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Abstract—Recent advances in machine learning and computer
vision have enabled increased automation in benthic habitat map-
ping through airborne and satellite remote sensing. Here, we ap-
plied deep learning and neural network architectures in NASA
NeMO-Net, a novel neural multimodal observation and training
network for global habitat mapping of shallow benthic tropical ma-
rine systems. These ecosystems, particularly coral reefs, are under-
going rapid changes as a result of increasing ocean temperatures,
acidification, and pollution, among other stressors. Remote sensing
from air and space has been the primary method in which changes
are assessed within these important, often remote, ecosystems at
a global scale. However, such global datasets often suffer from
large spectral variances due to the time of observation, atmospheric
effects, water column properties, and heterogeneous instruments
and calibrations. To address these challenges, we developed an
object-based fully convolutional network (FCN) to improve upon
the spatial-spectral classification problem inherent in multimodal
datasets. We showed that with training upon augmented data in
conjunction with classical methods, such as K-nearest neighbors,
we were able to achieve better overall classification and segmen-
tation results. This suggests FCNs are able to effectively identify
the relative applicable spectral and spatial spaces within an image,
whereas pixel-based classical methods excel at classification within
those identified spaces. Our spectrally invariant results, based on
minimally preprocessed WorldView-2 and Planet satellite imagery,
show a total accuracy of approximately 85% and 80%, respec-
tively, over nine classes when trained and tested upon a chain of
Fijian islands imaged under highly variable day-to-day spectral
inputs.

Index Terms—Convolutional neural network (CNN), deep
learning, image segmentation, multispectral imaging.

I. INTRODUCTION

M
ACHINE learning in the field of computer vision has

recently led to dramatic progress in areas of image

classification, segmentation, and feature extraction. The increase
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in abundant data sources in mobile, cloud, and social media

technologies is a large contributor to the successes of these

methods, which tend to thrive in environments where large

quantities of training data are available [1]. In the field of remote

sensing, data-rich sources such as daily satellite imagery over

the entirety of Earth’s surface have steadily become increasingly

prevalent and available. The confluence of these factors has

led to interest in incorporating deep learning and sensor fu-

sion methods with the traditional remote sensing methodology,

particularly, to automate the classification and interpretation of

Earth Observation Systems (EOS) data.

Our focus primarily centers upon benthic habitat mapping

into biological and nonbiological classes, particularly coral reef

ecosystems. These ecologically and economically important

marine ecosystems have undergone worldwide degradation due

to the increase in frequency and magnitude of extreme events

(i.e., bleaching and die-offs) as a consequence of warming

oceans, ocean acidification, and anthropogenic factors such as

run-off, pollution, and overfishing [2]–[5]. The ocean sciences

community as well as NASA has recognized the urgency of these

scenarios, labeling these episodes as severe and unexpectedly

large in scope with the capability of causing rapid environmen-

tal change [6]. Because coral reefs primarily exist in tropical,

remote areas, direct human observation is typically lacking or

delayed, and thus, the need for space-based observation that

is able to cover large geographical extents without the need

for costly oceanic or airborne missions. In particular, it was

realized that there was a need for new analytic tools with the

ability to analyze and exploit large datasets (TB and PB-scale)

cross-platform, leveraging information from multiple sources to

create a fused data product.

These concerns eventually prompted the Earth Science Tech-

nology Office (ESTO) of NASA to support the creation of

NeMO-Net, the neural multimodal observation and training

network for global coral reef assessment, with the following

major objectives.

1) Fuse existing datasets from FluidCam and Fluid Lens-

ing technologies [7]–[10] developed at the Laboratory

for Advanced Sensing (LAS) at NASA Ames Research

Center (ARC) with NASA EOS data as well as commercial

imagery where possible. Because targeted aerial surveys

are impractical at covering large geographical regions, the

goal here is to utilize features that are readily apparent
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in local high-resolution imagery to augment extensive,

low-resolution data, either through data fusion or super-

resolution.

2) Utilize deep convolutional neural networks (CNNs) ap-

plied to aerial and satellite imagery to spatially determine

the percent cover of reef benthic classes, including major

living hard and soft coral families as well as other domi-

nant reef organisms (i.e., seagrasses) of the present coral

reef ecosystems. Here, we seek to investigate various CNN

architectures, training methods, and processes within the

context of remote sensing to produce segmented classifi-

cation maps of benthic cover in an automated manner.

3) Develop and deploy an active learning and citizen science

module that allows users to label 3-D reconstructed coral

reef scenes from structure from motion (SFM) and fluid

lensing products, as well as traditional 2-D imagery from

satellites. Crowd sourcing in this manner also requires

work to aggregate the data in such a way that user clas-

sifications of high fidelity are retained, while improper

or erroneous classifications are discarded or assigned low

reliability when utilized within the training network. More

information regarding this aspect of NeMO-Net can be

accessed.1

Within the scope of this article, we address the second objec-

tive by constructing and evaluating various CNNs to segment

satellite imagery into appropriate benthic classes. One major

requirement for these networks is that they possess invariance

to input noise and nonlinear spectral shifts that are apparent in

satellite imagery due to spatial variation, temporal factors (i.e.,

time of day, sun angle, and seasonal effects, among others),

atmospheric effects, water column physics, and the inherent

spectral variability within benthic components. While these

disturbances often confound traditional methods of automated

classification, humans are often able to bypass these difficulties

with relative ease due to our ability to infer context within

an image given just a few training examples. We explored

deep learning as an alternative and/or extension to the existing

methods due to their ability to take advantage of relative spatial

and spectral context when classifying images. The rest of this

article is organized as follows: Section II provides an overview

of the history, traditional methods, and machine learning work

as applied to coral reef remote sensing; Section III covers the

data sources as utilized within this study; Section IV delves

into the CNN methodology; Section V examines the results of

our study; Section VI discusses important factors and caveats

within our work; and finally, Section VII concludes this article

with possible future work.

II. BACKGROUND AND RELATED WORK

A. Coral Reef Remote Sensing

Remote sensing is the primary method in which global-scale

observations are made regarding the Earth system barring direct

physical contact. In the realm of remote sensing of oceans

and marine habitats, airborne platforms such as the airborne

1[Online]. Available: http://nemonet.info/

visible/infrared imaging spectrometer (AVIRIS) [11], compact

airborne spectrographic imager (CASI) [12], advanced airborne

hyperspectral imaging system (AAHIS) [13], and portable re-

mote imaging spectrometer (PRISM) [14] have often provided

high resolution, hyperspectral imagery of targeted locations.

On larger spatial and temporal scales, on-orbit optical imagers

are able to deliver multispectral data of these same locations,

albeit at mostly lower resolutions (0.5–30 m). Previous examples

include the hyperspectral imager for the coastal ocean (HICO)

[15], IKONOS [16], Sentinel-2[17], Worldview-2 [18], and the

Landsat series [19], while newer instruments include HISUI [20]

and DESIS [21] aboard the international space station (ISS).

