be too many mile-

stones whose distances to are less than the threshold. So the

planner tries to connect with only the nearest such mile-

stones, where is a fixed constant. The intuition is that if the

planner cannot establish connections from to the nearest

milestones, most likely it will not be able to establish connec-

tions to other milestones further away.

IV. THE BRIDGE TEST

A. The Algorithm

The bridge test is designed to boost the sample density in

narrow passages using only simple tests of local geometry. It

is based on the following observation. A narrow passage in an

-dimensional configuration space has at least one restricted di-

rection such that small perturbations of the robot’s configura-

tion along result in collision of the robot with obstacles. There-

fore, for a collision-free configuration in a narrow passage, it is

easy to sample at random a short line segment through , such

that the endpoints of lie in the obstacles in (Fig. 2, left). The

line segment is called a bridge, because it resembles a bridge

across the narrow passage. We say that a point passes the

bridge test, if we succeed in obtaining such a segment through

. For convenience, we also say that passes the bridge test.

Clearly, building short bridges is much easier in narrow pas-

sages than in wide-open free space. By favoring shorter bridges

over longer ones, we increase the chance of accepting points in

narrow passages (Fig. 2).

To sample a new milestone using the bridge test, we pick

a line segment from by choosing its endpoints at random

and testing whether passes the bridge test. If so, we add the

midpoint of to the roadmap as a new milestone. We call

this algorithm Randomized Bridge Builder (RBB). The details

of RBB are shown in Algorithm 1. In lines 3, 5, and 7, RBB

calls the function CLEARANCE to test whether a point in is

collision-free.

To perform the bridge test, RBB uses only a single geometric

primitive, CLEARANCE, which can be implemented efficiently
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using a collision detection algorithm (see, e.g., [30], [31]). The

bridge test is purely local, and does not require processing the

global geometry of .

RBB pays a higher cost to sample a milestone than sim-

pler alternatives such as uniform sampling, because of two

reasons. First, it takes three calls to CLEARANCE for RBB

to accept a milestone, one for the milestone itself, and two

for the endpoints of the bridge passing through the milestone.

Second, it rejects a large fraction of free configurations that

are normally accepted by other sampling strategies. However,

RBB increases the sample density in narrow passages, which

is critical in capturing the connectivity of the free space. For

configuration spaces with difficult narrow passages, it usually

leads to smaller roadmaps and saves lots of computation time

in checking collision-free connections between milestones, an

operation that is usually more expensive than the additional

cost that RBB incurs in sampling milestones.

B. Choosing the Probability Density

The density function (Algorithm 1, line 4) determines how

frequently a bridge of particular length is chosen for a test at the

point . Short bridges are preferred over longer ones in order

to increase the probability of sampling in narrow passages. We

choose to be a radially symmetric Gaussian with its center at

and a small standard deviation . To be specific, let de-

note the univariate Gaussian distribution with mean 0 and stan-

dard deviation . We sample a value randomly and indepen-

dently for each dimension of according to , shifted to

center at the corresponding coordinate of . The density func-

tion is then the product of these independent univariate Gaus-

sians. Other ways to construct a radially symmetric Gaussian

are also possible. Finally, the parameter depends on the width

of narrow passages that we want to capture. The best value for

is problem-specific, and we discuss this issue further in Sec-

tion VI-B.

C. Analysis of the Sampling Distribution

To calculate probability density of the milestones cre-

ated by Algorithm 1, let us first define and to be two

random variables, representing, respectively, the two endpoints

of a bridge. The first endpoint is distributed uniformly over

the set of configuration-space obstacles . So the density

is nonzero if and only if lies in . Assume, without loss of

generality, that has volume 1. Then is 1 if ,

and 0 otherwise. Given , we choose the other endpoint

according to the density . The point is accepted

only if it lies in . Let be a binary function such that for any

point if , and 0 otherwise. The condi-

tional density of given is given by

where is a normalizing constant. To

calculate at a point , we condition on

(1)

Fig. 3. Milestones generated by the Gaussian sampler and RBB. The total
number of milestones in the two cases is the same. RBB generates fewer
milestones along the circular boundaries and many more in the narrow passage
connecting the two circular chambers.

Note that is the midpoint of the line segment , and so

. Substituting the expressions for , and into

(1), we have

(2)

We have chosen to be a Gaussian with its center at and a

small standard deviation. The density is large if

lies relatively close to . Furthermore, the integrand in (1) is

nonzero only if , i.e., . In the neighborhood

of a point inside a narrow passage, it is more likely to find pairs

of points and that satisfy these two conditions, resulting in

a larger value for at .

