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Abstract

Heritability is a fundamental parameter in genetics. Traditional estimates based on family or twin studies can be biased due

to shared environmental or non-additive genetic variance. Alternatively, those based on genotyped or imputed variants

typically underestimate narrow-sense heritability contributed by rare or otherwise poorly tagged causal variants. Identical-

by-descent (IBD) segments of the genome share all variants between pairs of chromosomes except new mutations that have

arisen since the last common ancestor. Therefore, relating phenotypic similarity to degree of IBD sharing among classically

unrelated individuals is an appealing approach to estimating the near full additive genetic variance while possibly avoiding

biases that can occur when modeling close relatives. We applied an IBD-based approach (GREML-IBD) to estimate

heritability in unrelated individuals using phenotypic simulation with thousands of whole-genome sequences across a range

of stratification, polygenicity levels, and the minor allele frequencies of causal variants (CVs). In simulations, the IBD-based

approach produced unbiased heritability estimates, even when CVs were extremely rare, although precision was low.

However, population stratification and non-genetic familial environmental effects shared across generations led to strong

biases in IBD-based heritability. We used data on two traits in ~120,000 people from the UK Biobank to demonstrate that,

depending on the trait and possible confounding environmental effects, GREML-IBD can be applied to very large genetic

datasets to infer the contribution of very rare variants lost using other methods. However, we observed apparent biases in

these real data, suggesting that more work may be required to understand and mitigate factors that influence IBD-based

heritability estimates.

INTRODUCTION

The proportion of phenotypic variance due to additive

genetic variation, termed narrow-sense heritability (h2), is

perhaps the most fundamental aspect of a trait’s genetic

architecture and has both medical and evolutionary sig-

nificance (Visscher et al. 2008; Tenesa and Haley 2013).
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Traditionally, h2 has been estimated from family based

studies (h2PED), which have suggested that for many com-

plex traits, much of the phenotypic variance is due to

additive genetic variance (Polderman et al. 2015). However,

h2PED estimates may be biased by factors shared by close

relatives, such as non-additive genetic and common envir-

onmental effects (Eaves et al. 1978; Coventry and Keller

2005; Yang et al. 2010; Zuk et al. 2012; Tenesa and Haley

2013).

Recently, methods have been developed to estimate the

phenotypic variance explained by all genotyped single-

nucleotide polymorphisms (SNPs) simultaneously in unre-

lated individuals, bh2SNP (Yang et al. 2010; Speed et al. 2012;

Bulik-Sullivan et al. 2015). Most of these approaches use a

genetic relatedness matrix (GRM) that reflects allele sharing

or the average correlation between individuals i and j across

genotyped SNPs with entries:

Aij ¼
Xk¼m

k¼1

xik � 2pkð Þ xjk � 2pk
� �

2pk 1� pkð Þ
ð1Þ

where m is the number of SNPs, xjk is the genotype (coded

as 0, 1, or 2) of individual j at the kth locus, and pk is the

minor allele frequency (MAF) of the kth locus. The

variance–covariance of the phenotype is

var yð Þ ¼ Aσ2v þ Iσ2e ð2Þ

where the variance explained by the SNPs (σ2v) and error

variance (σ2e) are estimated using restricted maximum

likelihood (REML) (Lynch and Walsh 1998). The method,

termed GREML, is implemented in packages such as

GCTA (Yang et al. 2011). We refer to matrix A (of

dimension n × n and with elements Aij) as the “SNP-GRM.”

The proportion of the variance explained by all SNPs is an

estimate of “SNP-based heritability” (bh2SNP = σ2v / (σ
2
v+σ

2
e)).

By using unrelated individuals, these approaches avoid the

confounding of non-additive genetic and environmental

effects that can occur in family or twin-based studies, and

by estimating all marker effects jointly, the contribution

from variants with small effect sizes is captured. Using

marker-based approaches, bh2SNP estimates using imputed

data have approached h2PED for some complex traits, such

as height, suggesting that little of the heritability remains

missing (Yang et al. 2015). For other traits, such as BMI,

schizophrenia, and neuroticism, bh2PED estimates remain

larger than bh2SNP, and a substantial amount of the heritability

remains “still missing” (Lee et al. 2012; Yang et al. 2015).

Advances on the original approach by Yang et al. (2010)

have better captured the effects of rare CVs or account for

linkage disequilibrium (LD) of markers across the genome,

leading to increased bh2SNP estimates (Yang et al. 2015; Speed

et al. 2017). However, even with the best-performing

methods such as MAF-stratified and LD-stratified GREML

(GREML-LDMS) and large imputation reference panels,

downward bias is likely. Imputation quality declines at low

MAF, resulting in a downward bias when causal variants

are very rare (MAF < 0.0025) and for diverse populations

underrepresented in sequencing panels (Yang et al. 2015;

Evans et al. 2017). The underestimation of variance due to

rare CVs may partly explain why bh2SNP remains below h2PED
for many traits, in addition to factors that may inflate h2PED
described above. Thus, developing alternative and better

methods to estimate the variation caused by very rare var-

iants while excluding possible confounding factors of close

relatives is an important goal.

One such alternative is to leverage information on the

proportion of the genome shared identical-by-descent (IBD)

between pairs of individuals in a sample (Visscher et al.

2006; Hayes et al. 2009; Zuk et al. 2012; Browning and

Browning 2013a), and use a GRM whose elements are the

estimated proportions of IBD between all pairs of indivi-

duals (IBD-GRM) to drive and estimate of heritability,

which we term bh2IBD. This is in some ways similar to clas-

sical family based estimates of heritability, which are based

on the expected proportion of the genome shared IBD

between close relatives (Falconer and Mackay 1996; Lynch

and Walsh 1998; Visscher et al. 2006). However, rather

than using close relatives, an appealing alternative is to

estimate pairwise IBD segments directly between all pairs

of unrelated (or technically, distantly related) pairs of

individuals in a sample, and then to use these estimated

relationship values to estimate the additive genetic varia-

tion. Such an IBD-based approach should capture additive

genetic variation due to all but the rarest CVs and, so long

as close relatives have been removed from the sample, the

IBD-based h2 estimate should be uncontaminated by con-

founding factors shared by close relatives.

