Narrowband Interference Parameterization for
Sparse Bayesian Recovery

Anum Alil, Hesham Elsawy?, Tareq Y. Al-Naffouril?, and
Mohamed-Slim Alouinit

IKing Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
2King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia.

June 09, 2015

Con ki s
%.
%.\‘E 'EEE!-“ SHARTCTY & SWARTWORD

Bayesian Interference Mitigation for SC-FDMA Anum Ali et. al. 1/17




Content

@ Introduction
© Bayesian Sparse Recovery
© Interference Parameterization Compressed

Sensing
@ Simulation Results

Bayesian Interference Mitigation for SC-FDMA Anum Ali et. al.



Introduction

Single Carrier-FDMA (SC-FDMA) is used in LTE uplink [1]

Narrowband Interfer-
ence (NBI) Sources

o Coexisting

systems in
unlicensed bands

o Garage door
openers

@ Cordless phones
etc

[1] H. G. Myung, J. Lim, and D. Goodman, “Single carrier FDMA for uplink wireless transmission,” IEEE
Veh. Technol. Mag., vol. 1, no. 3, pp. 30-38, 2006.
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Introduction

Interference Impact on SC-FDMA

o A single strong interference source can completely destroy the

data in single carrier-FDMA
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Bayesian Sparse Recovery
How and Why?

o Active interference on few frequencies — Compressed
Sensing based recovery is possible

@ Randomly chosen data points are kept data free to sense
interference at the receiver
Size M The unknown size

observation noise
vector N NBI vector

— Active NBI
- Sources

Measuremé: Sparse " ||
matrix NBI
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Bayesian Sparse Recovery

Sparse Signal Recovery Approaches

Greedy (fast)

o OMP

e CoSaMP

e StOMP
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Bayesian Sparse Recovery

Sparse Signal Recovery Approaches

Greedy (fast)
o OMP

o Use Bayesian schemes
for sparse recovery

o CoSaMP

e StOMP .

e Low computational
complexity

e Good reconstruction
accuracy

o Acknowledge
Gaussianity of noise

20
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Bayesian Sparse Recovery

Fast Bayesian Matching Pursuit (FBMP) [2]

o Low complexity

@ minimum mean
squared error
(MMSE) estimation

o Gaussian prior

[2] P. Schniter, L. C. Potter, and J. Ziniel, “Fast Bayesian matching pursuit,” in Proc. Inform. Theory &

Appl. Workshop, 2008, pp. 326-333.
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Bayesian Sparse Recovery

Fast Bayesian Matching Pursuit (FBMP) [2]

o Low complexity

@ minimum mean
squared error
(MMSE) estimation

o Gaussian prior

FBMP

statistics

Simple,
Accurate

no statistics

Boostrap,
Complex
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Bayesian Sparse Recovery

Fast Bayesian Matching Pursuit (FBMP) [2]

o Low complexity

@ minimum mean
squared error
(MMSE) estimation

o Gaussian prior

Challenge: — How to estimate mean, variance, and sparsity rate.

FBMP

statistics

Simple,
Accurate

v

no statistics

Boostrap,
Complex

X

[2] P. Schniter, L. C. Potter, and J. Ziniel, “Fast Bayesian matching pursuit,” in Proc. Inform. Theory &

Appl. Workshop, 2008, pp. 326-333.
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Interference Parameterization

o & = DA
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1: Transmiter Power v/
2: PathLoss Coefficient v
3: Location ?

Interference Parameterization
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Interference Parameterization

Homogenous Poisson Point Process
Transmitted
Symbol
e Tractable Analysis [3]

. Transmitted
@ Accurate expressions

. Energy
o Widely used
o Applicable to diverse types Iagg: Ziew\/ E s h,'
of networks
o ad-hoc networks Aggregate
o cellular networks Interference
Process— W, Intensity— A Chanr.1el
Including
Pathloss

[3] H. ElSawy, E. Hossain, and M. Haenggi, “Stochastic geometry for modeling, analysis, and design of
multi-tier and cognitive cellular wireless networks: A survey,” |IEEE Commun. Surveys and Tutorials, vol.
15, no. 3, pp. 996-1019, 2013.
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Interference Parameterization

For interference Zoge = 3,y VEsih;, Characteristic Function (CF) is

+o0 w 2 q
o-eof it (22)'

g=1

Obtain mean and variance by differentiating the CF

T = B[Lage] = y719'(0) =0

02 =E [|Iagg|2] =772¢"(0) = 27 \*T1E [|5|2:| (%)

Ia,gg
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Interference Parameterization

Gaussian Assumption

1
Sparsity Rate g 08| |
dominant el t 5 ?
@ p dominant elements g ol Threshold ¢
o N — p elements at E
. =}
noise level S oaf |
. <
@ Decide a threshold £°. g
Q
L z 0.2 B
@ Assume Gaussianity
on interference 0

2 R PRI ot I PO
0 32 48 64
Subcarrier Index

§= 2—I\7Q(4\/INR_1) + 2% Q(4)

INR: Impulse-to-noise ratio, Q(-) is Q function.

a. We use & :4,/03.
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Results

Mean and Variance as a function of intensity A
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Results

Mean and Variance as a function of pathloss coefficient b
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Results

Sparsity rate as a function of INR and dominant elements p
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Results

BER performance of the proposed scheme
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Summary

@ Interference has a dire impact of SC-FDMA systems
o Compressed sensing can be used to mitigate interference

@ Bayesian compressed sensing has good performance and low
complexity

@ Bayesian schemes require interference parameters

@ Parameters can be obtained analytically using stochastic
geometry

@ Analytical parameter estimation reduces computational
complexity significantly
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