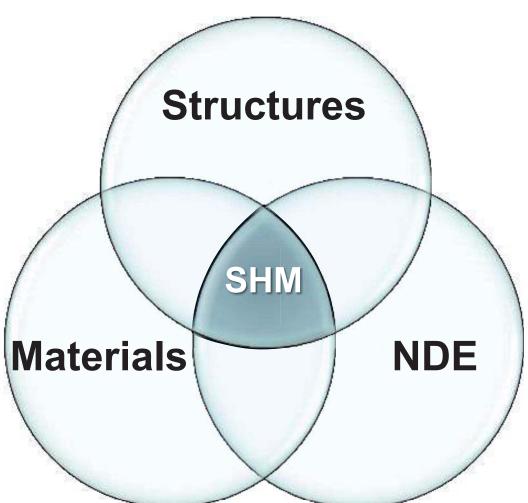
# NASA Applications of Structural Health Monitoring Technology


W. Lance Richards<sup>1</sup>, Eric Madaras<sup>2</sup>, William H. Prosser<sup>3</sup>, and George Studor<sup>3</sup>

NASA Dryden Flight Research Center, Edwards, California NASA Langley Research Center, Hampton, Virginia NASA Engineering and Safety Center, Hampton, Virginia NASA Johnson Space Center, Houston, Texas

## NASA Focused Structural Health Monitoring

## **Key Drivers**

Vehicle-focused
Real-time,
decision-making
Online processing
Onboard systems
Lightweight,
Small size,
Low power,
System solutions



## Enabling Technologies

**Advanced Sensing** 

- Multi-parameter
- Sensor arrays
   Advanced Systems
   and Processing
- Solid state
- Rugged
- High SpeedUltra-EfficientAlgorithms





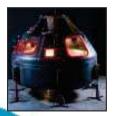




# SHM Aerospace Vehicle Applications






Launch

**Vehicles** 

Space Shuttle Orbiter

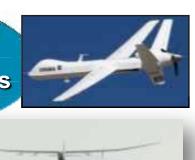


International
Space
Station



Composite Crew Module

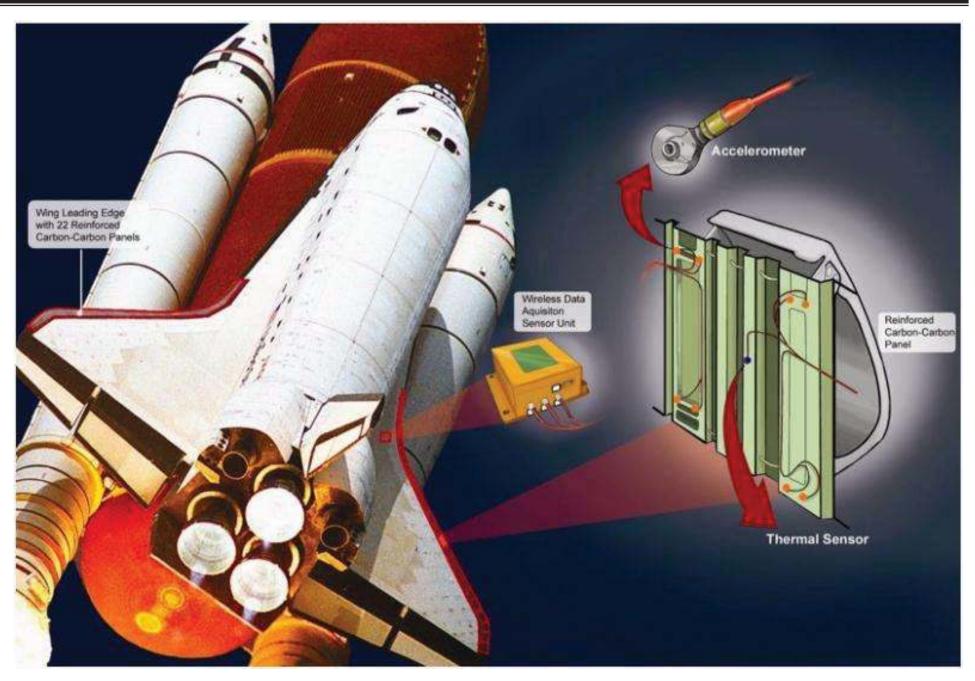
Vehicle Pressure Systems


> Reentry Vehicles



Uninhabited Aerial Vehicles

**Space Vehicles** 

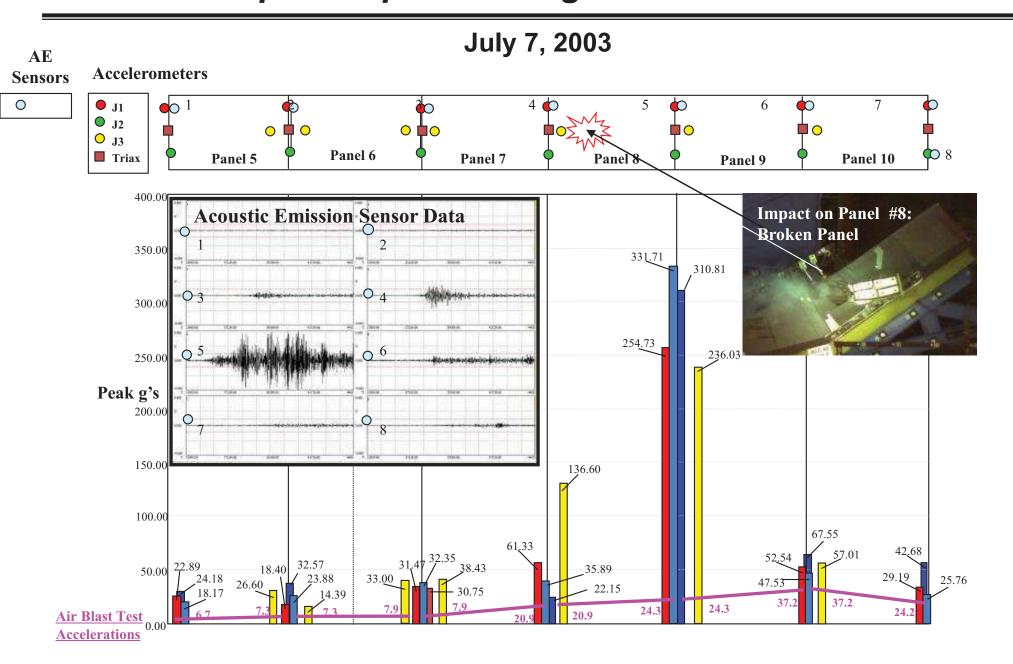





## **Topics**

- Structural Health Monitoring
  - Definition
  - SHM vs NDE
- Agency Overview of SHM Activities
  - Accel & Acoustic-based SHM on STS (Prosser, NESC)
  - Wireless-based SHM on ISS / STS (Studor, JSC)
  - Piezo-based SHM on ISS (Madaras, LaRC)
  - Fiber-optic-based SHM on Aerospace Vehicles (Richards, DFRC)
    - Uninhabited Aerial Vehicles
    - Composite Crew Module
    - Reentry Vehicles
    - Space Vehicles
    - Vehicle Pressure Systems
    - Expendable Launch Vehicles

