
NAS Parallel Benchmark Results

D. H. Bailey L. Dagum
E. Barszcz H. D. Simon

NAS Applied Research Branch Computer Sciences Corp.
NASA Ames Research Center NASA Ames Research Center

Moffett Field, CA 94035 Moffett Field, CA 94035

Abstract

The NAS Parallel Benchmarks have been developed
at NASA Ames Research Center to study the perfor-
mance of parallel supercomputers. The eight bench-
mark problems are specified in a “pencil and paper”
fashion. This paper presents performance results of
various systems using the NAS Parallel Benchmarks.
These results represent the best results that have been
reported to us for the specific systems listed. They
represent implementation efforts performed by per-
sonnel in both the NAS Applied Research Branch of
NASA Ames and in other organizations.

1. Introduction
The Numerical Aerodynamic Simulation (NAS)

Program, which is based at NASA Ames Research
Center, is dedicated to advance the science of com-
putational aerodynamics. One key goal of the NAS
organization is to demonstrate by the year 2000 an
operational computing system capable of simulating
an entire aerospace vehicle system within a computing
time of one to several hours. It is currently projected
that the solution of this grand challenge problem will
require a computer system that can perform scien-
tific computations at a sustained rate approximately
one thousand times faster than 1990 generation su-
percomputers. Most likely such a computer system
will employ hundreds or even thousands of processors
operating in parallel.

At the present time, there are several commer-
cial highly parallel systems available with computing
power roughly competitive with conventional super-
computers (even greater on some special problems).
Unfortunately, there is little reliable data on the per-
formance of such systems on state-of-the-art compu-
tational aerophysics problems. In general, the science
of performance evaluation has not kept pace with ad-
vances in parallel computer hardware and architec-

ture. There is not even a generally accepted bench-
mark strategy for highly parallel supercomputers.

In our view, the best benchmarking approach for
highly parallel supercomputers is the “paper and pen-
cil” benchmark. The idea is to specify a set of prob-
lems only algorithmically. Even the input data must
be specified only on paper. Naturally, the problem has
to be specified in sufficient detail that a unique solu-
tion exists, and the required output has to be brief yet
detailed enough to certify that the problem has been
solved correctly. But the details of the implementation
should be left to the programmer as far as possible.

To this end, we have devised the NAS Parallel
Benchmarks (NPB). These are a set of eight bench-
mark problems, each of which focuses on some impor-
tant aspect of highly parallel supercomputing for aero-
physics applications. Some extension of Fortran or C
is required for implementations, and reasonable limits
are placed on the usage of assembly code and the like,
but otherwise programmers are free to utilize language
constructs that give the best performance possible on
the particular system being studied. The choice of
data structures, processor allocation and memory us-
age are generally left open to the discretion of the
implementer.

The eight problems consist of five “kernels” and
three “simulated computational fluid dynamics (CFD)
applications”. Each of these is defined fully in [3]. The
five kernels are relatively compact problems, each of
which emphasizes a particular type of numerical com-
putation. Compared with the simulated CFD appli-
cations, they can be implemented fairly readily and
provide insight as to the general levels of performance
that can be expected on these specific types of numer-
ical computations.

The simulated CFD applications, on the other
hand, usually require more effort to implement, but
they are more indicative of the types of actual data
movement and computation required in state-of-the-



art CFD application codes. For example, in an iso-
lated kernel a certain data structure may be very effi-
cient on a certain system, and yet this data structure
would be inappropriate if incorporated into a larger
application. By comparison, the simulated CFD ap-
plications require data structures and implementation
techniques that are more typical of real CFD applica-
tions.

Space does not permit a complete description of
these benchmark problems. A more detailed descrip-
tion of these benchmarks, together with the rules and
restrictions associated with the benchmarks, may be
found in [2]. The full specification of the benchmarks
is given in [3].