Early space-based remote sensing of coral reefs and near-

shore benthic habitats was established with the Landsat the-

matic mapper (TM) and Satellite pour l’Observation de la Terre

(SPOT) high-resolution visible (HRV). These datasets have been

available since the 1980s, with resolutions on the order of 30

m [22], [23]. During the period of 1999–2002, the millennium

coral reef mapping project was initiated, aimed at understanding,

classifying, and mapping coral reef structures worldwide based

upon predominantly Landsat 7 images [23]. The launch of the

IKONOS and QuickBird satellites in 2000 and 2001 drastically

improved the ability to spatially resolve the Earth’s surface

in the visible spectrum compared to their predecessors, with

resolutions of 4 and 2.4 m, respectively [24]–[27]. Within the

last decade, the Pleiades and WorldView series of satellites

have enabled meter-scale classification and mapping of benthic

habitats from space, offering up to eight spectral bands (five of

which are water penetrating) at a dynamic range of 11 bits per

pixel [28]–[31]. It has become evident that although satellites

are disadvantaged in terms of resolution (spatially and spec-

trally) and signal-to-noise ratios (SNRs) relative to their airborne

counterparts, their coverage and scope are unmatched, and thus,

necessary in any large reef survey or monitoring effort. To utilize

these datasets, however, requires the preprocessing, radiometric

calibration, removal of atmospheric and water attenuation ef-

fects, and compensation for extraneous factors such as sun glint

and cloud cover [32]–[35]. These issues become challenging at

large spatial and temporal scales, due to changing weather and

environmental conditions.

Regardless of the difficulties, many different methods, super-

vised and unsupervised, have been applied to the task of mapping

reef habitats. Often these methods attempt to segment the im-

agery into categorical classes that may be noticeably distinct. At

other times, separation of spectrally similar classes (i.e., coral

versus algae) may depend upon the availability and quality of

distinct spectral libraries with hyperspectral or high-resolution

texture-detection capabilities [24], [26]. The earliest methods

harken to classical machine learning methods, such as principal

component analysis (PCA), maximum likelihood estimation

(MLE), canonical variate analysis, K-means clustering, and

ISODATA unsupervised classification based upon class means

and variance, which often analyzed and extrapolated in-field

observables to spectral signatures captured by an airborne or

spaceborne sensor [24], [36]–[38]. These methods were initially

pixel based, but eventually expanded to cluster similar pixels in

close proximity as belonging to the same class [30].
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With the availability of high-resolution imagery, the use

of object-based image analysis (OBIA) became the standard

method to categorically classify a wide range of remote sensing

data products [39]. OBIA operates by initially segmenting the

imagery in question into small clusters based upon not only

spectral reflectance, but also the location, texture, and shape of

grouped pixels. These factors, as well as their relation to one

another and their nearby environments, then determine how the

clusters are eventually assigned classes based upon predefined

rules. These methods have been used extensively in the shallow

marine remote sensing community for seagrass monitoring,

coral mapping, and for delineating geomorphic zones [30], [40]–

[43]. However, it has been noted that although OBIA performs

well under ideal conditions where physics models can remove

and correct for most of the atmospheric, water column, scat-

tering, and sensor effects, true automated classification under

less-than-ideal circumstances consistently deliver results that are

lower in accuracy than when compared to assignments produced

by an expert user. This may be because humans have the innate

ability to infer context on multiple scales within an image almost

immediately and instinctively, despite disturbances such as color

shifts, noisy pixels, and partial obstruction of view.

Recently, the volume of data collected through heteroge-

neous sensors has grown exponentially, driving the need for

full automation of remote sensing classification that can operate

across sensors over large temporal and spatial scales. The goal

within this article is not to provide highly detailed classifica-

tions of particular coral types requiring expert knowledge, but

to develop an automated classification baseline to distinguish

large geomorphic and benthic cover classes easily identifiable

by any human given modest spatial and spectral distortions

within the data. To this end, data fusion techniques have already

approached this issue through the coupling of disparate types

of sensors to provide a multifaceted view of the remote sens-

ing problem, enabling higher classification accuracies where

these measurements are available [44]. Multiple state-of-the-art

methods have also been proposed to exploit the spatial or spec-

tral nature between datasets. These include dictionary learning,

aimed at extracting a sparse spatial-spectral representation of

hyperspectral imagery [45], kernel-based methods relying upon

canonical correlation analysis (CCA) to calculate the nonlin-

ear transformation between spectral features in Hilbert space

[46], and manifold learning, where data from various sources

are projected upon a higher order manifold and evaluated via

similarity metrics such as proximity graphs [47], [48]. However,

to combine spatial and spectral domains within a deep feature

context, we turn to CNNs to merge the state-of-the-art techniques

in deep learning with remote sensing.

B. CNNs and Remote Sensing

Within the last decade, successful demonstrations of CNNs

in applications of image classification [49], natural language

processing [50], and self-enabled reinforcement learning [51],

have increased the popularity and interest of deep learning in

a variety of fields. We will provide here an overview of CNNs

and their basic operation, their increasing role within the remote

sensing community, and the challenges they yet face before full

adoption alongside existing techniques.

Neural networks are loosely modeled after the structure of the

human brain, in the sense that they mimic layers of cascading

neurons transporting electrical signals. Neurons that activate

together tend increasingly to do so over time, which gives rise

to complex abilities such as pattern recognition and perception.

On a singular level, each “neuron” within a CNN acts according

to the function

z = f (w ∗ x+ b)# (1)

where z is the output, w the weights to be learned, x the input,

and b the bias, with ∗ symbolizing the convolution operator.

The nonlinear activation function f relates the importance of the

linear output, where currently the rectified linear unit (ReLU)

is the most widely adopted for processing and numerical rea-

sons [52]. Note that although the variables in (1) are vectors

(R) in this case, it is not difficult to generalize W ,X ∈ R
3

as tensors such that X covers 2 spatial dimensions and one

spectral dimension, thus (1) performs the mapping R
3
→ R.

In essence, we slide the weight kernel W over the image both

vertically and horizontally in predefined window sizes, repeating

the process k times such that we generate k filter maps, each

channel describing the strength of the presence of the filter W k.

Performing these operations again on the filter maps leads to

deeper features that build upon previous features, where the

importance of sets of combinations of features is determined

by the weighting kernels W lk, with l denoting the layer depth.

It is not surprising, therefore, that often the shallower layers

convey simple information such as edges and corners, while

deeper features will combine these rudimentary patterns to

form complex shapes such as buildings or faces. Also note that

because we slide similar kernels over the entire image, we learn

a type of positional invariance that is independent of the absolute

location of where each feature is but rather correlated with its

relative position within the context of other features. During the

final classification step, a CNN usually deploys fully connected

layers (every node connected to every other node) or global

average pooling for a full representation of the output, a softmax

operation to transform the output values into probabilities, and

then, optimize for the cross entropy against the training data.

Two additional important components within a CNN are the

pooling and batch normalization layers [53]. The pooling func-

tion downscales the feature space spatially such that the CNN

focuses on the more beneficial features as well as promoting

invariance to small-scale transformations such as translations

and rotations. Batch normalization is performed usually between

convolutional layers such that we normalize the layer to its batch

mean and standard deviation to stabilize the training procedure.