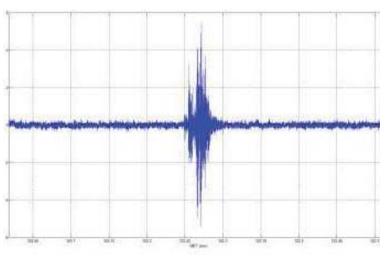
# Space Shuttle Orbiter Wing Leading Edge Impact Detection System (WLEIDS)




# Wing Leading Edge Impact Detection System (WLEIDS) Development

- Columbia accident investigation testing
  - Recovery of DFI sensor data on MADS focused impact testing on RCC
- Additional impact testing
  - Ascent impacts
  - MMOD impacts
- Vehicle testing
- System development and implementation
- Flight results




# Columbia Accident Investigation Catastrophic Impact Damage Test on RCC Panel 8



# WLEIDS Operations

- Installed on all Shuttles
- Successfully flown on all flights since Columbia
- Detected small impacts during ascent
  - Small amplitude, nondamaging
  - Likely popcorn foam
- Detected several small MMOD impacts



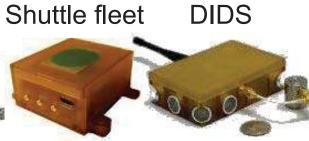


WLEIDS probable impact signal

## **Topics**

- Structural Health Monitoring
  - Definition
  - SHM vs NDE
- Agency Overview of SHM Activities
  - Accel & Acoustic-based SHM on STS (Prosser, NESC)
  - Wireless-based SHM on ISS / STS (Studor, JSC)
  - Piezo-based SHM on ISS (Madaras, LaRC)
  - Fiber-optic-based SHM on Aerospace Vehicles (Richards, DFRC)
    - Sensor Development
    - Strain-based Parameter Development
      - Shape, Loads, Liquid Level, Magnetic Field
    - Sensor Attachment / Characterization
    - System Development
    - Ground / Flight Applications

## Space Shuttle / ISS Evolution of Micro-WIS Systems


ISS assembly











| System                | MicroWIS<br>(SBIR)                                                               | Extended Life<br>MicroWIS                                                        | MicroSGU /<br>MicroTAU                                                                          | Wideband<br>MicroTAU                                                             | Enhanced WB<br>MicroTAU                                                          | Ultra-sonic WIS<br>(new Ph2 SBIR)           |
|-----------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------|
| <b>Date Certified</b> | 1997                                                                             | 2001                                                                             | 2000/2001                                                                                       | 2002                                                                             | 2005                                                                             | 2007                                        |
| Purpose               | IVHM                                                                             | Thermal Models                                                                   | Cargo Loads<br>Cert Life<br>Extension                                                           | MPS Feedline<br>Dynamics                                                         | Wing Leading<br>Edge Impacts                                                     | ISS Impact/Leak<br>Monitoring               |
| Dimensions            | 1.7" dia. x 0.5"                                                                 | 2.7"x2.2"x1.2"                                                                   | 2.7"x 2.2" x 1.2"                                                                               | 3.0"x 2.5" x 1.5"                                                                | 3.25"x2.75"x1.5                                                                  | 3.4" x2.5"x 1.1"                            |
| Sample Rate           | Up to 1Hz                                                                        | Up to 1Hz                                                                        | Up to 500Hz (3 channels)                                                                        | Up to 20KHz (3 channels)                                                         | Up to 20KHz (3 channels)                                                         | Up to 100KHz (10 channels)                  |
| Data Storage          | None                                                                             | 2Mbytes                                                                          | 1Mbyte                                                                                          | 256Mbytes                                                                        | 256Mbytes                                                                        | 1Gbyte                                      |
| <b>Battery Life</b>   | 9 months                                                                         | 10+ years                                                                        | 2-3 missions                                                                                    | 1 mission                                                                        | 1 mission                                                                        | 3 years                                     |
| Sensor Types          | Temperature (Flight Cert) and Resistive sensors: Strain, Accelerometer, Pressure | Temperature (Flight Cert) and Resistive sensors: Strain, Accelerometer, Pressure | Acceleration & Strain (Flight Cert) or Resistive sensors. Includes Pressure as Trigger Channel. | Accelerometer & Temperature (Flight Cert) or Piezoelectric and Resistive Sensors | Accelerometer & Temperature (Flight Cert) or Piezoelectric and Resistive Sensors | Ultrasonic Microphone and Acoustic Emission |

# Wireless Instrumentation Systems Unique Solutions To Real Shuttle Problems

### Temperature Monitoring

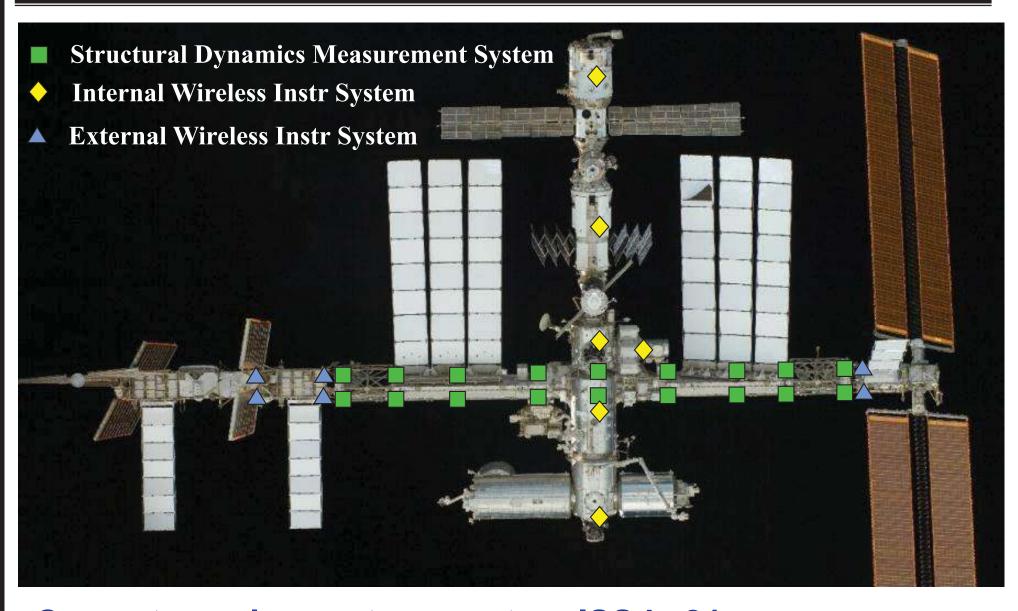
- Validation of thermal models for design modifications and operations
- Micro-WIS (first flown in non-RF configuration)