Here, we use “IBD” to denote two homologous chro-

mosomal segments that came from the same common

ancestor without intervening recombination, such that the

sequence identity of the two segments is identical except at

sites where new mutations arose since the last common

ancestor. The probability that such mutations arose is a

function of the number of generations since the last com-

mon ancestor and the number of sites, and therefore a

function of the length of the shared IBD segment (when its

age is unknown) (Wakeley 2009). When two haplotypes

match on a sufficiently long stretch of SNPs, the segments

are likely to have been inherited intact from a common

ancestor. A pair of very long IBD segments is more likely to

be found between pairs with a very recent common ances-

tor, while a pair shorter segments is more likely for two

sequences with a more distant common ancestor (Wakeley

2009). Common, and therefore older, alleles are likely to be

shared on both long and short IBD segments, but rare

variants, which are likely to have arisen more recently, will

be captured more frequently on long IBD segments, as

IBD-based heritability estimation 617



those segments are more likely to be shared by individuals

with a more recent ancestor (Browning and Thompson

2012). Thus, IBD-GRMs calculated from increasingly long

IBD thresholds (i.e., minima) should capture sharing at

increasingly rare CVs.

Such IBD-based GRMs have been used in several

instances to estimate heritability. Price et al. (2011) and

Zaitlen et al. (2013) used IBD segments in an Icelandic data

set with close relatives to estimate heritability in quantita-

tive and disease traits, leveraging the known familial rela-

tionships within the Icelandic cohort to identify IBD

segments. While they demonstrated that IBD could be used

for heritability estimation, using close relatives leads to

possible confounding of shared environmental or non-

additive genetic effects, as noted above. Indeed, Zaitlen

et al. (2013) found higher heritability estimates using closer

relatives, consistent with confounding from non-additive

genetic and/or shared environment effects. Using simulated

data, Zuk et al. (2012) demonstrated that the slope estimated

from regressing phenotypic similarity (defined as the stan-

dardized phenotypic product of individuals i and j, Zi × Zj)

on the IBD-GRM elements from long IBD segments—

known as Haseman–Elston (H–E) regression—provides an

unbiased estimate of the additive genetic variance in iso-

lated founder populations. Browning and Browning 2013a

estimated IBD tracts in a Finnish cohort of 5400 indivi-

duals, and used the resulting IBD-GRM in both H–E

regression and GREML to estimate bh2IBD for nine quantita-

tive metabolic traits. bh2IBD was higher than bh2SNP for only five

of the nine traits, and never significantly so. The most

notable result of their study was the over two-fold higher

standard errors for bh2IBD (~0.17) compared to bh2SNP (~0.07),

due to the lower variation in the off-diagonal elements of

the IBD-GRM compared to the SNP-GRM, suggesting that

very large sample sizes are required to obtain meaningful

results in non-founder populations.

Several important questions about IBD-based heritability

estimation remain in light of these findings. First, how well

do IBD-based approaches estimate the heritability due to

very rare CVs? Previous studies (e.g., Browning and

Browning 2013a; Zaitlen et al. 2013) have simulated CVs

from SNPs present on genotyping arrays, which are more

common, have generally higher LD, and are more likely to

be shared across ancestry groups than whole-genome

sequence (WGS) variants. Thus, such simulations do not

provide an accurate picture of how h2 estimation methods

perform when CVs do not share these same properties, and

so it remains unclear whether bh2IBD estimates are unbiased

estimates of h2 due to rare CVs. Second, the studies men-

tioned above utilized isolated founder populations that were

both more homogeneous and more related than non-founder

populations. To what extent does stratification within a

sample bias bh2IBD, and how feasible are such IBD-based

methods in samples from non-founder populations, which

are much more readily available? Third, environmental

factors can be passed from parents to offspring (called

“vertical transmission”), which can increase phenotypic

similarity across extended pedigrees (Coventry and Keller

2005), leading to the possibility of confounding with IBD

sharing. To what extent do environmental effects shared

across distant relatives bias estimates of bh2IBD?
To address these questions, we used thousands of

recently sequenced whole genomes from the Haplotype

Reference Consortium (McCarthy et al. 2016) to simulate

phenotypes under a range of conditions, including various

genetic architectures and levels of stratification, then esti-

mated narrow-sense heritability (bh2IBD) using an IBD-GRM,

either alone or in combination with various SNP-based

GRMs. By simulating CVs from whole-genome sequences

rather than commercial array SNPs, our study was able to

examine the role of all but the rarest frequency classes of

CVs in the genome under realistic genomic conditions. We

then estimated bh2IBD for height and BMI in the UK Biobank

with over 120,000 individuals.

Materials and methods

Samples and population structure

We tested the bh2IBD estimation method using simulated

phenotypes derived from Haplotype Reference Consortium

(HRC) whole-genome sequence data (McCarthy et al.

2016). Briefly, this resource comprises roughly 32,500

individual whole-genome sequences from multiple

sequencing studies, with phased genotypes with a minor

allele count of at least 5 at all sites. This large sequence

dataset allowed us to simulate CVs across all MAF classes

down to ~0.0003 with real patterns of LD (within and

among chromosomes). It also allowed us to simulate SNP

markers available on existing commercial genotyping arrays

in order to mimic the process of IBD detection in SNP data.

We obtained permission to access the following HRC

cohorts (recruitment region & sample size): AMD (Europe

& worldwide; 3,189), BIPOLAR (European ancestry;

2,487), GECCO (European ancestry; 1,112), GOT2D

(Europe; 2,709), HUNT (Norway; 1,023), SARDINIA

(Sardinia; 3,445), TWINS (Minnesota; 1,325), 1000 Gen-

omes (worldwide; 2,495), UK10K (UK; 3,715) (see

McCarthy et al. (2016) for additional details of the HRC).

This set of cohorts, which included isolated subpopulations

of European descent, allowed investigation into the effects

of stratification on estimates. The subset totaled 21,500

whole-genome sequences comprising 38,913,048 biallelic

SNPs. This is the same set of individuals and simulated

phenotypes used in Evans et al. (2017) to compare SNP-

618 Luke M Evans et al.



based heritability methods. Below, we briefly describe our

approach.