Often in addition to these layers, hyperparameters and additional

considerations such as the number of layers, kernel size, method

of convolution (e.g., stride, atrous, and transpose), weights,

regularization, and types of connections (e.g., feed-forward,

shortcut, and parallel) have given rise to many types of popular

and refined architectures, including AlexNet [49], VGG16 [54],

ResNet [55], and GoogLeNet [56].
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Fig. 1. General structure of an encoder–decoder FCN. Each convolutional block represents convolutional downsampling layers with a pooling operation at the
end of each block. Here, feed-forward, shortcut, and parallel connections are shown as examples of possible internal structures. The bridge blocks transfer each
encoder block output to the decoder through a convolutional layer, allowing only relevant features to transfer over. The decoder blocks represent the upsampling
procedure. Note that convolutional, activation, and batch normalization layers can still exist within decoder blocks as we upsample back to the input size of the
original image.

However, for the purposes of remote sensing, we need to

introduce another major component to the CNN architecture

to output not only a classification for an image, but to reproduce

an entire semantically segmented image. Note that although it is

possible to predict on a pixel-level scale (i.e., predict upon the

center pixel given surrounding pixels), this type of classification

often does not take into account the entire surrounding spatial

context. Furthermore, the time required scales to the number

of pixels classified, and thus, becomes time consuming during

run-time for large datasets. Most semantically driven CNNs thus

employ a fully convolutional network (FCN) in an encoder–

decoder structure, where the encoder functions as a feature

detector, while the decoder attempts to reconstruct the image

labels at the similar scale of the original by upsampling the

high level but spatially compact features, usually through 2-D

transpose convolutions (also known as deconvolutional filters).

Often this is performed in a hierarchical fashion, upsampling

the deepest features first to reconstruct dense interpolations,

then combining it with the next lower level features, upsam-

pling again, and so on, as illustrated in Fig. 1. Popular seman-

tic segmentation algorithms include DeepLab [57] (note that

DeepLab does not use the encoder–decoder structure, rather

it relies upon parallel atrous convolutions), FCN [58], U-Net

[59], and SegNet [60]. Often these CNNs will also include

a conditional random field (CRF) [61] for postprocessing to

filter the classifications in both value similarity and probabil-

ity space, such that details often missed by the CNN may be

captured.

Given machine learning’s recent successes for the purposes

of object identification and scene segmentation, it was only

natural for the remote sensing community to quickly realize its

potential application. Land use classification became a natural

fit for CNN algorithms, as they took direct advantage of se-

mantic segmentation using airborne and satellite multispectral

and hyperspectral data, applied to many human-related activities

such as urban mapping, agriculture, and forestry mapping [62]–

[64]. Widespread adoption, however, has still been met with

certain skepticism within the scientific community due to the

black-box nature of CNNs and interpretability issues, as well

as how to connect CNN predictions to the existing scientific

models and principles. Specifically, variable phenomena such

as sensor degradation, shadowing, scattering, and atmospheric

effects are poorly encapsulated within a CNN. Often, training

these structures with high-quality datasets does not yield good

results, particularly when contending with the high diurnal

heterogeneity that so frequently dominates satellite imagery.

Alternatively, engineered metrics and indices [i.e., normalized

difference vegetation index (NDVI)] have been used such that

the noise is preprocessed or smoothed away, or avoided alto-

gether [65].
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TABLE I
CONVERSION OF KSLOF CLASSES TO NEMO-NET CLASSES

Note that many areas that were classified as coral rubble within KSLOF are simply classified as coral for NeMO-Net, since they usually consist of a mix of both live and

dead coral colonies. Only one new class was added to NeMO-Net: wave-breaking areas where the ocean meets the coralline algal ridge and reef crest, producing highly

visible wave crests.

In regards to the benthic mapping of shallow-water marine

ecosystems such as coral reefs, CNNs have been used to annotate

diver-scale high-resolution images of coral [66]–[68], although

little has been accomplished in applying CNN classifiers to

satellite imagery. Currently, many satellite-based reef mapping

projects still utilize OBIA methods in software packages such

as eCognition to perform much of their classification and seg-

mentation work [69], [70]. This is because the difficulties in

mapping marine environments are compounded as compared to

the land cover scenario, since for ocean mapping, one has to

contend with additional effects such as sun glint, wave action,

water column attenuation, and obfuscation of benthic cover

due to sediment transport. In addition, classification of coral

morphology becomes difficult when the ground sample distance

of most visible-range satellite sensors are over 1 m in resolution.

Our work with NeMO-Net, however, demonstrates that we can

overcome these difficulties on a modest scale. The inspiration

for these systems stems from our human experience, since our

ability to infer context allows us to easily distinguish simple

classification measures despite highly shifted and noisy imagery

within the spectral and spatial sphere.

III. DATA SOURCES

To test and apply our algorithms, we focused largely on the

fringing reefs surrounding the remote islands of Fiji, namely

Cicia, Fulaga, Kobara, Mago, Matuka, Moala, Nayau, Totoya,

Tuvuca, Vanua Balavu, and Vanua Vatu, covering an extent of

roughly 2300 km2. These islands were initially surveyed by the

Khaled bin Sultan Living Oceans Foundation (KSLOF) expedi-

tion [69] as part of an effort to map the world’s remotest coral reef

habitats. As part of the project, KSLOF obtained DigitalGlobe’s

WorldView-2 (WV-2) multispectral imagery of these islands

over multiple days, spanning up to a few months apart, which

cover the 400–1050 nm visible and near infrared (NIR) regimes

through eight unique spectral bands. The imagery itself has been

orthorectified to a per-pixel resolution of 2 m, and was initially

delivered as 16-bit digital numbers (DN) before conversion to

remote sensing reflectance to just above the water surface.

Our primary source of data was WV-2 multispectral imagery

throughout in conjunction with KSLOF data as a starting point

for verifying NeMO-Net’s results. However, we have reduced

the number of spectral bands to the more commonly used four

spectral channels: red (624–694 nm), green (506–586 nm), blue

(442–515 nm), and NIR (765–901 nm), since we wished to

compare the multisensor capabilities of our algorithm against

other datasets, such as Sentinel and Planet satellite imagery.

Geomorphic classification maps, which classifies according to

geomorphology and physical locations, were also provided to us

through KSLOF to compare our results against theirs, in which

they utilized Definiens eCognition software with the traditional

OBIA methods to perform much of their analysis. Note that our

classifications are more in line with benthic habitat mapping, as

we do not delineate between different geomorphic zones. We

have downsampled their 20 or more geomorphic classes down

to 9 spectrally distinct classes: coral, sediment, seagrass, waves,

deep water, clouds, terrestrial vegetation, beach, and other. An

example of this downsampling is shown in Table I. Note that

because the geomorphic classes as provided by KSLOF were

also largely the result of a classification algorithm, inaccuracies

may exist in their segmentation results, and hence, a full truth

map is difficult to ascertain. Therefore, we employed additional

experts to hand-classify multiple transects as the final test set

that we ultimately compare against.
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Fig. 2. User classifications as collected from the NeMO-Net citizen science app. Here, four different classifications from separate users for the same area are
shown. Note that there exist discrepancies between the input data from each user, although during test time, we found that this difference often enhances the
capability of the CNN as it is able to infer areas of high confidence more readily.