D. Comparison With Sampling Near Obstacle Boundaries

RBB is related to the Gaussian sampler [3]. Both use one

simple geometric primitive CLEARANCE to create favor-

able distributions. RBB is slightly more expensive: it makes

one more call to CLEARANCE in each invocation than the

Gaussian sampler, and rejects more samples. However, the

nature of the two sample distributions generated are quite dif-

ferent. RBB increases the sample density in regions where short

bridges can be easily constructed; the Gaussian sampler in-

creases the sample density near obstacle boundaries. See Fig. 3

for the difference between the two sample distributions. If mile-

stones near obstacle boundaries all improve the connectivity of

roadmaps, the Gaussian sampler is preferable, as it incurs lower

cost per invocation. On the other hand, obstacle boundaries

may be uninteresting if they are bounding wide-open regions

of , as samples near these boundaries do not contribute to

improving the connectivity of roadmaps. Therefore, RBB gains

efficiency by avoiding sampling near such boundaries. In this

sense, RBB and the Gaussian sampler are complementary.

V. COMBINING COMPLEMENTARY SAMPLING DISTRIBUTIONS

We have seen that RBB helps in boosting the sample density

in the subset of occupied by narrow passages. The density

is heavily biased toward . At the same time, penalizes

wide-open collision-free regions: few milestones are sampled in

. This is undesirable, because a good roadmap must cover

the entire free space adequately.
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Fig. 4. Hybrid sampling distribution �. The distributions � and � perform
well on P and FnP , respectively. Combining them with suitable weights leads
to good performance over the entire sampling domain F .

Interestingly, we can make up the deficiency of with the

uniform distribution , which samples with probability

proportional to the volumes of subsets in . For , most

milestones are sampled in , as it has a large volume. The

two distributions complement each other naturally: provides

good coverage of , and samples more densely in ,

and thus improves the connectivity of the roadmap. They are

combined to produce a hybrid sampling distribution

(3)

where is a weight, with . The choice of de-

pends on the difficulty of sampling in narrow passages and the

number of milestones needed to cover . One useful way of

thinking about this hybrid distribution is to divide into two

subsets, the set of narrow passages and its complement .

We use a different sampling strategy tailored to each subset, and

combine them to achieve good performance over the entire sam-

pling domain. See Fig. 4 for an illustration. Note, however, that

in our planner, the combination of two sampling strategies is

achieved through weighting, and not through explicit decompo-

sition of .

The significance of hybrid sampling is not about putting to-

gether two sampling distributions, but rather about identifying

distributions complementary in their strengths and combining

them so that their individual strengths are preserved.

To implement the hybrid distribution, we can certainly gen-

erate new random points from , but we can get some of these

points “for free” by reusing the points rejected by RBB. In line 3

of Algorithm 1, RBB rejects a configuration if CLEARANCE

returns TRUE, i.e., is collision-free. However, such a con-

figuration is exactly what is generated by . To reduce com-

putation time, we can save and use it instead of generating a

new one from when needed.

VI. IMPLEMENTATION ISSUES

In this section, we describe some details for implementing

our planner on rigid and articulated robots.

A. Parameterizing the Configuration Space

Often, each dimension of the configuration space may have

a different effect on the overall motion of a robot. Consider, for

example, a planar articulated robot with a free base and three

links of lengths , and , respectively. The configuration of

this robot can be represented as , where and

specify the position of the base, and , and specify the

angles for the three joints in increasing order of their distance

to the base along the kinematic chain. Assume that the robot is

fully extended. If changes by an angle , the tip of the robot

moves a distance of . If changes by the same

angle , the tip moves by a distance of . We must take

this into account for our planner in two occasions.

First, when choosing the density function in RBB, we need

a consistent measure of how restrictive the allowable motion is

in the narrow passages along each dimension of the configura-

tion space . Our solution is to rescale . For each configuration

space coordinate , let be the maximum distance traveled by

any point on the robot when the robot moves between any two

configurations that have identical coordinates in all dimensions

except [32]. We rescale the range of to . This method

of rescaling is quite general, and can be applied to any trans-

lational or rotational DOF of a robot. In our planar articulated

robot example, for translational DOFs, the scaling factors are 1,

and rescaling has no net effect. For rotational DOFs, we have,

for example, for the joint angle , and we

can scale other joint angles similarly. For rigid robots in 3-D,

rotational DOFs can be represented with either Euler angles or

quaternions. If Euler angles are used, the scaling factor for each

Euler angle is calculated exactly the same way as that for the

joint angle of articulated robots: , where is the

maximum distance of any point on the robot to the axis of ro-

tation for the corresponding Euler angle . If quaternions are

used, the calculation is slightly more involved, but the principle

is the same.