Sample Fortran programs implementing the NPB
on a single processor system are available as an aid to
implementors. These programs, as well as the bench-
mark document itself, are available from the follow-
ing address: NAS Systems Division, Mail Stop 258-
8, NASA Ames Research Center, Moffett Field, CA
94035, attn: NAS Parallel Benchmark Codes. The
sample codes are provided on Macintosh floppy disks
and contain the Fortran source codes, “README”
files, input data files, and reference output data files
for correct implementations of the benchmark prob-
lems. These codes have been validated on a number
of computer systems ranging from conventional work-
stations to supercomputers.

In the following, each of the eight benchmarks will
be briefly described, and then the best performance
results we have received to date for each computer
system will be given in Tables 2 through 9. These
tables include memory requirements, run times and
performance ratios. The performance ratios compare
individual timings with the current best time on that
benchmark achieved on one processor of a Cray Y-MP.
The run times in each case are elapsed time of day fig-
ures, measured in accordance with the specifications
given in [3]. Memory requirements are currently avail-
able for only some of these implementations. We hope
to have complete information for these columns in fu-
ture editions of this paper.

Note that performances rates are not cited in
millions of floating point operations per second
(megaflops) in these tables. We suggest instead that
the actual run times (or, equivalently, the performance
ratios) be examined when comparing different systems
and implementations. For those who wish to compute
megaflops figures for the NAS Parallel Benchmarks on
any system, we insist that they be computed using the
standard floating point operation (flop) counts given
in Table 1. Table 1 also contains megaflops rates cal-

culated in this manner for the current fastest imple-
mentation on one processor of the Cray Y-MP.

With the exception of the Integer Sort benchmark,
these standard flop counts were determined by using
the hardware performance monitor on a Cray Y-MP,
and we believe that they are close to the minimal
counts required for these problems. In the case of
the Integer Sort benchmark, which does not involve
floating-point operations, we selected a value approx-
imately equal to the number of integer operations re-
quired, in order to permit the computation of perfor-
mance rates analogous to megaflops rates. We reserve
the right to change these standard flop counts in the
future if deemed necessary.

Whenever possible, we have tried to credit the
actual individuals and organizations who have con-
tributed the performance results cited in the tables.
In these citations, NAS denotes the NAS Applied Re-
search Branch at NASA Ames (including both NASA
civil servants and Computer Science Corp. contrac-
tors); RIACS denotes the parallel systems division of
the Research Institute for Advanced Computer Sci-
ence, which is located at NASA Ames; BBN denotes
Bolt, Beranek and Newman; Boeing denotes Boeing
Computer Services, Inc.; CRI denotes Cray Research,
Inc.; Intel denotes the Supercomputer Systems Di-
vision of Intel Corp.; Maspar denotes Maspar Com-
puter Corp.; Meiko denotes Meiko Scientific Corp.;
and TMC denotes Thinking Machines, Inc. Where no
individual citation is made for a specific model, the
results are due to vendor staff.

Unfortunately, the limited space in this report does
not permit discussion of the methods used in any of
these implementations. However, we have included
references to technical papers describing these meth-
ods whenever such papers are available. Readers are
referred to these documents for full details.

This report includes a number of new results not
previously published. The Cray C-90, Cray Y-MP EL,
the Maspar MP-1 and MP-2, and the Meiko CS-1 re-
sults in particular have not previously been disclosed.
In quite a few other instances, results are improved
from previous listings, reflecting improvements both in
compilers and implementations. Efforts are currently
underway to port the NAS Parallel Benchmarks on
other systems, and we hope to have some results in
the future.

2. The Embarrassingly Parallel Benchmark
The first of the five kernel benchmarks is an “em-

barrassingly parallel” problem. In this benchmark,
two-dimensional statistics are accumulated from a
large number of Gaussian pseudorandom numbers,



which are generated according to a particular scheme
that is well-suited for parallel computation. This
problem is typical of many “Monte-Carlo” applica-
tions. Since it requires almost no communication, in
some sense this benchmark provides an estimate of the
upper achievable limits for floating point performance
on a particular system.

