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ABSTRACT Neural architecture search (NAS) has significant progress in improving the accuracy of image
classification. Recently, some works attempt to extend NAS to image segmentation which shows preliminary
feasibility. However, all of them focus on searching architecture for semantic segmentation in natural
scenes. In this paper, we design three types of primitive operation set on search space to automatically
find two cell architecture DownSC and UpSC for semantic image segmentation especially medical image
segmentation. Inspired by the U-net architecture and its variants successfully applied to various medical
image segmentation, we propose NAS-Unet which is stacked by the same number of DownSC and UpSC on
aU-like backbone network. The architectures of DownSC andUpSC updated simultaneously by a differential
architecture strategy during the search stage. We demonstrate the good segmentation results of the proposed
method on Promise12, Chaos, and ultrasound nerve datasets, which collected by magnetic resonance
imaging, computed tomography, and ultrasound, respectively. Without any pretraining, our architecture
searched on PASCAL VOC2012, attains better performances and much fewer parameters (about 0.8M) than
U-net and one of its variants when evaluated on the above three types of medical image datasets.

INDEX TERMS Medical image segmentation, convolutional neural architecture search, deep learning.

I. INTRODUCTION

With the development and popularization of medical imaging
analysis equipment, including Magnetic Resonance Imag-
ing (MRI), Computed Tomography (CT), and ultrasound,
have become indispensable devices for medical institutions to
carry out disease diagnosis, surgical planning and prognosis
evaluation.MRI is the most widely used technique in the field
of radio imaging. One of the outstanding features of MRI
imaging is the wide variety of imaging sequences. In MRI,
the contrast of an image depends on the phase contrast pulse
sequence. The most common pulse sequences are T1 (spin-
lattice; that is, magnetization in the same direction as the
static magnetic field) weighted and T2 weighted spin (spin-
spin; transverse to the static magnetic field). An MRI may
yield different information compared with CT. There may be
risks and discomfort associated with MRI scans. Compared
with CT scans, MRI scans typically take longer and are
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louder, and they usually need the subject to enter a nar-
row, confining tube. Ultrasound imaging (ultrasonography)
uses high-frequency sound waves to view inside the body.
Unlike CT and MRI, the resolution of ultrasound images is
relatively low.

Medical image analysis is the first step in analyzing med-
ical images, which helps to make images more intuitive and
improves diagnostic efficiency. Medical image segmentation
is a critical step in the field ofmedical image analysis. In order
to provide a reliable basis for clinical diagnosis and pathology
research, and assist doctor to make a more accurate diagnosis,
it need to segment the parts of medical images we focus and
extract relevant features. Initially, medical image analysis was
donewith sequential application of low-level pixel processing
(e.g. region based method [1] or threshold based method [2])
and mathematical modeling to construct compound rule-
based systems that solved particular tasks [3]. The segmen-
tation results of this period are generally not semantically
labeled. In the era of deep learning, image segmentation
generally denotes semantic segmentation, which refers to the
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FIGURE 1. An example of bladder segmentation results by deep learning
method. (a) is the original bladder image, (b) is the segmentation result.

recognition of images at the pixel level (the object category to
each pixel in the image belongs is marked) [4], [5]. For exam-
ple, in Figure 1, the medical image in the left image consists
of the bladder wall and the other tissues, and the right image
is the result of its semantic segmentation, which divides the
pixel semantic object, i.e. the yellow-labeled bladder wall,
similarly, other organizations are considered as background
and to be marked purple. The most successful type of deep
learning models for image analysis to date are convolutional
neural networks (CNNs).
The mutual promotion of deep learning and big data and

