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OBJECTIVE 

To provide an estimate of the expected cavity field variability derived from B757 and B707 
cavity electromagnetic characterization measurements as a reference for comparison of model and 
measured data from the NASA B757 flight test program. 

BACKGROUND 

Measurements obtained during the NASA B757 cavity characterization tests provide a data 
base from which estimates of cavity field measurement uncertainties can be derived. An extensive 
data base also exists for cavity characterization tests of a B707 aircraft. These data can be used to 
supplement the B757 data base. 

The variability in the measured field strength at an arbitrary point in a cavity depends on the 
effective modal structure. The effective modal structure includes the cavity quality factor, Q, effects 
which result in averaging over the number of distinct modes within the Q bandwidth, BWQ. 
Appendix A has a short discussion of the effective modal structure. 

For fixed boundary conditions the field will vary spatially as the effective modal structure 
varies with position. This variability should not be a major factor for measurements at the well- 
defined D-dot probe locations. However since, in most cases, data are not available at the D-dot 
probe locations, the added uncertainty in the derived estimates due to extrapolation of measurements 
from other locations is included in the analysis. The spatial uncertainties are designated in the analysis 
as "measurement location effects". 

Another source of field variability is due to changes in the modal structure as the cavity 
boundary conditions change. Any change in cavity boundary conditions will result in changes in the 
effective modal structure. Boundary conditions vary with the number and location of crew, test 
instrumentation and cables, and the number and location of a wide variety of conducting or partially 
conducting objects. Boundary condition effects can be quantified by observing the field variability 
at a fixed location while mode-mixing within the cavity. The uncertainties are designated in the 
analysis as "boundary condition effects". 

A third source of uncertainty is the effectiveness of exciting the modal structure. For internal 
excitation measurements this can be investigated through multiple measurements where the excitation 
source location is varied. These measurements are limited in the data base. When data are available 
they are included in the location uncertainty analysis. 

1 
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The ideal data base for the determination of the field strength variations would be a set of 
stirring ratio (SR) data measured by the D-dot probes at each of the frequencies of interest. 
Unfortunately there are no SR measurements in the B757 at the three frequencies of interest. 
Therefore the estimates of field variations had to be based on extrapolations of several types of data 
from frequencies at which data were available. 

Stirring ratio data for the B707 at 100 MHz is shown in Figure 1. The SR is the ratio of the 
maximum received power to the minimum received power as the tuner rotates at a fixed cavity 
excitation frequency. The tuner rotation time is approximately 5.8 seconds after which the pattern 
repeats out to the total sampling time of 7 seconds. The maximum to minimum boundary condition 
effect implied from Figure 1 is 17 dB. At frequencies where the cavity is sufficiently multi-moded and 
the tuner dimensions are on the order of a wavelength or greater, it has been shown that the 
distribution of received power bounds the electromagnetic environment (EME) in the cavity for a 
variety of cavity boundary conditions.1* A SR measurement yields the maximum, minimum, average, 
and standard deviation (SD) of the power density variations possible at the location of the receive 
antenna in the cavity. A series of SR measurements at different locations within the cavity could be 
used to estimate the field variations due to measurement location effects. 

A data base from both B757 and B707 cavity characterization tests exists from which the 
variability of the calculated/measured fields due to boundary condition and measurement location 
effects can be estimated. The frequencies of interest are 0.173,0.430, and 5.4 GHz. Where B757 data 
were available, they took precedence in the analysis. 

For a variety of reasons the B757 Phase I (Band Limited White Gaussian Noise (BLWGN) 
excitation2) data was limited to 0.5 - 6.0 GHz and the Phase II (continuous wave (CW) excitation 
with mechanical mode mixing) data were limited to 0.8 - 6.0 GHz. 

Only a limited analysis of the available B757 Phase I and II data has been performed to date. 

The B707 Phase I (CW excitation with mechanical mode-mixing) and Phase II (CW and 
BLWGN excitations) data should be representative of the variability expected in the B757. Detailed 
analyses of the B707 Phase I and II data have been performed.1,3 However the analyses did not 
address the specific details desired for the comparison of computer model predictions and the 
measured flight data. 

