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The focus of this work is on uncertainty characterization, sensitivity analysis, uncertainty propagation, and

extreme-case analysis. To deal with the computationally expensive and complex NASA problem, a simpler toy

problem is devised to mimic the NASA problem for which the true results were known. The toy problem helped in

thoroughly testing the current methods and their repeatability. For uncertainty characterization, a novel cumulative

density functionmatchingmethod is proposed, which gave similar results as a standardMarkov chain–MonteCarlo-

based Bayesian approach. An efficient reliability reanalysis-based probability-box sensitivity analysis method is

employed to identify the most sensitive parameters to the risk analysis metrics. Uncertainty propagation to find

extreme values for the risk analysis metrics is done using a single-loop efficient reliability reanalysis-basedmethod. A

modified version of the efficient reliability reanalysis is proposed that uses self-normalizing weights and caps on the

weights; this is referred to as a capped self-normalizing efficient reliability reanalysis. This method showed

considerably better performance at estimating risk analysis metrics for this application as compared to the generic

efficient reliability reanalysis. The use of efficient reliability reanalysis was dictated by the cost of the black-box

functions provided by NASA.

Nomenclature

D = modified Kolmogorov–Smirnov statistic
F = cumulative density function
f = probability density function
g = requirement metrics
I = indicator function
J1 = expected value of worst-case requirement metric
J2 = probability of failure
n = given number of observations
n 0 = number of aleatory samples for generating an empirical cumulative density function
p = uncertain random variables
q = sampling probability density function for efficient reliability reanalysis
w = worst-case requirement metric
x = intermediate variables
θ = subparameters (epistemic uncertainty)
Θ = vector of subparameters

I. Introduction

T HIS work aims to address the challenge problem posed by NASA [1] that comprises the entire uncertainty quantification process, including
the characterization, propagation, and robust design. The different subproblems in the challenge tackled in this work are as follows:

SubproblemA is the uncertainty characterization or improvement in the initial uncertaintymodel based on experimental data, subproblemB is the
sensitivity analysis of the parameters on the system performance to decide which uncertainty models should be improved, subproblem C is the
uncertainty propagation to determine the range of system performance metrics, and subproblem D is the identification of realizations that lead to
extreme cases of system performance.

Uncertainty quantification is becoming increasingly important in an effort to make design optimization more robust and prepare to face the
worst. It is helpful in trying to reduce surprises in designs. There is epistemic uncertainty due to lack of knowledge or imprecise data that can be
reduced or possibly eliminatedwithmore information. The aleatory uncertainty, on the other hand, is due to the inherent variability of the physical
system and is irreducible. Conducting more experiments or gathering more information cannot reduce this uncertainty. Oberkampf et al. [2,3]
explained these two types of uncertainties in detail. Although there is a consensus that aleatory uncertainty ismodeled by probability distributions,
various modeling techniques for epistemic uncertainty have been studied, such as interval theory, Dempster–Shafer evidence theory [4,5],
possibility theory [6,7], and probability theory [8,9].

Presented as Paper 2014-1498 at the 16th AIAANon-Deterministic Approaches Conference, National Harbor, MD, 13–17 January 2014; received 7 April 2014;
revision received 24October 2014; accepted for publication 4December 2014; published online 30 January 2015. Copyright© 2014 byAnirbanChaudhuri, Garrett
Waycaster, Nathaniel Price, Taiki Matsumura, and Raphael T. Haftka. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.
Copies of this paper may be made for personal or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222
Rosewood Drive, Danvers, MA 01923; include the code 2327-3097/15 and $10.00 in correspondence with the CCC.
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10

JOURNAL OFAEROSPACE INFORMATION SYSTEMS

Vol. 12, No. 1, January 2015

D
o
w

n
lo

ad
ed

 b
y
 M

A
S

S
A

C
H

U
S

E
T

T
S

 I
N

S
T

 O
F

 T
E

C
H

 o
n
 J

u
ly

 2
0
, 
2
0
1
5
 | 

h
tt

p
:/

/a
rc

.a
ia

a.
o
rg

 | 
D

O
I:

 1
0
.2

5
1
4
/1

.I
0
1
0
2
6
9
 

http://dx.doi.org/10.2514/1.I010269


In this work, wewill consider three different categories of uncertain randomvariables [1], including layered uncertainties ormixed aleatory and
epistemic uncertainties:

1) Only aleatory (irreducible) uncertainty is present. It is modeled as a given distribution with known parameters. There is no epistemic space
associated with this category.

2) Only epistemic (reducible) uncertainty is present. It is modeled as having fixed but unknown constants that lie within given intervals.
3) Mixed aleatory and epistemic uncertainty is present. This is modeled as a random variable with a fixed functional form but unknown

parameters. The unknown parameters have epistemic uncertainty prescribed in a given interval that can be reduced.
A cumulative distribution function (CDF) matching method for uncertainty quantification using optimization to identify reduced epistemic

uncertainty based on some additional information is proposed in this work. In this method, we compare different confidence bands (or envelopes)
for the empirical CDF of the given samples using a modified Kolmogorov–Smirnov statistic to get a refined range for the epistemic variables that
well describe the 95% confidence bands associated with the empirical CDF of the given observations. We also compare this to a more brute force
method using Bayesian approach.

A sensitivity analysis of the uncertain (epistemic) subparameters defining the random parameters is conducted to determine if we can fix some
parameters without incurring error, and for which parameters more information would be most helpful. The sensitivity of the parameters is
identified by the amount of change brought about in the p-boxes of each intermediate variable or ranges of values of interest due to a reduction in
uncertain subparameter bounds.We use the efficient reliability reanalysis (ERR) [10] method, which is an importance sampling-based approach,
as an approximation for the expensiveNASAblack-box functions.We propose somemodifications to the generic ERRmethod to handle constant
parameters with epistemic uncertainty and a version of self-normalized weights for ERR with a cap on the weights that is proportional to the
sample size. We dubbed this modified version as a capped self-normalizing ERR (CSN-ERR). The cap on the weights and self-normalizing
weights deters a single sample from essentially dominating all the other samples, which we found to be an obvious issue with the calculation of
probability of failures. The uncertainty propagation process is done using a single-loop CSN-ERR-based approach to find the ranges of system
performance metrics identifying the epistemic realization that prescribe extreme values of system performance. These results were compared to a
brute force double-loop Monte Carlo simulation.

The NASA challenge is a complex problem having unknown structure and solution. This makes it difficult to judge the performance of the
methods devised in this work. To validate and thoroughly test our methods, we devised a simpler toy problem to mimic the NASA problem. This
helped us in identifying the level of confidence for each method accompanied by rigorous debugging of our algorithms.