Our goal was to assess the accuracy and potential bias of

the bh2IBD estimation method using data similar to those

collected for a typical GWAS analysis and bh2SNPestimation.

In order to mimic this kind of data, we first extracted variant

positions corresponding to a widely used commercially

available genotyping array, the UK Biobank Affymetrix

Axiom array. We then identified individuals of primarily

European ancestry, using principal components analysis

with 133,603 MAF-pruned and LD-pruned markers (plink2

(Chang et al. 2015) command: --maf 0.05 --indep-pairwise

1000 400 0.2) to identify a grouping associated with the

1000 Genomes European individuals in the HRC. This data

set comprised 19,478 individuals including Finnish and

Sardinian samples (Fig. S1).

From within this European ancestry data set, we identi-

fied clusters that contained different levels of genetic het-

erogeneity within them (Fig. S2). The most structured group

contained all samples (N= 19,478). The somewhat struc-

tured group excluded Sardinian and Finnish samples (N=

14,424). The low structure group contained northern/wes-

tern European samples (N= 11,243), and the least struc-

tured was a subset of mainly British Isles samples (N=

8,506). We used GCTA (Yang et al. 2011) with LD-pruned

and MAF-pruned SNPs to estimate relatedness and remove

the minimal number of individuals from pairs with relat-

edness >0.1 within each of the four samples. In the most

homogeneous and smallest sample with no genetic struc-

ture, this left 8,201 individuals. In order to eliminate the

influence of varying sample size in our comparison across

the range of stratification, we randomly chose 8,201 of the

unrelated individuals from within each of the other three

stratification subsamples. We similarly tested a lower

relatedness cutoff of 0.05 within each group (leaving 7,792;

8,115; 8,129; and 8,186 individuals for the four sub-

samples), and used both subsets later to examine how a 0.1

or 0.05 relatedness cutoff influences bh2IBD estimates.

Simulated phenotypes using whole-genome
sequencing data

We performed two types of simulations to determine how

the IBD-based heritability method performed across a range

of genetic architectures. First, we used forward-time simu-

lations with the GeneEvolve program, from which we

obtained the true IBD segments (Tahmasbi and Keller

2016). As input, we used WGS data from chromosomes

16–22 from 1000 randomly drawn individuals from the

“low” stratification subsample described above. We used

only these seven chromosomes rather than all autosomes

due to computational constraints. We simulated six gen-

erations of random mating, with population size increasing

by 5000 each generation, and phenotypes derived from

1000 CVs, randomly chosen from all common (MAF >

0.05) or, separately, very rare (MAC > 5 and MAF <

0.0025) sequence SNPs, and a true h2= 0.5. These simu-

lations allowed us to calculate both true and estimated IBD-

GRMs (see Estimating IBD-GRMs below) to determine

how inaccuracies in IBD segment calls impacts bh2IBD. These
simulations also allowed us to test whether environmental

differences between extended families could bias estimates

of bh2IBD. To investigate this, we ran simulations using

GeneEvolve with h2= 0.5 and f2= 0.3, where f2 is the

proportion of the phenotypic variance due to vertical

transmission—environmental effects passed from parental

phenotype to offspring environment—which increases

phenotypic similarity within extended pedigrees due to

environmental similarity. Thus, this set of simulations

served as a test of the robustness of IBD-based heritability

estimation to potential confounding by environmental fac-

tors that can create similarity within extended pedigrees. We

performed 70 replications of each simulation set, using a

relatedness cutoff of 0.05 when estimating heritability.

Second, we simulated phenotypes using the 8201 whole-

genome sequences within each of the four stratification

subsets. This larger sample incorporates complexities of real

genomes in a realistically sized sample, which the forward-

time simulations did not. We simulated phenotypes from

CVs drawn randomly from five MAF ranges: common

(MAF > 0.05), uncommon (0.01 <MAF < 0.05), rare

(0.0025 <MAF < 0.01), very rare (MAC > 5 and MAF <

0.0025), and all variants randomly drawn with MAC > 5.

Phenotypes were generated with 1000 or 10,000 CVs from

the model yi= gi+ ei, where gi= ∑wikβk, wik is the genotype

(coded as 0, 1, or 2) of individual i at the kth CV, and βk is

the kth allelic effect size, drawn from (0,1/[2pk(1−pk)]),

where pk is the MAF of allele k within each of the four

samples, which assumes larger additive effects for rarer

variants. The gi’s were standardized (~N (0,1)) and residual

error was added as ~N (0,(1−h2)/h2) for a simulated h2 of

0.5. A total of 400 replications were performed for each CV

MAF range and for each of the four stratification subsets.

Mixed models for heritability estimation

We estimated heritability for each simulation using GCTA

(Yang and Lee et al. 2011). We tested different models to

assess our IBD-based GREML method (GREML-IBD).

First, we used the single IBD-GRM with GREML to esti-

mate bh2IBD. Second, to partition the genetic variance into that

tagged by common SNPs and that tagged by haplotype

sharing, presumably from rarer CVs, we used a two GRM

model (GREML-IBD+ SNPs) with the IBD-GRM and a

common SNP-GRM derived from Axiom array positions

with MAF > 0.01. Here, bh2Total = bh2IBD + bh2SNP, where bh2SNP is

IBD-based heritability estimation 619



defined as above and bh2IBD¼
bσ2
IBD

bσ2
IBD

þσ2e
, where bσ2IBD is the esti-

mated variance due to the IBD-GRM). Last, we estimated

genetic variances due to LD-stratified and MAF-stratified

imputed variant SNP-GRMs (bh2SNP) as well as the IBD-

GRM (bh2IBD) in the same model, which we term GREML-

IBD+LDMS. From previous work, we knew that GREML-

LDMS underestimates variance attributable to the rarest

CVs when using imputed data. We therefore wished to

determine if the IBD-GRM could capture that missing

heritability. To do this, we estimated 16 SNP-GRMs stra-

tified into the above 4 MAF categories and 4 LD score

quartiles using imputed genome-wide variants, and included

these plus the IBD-GRM in the model (17 GRMs total). To

determine if the IBD-GRM captured the genetic variance

due to the rarest CVs, we also tested a model with 12 SNP-

GRMs, removing the rarest MAF category described above,

for a total of 13 GRMs in the analysis (three MAF cate-

gories × four LD score quartiles+ 1 IBD-GRM). To

impute, we first phased SNP data using SHAPEIT2 (Dela-

neau et al. 2013), imputed using minimac3 (Das et al.