cloud computing has brought much development to com-
puter vision [6]. CNN is the most commonly used neural
network in the field of computer vision which is proposed
to solve image classification problems. Image segmentation
is a common task in both natural and medical image analysis.
To tackle this, CNN can simply be used to classify each
pixel in the image individually, by presenting it with patches
extracted around the particular pixel, and produce a multi-
channels likelihood map of the same size as input image.
However, a huge memory will cost when keep the dimension
of feature maps all the time. More usually, a down-sampling
layer (such as max pooling and average pooling) is added
after several convolutional layers to reduce the dimension of
feature map and refine the high-level context. Unfortunately,
this may result in output with a far lower resolution than the
input. FCNs (Fully Convolutional Networks) [7] is one of
several methods proposed to prevent this decrease in reso-
lution. It was the first work to train end-to-end for pixel-wise
prediction by replace fully connected layers as a series of up-
sampling layers after convolutional layers. Classical CNNs
generally use a fully connected layer to obtain fixed-length
feature vectors after last convolutional layer, and put them
into a classifier (e.g. softmax layer). In contrast, FCNs can
accept any size of input image — the up-sampling layer after
the last convolutional layer can restore the dimension of its
inputs to the same as the input image, so that a prediction
can be generated for each pixel while preserving the spatial
information in the original input image, and finally pixel-by-
pixel classification on the up-sampling feature maps to the
expected image segmentation. Similar to FCNs, U-net [8]

consists of convolutional layers, down-sampling layers, and
up-sampling layers. Different from FCNs, the number of
down-sampling layers and up-sampling layers and convolu-
tion layers between them in the U-net is the same. In addition,
U-net uses the skip connection operation to connect each pair
of down-sampling layer and the up-sampling layer, which
makes the spatial information directly applied tomuch deeper
layers and a more accurate segmentation result.

From the earliest LeNet [9] to AlexNet [10], VggNet [11],
GoogleNet [12], ResNet [13] and the recent DenseNet [14],
the performance of CNN models getting stronger and more
mature. Many works have designed network structures for
specific tasks [15], [16].These popular network architectures
are currently designed by industry experts and scholars for
months or even years. This is because designing a network
architecture with excellent performance often requires a large
amount of knowledge in the field. The average researcher
does not have this capability, and the design process is time-
consuming and labor-intensive. Based on this, the focus of
current convolutional neural networks has move to neural
architecture search (NAS) [17]. NAS can be seen as subfield
of AutoML (auto machine learning) and has significant over-
lap with hyper-parameter optimization and meta-learning.
The present research on NAS focuses on three aspects: search
space, search strategy, and performance estimation strategy.
The search space defines which architectures can be rep-
resented in principle. Incorporating prior knowledge about
properties well-suited for task can reduce the size of the
search space and simplify the search task. For example,
in image classification, the search space includes the selection
of primitive operations at each searching step and the prior
backbone architecture used to define outer network. The
search strategy details how to explore the search space. The
objective of NAS is typically to find architectures that have
high evaluated performance on unseen data (e.g. split training
datasets into training and validation, and search architecture
on training but evaluated by validation) [17]. Much work
has been done on the NAS, most of which focus on image
classification task [18]–[23].

Although NAS has great potential in the field of computer
vision, the real promise depends on that can be extended to
deal with visual tasks other than image classification, in par-
ticular, computer vision core issues such as image seman-
tic segmentation, instance segmentation and object detection
which rely on high-resolution image input and multi-scale
image representation. Introducing NAS directly from image
classification to image semantic segmentation is not feasible:
firstly, the search space of classification task differ notably
from segmentation; secondly, the idea of transfer learning
from low to high image resolutions was unexpected [24].
A logical idea for solving the above two problems is build
specific search space for image segmentation and search
the architecture with high-resolution image. Some work has
been trying to solve the above two problems and achieved
some success — exactly the idea that recent work has
followed [24], [25].
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FIGURE 2. (a) U-Net architecture (b) The U-like backbone of Nas-Unet architecture, the rectangle represents cell architectures need to
search. Notice that both of DownSC and UpSC contain their down or up operation in NasUnet, and the green arrow merely represents the flow
of feature map (input image). The gray arrow is a transform operation belongs to UpSC and is also automatically searched.