II. Problem Formulation

A. NASA Challenge Problem

Themultidisciplinary system under investigation is defined by amathematical model S. The system performance is evaluated based on a set of
requirement metrics g (here, eight) that define the safe domain when g < 0. The requirement metrics depend on a vector of uncertain random
variables (here, we call it a parameter) p (here, 21) and a vector of design variables d (here, 14) that can be set by the designer. The relationship
between the outputs g and inputs, p and d, are given by some black-box functions:

g � f�x;d� (1)

where x is a vector of intermediate variables (here, five) based on p as given by

x1 � h1�p1; p2; p3; p4; p5� (2)

x2 � h2�p6; p7; p8; p9; p10� (3)

x3 � h3�p11; p12; p13; p14; p15� (4)

x4 � h4�p16; p17; p18; p19; p20� (5)

x5 � p21 (6)

The components of x, which can be interpreted as outputs of single discipline analyses, are the inputs to the cross-discipline analyses in Eq. (1).
The components of g and x are continuous functions of the inputs that prescribe them. The software to evaluate these black-box functions is
provided by NASA [1]. The system performance is defined by the expected value of a worst-case requirement metric J1 or a probability of failure
J2. These two metrics are defined in terms of the largest violation:

w�p;d� � max
1≤i≤8

gi � max
1≤i≤8

fi�x;d� � max
1≤i≤8

fi�h�p�;d� (7)

J1 and J2 are given by Eqs. (8) and (9), respectively:

J1 � E�w�p;d�� (8)

J2 � 1 − P�w�p;d� < 0� (9)

The design variables are fixed by the analyst as dbaseline (specified here by NASA). A flowchart showing the progression of the problem is shown
in Fig. 1.
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B. Toy Problem

Todebug ourmethods for theNASAproblem,we first test the approachwith a toy problem. The toy problem, forwhichwe know the answer (or
can easily calculate), is intended not only to hold basic procedures of the original NASA problem but also to be simple enough to analyze the
results easily. The toy problem has two requirement metrics: g � �g1; g2�

T , where g1 and g2 are the functions of three uncertain variables,
p � �p1; p2; p3�

T , and two design variables, d � �d1; d2�
T . The functions of g1 and g2 are given by the following equations:

g1 � −2p1 � 10p2 − 5�p3 − d1� (10)

g2 � d2 − p3 (11)

Note that g1 and g2 are treated as black-box functions when we solve the problem. If g < 0, the system requirements are satisfied. Otherwise,
the system is considered to be in a failure state. This is a trivial problem, and it is posed in this manner to help us quickly debug our methods
and rigorously test diverse theories. System performance is measured by two metrics: J1 and J2. J1 is the worst-case requirement metric
defined
by

J1 � E�w�p;d�� (12)

where w�p;d� � max�g1; g2�. J2 is the failure probability defined by

J2 � 1 − P�w�p;d� < 0� (13)

Fig. 1 Flowchart for the problem formulation.

Table 1 Uncertainty models and true values of the parameters for toy problem

Symbol Category Uncertainty model True value

p1 2 Δ � �0; 1� p1 � 0.5
p2 3 Normal, −2 ≤ E�p2� ≤ 1, 0.5 ≤ V�p2� ≤ 1.1 E�p2� � 0, V�p2� � 1
p3 3 Unimodal Beta, 0.6 ≤ E�p3� ≤ 0.8, 0.02 ≤ V�p3� ≤ 0.04 E�p3� � 0.7, V�p3� � 0.03

Table 2 Uncertain parameters for random variables pa

Symbol Category Uncertainty model

p1 3 Unimodal Beta, 3∕5 ≤ E�p1� ≤ 4∕5, 1∕50 ≤ Var�p1� ≤ 1∕25
p2 2 Constant, Δ � �0; 1�
p3 1 Uniform, Δ � �0; 1�
p4, p5 3 Normal, −5 ≤ E�pi� ≤ 5, 1∕400 ≤ Var�pi� ≤ 4, jρj ≤ 1 for i � 4; 5
p6 2 Constant, Δ � �0; 1�
p7 3 Beta, 0.982 ≤ a ≤ 3.537, 0.619 ≤ b ≤ 1.080
p8 3 Beta, 7.450 ≤ a ≤ 14.093, 4.285 ≤ b ≤ 7.864
p9 1 Uniform, Δ � �0; 1�
p10 3 Beta, 1.520 ≤ a ≤ 4.513, 1.536 ≤ b ≤ 4.750
p11 1 Uniform, Δ � �0; 1�
p12 2 Constant, Δ � �0; 1�
p13 3 Beta, 0.412 ≤ a ≤ 0.737, 1.000 ≤ b ≤ 2.068
p14 3 Beta, 0.931 ≤ a ≤ 2.169, 1.000 ≤ b ≤ 2.407
p15 3 Beta, 5.435 ≤ a ≤ 7.095, 5.287 ≤ b ≤ 6.945
p16 2 Constant, Δ � �0; 1�
p17 3 Beta, 1.060 ≤ a ≤ 1.662, 1.000 ≤ b ≤ 1.488
p18 3 Beta, 1.000 ≤ a ≤ 4.266, 0.553 ≤ b ≤ 1.000
p19 1 Uniform, Δ � �0; 1�
p20 3 Beta, 7.530 ≤ a ≤ 13.492, 4.711 ≤ b ≤ 8.148
p21 3 Beta, 0.421 ≤ a ≤ 1.000, 7.772 ≤ b ≤ 29.621

aCategory 1 variables have only aleatory uncertainty, category 2 variables have an unknown single value

(only epistemic uncertainty), and category 3 variables have aleatory uncertainty in terms of a known

distribution type with uncertain parameters (epistemic uncertainty).
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The uncertainty models for p and their true values are given in Table 1. The nominal design variables are set as d � �1.5; 0.5�T . All the results for
the toy problem are provided in Appendix C.

III. Uncertainty Characterization (Task A)

In this section, we describe a few ways of practically refining the epistemic uncertainties present in the random variables using information in
the form of observed values.We demonstrate the process using observed values of x1 (x1;obs) that have been provided byNASA in order to update
the epistemic uncertainty of parameters of p1–5, given in Table 2. Each epistemic parameter (here, we refer to it as a subparameter) for category 2
and category 3 randomvariables is denoted by θ. The category 1 randomvariables have only aleatory uncertainty.At first, 25 observations of x1 are
used to update the uncertainty (task A1) and an additional 25 observations are used to validate the updated model (task A2). Then, all 50
observations of x1 are used to update the uncertainty model (task A3) and the effect of the number of observations on the fidelity of the resulting
uncertaintymodels is checked (taskA4). The refinement of epistemic parameters is done using a novel CDFmatchingmethod, which is described
in the next section. A Bayesian approach [11–13] was also implemented to compare results to the CDF matching method, and the details are
provided in Appendix A.