## Structural Loads and Dynamics

- SSME support strain data needed for certification life predictions
- Cargo to orbiter trunion dynamics and loads
- Micro Strain Gauge Unit (Micro-SGU) and Micro Tri-Axial Accelerometer Units (Micro-TAU)

### SSME Feed-Line Crack Investigation

- Main propulsion system flow-liner dynamics
- Wide-Band Micro-TAU


### Wing Leading Edge Impact Detection

- Sense impact of ascent debris and MMOD on-orbit
- Enhanced Wide-Band Micro-TAU (EWBMTAU)

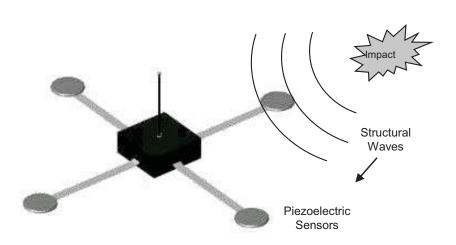
### SRMS On-Orbit Loads

- Increases needed to support contingency crew EVA repairs at end of boom
- Wireless Strain Gauge Instrumentation System (WSGIS) and EWBMTAU
- Also used for monitoring Shuttle Forward Nose dynamics during roll-out

## ISS Structural Dynamics Accelerometers



Current accelerometer count on ISS is 81 (SDMS: 33 EWIS: 30 IWIS: 18).


## **Topics**

- Structural Health Monitoring
  - Definition
  - SHM vs NDE
- Agency Overview of SHM Activities
  - Wireless-based SHM on ISS / STS (Studor, JSC)
  - Accel & Acoustic-based SHM on STS (Prosser, NESC)
  - Piezo-based SHM on ISS (Madaras, LaRC)
  - Fiber-optic-based SHM on Aerospace Vehicles (Richards, DFRC)
    - Sensor Development
    - Strain-based Parameter Development
      - Shape, Loads, Liquid Level, Magnetic Field
    - Sensor Attachment / Characterization
    - System Development
    - Ground / Flight Applications

## Distributed Impact Detection System Concept

Original DIDS concept is to detect and locate impacts via a

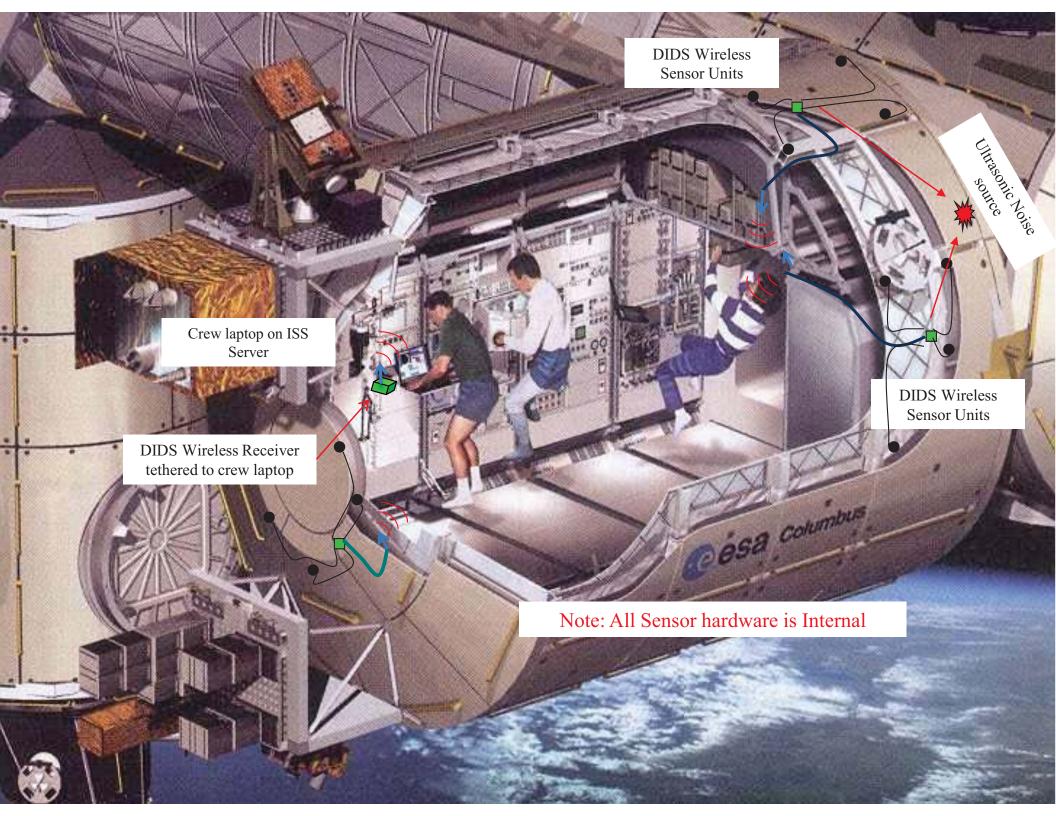
wireless sensors system.