In this paper, we propose new primitive operation sets for
medical image segmentation. Inspired by the success of U-net
and its variants in medical image segmentation, we use a
U-like architecture as our backbone network (which means
outlier network) and parallel search two cell-based architec-
tures (down-sampling cell and up-sampling cell) on PASCAL
VOC 2012 [26], denoted as DownSC and UpSC respectively.
Finally, we get our architecture denoted as NAS-Unet which
stackd by the same number of DownSC and UpSC. Our work
reveals that NasUnets are more efficient in the parameters
usage and get a much better performance than U-Net and
FC-DenseNet [27] (a variant U-Net) in all types of medical
image dataset we mentioned before. In summary, our contri-
butions are as follows:
1) This article is the first attempt to apply NAS to medical

image segmentation.
2) We propose different primitive operation sets for

DownSC and UpSC respectively on U-Like back-
bone network for searching. When done with search,
we empirically found that the standard skip connection
is replaced with cweight operation (see V-A) in our
UpSC architecture.

3) We show that the performance of NAS-Unet outper-
forms U-Net and one of its variants (FC-Densenet)
in all types of medical image segmentation datasets
we evaluated without using any pre-trained backbone.
The training time of NAS-Unet closes to U-Net, but
parameters amount is only 6%. FC-Densenet has twice
memory cost than ours.

We have released our code at https://github.com/
tianbaochou/NasUnet.

II. RELATED WORK

A. MEDICAL IMAGE SEGMENTATION

BASED ON MODERN CNNS

To our knowledge, Ciresan et al. [28]. first use Deep Neural
Network to medical image segmentation. A segmentation

stacks of electron microscopy images is token on using a con-
volutional neural network. ’patch’ is the key idea for finishing
segmentation — to segment an entire stack, the classifier is
applied to each pixel of every slice in a sliding window by
extracting a patch around the pixel. A drawback of this naïve
sliding-window approach is that input patches from neighbor-
ing pixels have plenty of overlap and redundant computation.
It is also noted in [28] that segmenting an entire stackwith that
approach is time-inefficiency, which takes at least 10 minutes
for an stack on four GPUs. Ronneberger et al. [8] rewrite the
fully connected layers as convolutions and attempt the same
task with better results. As show in Figure 2 (a), the authors
took the idea of FCNs [7] one step further and propose the
U-Net architecture, their design is based on encoder-decoder
network framework: a input images put into a encoder archi-
tecture to extract the high-level context and then that context
flow to a decoder architecture to restore the spatial informa-
tion and pixel classification results. Although this is not the
first work to use encoder-decoder (e.g. Shelhamer et al. [7]
use a pre-trained modern CNN networks as encoders and a
’up’ convolutional layer as decoders (FCNs-32) ) in convolu-
tional neural network, the authors combined it with horizontal
skip-connections to directly connect opposing contracting
and expanding convolutional layers.

After the U-Net network was proposed, it performs well in
the field of medical image segmentation. Many researchers
havemade various improvements on the. Çiçek et al. [29] first
proposed a 3D U-Net network architecture that implements
3D image segmentation by inputting a continuous 2D slice
sequence of 3D images. Milletari et al. [30] proposed a 3D
deformation architecture called V-net based on U-Net. The
V-Net architecture uses the Dice coefficient loss function
instead of the cross-entropy loss function, that directly mini-
mizes this commonly used segmentation error measure. The
authors have further introduced residual blocks to the origi-
nal U-shaped design. Both of above two methods extended
U-shaped architecture with 3D convolutional kernels.
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Drozdzal et al. [31] make a different between long skip
connections (which means a skip connection between two
feature maps that are far away) and short skip connections
(which usually called single residual block) and find that
both of them to be beneficial in creating deep architectures
for medical image segmentation. Simon et al. [27] combine
Densely Connected Convolutional Networks (DenseNets)
with U-shaped architecture by replacing the convolutional
layer as Dense Block in that backbone and extend to nature
image segmentation, and achieve a well-performance.