2016), and retained variants with imputation R2
≥ 0.3 (Yang

et al. 2015). We used the HRC sequence data as our

imputation reference panel after removing all target (8201

unrelated+ relatives) individuals in the HRC reference

panel, thereby assuring ~independence (no relatedness)

between the target and reference panels. Additional details

of the imputation procedure can be found in Evans et al.

(2017). We estimated LD scores for the LD stratification

using GCTA. In all cases we included 20 principal com-

ponents (PCs; 10 from worldwide PC analysis and 10 from

the specific subsample PC analysis) as continuous covari-

ates, with sequencing cohort as a categorical covariate. We

used unconstrained GREML (--reml-no-constrain option),

which ensured unbiased estimation of the parameters (σ2G
and σ2E), even if the true value is close to 0 by allowing

estimates to be negative (Yang et al. 2017).

Estimating IBD-GRMs

The process of IBD segment identification is itself chal-

lenging, and several excellent discussions of the topic exist

(Browning and Browning 2012, 2013b, 2013c; Bjelland

et al. 2017), but here we focus on applying IBD information

to estimate heritability, bh2IBD, using established IBD esti-

mation methods. To mimic computationally phased SNP

data with realistic phase errors, we first un-phased the

sequence data for each data subset and then re-phased the

Axiom array positions using SHAPEIT2 (Delaneau et al.

2013). We then used FISHR2 (Bjelland et al. 2017) to

identify shared haplotype segments that are putatively IBD

across all pairs of individuals within each of our four

structure samples. FISHR2 first uses a modified version of

GERMLINE (Gusev et al. 2009) to find candidate IBD

segments. It then improves the accuracy of the segment

endpoints by comparing an observed moving average of

haplotype mismatches (potential phase or SNP call errors)

for a given candidate IBD segment to (a) the distribution of

haplotype mismatches in segments that are almost certainly

IBD (the middlemost sections of very long IBD segments)

and (b) the distribution of haplotype mismatches in seg-

ments that are almost certainly non-IBD (between random

pairs of individuals at matched locations). FISHR2 trun-

cates candidate segments when this moving average

becomes more consistent with non-IBD than IBD. FISHR2

is more accurate than leading competitors at detecting long

(>3 cM) IBD segments and is the only software that gives

unbiased estimates of the true length of IBD segments

(Bjelland et al. 2017). The parameters we used for FISHR2

were stringent (command line -err_hom 4 -err_het

1 –min_snp 128 –min_cm_initial 1 –min_cm_final

1 –window 50 –gap 100 -h_extend -w_extend –homoz

-emp-ma-threshold 0.06 -emp-pie-threshold 0.015 -count.

gap.errors TRUE), chosen to minimize false-positive IBD

detection (Bjelland et al. 2017). We used an initial length

threshold of 1 cM, but because longer IBD segments are

more likely to share rare variants, we also identified seg-

ments of length greater than 2, 3, 4, 6, 9, and 12 cM. The

FISHR2 parameters we used should lead to consistently low

false-positive rates (<0.05) at all threshold lengths, and

should lead to a sensitivity that increases as a function of the

length of the true IBD segments, with a predicted sensitivity

>.90 for IBD segments >3 cM (Bjelland et al. 2017). To

reduce the influence of low recombination regions artifi-

cially extending segments (e.g., due to one or a few

matching IBS SNPs that are far from the termini of true IBD

segments), we windsorized genetic map positions by setting

the maximum distance between adjacent markers to 0.2 cM,

and used an initial 1 cM minimum IBD segment length

threshold. To test how different IBD-identification methods

would perform, we also applied IBDseq (Browning and

Browning 2013c), which estimates the likelihood of IBD for

individual markers between pairs of individuals, to a small

subset of simulations as a comparison.

We then summed the length in Mb of all segments shared

between each pair of individuals and divided by twice the

length of the genome. This IBD-GRM then represents the

estimated proportion of the genome, Dij, shared IBD

between individuals i and j in the sample, similar to the Aij

elements of the SNP-GRM. We created IBD-GRMs for

each minimum segment cM length threshold. As recombi-

nation rate varies throughout the genome, we also tested

whether an IBD-GRM based on the summed cM length of

segments influences heritability estimates within the mod-

erate and low stratification subsamples.
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Investigations into population stratification effects

Population stratification refers to allele frequency differ-

ences between subpopulations in a sample. It is well known

that when environmental factors cause mean differences

between subpopulations, environmental variance can be

misattributed to genetic variance, which can be mitigated or

eliminated by including ancestry PCs as fixed effects in

association or GREML analyses (Price et al. 2006; Yang

et al. 2010). However, even in the absence of envir-

onmentally driven mean differences between subpopula-

tions, such ancestry-level population stratification can lead

to long-range (e.g., across chromosome) LD between rare

CVs that biases estimates of h2 (Evans et al. 2017). We

investigated this by estimating bh2IBDacross the four samples

that varied by degree of ancestry stratification found across

Europe (see Samples and Population Structure above)

where no environmental effects based on ancestry were

simulated.

Because we observed biases in bh2IBD in the two most

stratified samples (see Results section), we performed four

additional tests to understand the cause and potential ways

to mitigate these biases. First, to test whether bias observed

in stratified samples was due to inadequate control of

structure, we ran K-means clustering on the somewhat

stratified subsample for K= 2 clusters, then ran PC analysis

within each of the two clusters. We included the first 35 PCs

within each cluster, for a total of 90 PCs (the original 20

plus 35 from each cluster). Because PC analysis was run

within each cluster separately, we set the PC scores for the

alternate cluster to 0 (the mean).

Second, we tested, within the stratified subsample,

whether including 10 additional PCs from very rare variants

could correct for the upward bias (Mathieson and McVean

2012). We used 150,000 randomly selected very rare SNPs

from the WGS data and pruned for LD (plink2 command:

--indep-pairwise 1000 400 0.2), leaving 129,710 variants

for the PCA. As a comparison, we also estimated herit-

ability with no covariates included.