APPROACH 

The existing Naval Surface Warfare Center, Dahlgren Division (NSWCDD) and USAF 
Phillips Laboratory (PL) B757 and B707 data bases were reviewed. All measurements which could 
contribute to an estimate of the field variability to be expected in the B757 cockpit, electronics bay, 

Superscripts refer to references at end of main text, p. 19. 
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and passenger cabin were identified. The list included 96 B757 measurements and 104 B707 
measurements. The measurements were grouped according to the type of data. For boundary 
condition effects, the primary data type was SR. For measurement location effects estimates, the 
primary data type was multiple insertion loss (IL) data. 

BOUNDARY CONDITION EFFECTS 

No low frequency (below 0.8 GHz) SR data were available for the B757. Estimates of the 
field variability due to boundary condition effects were therefore obtained from the SR data from the 
B707 for the cockpit, electronics bay, and passenger cabin. At low frequencies (typically 500 MHz 
and below for aircraft cockpits and electronics bays) a combination of the modal structure and the 
tuner effectiveness determine the observed variations. 

The SD of the B707 cockpit data at 100 MHz in Figure 1 is 4.5 dB. 

Between 100 and 500 MHz a SR data base from the Phase I and II tests exists for defining 
the boundary condition effects for the B707 cockpit (36 measurements), electronics bay (48 
measurements), and passenger cabin (4 measurements). The SR data base was reviewed and used 
to estimate the SD at 100, 200, 300, 400, and 500 MHz in each cavity. 

Also available for each B707 cavity were frequency scans without the tuner in operation. The 
cockpit data is shown in Figure 2. Since these data are continuous across 100 - 500 MHz, they can 
be used to estimate the SD at the frequencies of interest. The technique for using the frequency scan 
data will be discussed in the Results Section. 

Since the B707 cockpit and electronics bay are larger than the B757 cockpit and electronics 
bay, the B707 data should be an upper bound on the boundary condition effects variations expected 
in these cavities in the B757. This follows from the reduced number of modes at a given frequency 
in the smaller cavity as well as a smaller tuner with the resulting decreased effectiveness in providing 
boundary condition changes. 

At high frequencies there is a SR data base at 4.0, 4.1, 5.99, and 6.0 GHz for all three B757 
cavities. Figure 3 shows SR data at 4.00 GHz in the B757 cockpit. There is some noise 
contamination as evidenced by the deep nulls. Much of the data above 4 GHz has noise 
contamination. 

To remove the noise contamination, the lowest 1 % of the data was ignored as indicated by 
the dashed line in Figure 3. From Figure 3 the field maximum variability due to possible changes in 
cockpit boundary conditions is at least 28 dB at 4 GHz. A SD of 4.2 dB was calculated for the noise 
corrected data. 

To avoid the large extrapolation to 5.4 GHz from the available SR data, an additional type 
of measurement was included in the analysis. To investigate the modal structure in the B757 cavities, 
a set of data was collected with constant boundary condition (no mode-mixing) frequency scans. 
These data over the frequency range 4-6 GHz in the cockpit are shown in Figure 4. If the frequency 
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sampling interval is small enough, the modal structure as a function of frequency can be determined. 
A single frequency scan gives an indication of the modal structure variability but does not provide a 
bound on the variation. By combining multiple frequency scans (obtained after changing the 
boundary conditions between scans) which cover the 4 - 6 GHz frequency interval with SR data at 
the end points, it was possible to estimate the boundary condition effects variations at 5.4 GHz for 
each of the cavities. 

The general approach to boundary condition effects was to review all data which could 
contribute to estimates of the frequencies of interest. The results are best engineering judgments with 
uncertainties stated in terms of the estimated standard deviation. 

MEASUREMENT LOCATION EFFECTS 

Multiple IL data measurements were used to obtain an estimate of the field variations due to 
non-uniformity of the cavity EME. Figure 5 shows the received power as a function of frequency for 
a specific configuration of the transmit (TX) and receive (RX) antennas in the cockpit. These data 
were obtained using BLWGN for mode excitation. The technique excites the modal structure over 
the bandwidth (BW) of the noise, in this case, 50 MHz. As would be expected, the trace is 
considerably smoother than one obtained with mechanical mode-mixing since the BLWGN technique 
averages the response over the BW. 