We also obtained Planet imagery as part of a NASA effort to

gauge the usefulness and applicability of commercial datasets,

and it was delivered similarly to that of WV-2 as DNs, covering

four spectral bands (RGB + NIR), at a per-pixel resolution of

3 m [71]. As will be shown, although the temporal coverage is

unparalleled for these datasets, the fact that they suffered from

poor calibration posed a challenge to work with.

To provide training data, we collected segmented classifica-

tions through our NeMO-Net citizen science active learning app,

where users can directly color in areas they believe correspond

to specific classes. This is directly shown in Fig. 2, where

classifications from four different users are shown for the same

area. It is interesting to note that here we see some prominent

clouds and cloud shadowing, but from the experiences of each

user, they are easily able to filter this out due to their innate

knowledge of context, something that is currently still difficult

to train an algorithm for. Initially, we were able to collect up to

100 of these classifications internally, mostly covering different

regions surrounding Cicia Island. Various methods of cleaning

the user data were employed, such as filling in areas that were

left unclassified with the most common surrounding classi-

fied class, and discarding incomplete or heavily unclassified

results.

IV. METHODOLOGY

The overarching goal of NeMO-Net is to facilitate the classi-

fication of shallow marine habitats (i.e., coral reefs and seagrass

beds) under highly variable spectral and sensor characteristics.

To the best of our knowledge, this has not yet been accomplished

on a global meter-level scale without significant preprocess-

ing effort and human intervention to align the aforementioned

spectral spaces in a consistent manner. We relaxed the problem

insofar as to limit the instrument variability (mostly only WV-2

imagery) while allowing for a wide range of spectral variability,

with imagery taken often months apart under highly variable

conditions mentioned previously (e.g., aerosols, haziness, solar

effects, etc). To provide the training data for our algorithm,

NeMO-Net utilizes an active learning platform developed in-

house on handheld devices to aid in quick classification of coral

reef transects by simply drawing upon the surface of the image

[72]. Curation of this data is not within the scope of this article,

but the filtered credible results from this application were fed

into the CNN.

The NeMO-Net classification algorithm can be summarized

into three distinct segments, as shown in Fig. 3. The first seg-

ment, preprocessing, attempts to lightly radiometrically cali-

brate the data by only accounting for factors such as sun angle

and sensor characteristics (gain and bias) available from the

vendor. Next, we implement the general CNN architecture,

which is trained upon the hand-segmented data from the NeMO-

Net active learning app. This is done parallel to the land and

cloud masking (which is also performed using a similar CNN

architecture), the former from available infrared channels and

the latter utilizing a CNN cloud and cloud shadow detector

developed alongside NeMO-Net [73]. The CNN’s priority is

to identify the spectral space that the current imagery operates

within by focusing on invariant features across all its input

data, and to attempt a first-order classification result. The final

segment of the algorithm, postprocessing, utilizes the traditional

machine learning methods to finalize the classification process

utilizing predictions in which the CNN is highly confident

in. A conditional random field may be applied after the ini-

tial CNN phase and after postprocessing to refine the image

boundaries. Note that because of the existence of the postpro-

cessing step, the entire NeMO-Net algorithm cannot be trained

end-to-end.

A. Preprocessing

During preprocessing, the DNs are first converted to top

of atmosphere (TOA) radiance-based upon vendor calibration

values and metadata. Two general corrections are made, one for

the spectral channels

xb,RAD =
xb,DN ∗ CALb

BWb

(2)

and one for solar angle

xgeo =
xRAD ∗ d2

cos
(

π
2
− e

) # (3)
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Fig. 3. General flow diagram of the NeMO-Net algorithm. The initial incoming raw data arrive in the format as digital numbers (DN), which is then converted to
top of atmosphere (TOA) radiance based upon calibration values and sun angles as given by the vendor. A cloud masking procedure for clouds and cloud shadows
is performed in parallel to the CNN section [73], in which the final result is combined from both and passed through to postprocessing.

Fig. 4. CNN structure of NeMO-Net. The encoder blocks downsample the data as it extracts deeper and deeper features, the bridge blocks pass the intermediate
feature maps to the decoder, and the decoder blocks reconstructs the classification map from the aggregate feature space. Note that the encoder blocks may have
slight variations within their inner structure not depicted here, but they follow the general ResNet-50 [55] architecture. The decoder section follows the RefineNet
[74] architecture.

where xb,RAD is the TOA radiance value for a specific band,

xb,DN is the digital number for a specific band, CALb is the

band-specific calibration value provided by the satellite vendor

to adjust DN to TOA radiance, BWb is the bandwidth of a

specific band, xgeo is the sun-angle geometrically calibrated

TOA radiance value, d is the sun–earth distance, and e is the

sun angle elevation.

Although these corrections were meant to calibrate the data

to comparable values across all measurements, there always

will remain unaccounted-for phenomena that distort these val-

ues, sometimes imperceptibly, which may significantly impact

the predictive capabilities of classification algorithms. In other

words, these corrections are on the first order, and as such

cannot take into account all the variances that exist within

datasets taken at different temporal intervals. Yet they provide a

meaningful starting point for utilizing CNNs for remote sensing

segmentation and classification, as some semblance of a consis-

tent data product has been attempted.

B. NeMO-Net CNN

NeMO-Net’s CNN architecture, shown in Fig. 4, mirrors

that of a FCN (see Fig. 1), with an encoder and decoder for

achieving deep feature representations and for segmentation

reconstruction of the image to its original resolution. Because

the input Fiji data are highly variable in size and often huge (on

average 5000 × 5000 pixels in size), as well as the difficulty in

obtaining dense segmented truth data, a “patch-based” method

to classify the data is utilized through a 256 × 256 sliding

window over the entire transect. The input to the CNN is a
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256 × 256 × 4 image patch with four spectral channels (RGB

+ NIR), and the output is a classification map of size 256 × 256

across nine classes. The ResNet-50 encoder section, adapted

from [55], is a highly successful architecture within deep feature

learning. The name implies a total of 50 convolutional layers,

often 3 × 3 in size, although only 49 of those layers are used

within our version (the final layer is often a fully connected

layer for classification). Within these layers, we employed ReLU

activation and batch normalization layers to improve the training

process, with shortcut (or residual) layers that allows for training

of deeper features. Each major block is illustrated within Fig. 4,

with the output feeding into relevant decoder sections during the

upsampling process.

For the decoder, we utilized the general RefineNet [74], [75]

architecture, which uses residual convolution units (RCUs) and

chained residual pooling (CRP) structures during the upsam-

pling procedure. Each major decoder block takes inputs from the

high level but low-resolution features from the previous decoder

block combined with the low level but high-resolution features

from the convolutional blocks to generate an upsampled feature

map to pass to the next decoder block. The final block contains an

additional upsampling layer, which segments the image into the

relevant classes. Note that although we may use 2-D transpose

convolutions for upsampling, simple bilinear upsampling layers

were employed here to decrease the amount of required training

weights and to speed up the training process.