Results for the embarrassingly parallel benchmark
are shown in Table 2. Not all systems exhibit high
rates on this problem. This appears to stem from the
fact that this benchmark requires references to several
mathematical intrinsic functions, such as the Fortran
routines AINT, SQRT, and LOG, and evidently these
functions are not highly optimized on some systems.
The memory requirement for this benchmark was min-
imal on all systems.

Intel iPSC/860 results are due to J. Baugh of Intel.
CM-2 and CM-200 results are due to J. Richardson
of TMC. Maspar results are due to J. MacDonald of
Maspar.

3. The Multigrid Benchmark
The second kernel benchmark is a simplified multi-

grid kernel, which solves a 3-D Poisson PDE. This
problem is simplified in the sense that it has constant
rather than variable coefficients as in a more realis-
tic application. This code is a good test of both short
and long distance highly communication, although the
communication patterns are highly structured (as op-
posed to the conjugate gradient benchmark).

Results for this benchmark, for problem size 2563,
are shown in Table 3. Intel results are due to BCS.
CM-2 and CM-200 results are due to J. Richardson at
TMC.

4. The Conjugate Gradient Benchmark
In this benchmark, a conjugate gradient method

is used to compute an approximation to the smallest
eigenvalue of a large, sparse, symmetric positive def-
inite matrix. This kernel is typical of unstructured
grid computations in that it tests irregular long dis-
tance communication and employs sparse matrix vec-
tor multiplication.

The irregular communication requirement of this
benchmark is evidently a challenge for all systems. Re-
sults, for problem size 2.0×106, are shown in Table 4.
Intel results are due to BCS. CM-2 results are due to
J. Richardson of TMC.

5. The 3-D FFT PDE Benchmark
In this benchmark a 3-D partial differential equa-

tion is solved using FFTs. This kernel performs the
essence of many “spectral” codes. It is a good test of

Benchmark Operation Y-MP
Name Abbr. Count Rate
Emb. Parallel EP 2.668× 1010 211
Multigrid MG 3.905× 1009 176
Conjugate Gradient CG 1.508× 1009 127
3-D FFT PDE FT 5.631× 1009 196
Integer Sort IS 7.812× 1008 68
LU Sim. CFD Appl. LU 6.457× 1010 194
SP Sim. CFD Appl. SP 1.020× 1011 216
BT Sim. CFD Appl. BT 1.813× 1011 229

Table 1: Standard Operation Counts and Current Y-
MP/1 Megaflops Rates

Computer No. Memory Time Ratio to
System Proc. (mwords) (sec.) Y-MP/1
Y-MP 1 4.9 126.2 1.00

8 4.9 15.87 7.95
Y-MP EL 1 4.9 550.5 0.23

4 4.9 141.2 0.89
C-90 1 4.9 47.60 2.65

4 4.9 12.37 10.20
16 4.9 3.19 39.56

TC2000 64 1 284.0 0.44
iPSC/860 32 1 102.7 1.23

64 1 51.4 2.46
128 1 25.7 4.91

CM-2 8K 1 126.6 1.00
16K 1 63.9 1.97
32K 1 33.7 3.74
64K 1 18.8 6.71

CM-200 8K 1 76.9 1.64
16K 1 39.2 3.22
32K 1 20.7 6.10
64K 1 10.9 11.58

CS-1 16 116.8 1.08
MP-1 4K 248 0.51

16K 88 1.43

Table 2: Results of the Embarrassingly Parallel (EP)
Benchmark



Computer No. Memory Time Ratio to
System Proc. (mwords) (sec.) Y-MP/1
Y-MP 1 56.7 22.22 1.00