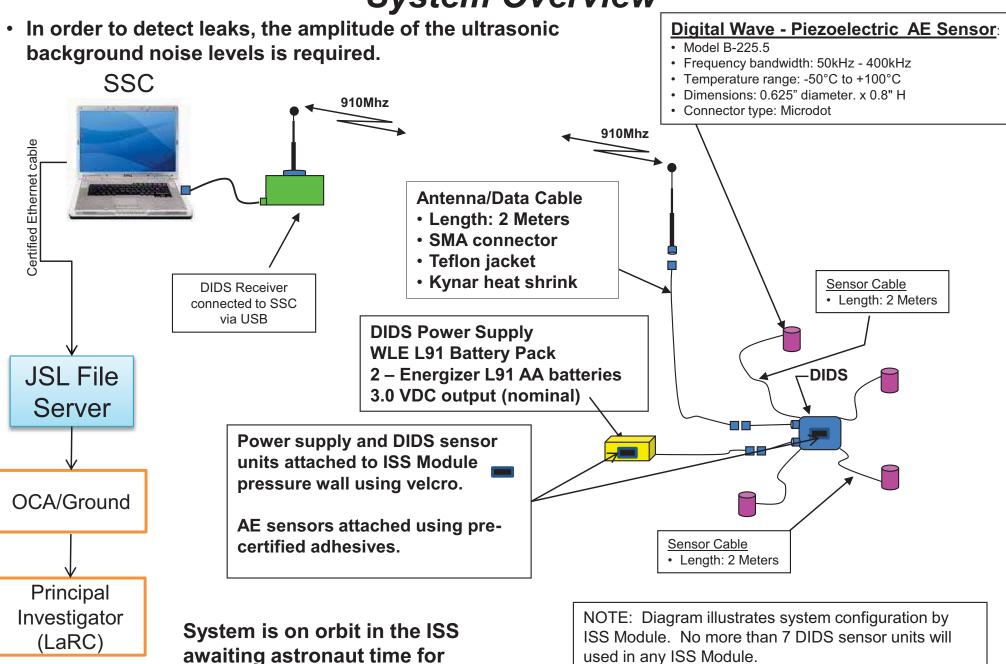
**DIDS System Concept** 

MMOD strike example

Module is asleep until event signal threshold is crossed.


Sensor module can record four signals at 1MHz rate.

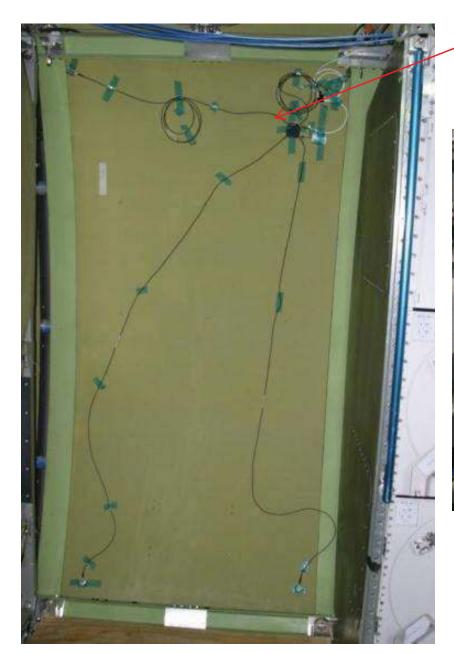
Sensors can record and transmit ~6000 events.


Batteries can last up to 5 years.

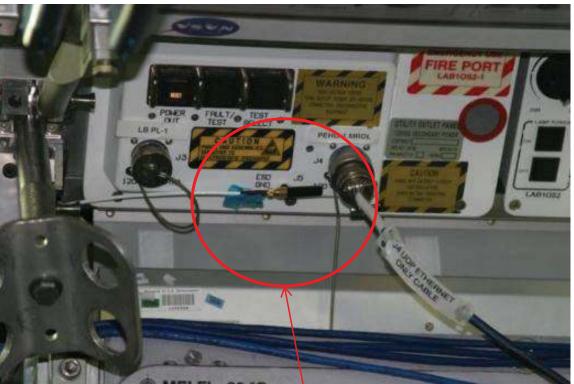
Laptop computer can control multiple units.

 Current DIDS system concept is to detect leak locations on space vehicles.




# ISS Ultrasonic Background Noise Test (UBNT) System Overview




installation

## Example of installation behind ISS equipment ramp

(Fit Check in B9 US Lab Mockup)



DIDS unit installed in open rack in mockup



**UBNT Extended Antenna in ISS hallway** 

## **Topics**

- Structural Health Monitoring
  - Definition
  - SHM vs NDE
- Agency Overview of SHM Activities
  - Accel & Acoustic-based SHM on STS (Prosser, NESC)
  - Wireless-based SHM on ISS / STS (Studor, JSC)
  - Piezo-based SHM on ISS (Madaras, LaRC)
  - Fiber-optic-based SHM on Aerospace Vehicles (Richards, DFRC)
    - Uninhabited Aerial Vehicles
    - Composite Crew Module
    - Reentry Vehicles
    - Space Vehicles
    - Vehicle Pressure Systems
    - Expendable Launch Vehicles

# SHM Aerospace Vehicle Applications









Launch Vehicles Space Shuttle

International
Space
Station



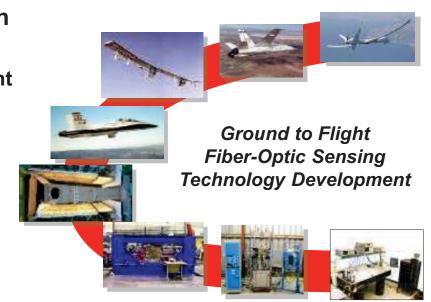
Vehicle Pressure Systems NASA
Structural
Health
Monitoring
Technology

Composite Crew Module

Reentry Vehicles

**UAVs** 




**Space Vehicles** 

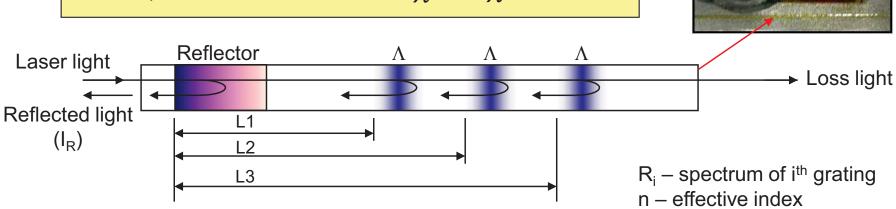




# Fiber Optic Sensing System (FOSS) Background

- Dryden initiated fiber-optic instrumentation development effort in the mid-90's
  - Dryden effort focused on atmospheric flight applications of Langley patented OFDR demodulation technique
- Dryden focused on developing system suitable for flight applications
  - Previous system was limited due to laser technology
  - System limited to 1 sample every 90 seconds
- Dryden initiated a program to develop a more robust / higher sample rate fiber optic system suitable for monitoring aircraft structures in flight
- Partnering with Kennedy Space Center, Launch Services Program, Dryden has developed a comprehensive portfolio of intellectual property that is now ready to be commercialized by the private sector.