B. NEURAL ARCHITECTURE SEARCH

Designing a good neural network architecture is time-
consuming and laborious, in order to reduce the efforts and
resources cost on manually designing network architecture,
some scholars put their attention on neural architecture search
(NAS). Recently, most of works focus on search CNN archi-
tecture for image classification and few on RNN for lan-
guage task. As we mentioned before, NAS includes three
components: search space, search strategy, and performance
estimation. The search algorithms mainly includes heuris-
tic algorithm [19], [21], [32]–[34], reinforcement learning
[35]–[38], [38], [39], the Bayesian optimization method
[40], [41] and the gradient-based method [20], [42], [43].
Performance estimation can be understood from two aspects.
Firstly, the performance of the candidate architecture is eval-
uated to determine whether to be kept (or expanded) for the
next update. Secondly, we need a deeper network stacked
by the cells (when use cell-based search space) or current
candidate architecture and put training dataset into it for
training and to evaluate the final performance.
The network search space includes the topology of nodes

and operations between each connected node. The former
works try to directly build the entire network architec-
ture [36], [44]. However, since NASNet [37] successfully
stacks the cell together on ImageNet, more recent works
[20], [22], [23], [45], [46] prefer to search the repeatable cell
structure, but keep the backbone network fixed at first. The
latter can improve search efficiency. Recently, lots of work
on NAS have proposed many efficient algorithms to generate
the topology of nodes, while are predicated on powerful but
tractable architecture search spaces. In fact, if we have a rich
and not overly expansive search space, even use a random
searchmay achieve strong results [20], [40]. Therefore, in this
paper, we focus our effect on constructing the cell-based
level search space for medical image segmentation. In addi-
tion, we use current differential architecture search methods
[20], [22] as our search algorithm to accelerate our search
process.

C. NAS APPLICATION ON IMAGE SEGMENTATION

NAS has mainly solved image classification tasks since it
was proposed. A few work recently applied NAS to image
segmentation. Chen et al. [24] first introduce NAS to solve
image segmentation. The authors show that even with ran-
dom search on constructing a recursive search space, the

architecture search outperforms human-invented architec-
tures and achieves better performance on many segmen-
tation datasets. However, this work does not use one-shot
searching, which focused on search a small Atrous Spatial
Pyramid Pooling (ASPP) module called DPC (similar as
decoder) and fix the pre-trained backbone (modified Xcep-
tion) as encoder. Liu et al. [25]. propose Auto-DeepLab:
a general-purpose network level search space, and jointly
search across two-level hierarchy (network level and cell
level architecture). The authors indicate that search space
includes various existing designs such as DeepLabv3, Conv-
Deconv and Stacked Hourglass. However, the search space of
Auto-DeepLab does not include U-Net architecture, which is
the most famous architecture in the field of medical image
segmentation.

The most similar work to ours is [27], which use dense
blocks to replace convolutional layers both in contracting
stage and expanding stage. However, we replace all pre-
designed block with cells searched by NAS method.

III. CELL-BASED ARCHITECTURE SEARCH SPACE

In this section, we begin by describing the common represen-
tation of the CNN architecture we used. We will show how
to represent a cell architecture as a DAG. After that, we will
introduce our search space for medical image segmentation.
Finally, we will introduce two types of cell architecture in
detail.

A. CNN ARCHITECTURE REPRESENTATION

A directed acyclic graph (DAG) is used to represent the
network topology architecture, in which each node hi rep-
resents input image or a feature map and each edge eij
is associated with an operation between (e.g. convolution
operation, a pooling operation and a skip connection) node
hi and node hj. When the generation method of the DAG
is unrestricted, its network architecture space will be very
large, which will bring great challenges to the present search
algorithm. Therefore, we use cell-based architecture. When
determining the best cell architecture, we can stack the cells
into a deeper network on the backbone network. In other
words, the architecture of cell is shared by entire network.

B. SEARCH SPACE FOR MEDICAL IMAGE SEGMENTATION

In this section, we will introduce our selection of primitive
operation set for DownSC and UpSC architecture. After that,
we will describe how to construct them.