8 56.7 2.96 7.51
Y-MP EL 1 56.7 89.19 0.25

4 56.7 32.11 0.69
C-90 1 56.7 8.65 2.57

4 56.7 2.42 9.18
16 56.7 0.96 23.14

iPSC/860 128 8.61 2.58
CM-2 16K 45.8 0.49

32K 26.0 0.85
64K 14.1 1.58

CM-200 16K 30.2 0.74
32K 17.2 1.29

CS-1 16 42.8 0.52
MP-1 16K 13.1 1.70

Table 3: Results of the Multigrid (MG) Benchmark

Computer No. Memory Time Ratio to
System Proc. (mwords) (sec.) Y-MP/1
Y-MP 1 10.4 11.92 1.00

8 10.4 2.38 5.01
Y-MP EL 1 10.4 65.35 0.18

4 10.4 23.91 0.50
C-90 1 10.4 4.56 2.61

4 10.4 1.51 7.89
16 10.4 0.58 20.55

TC2000 40 51.4 0.23
iPSC/860 128 8.61 1.38
CM-2 8K 25.6 0.47
CM-2 16K 14.1 0.85
CM-2 32K 8.8 1.35
CM-200 8K 15.0 0.79
CS-1 16 67.5 0.18
MP-1 4K 64.5 0.18

16K 14.6 0.82

Table 4: Results of the Conjugate Gradient (CG)
Benchmark

Computer No. Memory Time Ratio to
System Proc. (mwords) (sec.) Y-MP/1
Y-MP 1 42.9 28.77 1.00

8 42.9 4.19 6.87
Y-MP EL 1 42.9 122.6 0.23

4 42.9 34.9 0.82
C-90 1 42.9 10.28 2.80

4 42.9 2.58 11.2
16 42.9 0.91 31.6

iPSC/860 64 20.93 1.37
128 9.72 2.96

CM-2 16K 37.0 0.78
32K 18.2 1.58
64K 11.4 2.52

CM-200 8K 45.6 0.63
CS-1 16 170.0 0.17
MP-1 16K 19.6 1.47

Table 5: Results of the 3-D FFT PDE (FT) Bench-
mark

long-distance communication performance.
The rules of the NAS Parallel Benchmarks specify

that assembly-coded, library routines may be used to
perform matrix multiplication and one-dimensional,
two-dimensional or three-dimensional FFTs. Thus
this benchmark is somewhat unique in that compu-
tational library routines may be legally employed.

Results, for problem size 2562 × 128, are shown in
Table 5. Intel results are due to E. Kushner of Intel.
CM-2 and CM-200 results are due to J. Richardson of
TMC.

6. The Integer Sort Benchmark
This benchmark tests a sorting operation that is

important in “particle method” codes. This type of
application is similar to “particle in cell” applications
of physics, wherein particles are assigned to cells and
may drift out. The sorting operation is used to reas-
sign particles to the appropriate cells. This benchmark
tests both integer computation speed and communica-
tion performance.

This problem is unique in that floating point arith-
metic is not involved. Significant data communication,
however, is required. Results, for problem size 223, are
shown in Table 6. Intel results are due to to E. Kush-
ner of Intel. CM-2 results are due to L. Dagum of
NAS.



Computer No. Memory Time Ratio to
System Proc. (mwords) (sec.) Y-MP/1
Y-MP 1 31.1 11.46 1.00

8 31.1 1.85 6.19
Y-MP EL 1 31.1 153.9 0.07

4 31.1 41.5 0.28
C-90 1 31.1 5.20 2.20

4 31.1 1.42 8.07
16 31.1 0.57 20.1

iPSC/860 32 25.72 0.45
64 17.26 0.66

128 13.59 0.84
CM-2 8K 215.1 0.05

16K 111.5 0.10
32K 56.0 0.20

MP-1 16K 75 0.15
CS-1 16 62.7 0.18

Table 6: Results of the Integer Sort (IS) Benchmark

7. The Three Simulated CFD Application
Benchmarks

The three simulated CFD application benchmarks
are intended to accurately represent the principal com-
putational and data movement requirements of mod-
ern CFD applications.