# Fiber Optic Sensing System (FOSS) Operation Overview

### Fiber Optic Sensing with Fiber Bragg Gratings

- Multiplex 1000s of sensors onto one "hair-like" optical fiber
- All gratings are written at the same wavelength
- Uses a narrowband wavelength swept laser source to interrogate sensors
- In addition to measuring strain and temperature, these sensors can be used to determine a variety of other engineering parameters

$$I_R = \sum_i R_i Cos(k2nL_i)$$
  $k = \frac{2\pi}{\lambda}$   $\frac{\Delta \lambda}{\lambda} \to \mu \varepsilon$ 



Grating region

**Tuning** 

stop

direction

Laser tuning

L – path difference k – wavenumber

start

## Dryden's FOSS **Current Capabilities**

## **Current system specifications**

| • | Fiber count                    | 8                |
|---|--------------------------------|------------------|
| • | Max sensing length / fiber     | 40 ft            |
| • | Max sensors / fiber            | 2000             |
| • | Total sensors / system         | 16000            |
| • | Max sample rate (flight)       | 100 sps          |
| • | Max sample rate (ground)       | 60 sps           |
| • | Power (flight)                 | 28VDC @ 4.5 Amps |
| • | Power (ground)                 | 110 VAC          |
| • | User Interface                 | Ethernet         |
| • | Weight (flight, non-optimized) | 27 lbs           |
| • | Weight (ground, non-optimize   | d) 20 lbs        |
| • | Size (flight, non-optimized)   | 7.5 x 13 x 13 in |
| • | Size (ground, non-optimized)   | 7 x 12 x 11 in   |

## **Environmental qualification specifications for** flight system

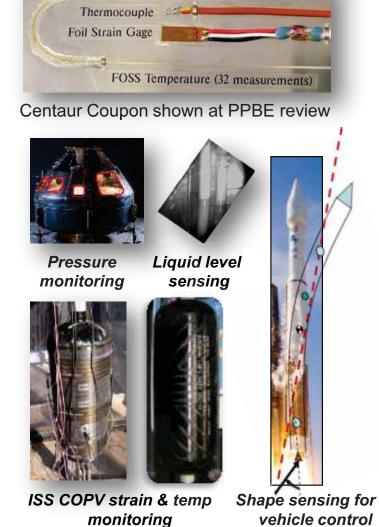
Shock **8g** 1.1 g-peak sinusoidal curve **Vibration** 60kft at -56C for 60 min **Altitude Temperature** -56 < T < 40C



Flight System



**Ground System** 



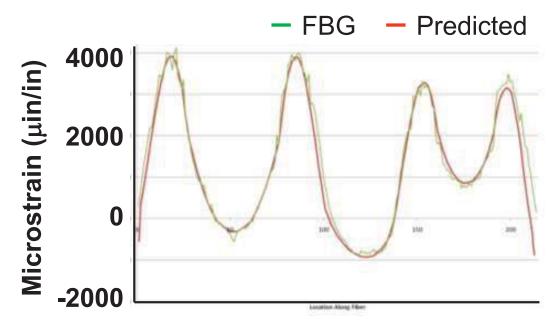

Predator -B in Flight 22

# Fiber Bragg Grating – Optical Frequency Domain Reflectometry

# FBG-OFDR can dramatically improve structural and system efficiency for space vehicle applications by improving both affordability and capability by ...

- Providing >100x the number measurements at 1/100 the total sensor weight
- Providing validated structural design data that enables future launch systems to be lighter and more structurally efficient
- Reducing data system integration time and cost by utilizing a single small system for space / launch vehicles
- Increasing capability of measuring multiple parameters in real time (strain, temperature, liquid level, shape, applied loads, stress, mode shapes, natural frequencies, buckling modes, etc.
- Providing an unprecedented understanding about system/structural performance throughout space craft and mission life cycle




FOSS Strain (40 measurements)

# Composite Crew Module NASA NESC - Strain Sensing

- Four fibers were installed around the module's three windows and one hatch
- 3300 real-time strain measurements were collected at 30Hz as the module underwent 200%DLL pressurization testing
- Measured strains were compared and matched well to predicted model results
- Project concluded:
  - "Fiber optics real-time monitoring of test results against analytical predictions was essential in the success of the full-scale test program."
  - "In areas of high strain gradients these techniques were invaluable."








**Inner Hatch FBG Strains, Max Pressure** 

# Uninhabited Aerial Vehicles Global Observer UAS - Aerovironment

- Validate strain predictions along the wingspan
- Measured strain distribution along the centerline top and bottom as well as along the trailing edge top and bottom.



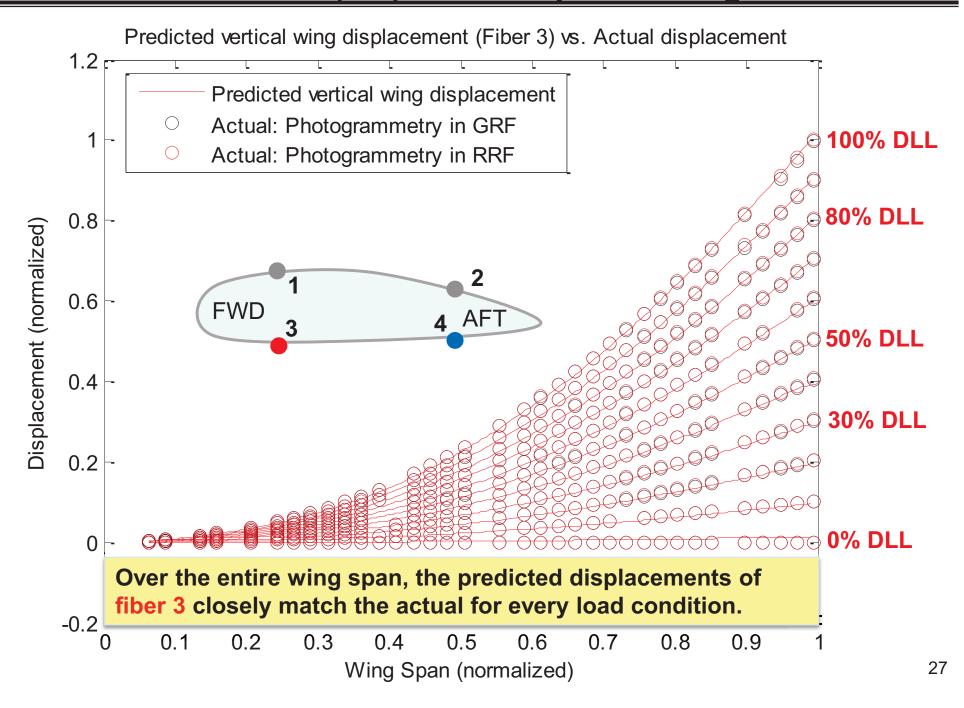








# Uninhabited Aerial Vehicles Global Observer UAS - Aerovironment


Proof-load testing of components and large-scale structures







# Uninhabited Aerial Vehicles Global Observer (AV) - 2D Shape Sensing Results



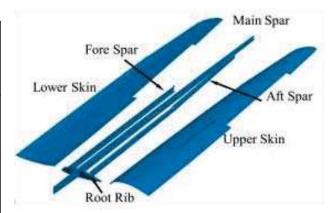
# UAVs - Global Observer UAS (AV) Flight Testing of Strain and 2D Shape Sensing