A. CDF Matching Uncertainty Quantification Approach

The CDFmatching approach uses the concept of the two-sample Kolmogorov–Smirnov test to compare the empirical distribution function or
empirical CDF (ECDF) for the x1;obs, with the ECDF for the generated x1 values using aleatory uncertainties for some realization ofΘ. The ECDF
Fn for n independent and identically distributed samples Xi is given by Eq. (14):

Fn�X� �
1

n

X

n

i�1

IXi≤x
(14)

where IXi<x is an indicator function that is equal to one when Xi ≤ x and zero otherwise. A modified Kolmogorov–Smirnov (K-S) statistic, used
here for comparing two ECDFs with n (given observations) and n 0 (randomly generated using aleatory uncertainty; 100 in this work) samples
(Dn;n 0 ), is given by Eq. (15). It is the sum of distances at the observed values between the two ECDFs. For each Θ realization, we sample 100
random p and generate an ECDF using that to compare to the ECDF from x1;obs and calculate Dn;n 0 . The random stream for generating 100
samples of p for a particularΘ realization is fixed to reduce the noise in objective function calculation. The optimization is repeated several times
with different random streams to placate this assumption:

Dn;n 0 �
X

x1;obs

jFn�x� − Fn 0�x�j (15)

Given x1,obs

Empirical CDF using the n

given x1,obs (Fig. 3a) 

Solve optimization problem 

given by Eq. (16)

Get one optimal set of sub-

parameters Θ*

i = 1 (first out of NCB confidence 

bands for empirical CDF of x1,obs

that are optimized)

Confidence bands for α in between 95 and 

10% (e.g., α = 0.05 generates 95% 

confidence band as shown in Fig. 3b)
i = i+1

Solve optimization problem given by Equation (16) for lower 

(dotted line in Fig. 3b) and upper (black dotted line in 

Fig. 3b) confidence bounds individually

Get two optimal sets of 

subparameters Θ*

i ≤ NCB

New range for sub-parameters is given by the range obtained from all sets of optimal Θ* (a 

total of 2*NCB+1 optimizations or 31 in this work).

No

Yes

Fig. 2 Flowchart describing CDF matching method.
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Dn;n 0 is minimized to obtain optimumΘ
�, as shown by the optimization problem in Eq. (16). A flowchart describing the CDFmatchingmethod is

shown in Fig. 2 (see also Fig. 3). We find the optimal Θ� for matching the given ECDF of x1;obs and for matching different lower and upper
confidence bounds (10–95% confidence bands) of the given ECDF for x1;obs, as shown in Fig. 4. This optimization is done for matching the given
ECDF and repeated for matching 15 lower-bound and 15 upper-bound confidence bands (Fig. 4) of the given ECDF between 10 and 95%**

confidence bands. This gives us 31 optimal values for each Θ (the optimization problem is solved 31 times, requiring 3.1e6 p_to_x1 function
evaluations). Then, the refined bounds ofΘ are found by taking the range of those values. Note that we do not assume any monotonicity between
epistemic parameters and the response quantity as we solve for a set of confidence bands and take the range from the final optimal sets of Θ�:

Minimize
Θ

Dn;n 0 Such that θloweri ≤ θi ≤ θupperi for i � 1; 2 : : : 8 (16)

In this case. there are eight θ forp1–5 with upper and lower bounds as provided in Table 2. The beta subparameters of a and b are found from the
expected value and variance of the distribution, as shown inAppendix B. The unimodality condition forp1 is enforced during the optimization by
penalizing the objective function when a ≤ 1 or b ≤ 1. The confidence bands are evaluated using Greenwood’s formula (ecdf function in
MATLAB). The optimization problem is solved using the DIRECToptimizer developed by Finkel et al. [14]. This method actually gives us 31
separate sets of optimalΘ� and can give us an idea of the correlation between the different θ. In this case, we only consider the refined range of θ to
be used in the sensitivity analysis and uncertainty propagation, as it is simpler to implement and we choose not to trust the correlations from a
limited dataset. This means that we continue to treat each a subparameter as an interval, as the information is originally posed in the challenge
problem. Note that none of our methods preclude us from using correlation information in the methods for sensitivity analysis and extreme-case
analysis, but we choose to ignore it to simplify the methods. An improvement on the current CDF matching method might be to consider
optimizing for any ECDF that can be bounded by the p-box defined by the 95% confidence bands of the given ECDF. This would also help in
choosing more ECDF combinations to optimize for and get a better understanding of the correlation between each θ at the expense of additional
computational effort.

0 0.1 0.2

a) b)

0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Empirical CDF of given x
1,obs

x
1

x
1

P
(X

<
=

x
)

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Empirical CDF of given x
1,obs

 with 95% confidence band

P
(X

<
=

x
)

Empirical

Lower Confidence Bound

Upper Confidence Bound

Fig. 3 Illustration showing a) empirical CDF, and b) confidence bands for empirical CDF of x1;obs.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Empirical CDF and all confidence bands used in CDF matching

x

P
(X

<
=

x
)

Empirical CDF

Lower Confidence Bounds

Upper Confidence Bounds

Fig. 4 Empirical CDF for x1;obs and all its confidence bands for which the optimization problem in Eq. (16) is solved during the CDFmatching method.

**This is a user-defined number related to the computational time available.
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B. Results for Uncertainty Characterization of NASA Problem

The epistemic uncertainties are updated using a first set of 25 given observations and then a second set of 25 given observations of x1 for the
NASA problem using the CDFmatching uncertainty quantification (UQ) approach. Some results for comparing the CDFmatchingmethod to the
Bayesian approach are given in Appendix A. The CDF matching method is initially verified and debugged using the simple toy problem, and
the results can be seen in Appendix C. It faired reasonably well for the toy problem, showing substantial uncertainty reduction while keeping the
true values in the range. The repeatability of the CDF matching method was also found to be satisfactory for the toy problem.

1. Tasks A1 and A3: Update Uncertainty Model Using Various Observation Sets

The refinedmedian bounds ofΘ for five repetitions (with different random seeds) of the CDFmatching UQmethod using the first set of 25 and
full set of 50 observations (x1;obs) are given in Table 3.Using the first set of 25 observations, the CDFmatching approach shows a trend of reducing
the upper bound ofE�p1�. Therewere also significant changes observed in the upper bounds ofV�p1� andE�p5� and the lower bound ofV�p5�. The
maximum reduction in range is for E�p5�.