Third, we estimated bh2IBD for phenotypes in which all

CVs were drawn from odd chromosomes using IBD-GRMs

estimated only from the even chromosomes. The presence

of uncontrolled cryptic relatedness or population structure

can lead to cross-chromosome LD that inflates h2 estimates

(Yang et al. 2011). We estimated the correlation of off-

diagonal GRM elements between the IBD-GRMs from even

chromosomes and those from odd chromosomes. We also

examined the correlation between the off-diagonal elements

from IBD-GRMs and the off-diagonal elements from GRMs

built from very rare (MAC > 5 and MAF < 0.0025) and

common (MAF > 0.05) sequence variants. This tested

whether correlations between even and odd chromosome

IBD-GRMs were stronger in more stratified subsamples,

and whether the correlation with very rare variants was

stronger with increasing minimum cM length of the IBD-

GRM.

Finally, simultaneously fitting GRMs derived from each

chromosome protects against cross-chromosome correla-

tions induced by stratification or cryptic relatedness because

the estimates of variance explained by one GRM are con-

ditional on the other GRMs (Yang et al. 2011). However,

because the variances of the off-diagonal elements in the

IBD-GRMs were so small, models with 22 IBD-GRMs

would not converge. Instead, we tested a two GRM model

with one IBD-GRM estimated from the odd-numbered

chromosomes and a second from the even-numbered chro-

mosomes, which should partially address the effects of

long-range LD (Speed et al. 2012).

Heritability of complex traits in the UK Biobank

We applied the IBD-based approaches to height and body

mass index (BMI) data in the UK Biobank, a very large

resource of ~500 K adults from the UK, genotyped using

the Affymetrix Axiom array (Sudlow et al. 2015). The

initial release includes ~150 K genotyped individuals,

imputed using the combined UK10K/1000 Genomes

reference panels. We used this resource previously, and full

details on quality control can be found in Evans et al.

(2017). We identified putative IBD segments as described

above using FISHR2 and then calculating IBD-GRMs with

minimum cM thresholds of 2, 3, 4, 6, 9, and 12 cM. We

applied a relatedness cutoff of 0.05, and used individuals of

European ancestry, resulting in a final sample size of

~120 K individuals included in the analysis (Fig. S2). We

used GCTA to estimate variance components and included

sex, UK Biobank assessment center, genotype measurement

batch, and qualification (highest level of educational

attainment) as categorical covariates, and the Townsend

deprivation index, age at assessment, age at assessment

squared, and the 15 PC scores from the UK Biobank as

quantitative covariates. We compared these models using

Akaike information criterion with sample size correction

(AICc) (Burnham and Anderson 2002), and used this to

determine if additional information was added by using an

IBD-GRM.

Results

Simulated phenotypes—GREML-IBD

In our simulated genome sequence data, we found that 95%

confidence intervals (CIs) of bh2IBD estimates overlapped the

true h2 when no vertically inherited shared environmental

variance was present and when using the true IBD segments
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to construct the IBD-GRM (Fig. 1), suggesting unbiased

estimates in this scenario. Using FISHR2-estimated IBD

segments, with a 1 cM IBD length threshold, bh2IBD under-

estimated the true h2, but increasing the length threshold led

to unbiased estimates, where the 95% CI overlapped the

simulated h2. This unbiasedness likely stemmed from the

very low rate of false-positive long IBD segments, but also

suggests that false negative IBD segments, which have a

higher rate at long cM thresholds (Bjelland et al. 2017), do

not influence bh2IBD. However, the presence of non-genetic,

familial environmental variance led to drastically over-

estimated bh2IBD whether using the true or FISHR2-estimated

IBD segments to construct the IBD-GRM (Fig. 1).

In our simulations using real WGS data and FISHR2-

estimated IBD segments, bh2IBD estimates varied greatly when

using a single IBD-GRM depending on the MAF range of

the CVs in simulated phenotypes and the amount of strati-

fication in the subsample (Fig. 2). In the two more homo-

geneous subsamples, bh2IBD was at first underestimated, but

increased and then stabilized with increasing IBD segment

length threshold, similar to what we observed in simulated

genome data. The 95% CI overlapped the true heritability

(0.5) for all IBD thresholds >4 cM and for all CV MAF

classes, suggesting that GREML-IBD produces unbiased

estimates of h2 in relatively homogeneous samples when

removing short, likely false-positive IBD segments. Results

were similar for different relatedness thresholds (Figs S3 &

S4) and for larger numbers of CVs (Fig. S5), although bh2IBD
appeared to be biased upwards in phenotypes with 10,000

common CVs and long IBD length thresholds in the low

stratification subsample (Fig. S5). Precision of the estimates

declined with longer IBD cM length thresholds, as shown

by larger standard errors (Figs. S3-S5) and larger root mean

square error (Fig. S6). We note that in tests of a different

IBD detection method, IBDseq, the estimates were biased

downward compared to those using FISHR2 (Fig. S7). This

suggests that an alternative IBD detection method would

not correct for the downward bias observed at shorter IBD

length thresholds using FISHR2.

In the two most stratified samples, we observed under-

estimates at short cM IBD thresholds, but upward biases at

long cM IBD thresholds, particularly for the rarest CVs (
bh2IBD > 1). This bias remained when using higher or lower

relatedness thresholds (Figs. S3–4), and with 10,000 CVs

(Fig S5). Controlling for 70 additional PCs or with addi-

tional PCs from very rare variants did not correct for the

upward bias in very rare CV phenotypes, though inclusion

of PCs did correct for bias in common CV phenotypes (Fig.

S8). Furthermore, this bias was not mitigated by summing

genetic length (cM) of IBD segments for calculating the

GRM rather than physical length (Fig. S9) nor when using a

two GRM model, with one IBD-GRM calculated from

even-numbered chromosomes and the second from odd-

numbered chromosomes (Fig. S10-S11). Fitting a larger

number of IBD-GRMs (e.g., one per chromosome) would

better capture all the long-range correlations and might

better mitigate the bias, but this approach is impractical for

GREML-IBD in real data because the low variance of Dij

creates estimation problems. Thus, stratification has strong

impacts on GREML-IBD estimates of heritability that we

were unable to control for.