- Validate strain predictions along the left wing in flight using 8, 40ft fibers (~8000 strain sensors)
- An aft fuselage surface fiber was installed to monitor fuselage and tail movement
- Strain distribution were measured along the left wing centerline top and bottom as well as along the trailing edge top and bottom.
- 8 of the 9 total fibers are attached to the system at any give time
- The system performed well and rendered good results

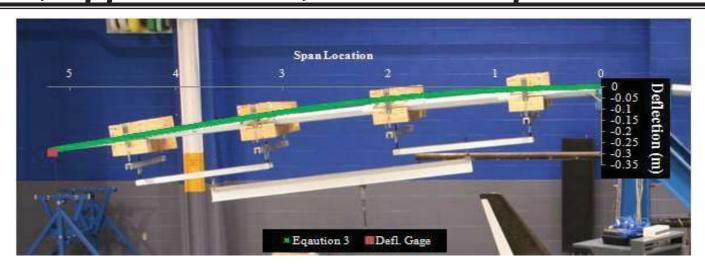


# Predator-B UAS - Flight Testing Strain and 2D Shape Sensing

- 18 flights tests conducted; 36 flight-hours logged
- Conducted first flight validation testing April 28, 2008
- Believed to be the first flight validation test of FBG strain and wing shape sensing
- Multiple flight maneuvers performed
- Total of 6 fibers (~3000 strain sensors) installed on left and right wings
- · Fiber optic and conventional strain gages show excellent agreement
- FBG system performed well throughout entire flight program




# Full-Scale Composite Wings Strain, Applied Loads, and 2D Shape - Mississippi State




#### ENGINEERING PROPERTIES OF COMPOSITE MATERIALS.

| Material                   | Woven fabric          | Unidirectional        | Foam core DIAB          |
|----------------------------|-----------------------|-----------------------|-------------------------|
| Properties                 | Toray-T700G           | fabric                | Divinycell HT 50        |
|                            |                       | Toray-T700S           |                         |
| E <sub>11</sub> , GPa      | $5.54 \times 10^{1}$  | $1.19 \times 10^2$    | 8.50 x 10 <sup>-2</sup> |
| E <sub>22</sub> , GPa      | $5.54 \times 10^{1}$  | $9.31 \times 10^{0}$  |                         |
| G <sub>12</sub> , GPa      | $4.21 \times 10^{0}$  | $4.21 \times 10^{0}$  |                         |
| $v_{12}$                   | $3.00 \times 10^{-2}$ | $3.10 \times 10^{-1}$ | 3.20 x 10 <sup>-1</sup> |
| $\rho$ , kg/m <sup>3</sup> | $1.49 \times 10^3$    | $1.52 \times 10^3$    | 4.95 x 10 <sup>-1</sup> |



# Full-Scale Composite Wings Strain, Applied Loads, and 2D Shape - Mississippi State



#### MEASURED AND CALCULATED WING TIP DEFLECTIONS

| <u>F, N</u> | Measured $\delta_L$ , m | Calculated $\delta_L$ , m | Error, %    |
|-------------|-------------------------|---------------------------|-------------|
| 1373        | <u>-0.184</u>           | <u>-0.178</u>             | <u>3.02</u> |
| <u>1592</u> | <u>-0.209</u>           | <u>-0.205</u>             | <u>2.29</u> |
| <u>1837</u> | <u>-0.241</u>           | <u>-0.231</u>             | <u>4.08</u> |
| <u>2036</u> | <u>-0.265</u>           | <u>-0.257</u>             | 3.23        |
| <u>2269</u> | <u>-0.295</u>           | <u>-0.284</u>             | <u>3.75</u> |

### **Test Procedure for displacement**

- Collect FBG strain data
- Use displacement Eq. and Strain data to calculate deflection

#### OUT-OF-PLANE APPLIED LOAD

| Applied Load, N                 | Calculated Load, N | Error, %    | Difference, N |  |
|---------------------------------|--------------------|-------------|---------------|--|
| <u>-185.5</u>                   | <u>-178.8</u>      | <u>3.60</u> | <u>6.7</u>    |  |
| <u>-194.4</u>                   | <u>-210.0</u>      | <u>7.98</u> | <u>15.5</u>   |  |
| <u>-241.5</u>                   | <u>-252.0</u>      | <u>4.35</u> | <u>10.5</u>   |  |
| <u>-288.5</u>                   | <u>-291.5</u>      | <u>1.05</u> | <u>3.0</u>    |  |
| <u>-333.3</u>                   | <u>-332.9</u>      | <u>0.12</u> | <u>0.4</u>    |  |
| <u>-378.1</u>                   | <u>-381.1</u>      | <u>0.80</u> | <u>3.0</u>    |  |
| <u>-422.9</u>                   | <u>-435.9</u>      | 3.07        | <u>13.0</u>   |  |
| <u>-472.2</u>                   | <u>-486.4</u>      | 3.01        | <u>14.2</u>   |  |
| Average EI=98728. <u>2-N*m²</u> |                    |             |               |  |

### Test procedure for out-of-plane loads

- Determine El for the wing
- Determine moment acting on wing
- Determine Load applied

## Next Generation Structural Health Monitoring on Reentry Vehicles

### **Personal Observations**

- The Shuttle never returned in the same condition as when it launched
- Flight operations always reveals the unexpected and make known the unknowns
- NASAs SHM fiber optic sensors are much lighter than conventional strain gage sensors
- FOSS-OFDR provides massive amounts of quantitative structural performance information in real time and for post test analysis
- This quantitative information can overcome some of the unknown unknowns that may allow you to fly another day



Post-flight Inspection



**Dream Chaser Re-entry (artist conception)** 

# Monitoring of MMOD Impact Damage to TPS NASA Dryden / CSIRO Australia collaboration

### **Objective**

 Detect & evaluate Micrometeoroid and Orbital Debris (MMOD) impact damage to Thermal Protection Systems (TPS) using embedded acoustic and thermal sensor networks

### **Principles**

- Detect and locate impacts using acoustic emission sensor networks
- Evaluate severity of damage with optical fiber thermal sensor network
- Utilize centralised or self-organising operation with local network architecture on modular tiled structure

### **Novel aspects**

- Development of switched optical fiber sensor network to enhance robustness
- Capable of central control or autonomous self-organising operation.
- Functional damage evaluation monitor effect on thermal properties.