We need to consider this scaling issue again when adding a

new milestone to the roadmap. The planner tries to connect

with existing milestones within a certain distance. So we need

a suitably defined distance metric on . Ideally, the metric has

the property that for any two free configurations and , the

greater the distance between and is, the more likely that

the robot encounters an obstacle when following a straight-line

path from to . Again, we have to rescale , so that each

dimension of has a similar effect on the overall motion of

the robot. After rescaling, we can simply define the metric on

to be the Euclidean distance between two configurations. This

scaling heuristic is often used in motion planning (see, e.g., [7]).

Other heuristics can also be used. For instance, instead of using

the maximum distance traveled by any point on the robot as a

measure of the “distance” between two configurations, we can

use the volume swept out by the robot.

B. Parameters for the Sampling Distribution

Two parameters are needed to fix the hybrid sampling distri-

bution . The first parameter fixes the density function for

RBB. As we have discussed earlier, is a product of indepen-

dent Gaussians, with a small standard deviation to bias toward

sampling short bridges. The parameter depends on the width

of narrow passages to be captured, and may affect the planner’s

performance. In practice, we can estimate the value of by an-

alyzing the geometry of the robot and the obstacles in the envi-

ronment. For example, if the smallest passage in the workspace

has width , and a rigid robot, which translates and rotates,

has maximum radius , then can be set to be proportional to

.
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Fig. 5. Planar rigid-body robot maneuvering through a small opening between
two large chambers. (a) Query configurations and a path found. (b) Uniform
sampling. (c) RBB. (d) Hybrid sampling.

The second parameter is the weight for combining and

. For our experiments, we assume no prior knowledge of the

environment. We do not bias toward either or , and use a

relative weight of 1:1.

The best parameters settings are clearly problem-dependent,

and it is difficult to choose them in advance. A promising ap-

proach is to use a set of RBBs with different values and adjust

the weight for each RBB adaptively through on-line learning

[28]. This way, the best parameter values can be identified au-

tomatically in an adaptive way.

VII. EXPERIMENTS

We implemented two versions of our planner, one version in

Java for robots in 2-D environments, and one version in C++ for

robots in 3-D environments. To examine the planner’s perfor-

mance, we handcrafted several difficult environments and tested

our implementations extensively. The 2-D test environments are

described below.

• Fig. 5(a): We have a rigid-body robot, and the query

asks the robot to go from one large empty chamber to

another through a small opening near the lower middle

of the figure. This is a case where we expect the hybrid

sampling strategy to work well, because the bridge

test eliminates many sampled configurations that lie

in the middle of wide-open space and are unlikely to

improve the coverage or connectivity of the roadmap.

Fig. 5(b)–(d) shows the roadmaps generated by uniform

sampling, pure RBB, and hybrid sampling, respectively.

Each sampling strategy uses the same number of mile-

stones. The roadmap constructed by uniform sampling

covers the free space well, but wastes many milestones

Fig. 6. Partial roadmap built by RBB for a point robot in the plane.

in the two chambers, and does not put any milestone near

the small opening. Note that in these figures, the mile-

stones are projected from the 3-D configuration space

to the 2-D workspace for drawing. Two milestones that

appear close to each other in the figures may be far away

from each other in the configuration space because of

different orientations, and therefore, there may not be

a collision-free straight-line path that connects them.

Pure RBB puts a large number of milestones near places

where it can successfully build “bridges,” including the

small opening between chambers. This enables it to

capture the connectivity of the free space well. However,

the roadmap constructed by RBB has poor coverage:

very few milestones are in the two chambers to cover the

free space. This does not cause a big problem here, be-

cause the two chambers in this example are convex, and

every point inside a chamber can cover a large portion of

the chamber. However, in general, more milestones are

needed, if the chambers have more complex geometry.

Hybrid sampling combines the strengths of uniform

sampling and RBB to build a roadmap that has good

coverage and captures the connectivity of the free space

well.