To explore why stratification had such strong influences

on bh2IBD, we first examined the correlations of off-diagonal

GRM elements between the odd chromosome GRMs and

even chromosome GRMs. Stratification clearly led to

stronger long-range correlations, as did, in most sub-

samples, longer IBD thresholds for the GRM (Fig. S12). In

the two least stratified subsamples, the correlation of even

chromosome IBD-GRMs with odd chromosome WGS

SNP-GRMs, estimated from either common or very rare

WGS variants, was weak, and did not change drastically

with increasing cM thresholds. There were stronger corre-

lations overall in the two most stratified subsamples, espe-

cially between even chromosome IBD-GRMs and odd

Fig. 1 Estimates of IBD-based heritability from forward-time simu-

lated phenotypes, with GREML-SC using GRMs computed from the

true IBD segments or FISHR2-estimated IBD segments with varying

cM length thresholds. Mean and 95% CI shown from 70 replicates.

Relatedness cutoff of 0.05 used. Shown are two sets of simulations,

with and without non-genetic, vertically inherited shared environ-

mental variance (f2), with either common (MAF > 0.05) or very rare

(MAF < 0.0025) causal variants

622 Luke M Evans et al.



chromosome GRMs built from either IBD segments or from

very rare WGS variants. Thus, stratification increased long-

range correlations between Dij’s, such that Dij for a pair of

individuals at one chromosome predicted rare variant

sharing at other chromosomes, which can presumably lead

to over-estimation of bh2IBD due to rare CVs being redun-

dantly tagged by IBD sharing.

In simulations with odd chromosome CVs and IBD-

GRMs calculated from even chromosomes only, we

observed upward biases in bh2IBD estimates for long IBD

thresholds that were particularly severe in stratified samples

with rare odd-chromosome CVs (Fig. S13). This pattern of

results was similar to the pattern observed in our primary

simulations (Fig. 2), consistent with the explanation that the

upward biases in bh2IBD for rare CVs we observed at long IBD

thresholds was due to long-range, redundant tagging of CVs

in stratified samples. Note that the simulated h2 for the even

chromosomes was 0. Because there is more recent common

ancestry within than between subpopulations, there is more

sharing of long IBD segments—and importantly more

sharing of rare (recently arisen) causal variants. Conse-

quently, due to stratification, long, shared IBD segments at

Fig. 2 GREML-SC using an

IBD-GRM. bh2IBD estimates

(mean ± 95% CI from 400

replicates). X axis indicates the

IBD-shared haplotype length

threshold for the IBD-GRM.

Phenotypes with 1000 CVs

randomly drawn from the MAF

range specified in each panel.

Different colors indicate degree

of stratification in the sample.

Relatedness cutoff of 0.05 used
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one genomic location indicate sharing of rare variants

across the genome. This redundant tagging of rare causal

variants across the genome in stratified samples presumably

leads to inflated bh2IBD. The same phenomenon has been

described for bh2SNPin the context of stratification (Yang et al.

2011; Speed et al. 2012), although the bias is less extreme

and, because the variance of Aij elements is much greater

than the variance of Dij, is more easily alleviated by fitting

multiple GRM models.

Simulated phenotypes—GREML-SNPs+ IBD

The second model we tested was GREML-SNPs+ IBD,

which included a common SNP-GRM and the IBD-GRM.

For phenotypes with 1000 or 10,000 CVs, the total herit-

ability (bh2IBD + bh2SNP=bh2Total) was unbiased when using long

IBD cM thresholds in the two least stratified subsamples

regardless of the CV MAF range (Fig. S14, S15). However,
bh2Total was underestimated at shorter cM IBD thresholds, and

Fig. 3 GREML-LDMS+ IBD

model. This model had 13

components, 12 LD and MAF-

stratified GRMs using imputed

genome-wide variants, and one

GRM from IBD-shared

haplotypes. Total h2 estimates

are shown (mean ± 95% CI from

400 replicates). X axis indicates

the different IBD-shared

haplotype length thresholds for

the IBD-GRM. Phenotypes with

1000 CVs randomly drawn from

the MAF range specified in each

panel. Different colors indicate

degree of stratification in the

sample. Relatedness cutoff of

0.05 used
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increasingly overestimated with longer thresholds in the two

most stratified samples for very rare CV phenotypes. As

expected, partitioning the variance to each of the GRMs,

GREML-SNPs+ IBD attributed more of the phenotypic

variance to the common SNP-GRM when the CVs were

common, and more of the variance to the IBD-GRM when

the CVs were rarer (Figs. S16-S17). For common CV

phenotypes, the variance attributable to the common SNP-

GRM was overestimated by ~20%, which is consistent with

previous findings for a common SNP-GRM based on the

Axiom array positions and occurs because CVs in the

common bin have higher average MAF than the SNPs on

the Axiom array (Evans et al. 2017). Interestingly, this

overestimate was balanced by a negative variance estimate

attributed to the IBD-GRM, such that the total estimated

heritability was unbiased at ~0.5 at long cM IBD thresholds

(Figs. S14-S17). Nevertheless, for very rare CV pheno-

types, bh2IBD was again underestimated, then overestimated in

structured samples as the cM IBD threshold length was

increased.

Fig. 4 GREML-LDMS+ IBD.

This model had 13 components,

12 LD and MAF-stratified

GRMs using imputed genome-

wide variants, and one GRM

from IBD-shared haplotypes.

Separate h2 estimates for each

component are given by the

symbols (mean ± 95% CI from

400 replicates). Note that the

“Imputed LDMS” symbol

represents the sum of the

imputed LDMS GRM variance

estimates. X axis indicates the

different IBD-shared haplotype

length thresholds for the IBD-

GRM. Phenotypes with 1000

CVs randomly drawn from the

MAF range specified in each

panel. Different colors indicate

degree of stratification in the

sample. Relatedness cutoff of

0.05 used
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Simulated phenotypes—GREML-LDMS+ IBD

Our third model included 16 imputed variant GRMs that

were MAF-stratified and LD-stratified, and the IBD-GRM.