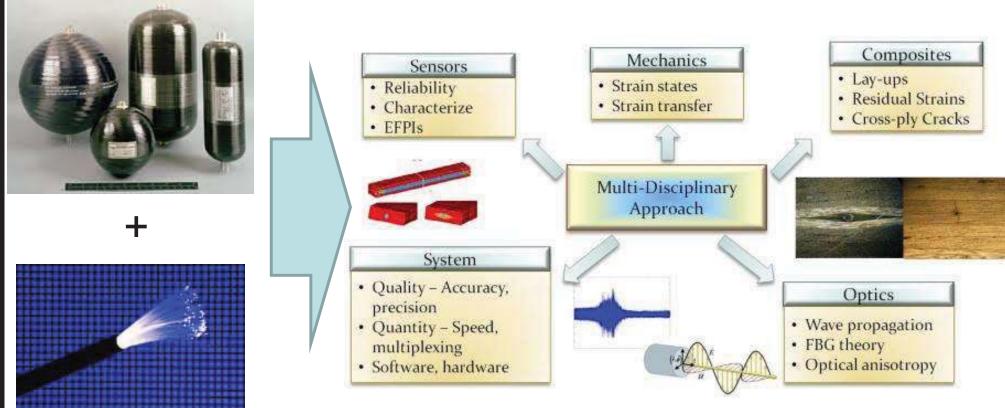
Vehicle Re-entry (artist conception)



**Heat shield with TPS** 

TPS health monitoring system






**Two TPS modules** 

Heat shield Test Setup at Dryden

# Vehicle Pressure Systems Embedded Strain - The Multidisciplinary Challenge

- Fiber Optic Sensors embedded within Composite Overwrapped Pressure Vessels
- Goal is to understand embedded FBG sensor response
  - Requires comprehensive, multi-disciplinary approach



## Vehicle Pressure Systems Composite Overwrapped Pressure Vessels (COPVs)

### **Objectives**

- Perform real-time in-situ structural monitoring of COPVs with embedded fiber Bragg grating sensor arrays
- Develop analytical and experimental methods to reliably interpret embedded strain sensor measurements
- Develop a robust "early-warning" indicator of COPV catastrophic failure
- Provide finite-element-like experimental strains in real time for:
  - **Health Monitoring on International Space Station**
  - Model validation to improve future designs

### Approach

- Develop and evaluate surface-attachment techniques
- Install surface fiber optic sensors
- Conduct test to 80% of burst pressure
- Overwrap surface FBGs with composite layers
- Install new surface FBGs over "embedded" FBGs
- Conduct burst test
- Develop data analysis and visualization techniques to reliably predict COPV failure