Using the full set of 50 observations, the ranges ofE�p1� andE�p5� are substantially reduced. But, these reductions in rangeswere also identified
while using the first set of 25 observations. Themost significant difference in the reduction of rangewhile using all 50 observations as compared to
the first 25 observations can be seen forV�p5�. The other difference is that, while using the first 25 observations, therewas almost a 30%decrease in
the range for V�p1� but, after using all 50 observations, the decrease was only around 16%. This shows that using the smaller set of observations
was more consequential and led to an excessive reduction of the range. This could be due to a biased set of small samples (as we see in the results
for the toy problem with a small sample set, shown in Fig. C1 in Appendix C). The results from the Bayesian approach are mostly similar to the
CDF matching method, as can be seen from Appendix A.

2. Tasks A2 and A4: Effect of Number of Observations on Uncertainty Models

For the validation of the updated uncertainty models, we use the Kolmogorov–Smirnov test. The K-S test measures the maximum distance
between two ECDFs, called the K-S statistic, as an indicator of the agreement of the functions.We first evaluate the K-S statistics of ECDFs of x1
based on random sets ofΘ generated from the prior range (provided by NASA) to be compared with the ECDF of the given observations, x1;obs.
TheK-S test is conducted by generating 7256Θ realizations in the refined bounds (7000 using Latin hypercube sampling and 256 corner points in
eight dimensions). For each Θ realization, 1000 x1 samples are generated using the aleatory uncertainty and the ECDF from these generated
samples is compared against the full set of 50 given observations of x1. This process is repeated for all theΘ realizations to obtain the variation in
the K-S statistic. This is compared to results from generating 7256Θ realizations in the prior range (as provided by NASA)with the same random
seed to make it a fair comparison.

For the K-S test, all the ECDFs based on prior and refined ranges were compared to the ECDF of all 50 observations. As shown in Fig. 5, the
third quartile (the top of the box and the 75th percentile value) of theK-S statistic was substantially reduced as the number of observations used for
the uncertainty quantification is increased for both the approaches. Themedian of theK-S statistic also decreasedwith the number of observations.
This reflects the fact that the uncertainty quantification successfully discarded the combinations of subparameters that poorly approximated the
ECDF of x1 with 50 observations.

The results for rejection percentages of the null hypothesis of the K-S test with α � 5% for different sample observation sizes are given in
Table 4. It can be seen that the rejection percentage decreases after updating the epistemic uncertainties.More than a 50%decrease in the rejection

Table 3 Refined epistemic bounds using CDFmatching UQmethod for first set of 25 observations and full set
of 50 observations of x1 for NASA problem with five repetitions

Using 25 observations Using 50 observations

Symbol Given prior
Reduced bounds

(median)
Reduction in range
(% of prior range), % Reduced bounds (median)

Reduction in range
(% of prior range), %

E�p1� [0.6, 0.8] [0.6037, 0.7444] 29.6 [0.6333, 0.7667] 33.3
V�p1� [0.02, 0.04] [0.0210, 0.0349] 30.5 [0.0230, 0.0393] 18.5
p2 [0,1] [0.1173, 0.9938] 12.4 [0.0926, 0.9938] 9.9
E�p4� �−5; 5� �−4.4444; 4.4444� 11.1 �−4.8148; 4.4444� 7.4
V�p4� [0.0025, 4] [0.0765, 3.9260] 3.7 [0.2246, 3.8273] 9.9
E�p5� �−5; 5� �−3.4568; 1.1111� 54.3 �−4.4444; 0� 55.6
V�p5� [0.0025, 4] [0.5207, 3.7779] 18.5 [1.5077, 3.9260] 39.5
ρ �−1; 1� �−0.8148; 0.8230� 18.1 �−0.8889; 0.8916� 11

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Prior range Refined range by 

    first 25 obs

Refined range by 

     all 50 obs

K-S Statistic

Fig. 5 Comparison ofK-S statistic betweenprior range and refined range tested by all 50 observations (obs) forNASAproblemusingCDFmatchingUQ
approach.
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percentage is observedwhen a CDFmatchingmethod is used with all 50 observations as compared to the prior range. The CDFmatchingmethod
performs efficiently, using a total of 1.5e − 7 aleatory samples (five repetitions) and compares well to the Bayesian approach that uses 1e − 8
samples (Appendix A).

IV. Sensitivity of Subparameters to Intermediate Variables (Task B1)

The first step of our sensitivity analysis as specified by theNASAchallenge problem is to determine the degree of refinement in the p-box of the
intermediate variables x that could be obtained from a refined uncertainty model for our uncertain subparameters θ. One important consideration
in performing the sensitivity analysis is that we are concernedwith the sensitivity of the p-box of each intermediate variable x to the bounds of their
corresponding subparameters and not to the value of the subparameter. This is because we are seeking to acquire refined bounds for some
parameter models; and the fact that the value of an intermediate variable is highly sensitive to the value of a subparameter does not necessarily
imply that we will benefit from reducing the bounds of that subparameter. Consider a simple case of a single normal variable with the mean and
variance prescribed as intervals. Though thevalue of this variable is highly sensitive to the value of thevariance, a change in the lower bound of this
variance will have no effect on the p-box of the variable. The relationship between the value of a subparameter and the area of the p-box of an
intermediate variable is in fact only a measure of the interaction effects of the subparameter in question and the remaining interval-valued
subparameters, and it may therefore be misleading.

To determine the sensitivity of each subparameter on the uncertainty of the intermediate variable x, we use a probability-box (p-box) area-based
sensitivity analysis using a double-loop Monte Carlo approach. Starting with the updated bounds obtained for each subparameter in Sec. III, we
randomly generate realizations of each subparameter within these bounds. For each of these subparameter realizations, we then generate random
samples of each parameter and calculate the corresponding values of each intermediate variable. This means that, for each subparameter
realization,we can calculate an empirical CDF for the intermediate variable (Fig. 6b). By calculating themaximumandminimumvalues of each of
these many empirical CDFs at each value x (Fig. 6c), we may obtain an estimate of the p-box of the intermediate variable corresponding to the
given subparameter bounds. Then we calculate the p-box area (Fig. 6d) that is used as the metric in the sensitivity analysis. This technique is
described graphically in Fig. 6.

Wemay then simulate a reduction in the bounds of each subparameter that wemight expect from requesting a refined uncertainty model. These
reduced boundswill affect our simulation of ECDFs ofx as shown inFig. 6b. Since every updated set of subparameter interval bounds is a subset of

Table 4 K-S test rejection percentage for the prior
range compared to refined epistemic uncertainty range

from CDF matching method using first set of 25
observations and all 50 observations for NASA problem

Epistemic uncertainty range Value, %

Prior range 62.4
Refined range by 25 observations 46.5
Refined range by 50 observations 28.3

Fig. 6 Method of estimating the p-box of intermediate variables.
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the initial bounds, every p-box generated with the reduced bounds will be strictly contained within the initial p-box. This means that if the change
in area is very small, the new p-box will be very similar to the initial p-box. If the change is significant, it is then possible that the effect on J1 or J2
may be different for the same change in area, depending on how the p-box has changed. At this first stage of sensitivity, we are only focused on the
degree of refinement of the p-box, as requested in challenge problem subpart B1.