Particular to this CNN design is the use of RCUs and CRPs,

which are constructed to infer greater context from the sur-

rounding areas it seeks to classify. RCUs are similar to residual

units used in ResNet, and offer a bypass connection allowing

for direct transition between the previous layers and intended

outputs without passing through convolutional layers, speeding

up training and decreasing the overall dependence on the convo-

lutional weights. CRPs on the other hand pools large areas of the

surrounding features successively to form a contextual view of

the area, often followed by convolutional layers to determine

the importance of said pooling operation. Again, the use of

shortcut connections here allows for an alternate independence

from CRPs in the case that they are ultimately unnecessary.

The combination of residual units, multiresolution fusion, and

chained pooling allows for effective segmentation of remote

sensing imagery.

Although these classifications are informatively dense, it is

ultimately not possible to effectively train a CNN that must

predict upon imagery over multiple days under varying con-

ditions with such few numbers of training samples. Even so, it

is entirely possible to overfit a model given the vast number of

parameters within a CNN and only comparatively few training

patches. To remedy this, image augmentation was utilized to

vary the imagery such that we inject noise and spectral shifts

randomly to each sample image patch while maintaining the

same respective user classification. Although this was initially

successful for a single island, it was not generalizable to multiple

islands and days due to the unrealistic augmentations applied.

In reality, the spectral variance between scenes is not entirely

random, as the relative radiance between spectral channels does

possess some consistency. To address this issue, we applied a

simplified spectral shift calibration between scenes taken on

multiple days by focusing on the three major classes that are

relevant to our classifications of underwater features: coral,

sediment, and seagrass. By taking a few random samples of

these classes from multiple days, a multivariable polynomial fit

can be constructed such that a spectral transfer between datasets

can be realized. Mathematically, this is reflected as

Ra = F1 (Rb, Gb, Bb)

Ga = F2 (Rb, Gb, Bb)

Ba = F3 (Rb, Gb, Bb)

NIRa = F4 (NIRb) (4)

where R, G, and B represents the RGB channels, a and b

subscripts represent the datasets, and ̥ represents the spectral

transfer function to map one dataset to another. Special treatment

is given to the NIR channel since it behaves differently from

the RGB channels, in that it is highly apparent over terrestrial

vegetation but falls off dramatically over water due to the high

absorption of these wavelengths in the first layers of the water

column. We applied a simple second-order polynomial for the

fitting function ̥ across every channel to avoid overfitting. In

practice, this spectral transfer function can also be approximated

using radiometric models that can vary atmospheric and capture

parameters from scene to scene, and allow further augmentation

of the data. However, for our purposes, the simple polynomial fit

was sufficient for our training processes as a fast and easy method

in which to implement augmentation. Inclusion of additional

random spectral shifts and noise following this mapping, an

abundance of augmented data were generated to train upon from

a small initial set.

The data are initially organized into their respective classes

dependent upon the central pixel of the 256× 256 scene. As only

a small number of training samples were collected, focus was

given more toward areas of fringing reefs where an abundance

of coral, sediment, and seagrass classes were evident. Often,

these scenes contained deep water, wave breaking, terrestrial

vegetation, and beach classes as well, particularly toward the

corners or edges of the scenes. The presence of clouds and urban

classes were fairly random, the latter often suffering from user

misclassifications since their appearance were so infrequent. A

mean value of 100 and a standard deviation of 100 was chosen

to normalize the spectrally calibrated TOA radiance scene to

values between roughly −1 and 1 before ingestion into the

CNN. The training process was run over minibatch sizes of 8

scenes per batch, 100 steps per epoch, and over 100 epochs.

Parameters for the trainings include the usual cross-categorical

entropy loss, an ADAM optimizer [76], and an early stopper

interrupt after 30 consecutive epochs with no improvement. We

have also tested different loss functions such as focal loss [77]

and Lovasz loss [78] due to class imbalance within our datasets,

although since we use postprocessing after the initial CNN, these

metrics have little effect on the end result. A generator function

consistently produced randomly spectrally shifted training sets

during runtime, and so an epoch was not inherently tied to the

number of classified scenes available. This was similarly done
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Fig. 5. Sample 896 × 896 patch showing the RGB image, CNN classification, and conditional random field (CRF) of the CNN output. The classification was
generated by taking the central 128 × 128 classification, while sliding a 256 × 256 window over a scene of total size 1024 × 1024 pixels. Note that the CNN
output tends to produce classifications with rounded or smooth edges, which can be resolved with a CRF.

for the validation set. The total training time, on average, was 6

hours, utilizing Tensorflow [79] and Keras [80] with an Nvidia

1080 TI GPU.

Parallel to the benthic mapping CNN, we also ran an addi-

tional CNN responsible for cloud and cloud shadow masking

and detection. Although our main CNN already included a

cloud class, we discovered it was more effective to train another

CNN unburdened by the benthic classes. We combined through

intersection, the results from both CNNs during postprocessing.

The details of the cloud masking CNN are detailed in [73].

Although the results from the final trained CNN are more

than adequate for segmenting coral habitats (shown in Fig. 5),

we noticed that they often generate classifications that are overly

smoothed and can still vary over different regions if the contex-

tual information is misleading or not present. The former can be

slightly remedied using a conditional random field (CRF) [61],

whereas the latter was slightly more difficult to address. The

cause is such that although the CNN is spectrally adaptable, large

offsets in spectral variation between scenes can still give rise to

localized misclassifications due to contextual information often

being misinterpreted. For example, slight variations between

the TOA radiance can give a lighter appearance to seagrass,

resulting in some classifications where they were treated as

coral, although their presence close to land should preclude

such results. To form a more coherent classification basis across

scenes, postprocessing is required such that classifications of

high confidence from the CNN is given appropriate treatment,

and generalized across the entire dataset.

C. Postprocessing

For the postprocessing algorithm, a K-nearest neighbor

(KNN) algorithm was chosen. The reasoning is such that al-

though the CNN is innately adaptable to random spectral shifts,

its classification accuracy for boundary cases suffers as a result.

In other words, because the CNN is now more tuned to the

relative spatial and spectral qualities between classes, it bases its

predictions less upon absolute attributes, and so this inherently

allows for some uncertainty within data that exhibit qualities

that lie close to the boundaries between classes. Furthermore,

if a large number of points could be generated from the CNN

output, then the relative nonlinearity between classes could be

preserved in regards to the decision boundaries. By combining

multiple classifications by sliding the scene window over an

area, and by only trusting the central 128 × 128 patch within

the 256 × 256 scene that is predicts over (essentially discarding

the boundaries where spatial contextual information is lacking),

it is possible to build up a set of points of high confidence for

each class (result shown in Fig. 6).

As we were mainly concerned with coral, sediment, and

seagrass, the CNN output is then filtered for these classes where

they are represented with high confidence (>85%). Because the

number of highly confident points may vary from scene to scene,

and because there generally exist more sediments than corals,

both of which are more abundant than seagrasses, a relative

confidence threshold was set such that the number of coral pixels

was roughly three quarters of sediment pixels, and no bounds

were set on the number of seagrass pixels. A lower confidence

bound of 65% was set for all classes, such that there exists

a maximum number of pixels per class possible. From these

pixels, we trained a KNN classifier specific to coral, sediment,

and seagrass pixels only. The KNN used a distance metric and

the closest ten points to determine a class, and thus, all sediment,

seagrass, and coral classes were reclassified this way, shown in

Fig. 7. A CRF on the KNN classification was applied afterwards

so that we decrease the noisiness of the KNN outputnd refine

the boundaries.