• Fig. 6: According to our analysis in Section III, sam-

pling with the bridge test works well only if the resulting

roadmap contains much fewer milestones than those gen-

erated by other sampling strategies. We constructed this

example so that the bridge test does not have such an ad-

vantage. This planar environment for a point robot con-

tains a long path that has almost equal width everywhere,

so almost every sampled configuration passes the bridge

test. The roadmap constructed with the bridge test would

have roughly the same size as that constructed by uni-

form sampling or Gaussian sampling.

• Fig. 7: A rigid-segment robot enters a narrow corridor,

reorients in a small circular room, and exits another

narrow corridor. This environment is an example of

connected narrow passages in different orientations.

When the robot is inside one of the two corridors, it
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Fig. 7. Path for a rigid segment translating and rotating in a narrow region.

Fig. 8. Path for a T-shaped robot moving through a long, narrow corridor.

can only translate along the direction of the corridor.

Movements in the orthogonal directions are very re-

stricted: it cannot translate sidewise or rotate. When the

robot is inside the small circular room in the middle, the

rotational movement is unrestricted, but the translational

movement is very restricted, as the diameter of the room

is only slightly more than the length of the robot. In

the 3-D configuration space, the two corridors and the

round room in the middle map to three connected narrow

passages in different orientations.

• Fig. 8: In this example, we have a T-shaped robot with

two parts, a “torso” and a “shoulder,” connected by a

joint. The planar environment contains a long and narrow

corridor with two turns.

• Fig. 9: This environment contains a 7-DOF articulated

robot with a fixed base. At the initial configuration, the

robot is trapped inside a narrow opening. Joint angles

near the robot’s base have a very limited range of mo-

tion. Joint angles near the robot’s tip can move relatively

freely. As the robot performs difficult maneuvers to pull

out of the narrow opening, an increasing number of joints

have their motion restricted, until the robot pulls out

completely and all the joints can move freely. The robot

Fig. 9. 7-DOF articulated robot with a fixed base. The left figure shows the
query configurations. The right figure shows those milestones generated by
RBB.

Fig. 10. 8-DOF articulated robot with a mobile base. The left figure shows
the query configurations. The right figure shows those milestones generated by
RBB.

then has to insert itself into the other narrow opening to

reach the goal configuration. The sequence of events are

similar, but occur in reverse order.

• Fig. 10: This environment contains a relatively short

corridor with two turns. Each milestone in the corridor

covers only a small portion of the free space. The robot

is an articulated robot with six links and a mobile base,

8 DOFs in total.

We tested these environments with the Java implementation

of our planner. For each test environment, we rescaled the con-

figuration space to , as described in

Section VI. Since all the environments are bounded, we ap-

plied an additional uniform scaling , where ,

so that fits within a unit hypercube, in order to simplify the

implementation.

The relative weight for combining the two components

and of the hybrid sampling distribution was 1:1, i.e., equal

weights for the two components. We also systematically varied

the standard deviation of the Gaussian for the bridge test be-

tween and to choose the best setting. It turned out

that worked well in all the experiments.

To add a new milestone to the roadmap, the planner tries

to connect with an existing milestone , only if: 1) and

are in different connected components; 2) the distance between

and is smaller than a threshold ; and 3) is a -nearest

neighbor of . This method of adding nodes, called nearest- ,
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TABLE I
PERFORMANCE OF VARIOUS SAMPLING STRATEGIES

has been used in earlier work for comparing sampling strategies

[25], [26], and has shown robust performance in extensive ex-

periments. Based on earlier experimental results (see, e.g., [25]

and [26]) and our own experiences, we have chosen to be 0.25

and to be 20. We have intentionally chosen slightly lower

values so that our planner does not get unfair advantages.

We also ran the same experiments with two other sampling

strategies, the uniform sampler and pure RBB (without mixing

with uniform sampling). The uniform sampler is used mainly

as a way to calibrate the difficulty of the queries, and RBB is

used to examine the benefit of hybrid sampling. For RBB, the

standard deviation of the Gaussian is set to . Without the

help from the uniform sampler, we cannot make too small.

Otherwise, it would reduce the coverage of the roadmap and

adversely affect the performance of the pure RBB.

For comparison, we also experimented with the Gaussian

sampler and visibility-based PRM (Vis-PRM), with optimized

parameter settings. In particular, for the Gaussian sampler,

we varied the standard deviation of the Gaussian, using five

different settings between and , and chose the best

one for each environment.

We ran each sampling strategy 30 times independently for

each test environment, and terminated the planner as soon as

a path was found between query configurations. The average

number of milestones in the final roadmap, , and the

average running time are shown in Table I. The statistics were

gathered from the Java implementation of our planner on a

Linux workstation with a 2.8 GHz Pentium 4 processor.