Although there are infinitely many possible reduced bounds that may be obtained from this refinement, we approximate the updated bounds
using three simplified cases for a percent reduction in the range of possible subparameter values: a reduction entirely from the upper bound,
entirely from the lower bound, or a centered reduction from both the upper and lower bounds.We elect to use a 25% reduction in the subparameter
bounds to calculate the change in the p-box. We simulate each of these three cases for each of our 31 uncertain subparameters and again estimate
the p-box of each intermediate variable. To compare the effect of these reduced bounds, we calculate the average change in the area of the p-box
across these three cases for each subparameter, where a large change indicates a significant refinement in the p-box of the intermediate variable.
Since a revised model of a given parameter will affect all related subparameters, we sum the expected change in the p-box of the intermediate
variables for subparameters corresponding to the same parameter.

We use 5000 subparameter realizations with 250 parameter samples each to calculate the area of the p-box of each of the five intermediate
variables. These subparameter realizations are generated using Latin hypercube sampling, with realizations not satisfying the unimodality
condition for the parameter p1 being randomly resampled. The average percent change in the p-box brought about by a change in subparameter
bounds for each of our 16 parameters is shown in Table 5.

Our next task is to determine if it is possible to fix any parameters without incurring a significant error in the intermediate variables. It should be
noted that a subparameter that is found to be insensitive or able to be fixed when considering that subparameter’s effect on the p-box of the
intermediate variable does not imply that the subparameter is not important for calculating our values of interest: J1 and J2. However, we will
choose to make this assumption in order to reduce the dimensionality of the problem in later steps. In practice, this assumption could be based on
information from experts in each subdiscipline; we use this assumption in order to satisfy our limited computational budget.

To calculate the optimal fixed parameters, we again use a double-loop Monte Carlo simulation to calculate the area of the p-box of each
intermediate variable x; but in this case, wewill define the value of one of the parametersp as a decisionvariable to be fixed across all samples.We
use the DIRECT global optimization algorithm to find the optimal value of this fixed parameter that maximizes the area of the p-box of the
intermediate variable. If the change in the area of the p-box is small, the representation of the intermediate variable remains relatively unchanged,
even without the parameter in question varying freely. Again, we use 5000 subparameter realizations from Latin hypercube sampling and 250
parameter samples each. These 1.25 × 106 parameter realizations are fixed across DIRECT optimization cycles to avoid random noise in the
optimization, meaning the only change will be in the value of the parameter that we are attempting to fix. Table 6 shows the optimized percent
change in the intermediate variables for the case of attempting to fix each parameter, with the corresponding optimal parameter values in Table 7.

The results of this analysis reveal eight candidate parameters for which the change in the p-box of their corresponding intermediate variable is
small (less than 10%): 2, 4, 5, 7, 13, 14, 15, and 17.Of these eight candidates, four parameters (4, 5, 7, and 17)were found to be sensitive to the area
of the p-box of x (greater than 10%), as shown in Table 5.We choose not to fix these parameters, as their higher sensitivitymeans theymay bemore
affected by the limited sample size available for our fixed-value optimization.

V. Testing Surrogates Models for Approximating J1 and J2

One common practice for dealing with computationally expensive problems such as this one is to use surrogates. We observe from the first
round of results for the NASA challenge problem that many participants, including ourselves, elected to use surrogates to replace some of the

Table 5 Average percent change in the p-box of intermediate variables with reduced subparameter bounds for each
parameter

x1 x2 x3 x4

Parameter Percent change, % Parameter Percent change, % Parameter Percent change, % Parameter Percent change, %

1 19.9 6 31.1 12 41.5 16 40.2
2 2.9 7 25.5 13 4.2 17 14.2
4 17.3 8 7.5 14 3.7 18 10.8
5 16.7 10 6.3 15 3.0 20 6.0

Table 6 Percentage change in p-box area of intermediate variables x due to fixing of parameters

x1 x2 x3 x4

Parameter Percent change, % Parameter Percent change, % Parameter Percent change, % Parameter Percent change, %

1 56 6 36 12 74 16 57
2 4 7 0 13 0 17 0
4 4 8 24 14 0 18 46
5 0 10 33 15 0 20 43

Table 7 Optimal values of fixed parameters corresponding to percent changes in Table 6

x1 x2 x3 x4

Parameter Fixed value Parameter Fixed value Parameter Fixed value Parameter Fixed value

1 0.647 6 1 12 0.352 16 1
2 0.6 7 0 13 0.068 17 0
4 −7.25 8 0 14 0.475 18 1
5 −2.876 10 1 15 0.43 20 0.001
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provided challenge problem functions. However, the types of surrogates, number of training points, and the quantities used in the approximation
varied greatly [15–21]. It is therefore of interest to better understand how well some common surrogates perform for this problem, particularly
since the challenge problem functions have several difficult attributes for fitting surrogates, such as high nonlinearity and high dimensionality.

To perform this comparison, we perform a case study of multiple surrogate types. We consider three different characteristics: the number of
training points, the type of surrogate, and the quantity being estimated. For each case, we fit 100 random initial designs of experiments (DOEs) in
the intermediate variable space x in order to estimate the potential variation. Table 8 shows the characteristics used to develop each case. and all
possible combinations are tried.

We therefore have a total of 12 cases: eachwith 100 surrogates based on our 100 randomDOEs.We then generate a random sample of epistemic
realizations θ and construct a sample of our random variables p that can be used to calculate the intermediate variables x using the challenge
problem function. We finally evaluate each of our fitted surrogates at these new intermediate variable values and calculate J1 and J2. The
distribution of J1 and J2 predicted by these surrogates is compared to the distribution calculated with double-loop sampling (DLS) [22] using the
original NASA black-box functions with 1000 subparameter realizations and 1000 parameter realizations. These results are shown in Figs. 7–14,
where the thick black line represents the value fromDLS and each of the small lines represent one surrogate prediction. The combination of these
surrogates can be represented as a p-box, given by the shaded region.