1) THE SELECTION OF PRIMITIVE OPERATIONS

How to choose suitable primitive operations? We have inves-
tigated the popular CNN architecture and the formerNAS that
has great success on image classification, and summary the
important standard for selecting primitive operations in our
work:

1) No redundancy: It means that each primitive opera-
tion should has some unique properties that cannot be
replaced by the others. Although some works [25], [34]
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show that 5× 5 convolution may be considered during
the searching. Large receptive fields such as 5× 5 size
convolution and 7×7 size convolution can be replaced
by stacking enough 3×3 size convolutions. Therefore,
all convolution operation will limit to 3 × 3 size and
pooling operation is 2 × 2.

2) Less parameters: It means consuming less mem-
ory resources during the search process; The original
U-Net need about 31 million parameters, it was huge
for mobile device. In our work, depthwise-separable
convolution operation will be introduced since it
will dramatically reduce network parameters without
sacrificing network performance.

When set the sliding step (stride value) as 2, the convolu-
tion operation can halve the dimension of feature map or dou-
ble the dimension, the later called ‘Up’-convolution. This
indicates that the down operation and up operation can be
derived from the same base operation. In contrast, differ-
ent from the primitive operations in image classification,
the ‘up’-version of some operations make no sense (e.g. the
identity operation) and the ‘up’-version of pooling operations
(e.g. the average pooling and max pooling) do not exist.
For the sake of convenience, we build 3 different types of
primitive operation set.

TABLE 1. Three types of primitive operation set used for searching cells.
Note that all the size of convolutional operations include cweight
operation is 3 × 3 and pooling operation is 2 × 2.

As the Table 1 show, the depth conv indicates depthwise-
separable operation and other operation, except dilation
conv [47] and cweight [48], are prevalent in current
NAS methods. Cweight operation indicates squeeze-and-
excitation [48] operation. In earlier CNN architecture, the fea-
tures we generate for all channels are directly combined
evenly. A natural next step is to automatically learn the
weights of every channel. It is exactly what the squeeze-
and-excitation operation does. The squeeze-and-excitation
operation suppresses some redundant features and enhances
useful features by assigning weights to feature channels.
Down cweight operation and up cweight operation would
halve or double the dimension of feature map before channels
re-weighted. It’s worth to notice that when the former NAS
articles show their good architecture have searched on image
classification tasks, dilation (atrous) convolution operation
almost not appear. However, the original intention of this
operation is to solve the problem of image segmentation.
As we mentioned before, different from image classifica-
tion tasks, search the architecture with image segmentation

need high-resolution input. A huge memory consumption is
undoubtedly obvious. For example, an 512× 512 image cost
about 3 GB GPUmemory to predict result use original U-Net
architecture, batch size no more than 4 when load model on
12GB Titan pascal GPU.

We use the Conv-ReLU-GN order for all convolutional
operations. GN indicates group normalization [49], as the
Wu et al. show that this normalization is better than batch nor-
malization, especially when the batch size is much smaller.
Since the batch size of segmentation task ismuch smaller than
image classification, we use group normalization instead of
batch normalization.

FIGURE 3. An example of cell architecture. The red arrow indicates an
down operation (such as max pooling), the blue arrow indicates the
normal operation (e.g. identity operation, convolution operation which no
reduce the dimension of feature map) and the green arrow represents a
concatenate operation.

C. TWO TYPES OF CELL ARCHITECTURE

As show in Figure 2 (b), we design two types of cell architec-
tures called DownSC and UpSC based on U-like backbone.
Inside both of two cells, the input nodes are defined as the
cell outputs in the previous two layers [20], [37]. As shown
in Figure 3, all operations adjacent to the input nodes are
either Down POs or Up POs. Let H = hi be the set of M
intermediate nodes (or called feature map layers). Same to
DARTs [20], the total number edges between all intermediate
nodes and input nodes is E = 2M +M (M − 1)/2.
On the contracting step, we link L1 cells to learn the

different level of semantic context information, and produce
a much smaller probability map denoted DCout . Similarly,
on the expanding step, we use the same number of cells to
restore the spatial information of each probability value in
DCout and expand them consistent with input image. The
total number of cells in final network denoted Nas-Unet is
L = 2L1. Unlike FC-densenet architecturec [27], we not only
replace the convolution layers as these cells, but also move
up-sampling operation and down-sample operation into the
cells. In other word, both normal operation (such as identity
operation) and up/down-sample operations are considered
into the cells. As shown in Figure 2 (b), the transform is also a
operation from Norm POs in UpSC. Our search space covers
many popular U-like architecture, such as U-Net [8] and
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FC-DenseNet [27]. It’s worth to notice that original U-Net
architecture has an additional convolution layer at the middle
of network. However, in our article, we do not follow this
experience, since we have a strictly symmetric architecture
stacked by the serval number of two pair of cells.