The first of these is the called the lower-upper di-
agonal (LU) benchmark. It does not perform a LU
factorization but instead employs a symmetric suc-
cessive over-relaxation (SSOR) numerical scheme to
solve a regular-sparse, block (5 × 5) lower and up-
per triangular system. This problem represents the
computations associated with a newer class of implicit
CFD algorithms, typified at NASA Ames by the code
“INS3D-LU”. This problem exhibits a somewhat lim-
ited amount of parallelism compared to the next two.

The second simulated CFD application is called the
scalar pentadiagonal (SP) benchmark. In this bench-
mark, multiple independent systems of non-diagonally
dominant, scalar pentadiagonal equations are solved.
The third simulated CFD application is called the
block tridiagonal (BT) benchmark. In this bench-
mark, multiple independent systems of non-diagonally
dominant, block tridiagonal equations with a 5 × 5
block size are solved.

SP and the third simulated CFD application (BT)
are representative of computations associated with the
implicit operators of CFD codes such as “ARC3D” at
NASA Ames. SP and BT are similar in many respects,
but there is a fundamental difference with respect to

Computer No. Memory Time Ratio to
System Proc. (mwords) (sec.) Y-MP/1
Y-MP 1 32.3 333.5 1.00

8 32.3 49.50 6.74
Y-MP EL 1 32.3 1449 0.23

4 32.3 522.3 0.64
C-90 1 32.3 157.6 2.12

4 32.3 43.94 7.59
16 32.3 17.62 18.93

TC2000 62 3032 0.11
iPSC/860 64 12 690.8 0.48

128 16 442.5 0.75
CM-2 8K 14 1307 0.26

16K 14 850.0 0.39
32K 14 572.0 0.58

CS-1 16 2937 0.11
MP-1 4K 1958 0.17
MP-2 4K 658 0.51

Table 7: Results for the LU Simulated CFD Applica-
tion

the communication to computation ratio.
Performance figures for the three simulated CFD

applications, for problem size 643, are shown in Tables
7, 8 and 9. Timings are cited as complete run times,
in seconds, as with the other benchmarks. A complete
solution of the LU benchmark requires 250 iterations.
For the SP benchmark, 400 iterations are required.
For the BT benchmark, 200 iterations are required.

Intel and CM-2 results are due to S. Weeratunga, R.
Fatoohi, E. Barszcz and V. Venkatakrishnan of NAS,
except that BT and SP results on the Intel are due to
BCS.

8. Other Results
As far as we have been able to determine, the tim-

ings presented above all represent runs that fully com-
ply with the rules and restrictions stated in the bench-
mark document [3]. One of these rules is that except
for a short list of mathematical functions, assembly
language and assembly-coded library routines may not
be used for computation. The exceptions include the
standard Fortran intrinsic functions, as well as rou-
tines to perform dense matrix multiplication and fast
Fourier transforms.

There are several reasons for these restrictions on
assembly code. First of all, without restrictions of
some sort, an entire benchmark might be implemented
in assembly-level code. While such performance re-



Computer No. Memory Time Ratio to
System Proc. (mwords) (sec.) Y-MP/1
Y-MP 1 9.2 471.5 1.00

8 9.2 64.60 7.30
Y-MP EL 1 9.2 2026 0.23

4 9.2 601.9 0.78
C-90 1 9.2 184.7 2.55

4 9.2 49.74 9.48
16 9.2 13.06 36.10

TC2000 112 880.0 0.54
iPSC/860 64 667.3 0.71

128 449.5 1.05
CM-2 8K 3900 0.12

16K 2104 0.22
32K 1080 0.44

CS-1 16 2975 0.16
MP-1 4K 1772 0.27
MP-2 4K 668 0.71

Table 8: Results for the SP Simulated CFD Applica-
tion

Computer No. Memory Time Ratio to
System Proc. (mwords) (sec.) Y-MP/1
Y-MP 1 42.3 792.4 1.00