D. Application

We tested the capability of the NeMO-Net algorithm upon

five scenes of 256 × 256 patches each. The test area was

focused specifically on Cicia Island, but the scenes were taken

at differing times under varying conditions, and hence, there

exist significant spectral variations across the scenes themselves

(shown in Fig. 8). These transects were initially classified on a

larger scale of 1024 × 1024 pixels each such that a mean pre-

diction is generated by stacking smaller 256 × 256 predictions

together. In addition, a larger prediction area was necessary such

that the KNN postprocessing step was able to infer the correct
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Fig. 6. (Left) Scene where pixels of high confidence (>85%) are illustrated in the following colors: coral (magenta), sediment (cyan), seagrass (green), and
clouds (white). (Right) Taking those points of high confidence, a sample representation of the RGB and HSV values of those points are shown (the HSV values also
include the deep water pixels shown in blue). There exists a highly nonlinear boundary and significant overlap between classes, which varies from scene to scene.

Fig. 7. Sample 896 × 896 patch showing the RGB image, KNN output and CRF of KNN output derived from the CNN results shown in Fig. 6. The KNN was
able to produce a better classification than that of the raw CNN output by utilizing areas of high confence as predicted by the CNN, although it produced a noisier
product. A CRF filter was usually appended after the KNN postprocessing, shown in the rightmost classification.

Fig. 8. Scene comparison over multiple days of one specific 256 × 256 geographic area on the northern side of the Cicia Island. Note that although the location
remained the same, due to cloud shadowing, atmospheric effects, time of capture, and sensor calibration, the spectral quality of the transects varied significantly
over multiple days. The KSLOF map is included here on the right; note large areas are classified as “coral” (in actuality “back-reef pavement”) and only provides
a one-time, static classification of the area.

classification from a larger number of sample points. The central

256 × 256 patch from the 1024 × 1024 prediction was taken

coinciding with the expert hand-classified segmentation of the

same area.

For comparison, we tested multiple traditional CNN archi-

tectures utilized for image segmentation against our NeMO-Net

algorithm. Specifically, we generated both raw CNN results as

well as KNN results derived from the various CNN outputs. The

CNNs attempted in this study include variants of the VGG16-

FCN [58], DeepLab v2 [57], SharpMask [75], and NeMO-Net’s

RefineNet [74], [75] architectures. We briefly describe each

method as follows.

1) The VGG16-FCN structure follows closely of the original

VGG16, encompassing 16 convolutional layers on the

encoder side and a simple bilinear upsampling with con-

volutional layers on the decoder end. Encoder outputs are
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Fig. 9. Normalized confusion matrices for (left) NeMO-Net prediction and (right) KSLOF eCognition results against expert hand-classified segmentation over
five 256 × 256 patches focused on the Cicia Island where little to no cloud or cloud shadowing were present. The apparent higher classification errors of the
KSLOF object-based methodology might be due to the intrinsic heterogeneity of reef benthos and classifying large areas as “coral” although these areas might in
reality be a mixture of living and dead coral framework.

passed directly to the decoder with little to no operations

in between. This structure was one of the first to explore

multiresolution combinations for the purposes of image

segmentation.

2) DeepLab does not explicitly use the FCN encoder–

decoder structure. Rather, following the standard VGG16

convolutional layers, the resulting output is split into four

parallel channels in which atrous convolution (otherwise

known as dilated convolution) is administered with dif-

fering stride values. The output of these parallel branches

are combined afterwards and a final convolutional layer

produces the output. We explicitly utilize an architecture

based upon Deeplab v2 within our comparison.

3) SharpMask was developed by Facebook for the purposes

of object detection and semantic segmentation, and is a

stepping stone between the older FCN structures and that

of RefineNet. The usual encoder–decoder structure uses

a ResNet-50 architecture on the encoder side, with more

involved convolutional layers with upsampling procedures

on the decoder end.

4) NeMO-Net’s CNN is based upon RefineNet, which was

covered in detail in Section IV. The most important contri-

bution of RefineNet is the use of RCUs and CRPs within

the decoder section to infer additional context during

multiresolution fusion and upsampling.

We also evaluated the KSLOF predictions generated from

eCognition using OBIA methods, although we note that since

large portions of imagery were classified as “back-reef pave-

ment,” which we translate roughly to “coral,” KSLOF predic-

tions can often be misleading particularly for islands that were

poorly surveyed.

To fully test the adaptability of the NeMO-Net algorithm, we

applied it directly to the 4-band (RGB + NIR), 3-m resolution

Planet imagery gathered over Cicia Island over recent years,

focusing on days where little to no cloud cover were present.

These datasets were taken with the PlanetScope constellation

of satellites, and as such their spectral qualities vary wildly

from one platform to the next, often with incomplete calibration

values. Because of the lower spatial resolution encountered here,

we initially performed a simple sharpening convolution over the

image, bringing out high frequency information that the CNN

would otherwise overlook. In addition, we performed a slight

mean and standard deviation fix to the data (targeted over a

specific 512 × 512 scene), such that the normalization mirrors

that of the WV-2 input (recall that WV-2 input used a 100

mean value, 100 standard deviation value to normalize the input

data). Beyond these simple modifications, the CNN algorithm

with KNN-CRF post-processing was applied as before, with no

additional retraining.

V. RESULTS

The resulting confusion matrix for both the NeMO-Net classi-

fication as well as KSLOF eCognition results are shown in Fig. 9.

Note that we generalized large areas of “back-reef pavement” as

“coral” for the purposes of downscaling the number of classes.

It has also been in our experience that the KSLOF labels often

classified large swathes as “back-reef pavement” even though

there exist clear delineations between pavement and sediment

areas, possibly due to the fact that a mixture of live and dead

coral colonies make up such regions. The truth data utilized here

was rigorously classified using the NeMO-Net citizen science

app by expert users.

We report for this study the common metrics of mean ac-

curacy, mean precision, mean recall, and frequency-weighted

intersection over union (IoU, or otherwise known as the Jaccard

Index). The use of the weighted IoU was due to the large

class imbalances per scene. We also report these metrics for a
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TABLE II
ACCURACY, PRECISION, RECALL, AND FREQUENCY-WEIGHTED IOU METRICS FOR THREE POPULAR CNN-BASED

SEGMENTATION ALGORITHMS COMPARED AGAINST NEMO-NET’S REFINENET-BASED ALGORITHM

Results from three types of loss metrics are displayed: focal loss, Lovasz loss, and categorical cross entropy

(CE). CNN-CRF shows the results when only predicting using RefineNet with a CRF filter afterwards, while

postprocessing with KNN without CRF, and KNN with CRF results is shown afterwards. The KSLOF eCognition

OBIA predictions are given in comparison. The test areas consist of five 4-band, 2-m resolution, 256 × 256 WV-2

patches where little to no cloud cover and cloud shadowing were present over the Cicia Island. Highest metrics are

bolded.