IV. SEARCH STRATEGY

We first describe how to construct an over-parameterized
network with all candidate path using recent works
[20], [22], [50]. We then introduce a more efficient archi-
tecture parameters update strategy for saving GPU (since the
CPUs is much slower for searching process, we have to use
GPUs) memory [50].

FIGURE 4. An example of Over-Parameterized Cell Architecture. each
edge assosicate with N candidate operations from different primitive
operation sets.

A. OVER-PARAMETERIZED CELL ARCHITECTURE

Given a cell architecture C(e1, · · · , eE ) where ei represents a
certain edge in the DAG. Let O = oi be one of three types of
primitive operation set in the above with N candidate oper-
ations. Instead of setting each edge associates with definite
operation, we set each edge to be a mixed operation that has
N parallel paths (As shown in Figure 4), denoted as MixO.
Therefore, the over-parameterized cell architecture can be
expressed as C(e1 = MixO1, · · · , eE = MixOE ). The output
of a mixed operation MixO is defined based on the output of
its N paths:

MixO(x) =

N∑

(i=1)

wioi(x). (1)

As shown in Eq 1, wi indicates the weight of oi, in
One-Shot [50] is constant 1, but in DARTS [20] is calculated
by applying softmax toN real-valued architecture parameters
{αi} : eαi/

∑
j e

αj . The initial value of αi is 1/N .

B. A GPU MEMORY SAVING UPDATE STRATEGY

In the above, an output of each edge is a mixed operation
for N candidate primitive operations, which means the output

feature maps of all N paths can only be calculated when
all operations are loaded into the GPU memory. However,
training a compact model only use one path. As such, [20]
and [50] roughly need N times GPU memory compared to
training a compact model. In this paper, we use a binary gate
proposed by Cai et al. for learning binarized path instead of
N path [22]. The difference between DARTS and binary gate
method (denote ProxylessNAS) is that the former update all
of the architecture parameters by gradient descent at each
step, but the latter only update one of them. As show in
Figure 5, When training network weight parameters, we first
freeze the architecture parameters and stochastically sample
binary gates for each batch of input data. Then the weights
parameters of active paths are update via standard gradients
descent on the training dataset. When training architecture
parameters, the weight parameters are frozen, then we reset
the binary gates and update the architecture parameters on
the validation set (Figure 5 (a)). These two update steps
are performed in an alternative manner. Once the training
of architecture parameters is finished, we can then derive
the compact architecture by pruning redundant paths. In this
work, we simply choose the path with the k (k = 2, for our
works) highest path weight as inputs. In summary, in this way,
regardless of the value of N , only two paths are involved in
each update step of the architecture parameters, and thereby
the memory requirement is reduced to the same level of train-
ing a compact model. It’s worth to notice that ProxylessNAS
method only considers two paths for updating at each update
step, which will result in the trained degree of operation not
on the two paths being much lower than the operation on.
Therefore, we need more iteration for updating. In addition,
a extra time costs at moving feature map not in GPU memory
to GPU.

V. EXPERIMENTAL RESULTS

Herein, we report the details of how to implement NAS-Unet.
After that we will report the medical image segmentation
results on benchmark dataset with our network stacked by
best-found cells.