We found that across subsamples, GREML-LDMS+IBD

produced generally unbiased bh2Total with either 1000 CVs or

10,000 CVs across all CV MAF ranges when IBD thresh-

olds >4 cM were applied (Figs. S18-S19). Partitioning the

variance among GRMs revealed that for the rare and very

rare CV phenotypes, the IBD-GRM explained a small

amount of the variance, but was near-zero otherwise (Figs.

S20-S21).

When we excluded the rarest MAF bin from the model,

leaving 12 imputed variant GRMs plus the IBD-GRM,

GREML-LDMS+ IBD also produced generally unbiased
bh2Total with either 1000 CVs or 10,000 CVs across all CV

MAF ranges in subsamples with little or no stratification

(Fig. 3, S22). However, with increased stratification, bh2Total
was again overestimated for very rare CV phenotypes in the

context of stratification. Partitioning the variance into that

attributable to the LDMS imputed variant GRMs and the

IBD-GRM showed that, in unstratified samples, most of the

genetic variance was attributable to the LDMS GRMs for

CV MAF ranges >0.0025 while the IBD-GRM captured the

genetic variance for very rare CV MAF ranges (MAC > 5 to

MAF < 0.0025) (Fig. 4, S23). While the variance attributed

to the LDMS GRMs was never overestimated, that attrib-

uted to the IBD-GRMs at longer IBD thresholds was

overestimated, resulting in total heritability estimates >1 for

the rarest CV phenotypes in the presence of stratification

(Fig. 4)

Real phenotypes from the UK Biobank

Using GREML-IBD, bh2IBD for height (but not for BMI)

increased with longer minimum shared haplotype length,

did not stabilize at longer segment thresholds, and appeared

upwardly biased, similar to what we observed in stratified

samples in our simulations (Fig. 5a, Table S1). The 95%

CIs increased with longer minimum IBD length, as expec-

ted given the lower variance in Dij at longer segment

thresholds. For comparison, bh2SNP estimates from approaches

using only SNPs are also presented in Table S1.

Using either GREML-SNPs+ IBD or GREML-LDMS

+ IBD, we found similar patterns of increasing bh2IBD esti-

mates with longer minimum IBD length for height, but the

pattern was less extreme, and 95% CIs were generally

smaller (Fig. 5b, Table S1). Results for GREML-LDMS+

IBD either including the rarest MAF category or excluding

it were similar: height bh2IBD estimates increased from 0.75 to

1.1 across the range of minimum IBD lengths we examined.

This increase in bh2IBD was due to increasing estimates of

variance attributable to the IBD-GRM rather than to the

imputed variant SNP-GRMs (Fig. S24, Table S1). BMI bh2IBD
were again ~0.2–0.3, though at longer minimum IBD length

thresholds the standard errors were large, and the 95% CI

overlapped 0 (Table S1).

Interestingly, inclusion of the IBD-GRM in addition to

the SNP-GRM or LDMS GRMs often improved model fit

(Table S1). Likelihood ratio tests of GREML-SNP vs.

GREML-SNP+ IBD and GREML-LDMS vs. GREML-

LDMS+ IBD suggested that model fit when analyzing

height, but not BMI, was improved by including the IBD-

GRM. Furthermore, comparing AICc across all the models

and thresholds, the lowest AICc was often found with

shorter IBD minimum length thresholds. For instance, for

height, the minimum AICc was found when using all LD-

stratified and MAF-stratified imputed variant GRMs and the

IBD-GRM with a 3 cM minimum IBD length threshold

(Table S1), while AICc increased with longer length

thresholds. Thus, while increasing the minimum length

threshold led to unreasonable and uninterpretable total

heritability estimates, at shorter IBD length thresholds, the

inclusion of the IBD-GRM accounted for additional var-

iance explained over using only GREML-SNP or GREML-

LDMS. This may have reflected the effect of CVs that are

not well captured by imputed variants.

Fig. 5 Total heritability estimates for three continuous traits in the UK

Biobank. a GREML-IBD, which had a single IBD-GRM. b GREML-

LDMS+ IBD for two continuous traits in the UK Biobank. This

model had 13 components, 12 LD and MAF-stratified GRMs using

imputed genome-wide variants, and one GRM from IBD-shared

haplotypes. Total h2 estimates are shown (±95% CI). X axis indicates

the different IBD-shared haplotype length thresholds for the IBD-

GRM. Relatedness cutoff of 0.05 used. Dashed lines represent, for

comparison, the SNP-based estimates, using either GREML-SC (a) or

GREML-LDMS (b). See Supplementary Table 1 for estimates
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Discussion

We present here the most thorough assessment to-date of an

IBD-based heritability estimation approach. The interest in

using IBD information in classically unrelated samples to

estimate heritability arises from the potential to estimate the

full narrow-sense heritability without the confounding of

effects shared within families that can bias estimates when

close relatives are used, and without the downward bias in

estimation when CVs are rare or poorly tagged by SNPs.

We demonstrated that GREML-IBD can produce unbiased

heritability estimates in realistic whole-genome SNP data so

long as there is little genetic stratification in the sample and

with estimated IBD length thresholds >4 cM to account for

IBD estimation errors.

While IBD-based approaches are appealing in principle,

our study highlights three important drawbacks. First,

stratification can bias heritability estimates upward,

depending on the allele frequencies of CVs. The effect of

stratification is strong when CVs are very rare, and is not

controlled by inclusion of a large number of PC covariates,

the typical approach to controlling such effects (Price et al.

2010), or even PCs derived from very rare variants

(Mathieson and McVean 2012). Similar overestimates have

been observed in a related method that used sharing at

predefined, segregating haplotypes (Bhatia et al. 2016).

Overestimates appear to stem from redundant tagging by

long IBD segments across the genome in stratified samples,

and from non-genetic shared environmental variance. Pre-

vious studies using IBD-based approaches (Zuk et al. 2012;

Browning and Browning 2013a) used isolated, homo-

geneous populations, which should mitigate this source of

bias. Our simulation results suggest somewhat less homo-

genous samples, such as those of general northern/western

European ancestry, can be used to derive unbiased herit-

ability estimates so long as there are no additional con-

founding factors.