The only data in the frequency range 100 - 500 MHz is from the B707. To verify the 
applicability of these data, the SD of the measurement location effects obtained with BLWGN in both 
aircraft were compared over the frequency range 0.5 - 1 GHz. The results of the comparison were 
applied to the 0.2 - 0.5 GHz B707 data to obtain an estimate for 173 and 430 MHz in the B757. 

Four BLWGN insertion loss measurements were available for each cavity of the B757 which 
could be used for a direct estimate of the measurement location effects at 5.4 GHz. 

RESULTS 

BOUNDARY CONDITION EFFECTS 

The SD of the low frequency B707 SR data is summarized as the circular markers in 
Figures 6, 7, and 8 for the cockpit, electronics bay, and passenger cabin respectively. To use the 
boundary condition effects data from the frequency scans without the tuner in operation (see 
Figure 2), an appropriate BW must be selected. The BW selection was based on a comparison to the 
SR data. At frequencies where SR data were available, the boundary condition effects data were 
analyzed by calculating the SDs for BWs from 10 to 200 MHz. These were compared to the known 
SD of the data from the SR data. Reasonably consistent agreement with all the SR data was obtained 
for a BW of 100 MHz. The modal structure at 173 ± 50 MHz and 430 ± 50 MHz yielded the square 
markers in Figures 6, 7, and 8. These results are summarized in Table 1.  As noted earlier, the 
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Table 1 values derived from B707 data for the cockpit and electronics bay should be an upper bound 
for the B757. 

The SDs from 4.0,4.1, 5.99, and 6.0 GHz SR measurements are summarized as the circular 
markers in Figure 9 for the cockpit. These values are based on noise corrected SR data as discussed 
in the Approach and as shown in Figure 3. The cockpit modal structure data for 4 - 6 GHz are shown 
in Figure 4. To estimate the SD from this data, several BWs were investigated to compare with the 
SD data from SR measurements. The modal structure data also involved noise contamination 
corrections. The most consistent results were obtained with BWs of 20 MHz. This BW was applied 
to the modal structure at 5.4 GHz with the 3.8 dB result shown as the square marker in Figure 9 and 
listed in Table 1. 

No SR measurements are available in the B757 electronics bay. However, four frequency 
scan measurements with the electronics bay D-dot probe are available. These data have the 
advantage of providing a direct estimate at the D-dot probe location. While not direct measurements 
of boundary condition effects like SR measurements, frequency scan data can be used to estimate the 
field variability. A SR measurement could yield a higher SD since it considers a larger sample of 
boundary condition changes. At 5.4 GHz the SD of these measurements is 4.9 dB. This value is 
listed in Table 1. 

In the passenger cabin there are six IL measurements obtained with the D-dot probe. The 
SD of these measurements indicate a minimum estimate of the boundary condition effects at the 
location of the D-dot probes. The suggested minimum SD value for the passenger cabin is 4.5 dB 
and is listed in Table 1. 

MEASUREMENT LOCATION EFFECTS 

Figures 10 and 11 show the SD of four BLWGN low frequency measurements as a function 
of frequency in the B757 and B707 cockpits respectively. While the data show different frequency 
dependencies, the maximum and average values of the SDs are similar. An average value of about 
3 dB was estimated for both aircraft over the frequency interval 0.5 -1.0 GHz. Maximum values for 
the B757 and B707 are about 5 and 6 dB respectively. Based on the B707 data, the estimated values 
for 173 and 430 MHz in the B757 cockpit are given in Table 2. 

Figures 12 and 13 show the SDs of four BLWGN measurements in the B757 and B707 
electronics bay. The estimated values for the electronics bay uniformity SDs are shown in Table 2. 

Figures 14 and 15 show the SDs of four BLWGN measurements in the B757 and B707 
passenger cabin. The estimated values for the passenger cabin uniformity SDs are shown in Table 2. 

Figure 16 shows the SD over the frequency interval 4-6 GHz for the four BLWGN 
measurements in the B757 cockpit. The variability with frequency is almost 5 dB. The estimate for 
the average SD at 5.4 GHz is 2.5 dB and 5 dB for the maximum SD. These results are shown in 
Table 2. 
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Figures 17 and 18 show the same results for the electronics bay and passenger cabin. The 
values for the estimated average and maximum SDs at 5.4 GHz for the electronics bay are listed in 
Table 2. 