A. NASUNET IMPLEMENTATION DETAILS

We consider the number of intermediate M = 4 in
both DownSC and UpSC, and the total number of cells
L = 2L1 = 8. The DownSC search space is approximate 66+
58 = 437281, and the UpSC search space about 66 + 48 =

112192. So the total size of the search space is in the order of
1010, which is much smaller than [25]. Unlike DARTS, we do
not follow the practice of doubling the number of filters when
halving the height and width of feature map.
We conduct architecture search on the PASCAL VOC

2012 dataset [26] for medical image segmentation. More
specifically, we use 480× 480 random image crops. We ran-
domly select half of the images in training set as validation
set. When we use DARTS search strategy, the batch size is
2 and the architecture search optimization is conducted for
a total of 120 epochs. A batch size can be 8 when we use
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FIGURE 5. The different update strategy between DARTS and ProxylessNAS. (a) only update one path when updating
weight parameters, but (b) update all path.

binary gate update strategy, but a much 200 epochs is needed
(see section IV-B).

Because this article focuses constructing an efficient cell
search space for medical image segmentation, any method of
differential search strategy will be work [20], [22], [23], [50].
We want to search proxy cell architectures on a much com-
plicated image dataset (PASCALVOC 2012 dataset [26]) and
transfer it to medical image datasets. So in our experiments,
we use DARTS update stratgy. It is also feasible to use the
ProxylessNAS, but need search these datasets respectively.
When learning network weight w, we use SGD optimizer

with momentum 0.95, cosine learning rate that decays from
0.025 to 0.01, and weight decay 0.0003 [20]. When learning
the architecture α, we use Adam optimizer [51] with learning
rate 0.0003 and weight decay 0.0001. We empirically found
that the Mean Intersection over Union (mIoU) and the Pixels
Accuracy (pixAcc) is increase slowly (Figure 6), when we
both optimize α from the beginning or follow [25] — start-
ing optimizing after a constant epoch (such as 50). There-
fore, we optimize α at the beginning. The entire architecture
search optimization takes about 1.5 days on one Titan Pas-
cal GPU. The DownSC and UpSC we searched are shown
as Figure 7(a) and (b).

From the Figure 7, We can see that the search processing in
our search space more inclined to choose the ‘cweight’ ver-
sion operation (include down cweight operation, up cweight

operation and cweight operation), since the ‘cweight’ version
operation accounted for a large proportion in both DownSC
and UpSC architecture. It’s worth noting that the cweight
operation replaces the standard skip connection to pass high
resolution information (include more accuracy spatial infor-
mation and high-level semantic information) between the
down-sampling and the up-sampling paths (it is exactly the
gray arrow indicate transform in Figure 2 (b)). It means that
passing high resolution information is not a simple concate-
nation, but a weighted-concatenation.

B. MEDICAL IMAGE SEGMENTATION RESULTS

To evaluate the performance of NAS-Unet, we use three
types of medical image datasets (Magnetic Resonance Imag-
ing (MRI), Computed Tomography (CT), and ultrasound):
Promise12 [52], Chaos [53] and NERVE [54] datasets. The
weights of all the model were updated by minimizing nega-
tive the Dice Similarity Coefficient (DSC) function denoted
Dice Loss. We use both the DSC and the Mean Intersection
over Union (mIOU) to evaluate model performance. The
baseline methods are U-Net [8], FC-Densenet [27]. For the
sake of fairness, we re-implement them by Pytorch [55] and
use the same data augmentation(we also try to improve the
quality of some noisy images [56], [57]). In addition, We use
the same Adam optimizer with initial learning rate 3.0e-4 and
weight decay 5.0e-5 and train for 200 epochs.
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FIGURE 6. The validation loss and mIoU of candidate best architecture network stacked by DownSC and UpSC on PASCAL
VOC2012 dataset.

FIGURE 7. The cell architecture searched when the intermediate number
is 4 and search on PASCAL VOC2012 dataset. (a) is DownSC architecture
and (b) is UpSC architecture. The ck−1 and ck−2 indicate the previous two
cells in DownSC, but the previous cell and horizontal pre-correspondence
cell in UpSC.

