
Narrowband Interference Parameterization for
Sparse Bayesian Recovery

Anum Ali1, Hesham Elsawy1, Tareq Y. Al-Naffouri1,2, and
Mohamed-Slim Alouini1

1King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
2King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia.

June 09, 2015

Bayesian Interference Mitigation for SC-FDMA Anum Ali et. al. 1/17



Content

1 Introduction

2 Bayesian Sparse Recovery

3 Interference Parameterization

4 Simulation Results

Interference
Mitigation

Compressed
Sensing

Stochastic
Geometry

Bayesian Interference Mitigation for SC-FDMA Anum Ali et. al. 2/17



Introduction

Single Carrier-FDMA (SC-FDMA) is used in LTE uplink [1]

Narrowband Interfer-
ence (NBI) Sources

Coexisting
systems in
unlicensed bands

Garage door
openers

Cordless phones
etc
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Introduction

Interference Impact on SC-FDMA

A single strong interference source can completely destroy the
data in single carrier-FDMA
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Bayesian Sparse Recovery

How and Why?

Active interference on few frequencies −→ Compressed

Sensing based recovery is possible

Randomly chosen data points are kept data free to sense
interference at the receiver
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Bayesian Sparse Recovery

Sparse Signal Recovery Approaches

Bayesian (utilize
prior statistics)

• FBMP

• SBL

Convex optimization
(robust)

• BP

• BPDN

• LASSO

Greedy (fast)

• OMP

• CoSaMP

• StOMP
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Bayesian Sparse Recovery

Sparse Signal Recovery Approaches

Bayesian (utilize
prior statistics)

• FBMP

• SBL

Convex optimization
(robust)

• BP

• BPDN

• LASSO

Greedy (fast)

• OMP

• CoSaMP

• StOMP

Use Bayesian schemes
for sparse recovery

Low computational
complexity
Good reconstruction
accuracy
Acknowledge
Gaussianity of noise
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Bayesian Sparse Recovery

Fast Bayesian Matching Pursuit (FBMP) [2]

Low complexity

minimum mean
squared error
(MMSE) estimation

Gaussian prior

FBMP

statistics

Simple,
Accurate

no statistics

Boostrap,
Complex
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Bayesian Sparse Recovery

Fast Bayesian Matching Pursuit (FBMP) [2]

Low complexity

minimum mean
squared error
(MMSE) estimation

Gaussian prior

FBMP

statistics

Simple,
Accurate

no statistics

Boostrap,
Complex

✗✓
Challenge: → How to estimate mean, variance, and sparsity rate.
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Interference Parameterization
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Interference Parameterization
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1: Transmiter Power X
2: PathLoss Coefficient X
3: Location ?



Interference Parameterization

Homogenous Poisson Point Process

Tractable Analysis [3]

Accurate expressions

Widely used

Applicable to diverse types
of networks

ad-hoc networks
cellular networks

Process→ Ψ, Intensity→ λ

Iagg=
∑

i∈Ψ
√
E si hi

Aggregate
Interference

Transmitted
Energy

Channel
Including
Pathloss

Transmitted
Symbol
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Interference Parameterization

For interference Iagg =
∑

i∈Ψ

√
Esihi , Characteristic Function (CF) is

Φ(ω) = exp

{

−λπγ2
+∞
∑

q=1

ΥqE
[

|s|2q
]

( |ω|2EΩ
γ2b

)q
}

Obtain mean and variance by differentiating the CF

µIagg
= E [Iagg] = −1Φ′(0) = 0

σ2
Iagg

= E
[

|Iagg|2
]

= −2Φ′′(0) = 2πλγ2Υ1E
[

|s|2
]

(

EΩ
γ2b

)
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Interference Parameterization

Gaussian Assumption

Sparsity Rate

ρ dominant elements

N − ρ elements at
noise level

Decide a threshold ξa.

Assume Gaussianity
on interference

0 16 32 48 64
0

0.2

0.4

0.6

0.8

1

Subcarrier Index

N
o
r
m
a
li
z
e
d
In
t
e
r
fe
r
e
n
c
e

Threshold ξ
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INR: Impulse-to-noise ratio, Q(·) is Q function.
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a. We use ξ = 4
√

σ2
z .



Results

Mean and Variance as a function of intensity λ
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Results

Mean and Variance as a function of pathloss coefficient b
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Results

Sparsity rate as a function of INR and dominant elements ρ
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Results

BER performance of the proposed scheme
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Summary

Interference has a dire impact of SC-FDMA systems

Compressed sensing can be used to mitigate interference

Bayesian compressed sensing has good performance and low
complexity

Bayesian schemes require interference parameters

Parameters can be obtained analytically using stochastic
geometry

Analytical parameter estimation reduces computational
complexity significantly
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Thank you for your Attention!
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