Second, non-genetic shared environments can strongly

bias bh2IBD estimates upwards. Because long IBD segments

identify pairs of individuals with relatively recent shared

ancestry, shared environmental influence within families

can be confounded with IBD sharing, driving up bh2IBD. In
our simulations, we excluded closely related individuals

(relatedness < 0.05), demonstrating that this confound is not

alleviated by using only nominally unrelated individuals.

Third, the standard error (SE) and RMSE of bh2IBD is large

due to the very low variance in IBD sharing among unre-

lated individuals in large, non-founder populations. For

example, for height in the UK Biobank when using

GREML-LDMS+ IBD, total heritability SE ≥ 0.053 for

minimum IBD lengths ≥ 6 cM, largely due to the IBD-GRM

variance component SE. However, using just the imputed

variant GREML-LDMS approach SE= 0.015. Thus, while

the GREML-LDMS+ IBD may have accounted for more

of the genetic variance, it did so with substantially lower

precision. Very large sample sizes will be required to reach

high levels of precision. Taken together, it seems unlikely

the increased variance explained, arising from capturing

rare CVs with IBD-based GRMs, outweighs the very large

increase in standard errors and the increased potential for

bias due to stratification or shared environmental variance.

Heritability of real complex traits

Our results from real UK Biobank data for height demon-

strate the potential for additional biases of an IBD-based

approach that were not captured in our simulation. The

estimates of total heritability for height increased with

minimum IBD cM length, and were much greater than other

reported estimates (e.g., Yang et al. 2015; Evans et al.

2017). This was unexpected given that the stratification of

the UK Biobank sample was similar to the unstratified

subsets in our simulations, suggesting that stratification in

the UK Biobank sample is not the cause of the upward bias

in height bh2IBD.
Alternatively, vertically transmitted non-genetic effects,

shared common environmental effects, and assortative

mating may also confound estimates of bh2IBD. Estimates of
bh2PED using close relatives can be altered by these factors

(Eaves et al. 1978; Martin et al. 1978; Coventry and Keller

2005; Zuk et al. 2012). Common environmental effects,

which can induce similarity across extended pedigrees,

would be confounded with IBD sharing, and are therefore a

potential source of bias in IBD-based estimates. As

demonstrated in our first set of forward-time simulations, f2

can indeed bias bh2IBD estimates, and this is a potential

explanation for why height bh2IBD is unrealistically high. It is

possible BMI does not have a similar influence of f2, which

is why we observed reasonable BMI bh2IBD estimates. Further

work will be required to test this hypothesis, such as

including various environmental matrices, sensu Xia et al.

(2016). The use of lower relatedness thresholds may alle-

viate the problem, but lower relatedness thresholds would

decrease the sample size and variance of IBD sharing and

therefore further exacerbate the already high standard errors

of these estimates. Rare variants are more differentially

confounded by stratification than common variants, and

typical approaches using PCA may not fully correct for

such confounding (Mathieson and McVean 2012). Extre-

mely rare SNPs, as with long IBD segments, will co-

segregate along extended pedigrees, and future work must

focus on the role of confounding between familial and

environmental effects and rare variants or long IBD

segments.

While we cannot conclude with certainty which factors

led to the apparent bias in height bh2IBD, estimates of bh2IBD for
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BMI were more stable and also in line with previous

reports. They suggest that BMI h2 is roughly 0.25–0.3, with

up to 5% of the total phenotypic variance due to very rare or

otherwise poorly imputed variants that are captured by the

IBD-GRM (see Table S1). As estimates from classical twin

design studies range from 0.4–0.8, this suggests that much

of the family based estimates are due to shared environ-

ment, assortative mating, or non-additive genetic variance,

supported by extended twin design variance estimates

(Coventry and Keller 2005; Keller and Coventry 2005).

This also suggests that little unexplained variance remains

for BMI, as estimates of BMI bh2SNP from recent studies range

from 0.21 (Locke et al. 2015) to 0.27 (Yang et al. 2015).

Our findings may also offer context to the observed

heritability estimates reported by several other studies that

used haplotype-based approaches. Browning and Browning

(2013a) reported bh2IBD for BMI of 0, with standard error of

0.16 (height was not measured), although their upper 95%

CI estimate is not inconsistent with a true h2 of 0.25–0.3.

This low estimate may simply be due to sampling variance,

arising from the small number of individuals (5,402) in the

Finnish sample they used, or to true heritability differences

among populations. Zaitlen et al. (2013) used IBD among

close relatives to derive estimates of bh2IBD of 0.69 for height

and 0.42 for BMI. As discussed by the authors, these esti-

mates may be upwardly biased due to common environ-

mental and non-additive genetic effects.

Conclusions

Identical-by-descent haplotypes in common between a pair

of chromosomes capture sharing at all variants that existed

along their length in the last common ancestor. The ability

to estimate such IBD segments using SNP data means that

there is potential to estimate narrow-sense heritability of

traits. We conclude that IBD-based estimates can be used to

obtain estimates of the near full narrow-sense heritability.

However, IBD-based estimates are imprecise, very sensitive

to stratification, and can be confounded by shared envir-

onmental variance, even in unrelated samples. Moreover,

when we estimated bh2IBD in real data, we observed biases

that appeared similar to those that we had observed due to

stratification and shared environments, which suggests that

there are biases in real data that we were not able to ade-

quately control. Taken together, these factors diminish the

appeal of IBD-based approaches for estimating heritability,

especially when compared to approaches that use imputed

variants, such as GREML-LDMS. Nevertheless, until

whole-genome sequence data is feasible for the large sam-

ple sizes required for h2 estimation from genotype data,

IBD-based estimates may be able to capture the rarest CVs

better than imputation. In particular, though larger and more

diverse reference panels are becoming available, IBD-based

approaches offer a method to capture rare genome-wide

variants not represented in imputation reference panels and

structural variation that remains difficult to capture even

with whole-genome sequencing (Auton et al. 2015). Fur-

thermore, isolated, homogeneous populations may also be

the most advantageous for IBD-based heritability estimation

due to the larger variance in IBD sharing, though extremely

large sample sizes would be required to offset the lower

precision in heritability estimates.

Data archiving

Data are from the Haplotype Reference Consortium

(http://www.haplotype-reference-consortium.org/) and the

UK Biobank (http://www.ukbiobank.ac.uk/).
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