Table I shows consistent results in these tests with different

robots and environments. Hybrid sampling usually outperforms

TABLE II
BREAKDOWN OF TOTAL RUNNING TIME INTO COMPONENTS DEFINED

IN SECTION III FOR THE EXAMPLE IN Fig. 10. T AND T ARE

MEASURED IN THE NUMBER OF CALLS TO CLEARANCE

both the uniform sampler and pure RBB. Its roadmap is much

smaller (see column 4), and the total running time is also shorter.

The reduction in running time is not proportional to the reduc-

tion in roadmap size, because hybrid sampling pays a higher

cost to obtain a milestone than the simpler uniform sampling.

However, the smaller roadmap size requires much fewer tests

to check collision-free connections between the milestones in

the roadmap (see Table II), which are the dominant factor in the

total running time. So hybrid sampling is able to achieve good

overall performance. This basically confirms our intuition on the

benefit of using the bridge test, as described in Section III.

For hybrid sampling, the standard deviation used for the

bridge test does affect the performance, sometimes by as much

as 50%. Nevertheless, hybrid sampling performs better than uni-

form sampling and RBB in all the environments with narrow

passages, as long as a reasonable, not necessarily the best, value

for is chosen. This shows the benefit of hybrid sampling, even

if we do not know the best value for .

In most of these experiments, RBB alone without uniform

sampling does not perform as well as hybrid sampling, because

these environments contain both narrow passages and wide-

open free space. Without uniform sampling, we have to set

for the bridge test to a relatively large value in order to im-

prove the coverage of the roadmap. As a result, the ability of

the bridge test to identify narrow passages is reduced, leading

to worse performance.

For Vis-PRM and the Gaussian sampler, as well as our hy-

brid sampling strategy, they all try to reduce the size of the

roadmap and improve computational efficiency by filtering out

milestones that are not useful. Yet they differ in the filtering cost

(see Table II, column 3 for an example). To certify a useful mile-

stone, Vis-PRM must perform several tests to check collision-

free connection between milestones, a very expensive opera-

tion. The cost of filtering for both Gaussian sampling and hybrid

sampling is much cheaper. Gaussian sampling takes two calls

to CLEARANCE to certify a useful milestone, and RBB takes

three calls. As a result, although Vis-PRM produces very small

roadmaps (see Table II, column 2) and clearly improves over

uniform sampling, its performance is weaker than the Gaussian

sampler and the hybrid sampling strategy using RBB. This is

expected, in light of our discussion in Section III, and is why

we suggest that must remain small for the filtering to be

effective. Gaussian sampling assumes that useful milestones lie

close to obstacle boundaries. When this assumption holds, it has

an advantage over hybrid sampling (see the example in Fig. 6).

When the assumption fails, it may be substantially slower than

hybrid sampling, especially for robots with many DOFs, shown

in the example in Fig. 10.
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Fig. 11. Rigid body translating and rotating freely in a 3-D environment.

Fig. 12. 6-DOF robot manipulator.

The first five environments in Table I share a common char-

acteristic: they all contain narrow passages connecting regions

that allow relatively unrestricted movement. This gives an ad-

vantage to sampling strategies designed specifically for narrow

passages, such as the hybrid sampling strategy or RBB. The en-

vironment in Fig. 6 is different. It contains a long path that has

almost equal width everywhere. The resulting roadmaps all have

roughly the same size, so the uniform sampler, which has low

cost for sampling a milestone, performs better. However, even

in this case, hybrid sampling performs only 9% worse than uni-

form sampling.

We also tested the C++ implementation of our planner in

3-D environments. For each environment, we manually speci-

fied several queries, so that solving these queries indicates that a

roadmap captures the connectivity of the free space well. Again,

each test was repeated 30 times independently. For each test en-

vironment below, we show a graph that plots the percentage of

queries that a planner can answer correctly as the running time

increases.

• Fig. 11: This test uses a rigid-body robot translating and

rotating freely in a 3-D environment. The space is di-

vided into eight chambers by walls with holes. We spec-

ified query configurations in all the chambers, and ran

the planners until all possible connections are established

among the query configurations. The configuration space

here consists of many narrow passages, with a moderate

amount of free space that allows unrestricted movement.

Pure RBB turns out to have the best performance, be-

cause it focuses on sampling in narrow passages. The

performance of the hybrid sampling strategy is close.

• Fig. 12: Here we have a 6-DOF robot manipulator arm.