8 42.3 114.0 6.95
Y-MP EL 1 42.3 4033 0.20

4 42.3 1208 0.66
C-90 1 42.3 356.9 2.22

4 42.3 96.10 8.25
16 42.3 28.39 27.91

TC2000 112 1378 0.58
iPSC/860 64 714.7 1.11

128 414.3 1.91
CM-2 16K 3328 0.24

32K 1914 0.41
CS-1 16 2984 0.27
MP-1 4K 2420 0.33
MP-2 4K 870 0.91

Table 9: Results for the BT Simulated CFD Applica-
tion

Computer No. Time Ratio to
Benchmark System Proc. (sec.) Y-MP/1
IS CM-2 16K 35.8 0.32

32K 21.0 0.55
64K 14.9 0.77

CM-200 64K 5.7 2.01
LU CM-2 16K 868.0 0.38

32K 546.0 0.61
SP CM-2 16K 1444 0.33

32K 917.0 0.51
64K 640.0 0.74

BT CM-2 16K 1118 0.71
32K 634.0 1.25
64K 370.0 2.14

CM-200 16K 832.0 0.95
32K 601.0 1.32

Table 10: Unofficial TMC Results Using Library Rou-
tines

sults might be interesting, they would hardly be in-
dicative of the performance that a scientist could rea-
sonably expect on a full-scale application program.
One reason that only the above-mentioned routines
are allowed is that in our experience only these are
generally available on new systems. For more spe-
cialized library routines, it is difficult to determine
whether they are truly general purpose, i.e. not re-
lying on a specific data layout. Furthermore, even if
an assembly-coded library routine can be utilized for
an inner computational kernel, this does not help the
large mass of additional coding that comprises a full-
scale application. In short, the tuning rules for the
NPB reflect our expectation (and experience) that real
scientific applications consist largely of Fortran or C
code, and that usage of library routines is restricted to
a handful of widely available mathematical functions.

Nonetheless, some scientists have attempted im-
plementations of the NPB using library routines be-
yond the ones allowed in [3]. In particular, Thinking
Machines, Inc. has obtained performance results us-
ing assembly-coded library routines for several of the
NPB. Their implementation of the IS benchmark, for
example, runs more than twice as fast as reported in
Table 6, and their rates for the BT benchmark are
nearly three times as fast as reported in Table 9. Some
of these results are shown in Table 10 [4].

9. Sustained Performance Per Dollar
One aspect of the relative performance of these sys-

tems has not been addressed so far, namely the differ-



Computer No. Ratio to Perf. per
B’mark System Proc. Y-MP/1 million $
FT C-90 16 31.60 0.87

Y-MP 8 6.87 0.27
iPSC/860 128 2.96 0.99
CM-2 32K 2.52 0.50
MP-1 16K 1.47 1.47
CS-1 16 0.17 0.57

LU C-90 16 18.93 0.53
Y-MP 8 6.74 0.27
iPSC/860 128 0.75 0.25
CM-2 32K 0.58 0.12
MP-2 4K 0.51 1.02
CS-1 16 0.11 0.37

Table 11: Approximate Sustained Performance Per
Dollar

ences in price between these systems. We should not
be too surprised that the Cray C-90 system, for ex-
ample, exhibits superior performance rates on these
benchmarks, since its current purchase price is much
higher than that of the iPSC/860 and the CM-2.

One way to compensate for these price differences
is to compute sustained performance per million dol-
lars, i.e. the performance ratio figures shown in Tables
2 through 9 divided by the purchase price in millions.
Some figures of this type are shown in Table 11 for two
of the benchmarks, the FT benchmark and the LU
benchmark and for five different systems. They are
based on 36 million, 25 million, 3 million, 5 million,
1 million, 500,000 and 300,000 U.S. dollars, respec-
tively, for the Cray C-90, the Cray Y-MP, the Intel
iPSC/860, the CM-2, the Maspar MP-1, the Maspar
MP-2 and the Meiko CS-1. These are approximate
current prices, obtained from vendor personnel, for
complete systems with 16, 8, 128, 32K and 16K, 4K
and 16 processors, respectively, with one, two, one,
four, one, 0.25 and 0.5 gigabytes of main memory, re-
spectively, and with a typical set of peripherals. Be-
cause of the approximate and changeable nature of
these prices, and because the memory sizes, disk ca-
pacities and I/O performances of these systems are
certainly not equivalent, the figures in the last column
of Table 11 should be interpreted as only very rough
indications of sustained performance per dollar.