NASA Dryden and WSTF test team  $_{35}$ 

# Composite Overwrapped Pressure Vessels Installation Methods

## Installation methods developed

Transfer pattern to bottle surface









Mask and fill basecoat paths

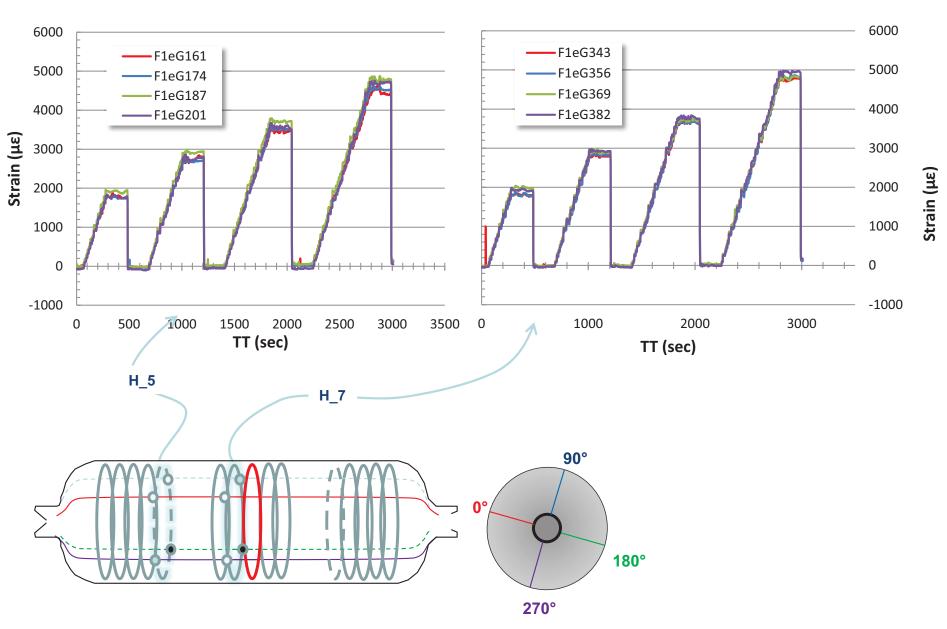




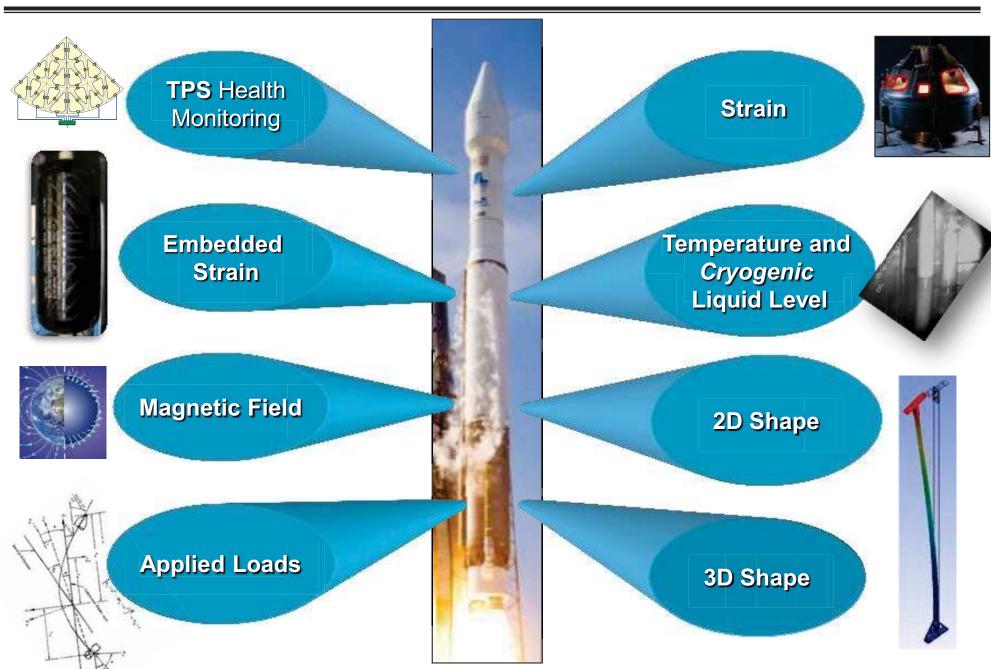




Sand down close to surface layer







Route and attach FBGs

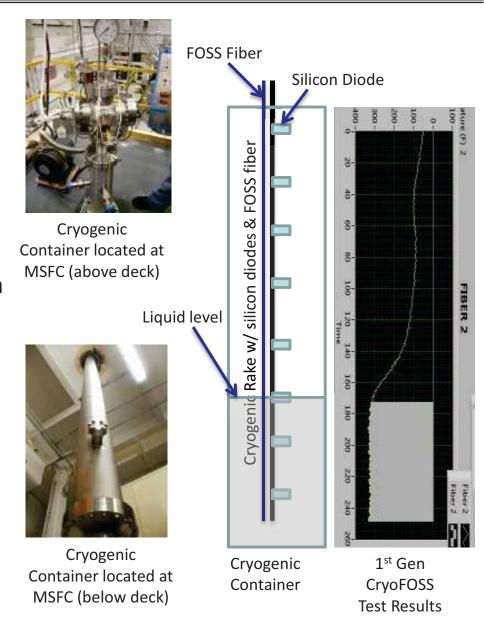


# Embedded Fiber to 5000 psi Hoop Direction



# FOSS Current and Future Work Flight Demonstration on a Launch Vehicle (KSC-Launch Services)




# Cryogenic Liquid Level-Sensing

### The Challenge

- The transitional phase between liquid and gas of cryogenics is difficult to discriminate while making liquid level measurements
- Using discrete cryogenic temperature diodes spaced along a rake yields course spatial resolution of liquid level along with high wire count

### **FOSS Approach**

- While using a uniquely developed fiber optic structure (CryoFOSS), the transitional phase can be mapped more accurately
- Using a single continuous grating fiber, a high degree of spatial resolution can be achieved, as low as 1/16"

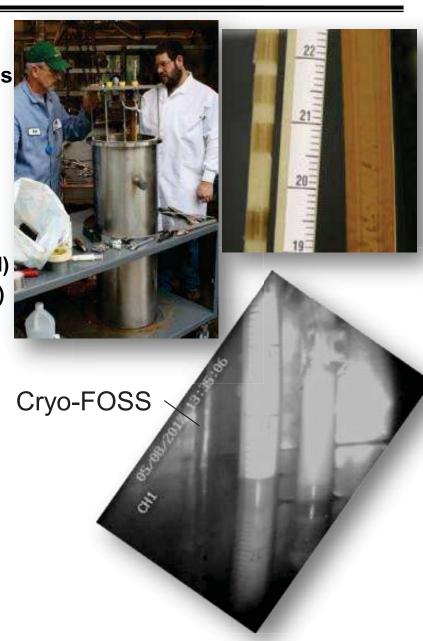


## LH<sub>2</sub> Testing of CryoFOSS at MSFC

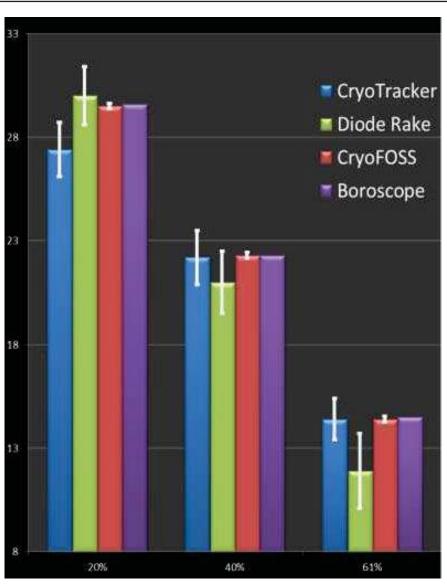
### **Objective**

 Experimentally validate CryoFOSS using Dryden's FOSS technology

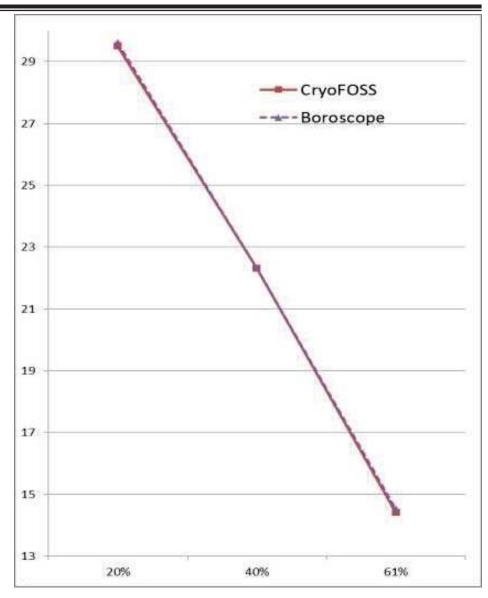
### **Test Details**


- Dewar dimensions: 13-in ID x 37.25-in
- Fill levels of 20%, 43%, and 60% were performed
- Instrumentation systems
  - Video boroscope with a ruler (validating standard)
  - Cyrotracker (ribbon of 1-in spaced silicon diodes)
  - MSFC Silicon diode rake
  - Fiber optic LH<sub>2</sub> liquid level sensor(CryoFOSS)

#### Results


- CryoFOSS sensor discerned  $LH_2$  level to  $\frac{1}{4}$ " in every case
- Excellent agreement achieved between CryoFOSS, boroscope, and silicon diode Cryotracker

#### **Bottom line**


 Validated concept for a lightweight, accurate, spatially precise, and practical solution to a very challenging problem for ground and in-flight cryogenic fluid management systems



# LH<sub>2</sub> Liquid Level Results



**Combined Results** 



CryoFOSS compared to Boroscope

## Magnetic Field Sensing NASA Dryden / UCLA collaboration

### **Objective**

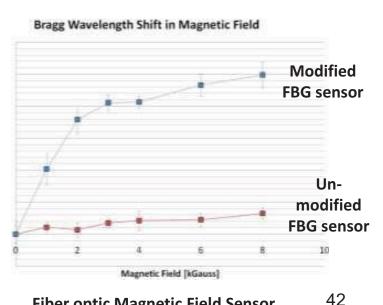
To utilize the same magnetically sensitive particles that birds use, for example, to sense Earth's magnetic field for migratory purposes

### **Application**

- Installing distributed magnetic sensors on a structure could help with navigation
- Identifying disturbances in Earth's magnetic field could indicate the presence of another vehicle or a missile

### **Approach**

- Fabricate new fiber optic sensor with greater sensitivity to magnetic field (H)
- Apply magnetic field to sensors
- Measure wavelength shifts ( $\Delta \lambda_{\rm R}$ )
- Behavior of  $\lambda_{\rm B}$  should follow magnetization behavior of modified sensor


#### Results

- **Experimental results corroborate the theory**
- Currently developing new methods for increasing sensitivity of detecting magnetic fields



Lohmann, Nature, V.464 (2010)