Horizontal and vertical bars are set up around the robot

to make its movement difficult. We specified 12 queries.

Each query requires the robot to move its end-effector

from one opening between the bars to another. To an-

swer a query, the robot must pull its end-effector out of a

narrow opening, move in relatively open free space, and

reinsert the end-effector into another narrow opening.

In this test, the hybrid sampling strategy, RBB, and the

Gaussian sampler have similar performance, all signifi-

cantly better than uniform sampling.

VIII. DISCUSSION

Compared with the idea of sampling near obstacle bound-

aries, the bridge test gains efficiency by filtering out those sam-

ples near uninteresting obstacle boundaries, but it is not perfect.

Some uninteresting samples near corners can pass the bridge

test, because near the tip of a corner, it is easy to build short

bridges. Fig. 5(c) shows that RBB generated a number of mile-

stones near the corners of , and many of these milestones

may be unhelpful. The bridge test generates false positives in

this case, because it is a test of local geometry. As Fig. 13

shows, if we only have information within a small neighbor-

hood, we cannot tell the difference between a narrow passage
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Fig. 13. Narrow passage and a narrow dead-end. Within the small neigh-
borhood marked by the dashed circles, there is not enough information to
differentiate these two cases.

and a narrow dead-end. Despite this problem, our experiments

show that the benefits gained by sampling in narrow passages

usually outweigh the computation time wasted in sampling near

corners (see Section VII).

We can try to reduce the false positives near corners by taking

additional samples. For example, the orthogonal test picks at

random an additional segment through the configuration ,

such that the segment is orthogonal to the bridge . We accept

as a new milestone if the endpoints of are both in collision or

both free, in addition to the normal conditions on . This helps

to reduce the false positives, because such samples often have

one endpoint in collision and one endpoint free. However, the

orthogonal test is more expensive: it takes five calls to CLEAR-

ANCE per test in the worst case, while the original bridge test

takes only three.

What is in common among the orthogonal test, the bridge

test, and the Gaussian sampler is that they all try to reconstruct

the local geometry of the configuration space by taking a small

number of samples. We can think of other tests based on local

sampling, as well. The more samples we take, the more likely

that we can reconstruct the geometry accurately, at least in prin-

ciple; at the same time, we have to pay a higher cost for sam-

pling. In the extreme case, we can also check the collision-free

connection between two sampled points, as Vis-PRM does. This

yields very accurate information about the connectivity of the

local free space, but it is very expensive. Our experiments indi-

cate that the filtering cost should remain low in order for it to be

effective.

IX. CONCLUSION AND FUTURE WORK

We have presented a hybrid sampling strategy to address the

narrow passage problem for PRM planning. A key ingredient

of the new sampling strategy is the bridge test, which boosts

the sample density in narrow passages. The bridge test can be

viewed as a filter that rejects the milestones that are unlikely to

improve the connectivity of a roadmap, and thus saves the com-

putation time by avoiding the expensive tests needed to connect

these milestones in the roadmap. The bridge test is purely local,

and can be implemented efficiently in high-dimensional config-

uration spaces. By combining the bridge test with uniform sam-

pling, we construct a hybrid sampling strategy that generates

small roadmaps that cover the free space well and have good

connectivity. Our experiments on rigid and articulated robots

in 2-D and 3-D environments show that our planner was able

to reliably capture the connectivity of free spaces with difficult

narrow passages.

There are two main issues that we are interested in exploring

further in the future. First, in our current hybrid sampling

strategy, the weight for combining the bridge test and the

uniform sampler is set manually, and the best choice is clearly

problem-dependent. A promising approach is to adjust the

weights adaptively through online learning. It would also be

interesting exploit the possibly complementary strengths of

RBB and the Gausssian sampler, and combine them, as well as

the uniform sampler, in a hybrid sampling framework. Work is

currently underway in this direction [28].

Second, viewing the bridge test as a filter allows us to com-

bine it with other sampling strategies. For example, MAPRM

[22] samples points on the medial axis of . Since the mile-

stones on the medial axis of the wide-open regions of tend

to have good coverage of , removing some of them does not

affect the connectivity of the roadmap. On the other hand, mile-

stones on the medial axis of narrow passages are more critical, as

they have much more limited visibility. Removing any of them

may disconnect the roadmap. Therefore, after generating mile-

stones using MAPRM, we can apply the bridge test to the mile-

stones. Each milestone that passes the bridge test is retained;

each one that fails is retained with a certain probability. This

way, we can get a smaller roadmap without affecting its quality.
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