It can be seen that none of these cases considered offer any reliability in predicting the truevalues of J1 and J2. ForJ1, each of the cases predicts a
much wider range than the true values, which lie between zero and one for these test points. This overestimation of J1 tends to get worse with the
addition of more test points. For J2, most cases show predictions that range from the extreme possible values of J2: zero and one. In cases where
this range does shrink, it actually moves away from the true distribution of J2. The cross-validation metrics for all of these surrogates would
suggest that any of these surrogates would be appropriate to be used; the issue is therefore the high nonlinearity and high dimensionality of this
problem. It should be noted that, for the kriging surrogates, the hyperparameters are not optimized for each surrogate due to computational costs;
this could potentially show some improvement in the kriging predictions. Overall, based on this study of surrogate performance, we determined
that the surrogates that we considered were not fit for the NASA problem.

Table 8 Surrogate comparison case study

Number of training points Surrogate type Quantity estimated

1) 100 1) Second-order polynomial response surface 1) g�x� � R
8

2) 500 2) Kriging 2) gmax�x� � W

3) 1000

Fig. 7 J1 estimate using kriging to approximate all constraints with a) 100, b) 500, and c) 1000 samples.

Fig. 8 J1 estimate using polynomial response surface (PRS) to approximate all constraints with a) 100, b) 500, and c) 1000 samples.
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VI. Efficient Reliability Reanalysis

Sincewewere unable to determine a surrogatemodel that would be acceptable for the challenge problem,we elect to explore another approach:
efficient reliability reanalysis. ERR is a method of reducing the computational cost of a Monte Carlo simulation (MCS) when it is necessary to
repeat the MCS for many different subparameters. In efficient reliability reanalysis, a set of initial samples is generated from a sampling
probability density function (PDF) q�p�, the failure indicator function (or other function of interest) is evaluated at the sample points, and then
the probability of failure (or mean of function of interest) can be estimated for a new PDF f�pjθ� by weighting the initial samples based on the
likelihood ratio f�pjθ�∕q�p� [10]. Here, we use lowercase theta (θ) to denote a particular realization of the random subparametersΘ. Using ERR,
the function of interest is only evaluated at the initial sample points from q�p�, and then the expected value of the function can be estimated for any
new realization of subparameters θ without any additional function evaluations. ERR is very computationally efficient when the subparameters
are random variables because, instead of generating new random samples from f�pjθ� and evaluating the function at the new samples for every

Fig. 9 J1 estimate using kriging to approximate the worst-case constraint with a) 100, b) 500, and c) 1000 samples.

Fig. 10 J1 estimate using PRS to approximate worst-case constraint with a) 100, b) 500, and c) 1000 samples.

Fig. 11 J2 estimate using kriging to approximate all constraints with a) 100, b) 500 samples, and c) 1000 samples.
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realization θ, it is only necessary to update the sampleweights f�pjθ�∕q�p�. Typically, the function of interest is the failure indicator function and
the estimated mean is therefore the probability of failure. However, the method is applicable to other functions, such as the maximum constraint
violation.

A. Efficient Reliability Reanalysis Approximations for J1 and J2

In the NASAUQ Challenge Problem, we are interested in the expected value of the maximum constraint violation J1 and the probability of
failure J2 formany different realizations of the subparameters. The value of J1 conditional on a particular realization of subparameters θ is defined
as shown inEq. (17). This value of J1 can be calculated usingERRas shown inEq. (18). It should be noted that the formulation of ERR requires the
support of f�pjθ� to not be outside the support of q�p�. Similarly, the value of J2 conditional on a particular realization of subparameters θ is
defined as shown in Eq. (19) and the ERR formulation is shown in Eq. (20):

Fig. 12 J2 estimate using PRS to approximate all constraints with a) 100, b) 500, and c) 1000 samples.

Fig. 13 J2 estimate using kriging to approximate the worst-case constraint with a) 100, b) 500, and c) 1000 samples.

Fig. 14 J2 estimate using PRS to approximate the worst-case constraint with a) 100, b) 500, and c) 1000 samples.
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J1 � E�max
1≤i≤8

gi� � E�w�p;dbaseline�� �

Z

�∞

−∞

w�p;dbaseline�f�pjθ� dp (17)

~J1 �

Z

�∞

−∞

w�p;dbaseline�
f�pjθ�

q�p�
q�p� dp �

1

N

X

N

i�1

w�pi;dbaseline�
f�pijθ�

q�pi�
(18)

J2 � 1 − P�w�p;dbaseline� < 0� � E�I�w�p;dbaseline� > 0�� �

Z

�∞

−∞

I�w�p;dbaseline� > 0�f�pjθ� dp (19)

~J2 �

Z

�∞

−∞

I�w�p;dbaseline� > 0�
f�pjθ�

q�p�
q�p� dp �

1

N

X

N

i�1

I�w�pi;dbaseline� > 0�
f�pijθ�

q�pi�
(20)

B. Approximating Fixed but Unknown Constants (Type 2 Parameters) as Normal Variables

Before the ERRmethod could be applied to the NASAUQ Challenge Problem, it was necessary to develop a modification to handle the fixed
but unknown constants. Fixed constants present a challenge for ERR because the PDF for the fixed constants is a Dirac delta function centered at
the realization of the constant. If the Dirac delta function is used to calculate the sampleweights f�pjθ�∕q�p�, all the initial samples (or nearly all)
would beweighted zero, since the finite sample size is unlikely to contain the precise realization of interest. To apply the ERRmethod to theNASA
UQChallenge Problem,we approximated the fixed but unknown constants as normal randomvariableswith an unknownmean and fixed standard
deviation. The range of the mean for the normal approximation was selected to be equal to the range of the fixed but unknown constant. A
realization of the constant was interpreted as a realization of the mean for the narrow, normal PDF. Selecting an appropriate value for the fixed
variance of the normal PDF is challenging because, if the variance is too large, the approximationwill be significantly different than the true value.
However, if the variance is too small, themajority of the sampleswill beweighted very low and the effective sample sizewill be too small to obtain
a reasonable estimate. The standard deviation for the normal approximations was selected by comparing the relative error between ERR
predictions and Monte Carlo simulation results at 100 test points. Plots of the mean, median, and maximum absolute relative errors in ERR
prediction versus MCS at 100 test points are shown in Fig. 15. Based on these plots, we used a standard deviation of 0.1 when using ERR to
calculate J1 and 0.15 when calculating J2.