Fig. 10. Segmentation and classification results from all methods across a WV-2 256 × 256 patch, compared against an expert hand-classified result. In this
particular example, VGG16 overestimated seagrass, DeepLab misclassified deep water, and SharpMask undestimated seagrass, while NeMO-Net’s RefineNet very
closely matches the expert level classification. Results taken from the KNN-CRF method for all classes with cross-entropy loss.

subsample of our three more important classes: coral, sediment,

and seagrass, with regards to KNN-CRF postprocessed results

across all CNN architectures. All CNNs were trained using the

same training data, with identical image augmentation criteria.

The resulting tables are organized as follows.

1) Table II shows the results for five 256 × 256 patches

over Cicia Island where little to no cloud cover and cloud

shadowing were present. Also displayed are the three types

of losses used: focal loss, Lovasz loss, and categorical

cross entropy. To show the effectiveness of the CRF after

KNN postprocessing, its results are compared as well to

the KNN-CRF method. Fig. 10 shows classification results

across all CNNs over one particular 256 × 256 patch.

2) Table III repeats the aforementioned process over eight

different 256 × 256 patches, each taken from a different

island (Fulaga, Kobara, Mago, Matuka, Moala, Nayau,

Totoya, Tuvuca, and Vanua Vatu) on different days to

test the generalizability of the algorithm. Fig. 12 in the

Appendix shows sample classified transects from these

test sites.
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TABLE III
FINAL ACCURACY, PRECISION, RECALL, AND FREQUENCY-WEIGHTED IOU METRICS FOR THREE POPULAR CNN-BASED

SEGMENTATION ALGORITHMS COMPARED AGAINST NEMO-NET’S REFINENET-BASED ALGORITHM

The test areas consist of nine 4-band, 2-m resolution, 256 × 256 WV-2 patches where little to no cloud cover and cloud

shadowing were present over nine geographically diverse Fiji Islands: Fulaga, Kobara, Mago, Matuka, Moala, Nayau,

Totoya, Tuvuca, Vanua Balavu, and Vanua Vatu. Highest metrics are bolded. Example transects are shown in Fig. 12

within the Appendix.

TABLE IV
FINAL ACCURACY, PRECISION, RECALL, AND FREQUENCY-WEIGHTED IOU METRICS FOR THREE POPULAR CNN-BASED

SEGMENTATION ALGORITHMS COMPARED AGAINST NEMO-NET’S REFINENET-BASED ALGORITHM

Only the KNN-CRF postprocessing results are shown for each CNN. The test areas consist of seven 4-band, 3-m resolution,

256 × 256 PlanetScope patches where little to no cloud cover and cloud shadowing were present over Cicia Island. Highest

metrics are bolded.

3) Table IV shows the results from 4-band Planet data for

seven 256 × 256 image patches, where we initially pre-

dicted the surrounding 512 × 512 transect for context,

and then, took the center prediction against our expert

hand-classified dataset. A sample classification over one

specific area is shown in Fig. 11.

Analyzing the results from Table II, we concluded that in

general, NeMO-Net’s predictions utilizing a RefineNet structure

in combination with KNN postprocessing produced the best

results across all metrics. Furthermore, applying a CRF filter

after the KNN postprocessing yielded even better accuracy,

precision, and recall metrics. However, it is interesting to note

that although NeMO-Net’s raw CNN (i.e., no postprocessing)

accuracy fared better than the other architectures, its mean

precision and recall was much lower than that of VGG16-FCN’s

raw CNN results. This was remedied through the postprocessing

step, implying that RefineNet may initially misclassify more of

the less apparent classes. KSLOF’s eCognition prediction using

OBIA methods, shown alongside, did not perform as well due

to large generalizations and inability to contextualize spatial

information.

One major aspect to note is the relative lack of improvement in

regards to utilizing the KNN-CRF postprocessing step for both

VGG16 and SharpMask CNNs. This may indicate that these

architectures have already saturated their maximum predictive

capability at the CNN phase, and relatively little can be done to

improve their classification results. Qualitatively, we observed

that both VGG16 and SharpMask in general produced less

predictions that are of high confidence, resulting in a sparser

KNN that did not improve upon the original result. The complete

opposite is true for DeepLab, where the raw CNN results were

exceedingly poor but the KNN-CRF vastly improved the results

during postprocessing. This can be explained by DeepLab’s

lack of an encoder–decoder structure, rather relying upon atrous

convutions on parallel branches that eventually sum together,

after which a simpler bilinear upsampling layer is applied. The

lack of multiresolution fusion produces results that are overly

smoothed and relatively inaccurate, but the general contex-

tual information is still preserved and can be exploited during

postprocessing. NeMO-Net’s RefineNet tangentially exploits

this capability with CRPs in its decoder sections, allowing

for more contextual information to be retained and exploited

later.

In regards to coral, sediment, and seagrass predictions,

NeMO-Net’s algorithm exceeded the other predictions in every

aspect. In general, accuracy across these three specific classes
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Fig. 11. Segmentation and classification results from all methods across a PlanetScope 256 × 256 patch, compared against an expert hand-classified result. In
this particular example, VGG16 overestimated seagrass, DeepLab misclassified deep water, while both SharpMask and NeMO-Net’s RefineNet matched the expert
classification more closely. Results taken from the KNN-CRF method for all classes with cross-entropy loss.

decreased compared to the overall accuracy for all CNN archi-

tectures with the exception of DeepLab, indicating that each

CNN in general was able to make better predictions across

classes that are easily distinguishable (e.g., terrestrial vegetation

and deep water).

Given results from the various Fijian Islands in Table III,

we observed that NeMO-Net’s RefineNet outperformed the

other CNN architectures in terms of accuracy, as well as in

all parameters when only predicting upon coral, sediment, and

seagrass. Mean precision and mean recall appeared higher for

VGG16-FCN, since it performs better for classes that appear

infrequently. It is postulated that due to the complexity of

RefineNet, less training data in these less apparent classes lead to

incorrect classifications due to little training examples, whereas

VGG16-FCN due to its simplicity was able to better tune its

weights faster and more accordingly.

For Planet data shown in Table IV, NeMO-Net’s algorithm

was once again able to outperform the other models, although the

results here are closer since all CNNs encounter a certain level

of difficulty when attempting to generalize. We observed that the

results were also noisier, since the different spectral space forced

the boundaries between classes to be less distinct, which caused

the KNN to misclassify more often. We observed that all CNNs

except for DeepLab were able to generalize fairly adequately

across all classes, despite being originally trained upon a dataset

from a different instrument and a different resolution altogether.

VI. DISCUSSION

Our attempts at employing CNNs for shallow water ben-

thic classification went through multiple evolutionary phases.

The first implementation was pixel-based and took the popular

AlexNet [49] and VGG16 [54] architectures, predicting upon a

center pixel given a small surrounding context (approximately

32 × 32). However, it was soon realized that this small spatial

context was insufficient to produce accurate classifications, and

predicting at large scales over millions of pixels became increas-

ingly time intensive. Further experimentation led to the use of

FCNs and segmentation specific CNNs, with the use of atrous

convolutions and encoder–decoder structures. Atrous or dilated

convolutions were able to capture larger context within an image,

but they were prohibitively expensive as one approached deeper

layers with large numbers of features, both in compute time and

in memory requirements. The use of augmented data derived

from spectral shifts as observed from satellite data was motivated

by the fact that the original CNN would perform superbly on

images taken on one day, but would fail when attempting to

do so for another day. At this point, domain adaptive neural

networks (DANNs) [81] were also introduced to handle the

domain invariance across image sets, but while they performed

well for small-scale CNNs, they were unable to converge for

larger scale CNNs that consisted of up to 100 layers. Finally

the postprocessing step was introduced as a final method to

clean up the predictions as made by the CNN, which would

generally achieve overall correct classifications but was lacking

in the specific details within an image.