1) PROMISE12

Promise12 [52] contains 50 training cases and these cases
include a transversal T2-weighed MR image of the prostate.
Training set has about 1250 images with corresponding labels
(only the voxel values 0 and 1). Each 2d MRI slice is resized
to dimension 256 × 256 and histogram equalized using
contrast limited adaptive histogram equalization (CLAHE).
The training dataset is divided into 40 training cases and
10 validation cases. As shown in the Table 2, our models
outperform all the baseline methods and without any pre-
training. The Train Time and GM represent the train time

TABLE 2. Promise12 validation set results.

cost (total days and hours) when batch size is 2 and the GPU
memory costs when batch size is 2 repsectively (so as to the
following tables).

2) CHAOS

Chaos [53] challenge will be held in The IEEE International
Symposium on Biomedical Imaging (ISBI) on April 8-11,
2019 Venice, ITALY. The challenge will start at the ISBI
conference. Two databases (Abdominal CT and MRI) will
be used in five competition and we choose two: Liver Seg-
mentation (CT only) and Segmentation of abdominal organs
(MRI only). The first challenge is segmenting liver from
computed tomography (CT) data sets, and the second is seg-
menting four abdominal organs (i.e. liver, spleen, right and
left kidneys) from magnetic resonance imaging (MRI) data
sets. Each data set in these two databases corresponds to a
series of DICOM images belonging to a single patient. The
first database contains CT images of 40 different patients.
In total, 2874 slices (each slice is 512 × 512 ) will be
provided for training and 1408 slices will be used for tests.
The second database includes 120 DICOM data sets from
two different MRI sequences (T1-DUAL in phase (40 data
sets), out phase (40 data sets) and T2-SPIR (40 data sets)).
The data sets have a resolution 256× 256 and the number of
slices is between 26 and 50 (average 36). In total, 1594 slices
(532 slice per sequence) will be provided for training and
1537 slices will be used for the tests.

As for now, we use CT images for 2874 slices and MR
images for 940 slices for evaluate our model. As show
in Table 3, our models achieve a better performance than
all baseline methods on both CT images and MR images
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FIGURE 8. An example of two contradictory images, (a) is similar to (b), but without no-empty mask. As with all
human-labeled data, potential mistakes in the ground truth is easy to happen.

TABLE 3. Chaos validation set results on CT images and MR images.

without any pre-training. It is worth to mentioning that in MR
images dataset, we have improved the im-balance categories
problems ( the frequency ratios of these five categories is
1066 : 40 : 3.7 : 4.1 ) by re-weighting five categories into
dice loss function. The batch size also set to 400.

3) ULTRASOUND NERVE

Ultrasound nerve segmentation is a Kaggle challenge in 2016.
The task in this competition is to segment a collection
of nerves called the Brachial Plexus (BP) in ultrasound
images. Some images (about 60% of the training set) do
not contain the Brachial Plexus area. The images have a
size of 580 × 420 pixels. There are 5635 training images
and 5508 test images (of which 20% were used for public
ranking and 80% for the final ranking). The training dataset

contains many contradictory images which means that two
images that are very similar but with one image having a non-
empty mask and the other one has an empty mask (as show
in Figure 8). Therefore, we follow the Juliean’s methods [58]
to remove contradictory images by computing a signature
for each image. After that the disimilary is the the cosine
distance between the two signature vectors of two images.
This results in a distance matrix for all the training set images,
which is then thresholded to decide which images should be
removed. In the end, we kept 4456 training images (out of
the 5635). Finally, we random split 0.2 of training images
as validation set. As show in Table 4, our models achieve
a better performance than all baseline methods without any
pre-training.

TABLE 4. Nerve dataset validation set results.

VI. CONCLUSION

In this paper, we attempt to extend Neural Architecture
Search to medical image segmentation.We design three types
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of primitive operation set for our search space and search cell-
based architecture stacked byDownSC andUpSC.We choose
U-like backbone (our search space includes U-net and lots
of its variants) to search on and introduce a memory-saving
search algorithm (Binary gate) [22] to accelerate the search
process. The results of the search, NAS-Unet, is evalu-
dated by training on medical image segmentation datasets
from scratch. On Promise12, NAS-Unet significantly outper-
forms the baseline methods. On Chaos and Ultrasound Nerve
NAS-Unet also outperforms than these baseline methods.
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