Note the large implied variability in the passenger cabin in Figure 18. During the B757 
Phase n (CW) test an apparent longitudinal gradient in the passenger cabin was noted. Specific 
measurements were performed to verify and quantify the results. In the Phase I (BLWGN) test this 
effect was not noted. Although a limited measurement set exists which could contribute to an 
understanding of the gradient issue, that investigation was beyond the scope of this task. A gradient 
will primarily effect the average value of measurements taken at various positions along the 
longitudinal axis of the aircraft. Thus any result based on using average values will be impacted by 
the gradient. This includes all BLWGN and all CW modal structure data. 

Engineering judgment suggests that the SD derived from Figure 18 is an overestimate of the 
measurement location effects in a limited neighborhood of the NASA D-dot probe in the passenger 
cabin. Seven CW frequency scan measurements are available in the passenger cabin. The SD of these 
data, 5.8 dB, suggest a more realistic estimate of average SD for measurement location uncertainty. 
The average value from the frequency scans and the maximum value from the IL measurements are 
listed in Table 2 for the passenger cabin. 

TOTAL FIELD UNCERTAINTY 

The total field variation that could be expected at a single location for a specific cavity 
boundary condition depends on both the boundary condition effects and the measurement location 
effects. The SD of the total field variation was assumed to be the root-mean-square of the SD of the 
boundary condition effects and measurement location effects. The values are given in Table 3. 

SUMMARY 

An extensive data base was reviewed and several types of data including stirring ratio and 
insertion loss measurements with and without mechanical mode-mixing from both the B757 and B707 
were evaluated. Procedures were developed to extrapolate results from tested frequencies to the 
desired frequencies. 

Field variations at a fixed position due to the boundary condition effects were evaluated and 
the results specified in terms of a standard deviation. The results presented in Table 1 should be a 
good estimate of the expected uncertainty between the model and flight test data obtained with the 
D-dot probes. 

At the low frequencies the standard deviation estimates were based on extrapolation of B707 
stirring ratio data aided by frequency scans (insertion loss) measurements without mode-mixing. 
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At 5.4 GHz for the cockpit, the estimate of the standard deviation of the boundary condition 
effects was based on extrapolation of B757 stirring ratio data aided by frequency scan data. 

For the electronics bay and the passenger cabin there were sufficient B757 insertion loss 
measurements using the D-dot probes to provide a direct estimate of the boundary condition effects. 

The standard deviation estimates for the boundary condition effects for the three frequencies 
of interest are listed in Table 1 for the three cavities. Since the D-dot probes were at the same fixed 
locations during the Phase I and II tests and the flight tests, the 5.4 GHz results in Table 1 should be 
particularly reasonable estimates of the uncertainty due to boundary condition differences between 
the model and the actual aircraft configuration during the flight tests. 

The only data directly applicable to estimating the B757 measurement location effects were 
band limited white gaussian noise insertion loss measurements in all three cavities. These 
measurements covered the frequency range 0.5 to 6 GHz and therefore did not address the two low 
frequencies. For the low frequencies, B757 and B707 data were compared in their overlap region. 
The B707 data were used to deduce an estimate of the measurement location effects at 0.173 and 
0.430 GHz. The B757 data yielded the SD of the field uncertainties at 5.4 GHz due to measurement 
location effects. However for the passenger cabin these measurement yielded an unexpectedly large 
SD. Based on engineering judgment a more representative estimate for the average SD was obtained 
from multiple frequency scan measurements. 

All measurement location effects are reported as average and maximum SDs in Table 2. The 
SD values in Table 2 include both measurement location and mode excitation efficiency effects. 
These data are probably most useful in estimating potential uncertainties due to differences between 
the actual structure of the aircraft and that assumed in the model. 