C. Selection of Sampling Distributions for ERR

One challenge in the implementation of ERR is the selection of the sampling PDF. Note that the sampling PDF q�p� could correspond to a
particular epistemic realization Θ

� but does not necessarily have to. That is, we could use q�p� � f�pjΘ�� as a sampling PDF where Θ� is a
particular epistemic realization. It is useful to examine the p-box of thepwhen selecting a sampling PDF. Since the p-boxes for allp exceptp4,p5,
and p21 cover the entire [0,1] interval with high probability, we use q�p� ∼ Uniform�0; 1� for these p. For p4 and p5, we use q�p4� ∼
Normal�0; 42� and q�p5� ∼ Normal�−2; 4.52� to cover the range of	3σ from the refined uncertainty model with the	2σ range of the sampling
PDFs. Since the p-box for p21 shows that high values of p21 have a very low probability, we use q�p21� ∼ Beta�1; 7.772�.
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Fig. 15 Mean, median, and maximum (max) absolute relative error in ERR prediction versus MCS at 100 test points for a) J1, and b) J2.
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D. Self-Normalizing ERR

Another modification to the ERR formulation was to use a “self-normalized” formulation. In the self-normalized formulation, the sum of the
weighted samples is divided by the sum of theweights instead of by the total number of samples. The self-normalized version of ERR is shown in
Eqs. (21) and (22). The self-normalized version of ERR is based on the importance sampling formulation for nonnormalized PDFs [23,24]. It
should be noted that, for sufficiently large sample sizes, there is unlikely to be a significant difference between the self-normalized and the standard
formulations. A comparison study of the relative error between ERR predictions and Monte Carlo simulation results at 100 test points showed a
significant improvement in the J2 estimate when using this self-normalized formulation, as shown in Fig. 16:

Ĵ1 �

Z

�∞

−∞

w�p;dbaseline�
f�pjθ�

q�p�
q�p� dp �

P

N
i�1 w�pi;dbaseline��f�pijθ�∕q�pi��

P

N
i�1�f�pijθ�∕q�pi��

(21)

Ĵ2 �

Z

�∞

−∞

I�w�p;dbaseline� > 0�
f�pjθ�

q�p�
q�p� dp �

P

N
i�1 I�w�p;dbaseline� > 0��f�pijθ�∕q�pi��

P

N
i�1�f�pijθ�∕q�pi��

(22)

E. Capped Self-Normalizing ERR

Another issue thatwe faced in the implementation of ERR is that, for some samples, the combination of the sampling PDFand true PDFcan lead
to unreasonably large sampleweights. For example, if there is a singularity in theBeta distribution, then theweight for a particular sample can go to
infinity (e.g., p21 ∼ Beta�0.421; 7.772� has singularity at zero). However, there does not have to be a singularity present for the sample weight to
become too large. In our implementation, we cap the maximum sample weight in order to limit the influence a single sample can have on the
estimated mean. Although this cap could affect the extreme values that we are interested in, we believe the extreme values we do find with the cap
will be more likely to correspond to true extreme values in J1 and J2, since they are not as strongly influenced by a single sample. The selection of
the appropriate cap for the maximum sample weight is another challenge in the ERR implementation. It is more difficult to select a cap based on
only a small number of test points, since the motivation is to have a cap that is only active in the cases where gaps in the samples, or unusual
combinations of subparameters, lead to large errors. To select an appropriate value for the cap on maximum sample weight, we looked at the
distribution of the ratio of the maximum weight to the sum of all weights at 100 test points and selected a cap to eliminate the outliers in this
distribution. This quantity is used as we use the self-normalizing ERR, which normalizes theweights by the sum of all weights.We selected a cap
of 10% of the sum of theweights based on the box plot of maximum normalized weight, shown in Fig. 17 (more than 10%maximum normalized
weight corresponds to outliers). We dub this method the capped self-normalizing ERR. Henceforth, when we say ERR, we are referring to the
capped self-normalizing ERR method.
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Fig. 16 Comparison of CDF’s based on ERR prediction versus MCS at 100 test points for a) standard ERR, and b) self-normalized ERR.
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Fig. 17 Maximum sample weight divided by the sum of the weights was calculated at each of the 100 test points.
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F. CSN-ERR Error Analysis

Before applying the CSN-ERR method in subsequent analysis steps, it was necessary to assess the accuracy of the CSN-ERR predictions. In
assessing the CSN-ERR accuracy, we took the perspective that CSN-ERR acts as an approximation (similar to surrogates) for J1 and J2 as a
function of subparameters θ. To check the accuracy of the CSN-ERRmethod, we used the same 500Θ realizations as used in the surrogate error
analysis in Sec. V. We then performed aMonte Carlo simulation at each of the 500 test points using 1000 random realizations of p to estimate J1
and J2, using the true function for comparison.

Figure 18 shows the comparison of the CDFs for J1 and J2 fromMCS to the CDFs generated using CSN-ERR. The 95% confidence intervals
for the CSN-ERR andMCS ECDFs (shown by dashed lines) overlap nearly everywhere for both quantities of interest. Additionally, box plots for
the percent error in the predicted values of J1 and J2 for CSN-ERR are provided in Fig. 19. We see that the majority of errors for J1 and J2 are
within about	5 and	20%, respectively, and that the most extreme percent errors are on the order of 40 and 60%, respectively. The CSN-ERR
method provides acceptable accuracy for the CDFof both J1 and J2, as compared to the surrogateswe tested, and can be used as a computationally
cheap method of approximating J1 and J2. Some strengths and limitations of the different ERR approaches are presented in Appendix E.

VII. Sensitivity of Subparameters to Quantities of Interest (Tasks B2 and B3)

Next, wemust calculate the sensitivity of J1 and J2 separately to the ranges of each subparameter. Using the information from our intermediate
variable sensitivity, we first fix parameters that were found to have little influence on the p-box of the intermediate variables in order to reduce the
number of analyses to run on our limited computational budget. As before, we consider three cases of reductions in subparameter bounds: upper,
lower, and centered reductions. Since the area of the p-box is not applicable for J1 and J2, we consider the range of the value of interest as a scoring
method to quantify the effect of this reduction in bounds. Since we are primarily concerned with extreme cases of J1 and J2, the sensitivity of the
range of these valueswill allow us to balance the effect on both themaximum andminimum extrema. These results for both ranges of J1 and J2 are
provided in Table 9.

To select four candidate parameters to get a reduced uncertainty model, we use a rank sum scoring, adding the ranking of each parameter based
on the expected effect of both J1 and J2 separately in order to estimate the effect of a revised parameter model on both values of interest; these
scores are shown in Table 9, where a high rank indicates high combined sensitivity. Based on these findings, wewould choose to acquire reduced
uncertainty models for parameters 5, 4, 18, and 20. However, we have already requested updated models during the first round of the NASA
challenge problem [15] using surrogatemethodswe later found to be inaccurate. Because of this, we actually have reduced uncertaintymodels for
parameters 21, 1, 18, and 16.

We may now quantify the effect of fixing a value of a subparameter on the range of J1 or J2, again using DIRECT optimization to find the
optimal value of the parameter to maximize the remaining range. We perform this optimization for J1 and J2 separately using 100 random
realizations of the nonfixed subparameters over 20DIRECTevaluations. Since ourCSN-ERRmodel provides uswith values for J1 and J2 directly

Fig. 18 MCS of the true function and CSN-ERR predictions for a) J1, and b) J2.