10. Conclusions
With some algorithmic experimentation and tun-

ing, respectable NPB performance rates have been
achieved on several multiprocessor systems. The 16

processor Cray C-90 system is consistently the high-
est performing system tested, far surpassing any of
the highly parallel systems. The Intel 128 proces-
sor iPSC/860 system and the 32K CM-2 system each
show promise, but they do not yet demonstrate sus-
tained performance comparable to full Cray systems.
Instead, in both cases their rates appear to be equiva-
lent to about one or, in some cases, two Y-MP proces-
sors. When sustained performance rates are normal-
ized by system prices, the situation is somewhat dif-
ferent: the highly parallel systems are approximately
on a par with the Cray systems.

The Cray NPB performance results uniformly are
large fractions (in some cases over fifty percent) of the
theoretical peak performance of these systems. By
contrast, the NPB performance rates on the highly
parallel systems are typically only two to five per-
cent of the theoretical peak performance of these sys-
tems. Reasons for the low sustained-to-peak ratios on
the highly parallel systems are not hard to identify:
immature compilers, insufficient bandwidth between
processors and main memory, and insufficient band-
width between separate processing nodes. Clearly the
challenge of the highly parallel vendors is to alleviate
these bottlenecks in future editions of their systems.

Some scientists have suggested that the answer
to obtaining high performance rates on highly par-
allel computers is to substitute alternative algorithms
that have lower interprocessor communication require-
ments. However, it has been the experience of the sci-
entists in our research group that a certain amount of
long-distance communication is unavoidable for these
types of applications. Alternative algorithms that
have higher computation rates usually require more
iterations to converge to a solution and thus require
more overall run time. Clearly it is pointless to employ
numerically inefficient algorithms merely to exhibit ar-
tificially high performance rates on a particular paral-
lel architecture [1].



References

[1] D. H. Bailey, “Twelve Ways to Fool the Masses
When Giving Performance Results on Parallel
Computers”, Supercomputing Review, August
1991, p. 54 – 55. Also published in Supercomputer,
September 1991, p. 4 – 7.

[2] D. H. Bailey, E. Barszcz, J. T. Barton, D. S.
Browning, R. L. Carter, L. Dagum, R. A. Fatoohi,
P. O. Frederickson, T. A. Lasinski, R. S. Schreiber,
H. D. Simon, V. Venkatakrishnan, and S. K. Weer-
atunga, “The NAS Parallel Benchmarks”, Intl.
Journal of Supercomputer Applications, v. 5, no.
3 (Fall 1991), pp. 63 – 73.

[3] D. Bailey, J. Barton, T. Lasinski, and H. Simon,
eds., “The NAS Parallel Benchmarks”, Technical
Report RNR-91-02, NASA Ames Research Center,
Moffett Field, CA 94035, January 1991.

[4] G. Bhanot, K. Jordan, J. Kennedy, J. Richardson,
D. Sandee and M. Zagha, “Implementing the NAS
Parallel Benchmarks on the CM-2 and CM200 Su-
percomputers”, Thinking Machines Corp, Cam-
bridge, MA 02142.

[5] S. Breit, W. Celmaster, W. Coney, R. Foster,
B. Gaiman, G. Montry and C. Selvidge, “The
Role of Computational Balance in the Implementa-
tion of the NAS parallel Benchmarks on the BBN
TC2000 Computer”, submitted to Concurrency,
April 1991.