The total estimated standard deviation of the field uncertainties were calculated as the root- 
mean-square of the boundary condition effects standard deviation and the measurement location 
effects standard deviation at each frequency. The results are tabulated in Table 3 for each frequency. 
These values should provide an upper bound for the uncertainty between the model and flight test 
results. 
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TABLE 1. STANDARD DEVIATION FOR BOUNDARY CONDITION EFFECTS 

BOEING 757 ESTIMATED STANDARD DEVIATION (dB) 
FOR BOUNDARY CONDITION EFFECTS 

CAVITY 0.173 GHz 0.430 GHz 5.4 GHz 

COCKPIT 3.7 5.0 3.8 

E.BAY 3.8 4.3 4.9 

CABIN 5.3 3.7 4.5 

TABLE 2. STANDARD DEVIATION FOR MEASUREMENT LOCATION EFFECTS 

BOEING 757 ESTIMATED STANDARD DEVIATION (dB) 
FOR MEASUREMENT LOCATION EFFECTS 

0.173 GHz 0.430 GHz 5.4 GHz 

CAVITY AVERAGE MAXIMUM AVERAGE MAXIMUM AVERAGE MAXIMUM 

COCKPIT 4 6 3 5 2.5 5 

E.BAY 3 6 2 4 3 6 

CABIN 4 6 3 4 5.8 10 

TABLE 3. TOTAL STANDARD DEVIATION FOR FIELD VARIABILITY 

BOEING 757 ESTIMATED STANDARD DEVIATION (dB) 
FOR TOTAL FIELD VARIABILITY 

0.173 GHz 0.430 GHz 5.4 GHz 

CAVITY AVERAGE MAXIMUM AVERAGE MAXIMUM AVERAGE MAXIMUM 

COCKPIT 5.5 7.0 5.8 7.1 4.5 6.3 

E.BAY 4.8 7.1 4.7 5.8 5.7   . 7.7 

CABIN 6.6 8.0 4.8 5.4 7.3 11.0 
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The modes in a cavity are determined by the boundary conditions. For a rectangular cavity 
of dimensions L (length), W (width), and H (height), the mode frequencies can be shown to be1 

Flmn = 150 ((1/L)2 + (m/W)2 + (n/H)2)05 

where 1, m, and n are the mode indices. 

Figure A-l shows a hypothetical mode distribution as a function of frequency. Each mode 
represents a unique field variation (modal structure) as a function of spatial location throughout the 
cavity. 

The cavity quality factor bandwidth, BWQ, is defined as F/Q at the 3 dB points of a guassian 
distribution. A representative BWQ is shown at F0 in Figure A-2. In this case, only one mode is 
excited when the cavity is driven at F0. The effective modal structure at F0 would be that of the ¥imjl 

= F0 mode. 

Figure A-3 shows the effects of an increased BWQ. In this case, three additional modes can 
be excited when the cavity is driven at F0. The effective modal structure would be the vector sum of 
the four modes with different amplitudes. The spatial field variation will be different than that 
obtained from the single F0 mode. Thus the effective modal structure can be changed by varying the 
cavity Q. 

Figure A-4 shows how the effective modal structure can be impacted by the theoretical mode 
density which, at a specific frequency, depends on the cavity size. The increased mode density yields 
additional modes for the same BWQ as in Figure A-3. In this case the field variation will be based on 
the vector sum of seven modes when the cavity is driven at F0. Current theory suggests that an 
overmoded condition implies the cavity has ten or more modes within the BWQ. 

In summary, the effective modal structure depends on both the theoretical mode density and 
the quality factor bandwidth at the frequency of interest. 

1 Crawford, M.L. and Koepke, G.H., "Design, Evaluation, and Use of a Reverberation Chamber for 
Performing Electromagnetic Susceptibility/Vulnerability Measurements", NBS Technical Note 1092, April 1986. 
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FIGURE A-l. HYPOTHETICAL CAVITY MODE 
STRUCTURE 

FIGURE A-2. HYPOTHETICAL MODE 
STRUCTURE WITH QUALITY 

FACTOR BANDWIDTH 

FIGURE A-3. HYPOTHETICAL MODE 
STRUCTURE WITH LARGER 

QUALITY FACTOR BANDWIDTH 

FIGURE A-4. HYPOTHETICAL HIGHER MODE 
DENSITY WITH LARGER QUALITY 

FACTOR BANDWIDTH 
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