For NeMO-Net’s implementation, we specifically avoided

much of the preprocessing procedures that traditional classifi-

cation and mapping algorithms employ, such as detailed correc-

tions for atmosphere, water surface, water attenuation, dark pixel

subtraction, and NIR-based corrections. Our purpose was to cre-

ate an algorithm that did not require these adjustments and could

identify the classes based upon relative spatial and spectral con-

text alone. Although successful, we postulate that inclusion of

the aforementioned preprocessing steps before ingestion into the

CNN would further improve the CNN’s capability and accuracy.

In addition, while we augmented our data through a simplified

polynomial fit to mimic day-to-day spectral variations within the

sensor and environment, this component can be replaced with a

high fidelity radiometric model that is better able to capture the

physics of the environment, as well as allow for further variation

beyond the spectral differences observed. However, we caution

that all preprocessing inherently does contain some level of noise
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and unknown bias, and the purpose of preprocessing is to map

all imagery datasets onto one specific feature space where less

generalization of the algorithm is required. If this cannot be

maintained, then it is better to allow the CNN to infer the context

rather than force an incorrect calibration onto the dataset itself.

In regards to the types of loss metrics utilized to train the

CNN, there was relatively little difference between the three

metrics used: focal loss [77], Lovasz loss [78], and categorical

cross entropy (CE), in the final results after postprocessing.

Mainly this is because NeMO-Net is not trained end-to-end, and

the KNN filter does much of the final fine-tuning work, using

only the CNN’s relevant probability estimates. We observe that

Lovasz loss due to its complexity trains at a much slower pace

than the other two, but the results are comparable to CE.

During postprocessing, we observed that the CNN was very

accurate for predictions that it is highly confident in, since it

is able to perceive the “big picture.” However, the CNN might

suffer at classifying highly localized areas that are only a few

pixels across. As such, we experimented with a number of

machine learning techniques to sample from high confidence

predictions, such as support vector machines (SVMs) and tree-

based methods. SVMs were generally unable to preserve the

high nonlinearity between classes, performing at least 5% lower

in all metrices, while random forest regression trees (tested with

1000 trees) performed close to that of KNNs, with accuracies

up to 83.2% and frequency-weighted IoUs of 71.4%. We settled

on the KNN classifier, and although it worked well within our

context, it did suffer from noise, as it was unable to infer context

unlike a CNN. Eventually, the KNN classifier can be replaced

with more traditional OBIA methods, although this is much a

topic for future work.

Within NeMO-Net, we observed that although the CNN is

able to generalize for modest shifts in spectral space, it cannot

compensate for overly dramatic changes that manifest them-

selves quite frequently in a number of scenarios. First and

foremost is the existence of clouds and cloud shadows. While the

former is less of an issue due to robust filtering algorithms and

the CNNs innate ability to identify clouds, the latter poses a sig-

nificant obstacle to accurate classification. For our purposes, we

employed a separate CNN to identify cloud shadowing, but we

realize that a human is often able to easily identify the class being

shadowed with relative ease due to their innate understanding of

relative context. Another area in which dramatic shifts manifest

themselves is the application of NeMO-Net’s algorithm to an

entirely different satellite, as evidenced through our application

to Planet data. Here, the shift was entirely unpredictable, where

again significant preprocessing may be required for traditional

algorithms to function properly. Although NeMO-Net’s CNN

was able to generalize, it was able to do so only after slight

adjustments were made to the mean and standard deviation of

the new dataset. This is not entirely unexpected, as this correction

is one of the most basic adjustments necessary for any algorithm

to work on entirely new datasets, but it hints at the necessity of

obtaining the correct normalization parameters beforehand. This

may eventually be derived from specific satellite statistics in its

imaging operation, sensitivity, and calibration in a more robust

manner.

Finally, our analysis as presented in this article was focused

mostly on cloud-free days centered upon fringing corals within

Fiji, and more broadly, the Pacific. It should be noted that an

abundance of both spectral information and dense contextual

spatial data is required to train any CNN properly, and if certain

areas are underrepresented, incorrect predictions may result.

This was evident in our analysis particularly for deep lagoonal

regions, where our training data were insufficient in representing

these areas. As a result, deep lagoonal regions would frequently

be overclassified as coral since they appeared darker than their

surroundings but not as impenetrable as deep ocean water. To

remedy this situation, one needs to ensure that the training

data encompasses every region that may appear, which may be

difficult globally (i.e., Caribbean versus Pacific). In this case,

it is recommended that different CNNs be trained to be region-

specific, such that geographical context is inherently ingrained

during training.

As to the topic of future work, there exists an abundance of

topics in which NeMO-Net’s algorithm may be improved. As

referenced earlier, the KNN postprocessing step can be replaced

with the traditional OBIA methods that segment an image into

smaller partitions, in which the CNN can aid in classifying. This

would decrease the level of noise that the KNN classifier is

prone to, while promoting more homogeneous predictions. The

addition of different types of data (preprocessing or otherwise)

can be incorporated into the CNN as additional channels, such

as bathymetry estimates, NIR corrections, or distance from land.

With these parameters, it is possible to identify geomorphic

zones, either directly through the CNN or during postprocess-

ing. Finally, with the appearance of high temporal satellite

data, NeMO-Net may be able to adapt its CNN to incorporate

time-series data (such as in long-short term memory, or LSTM)

[82] that can correlate between previous predictions to build an

improved classification product.

VII. CONCLUSION

The NeMO-Net project was created for the purpose of clas-

sifying and mapping coral reef habitats worldwide. To that end,

we have developed a CNN-KNN hybrid algorithm that is able to

infer contextual spectral and spatial information within a scene

to produce predictions on shallow marine benthic cover. The

method was based upon the RefineNet encoder–decoder FCN

architecture, trained upon 100 original images but augmented

to encompass varying spectral effects and day-to-day variances.

During postprocessing, a KNN classifier and CRF filter utilized

the CNN predictions of high confidence to further enhance the

CNN results. We compared our results against expert human-

level segmentation over 14 different 256 × 256 patches taken

over different islands on different days under a wide variety

of spectral variances, resulting in highly consistent overall ac-

curacies of 83%–85% over nine different classes. We demon-

strably showed that a combination of CNNs with traditional

machine learning methods was able to yield results that were not

only highly accurate, but generalizable across entirely different

regimes and even across different satellite instruments entirely.
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APPENDIX

Fig. 12. Comparison between different classifications over a number of 256 × 256 WV-2 patches taken over a variety of Fiji Islands. The RGB image, expert
classified transects, and KSLOF classifications are shown as comparison to the four CNN methods tested within this article.
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