Fig. 19 Percent error in 500 predictions of a) J1, and b) J2 for CSN-ERR compared to MCS.
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from the subparameters and does not consider parameter values, we choose to fix subparameter values rather than parameters as requested by the
NASA challenge; this is a strictly weaker assumption. The remaining ranges and corresponding percent changes for J1 and J2 are shown in
Table 10. In this case, we use a more aggressive threshold on the percent change in the range of the values of interest in order to meet the
requirements of our computational budget in finding extreme-case values.We elect not to fix subparameters that were found to be sensitive due to
the fact that we have only a limited sample that we use to justify our fixed subparameter values. If J1 or J2 are insensitive to a certain subparameter,
we have higher confidence that that subparameter can be fixed without incurring a loss in the range of J1 or J2. However, the ability of a
subparameter to be fixed and its sensitivity are not equivalent; e.g., if the range of J1 or J2 is monotonically increasing with respect to a given
subparameter, we can fix this subparameter at its maximum value and still preserve the range of J1 or J2, even though the range of J1 or J2 maybe
highly sensitive to the bounds of this same subparameter (specifically, a decrease in the upper bound, in this example). Based on these results, we
determine thatwemaybe able to fix subparametersp6 anda21when calculating J1, and subparametersV�p4� andp16when calculating J2, without
losing a significant portion of the possible range of values. However, by losing any range at all, we recognize we are losing at least one of the true
extremevalues; bymaximizing the remaining range,we should still be close to the extremevalue and are able to performoptimization in one fewer
dimension for each subparameter that is fixed.

VIII. Uncertainty Propagation and Extreme-Case Analysis (Tasks C and D)

The approach used in this study was to solve “task C: uncertainty propagation” and “task D: extreme case analysis” together. Together, these
tasks consist of finding the epistemic realizations of the subparameters that result in extreme values of J1 and J2. These tasks therefore require the
solution of eight stochastic global optimization problems each in 31 dimensions. The eight problems are tominimize andmaximize, J1 and J2, for
the refined uncertainty model and for the reduced uncertainty model, as shown in Table 11. The domain of the optimization problems is a
hyperrectangle, since our refined and reduced uncertainty models are treated as intervals and we do not attempt to infer any correlation between
subparameters (see Sec. III.A). For p1, we optimize the expected value and variance over the rectangular region and map the pairs of mean and

Table 9 Total effect of revised parameter uncertainty on range
of J1 and J2

J1 J2

Parameter Percent change, % Percent change, % Rank sum score

1 184 46 16
4 269 83 24
5 271 89 26
6 79 27 3
7 157 52 15
8 178 50 16
10 180 50 16
12 91 28 6
16 85 14 3
17 132 41 8
18 172 55 17
20 182 47 17
21 181 47 15

Table 10 Effect of fixing subparameter values on the range of J1 and J2

J1 J2

Subparameter Fixed parameter value Percent change, % Fixed parameter value Percent change, %

E�p1� 0.73 91.5 0.63 33.2
V�p1� 0.02 90.8 0.02 30.0
E�p4� 1.61 89.4 −4.80 21.4
V�p4� 0.14 85.8 0.14 16.6
E�p5� −3.05 91.5 −3.45 28.7
V�p5� 2.04 89.6 3.35 32.0
ρ4;5 0.89 85.9 0.89 16.6
p6 1.00 52.8 0.25 11.7
a7 3.52 90.3 3.53 29.7
b7 1.03 91.6 0.62 25.0
a8 12.08 91.5 7.45 31.2
b8 5.10 91.6 7.86 30.4
a10 4.51 85.1 1.52 27.9
b10 1.54 74.9 1.56 32.1
p12 0.69 87.9 0.00 27.5
p16 0.01 86.8 1.00 19.3
a17 1.66 91.4 1.66 31.2
b17 1.49 91.0 1.09 32.1
a18 1.06 91.4 4.26 30.1
b18 1.00 90.8 0.55 29.0
a20 13.48 88.5 7.53 26.9
b20 4.72 91.3 8.14 25.6
a21 1.00 56.9 0.66 31.7
b21 7.79 73.6 29.61 29.5
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variance to beta subparameters alpha and beta using a simple analytical relationship. To enforce the unimodal condition ofp1, we apply a penalty
to the objective function when a ≤ 1 or b ≤ 1. Solving the optimization problems is a very challenging task due to the stochastic nature of the
objective functions, the high dimensionality of the optimization, and the computational cost of evaluating the black-box function x_to_g.

To overcome these challenges, we used amultifaceted approach.We used the results fromp to x sensitivity analysis to fixp2,p13,p14, andp15.
By fixing thesep, the subparameters related to thesep (seven θ in total) could be removed and the dimensionality of the optimization reduced. To
reduce the computational cost of the objective functions, we performed the optimization using the CSN-ERR. It allows values of J1 and J2 to be
estimated for different sets of subparameters using only a single set of initial samples (see Sec. VI). By reusing the same initial samples throughout
the optimization, it was not necessary to evaluate the expensive black-box functions during the optimization. The use of CSN-ERR also has the
benefit that the stochastic objective functions were replaced with the deterministic CSN-ERR function. The CSN-ERR function is deterministic,
since the same initial samples are used for approximating every evaluation.We used the DIRECToptimization algorithm, which is a nongradient-
based optimization method [14], to solve the optimization problems posed in Table 11. We limited the number of function evaluations for each
optimization problem to 20,000. The proposed method was tested on the toy problem and showed very good performance (Appendix C). Before
performing the optimization on the NASA problem, we performed an analysis using CSN-ERR to try to fix subparameters (see Sec. VII) and
found that we were able to fix subparameters p6 and a21 when optimizing J1 and subparameters V�p4� and p16 when optimizing J2.

As a point of reference, we compared the CSN-ERR results to the extreme values found using a double-loop Monte Carlo simulation (DLS)
using 1000 θ samples eachwith 1000p samples.We ran theDLS first, using the refined uncertainty model and then using the reduced uncertainty
model. The combined computational cost of the two DLSs was 2e6 constraint function (x_to_g) evaluations. The computational cost of CSN-
ERRwas equivalent to the twoDLSs, since it also required 2e6 constraint function evaluations for the initial samples and the same samples could
be used with both uncertainty models. We neglect the additional computational cost of performing the optimization with CSN-ERR, since the
computational cost of evaluating the true constraint functions using Monte Carlo is much higher than the computational cost of calculating the
weights in CSN-ERR. To check the CSN-ERR and DLS results at the extreme locations, we ran a larger Monte Carlo simulation at these points
with 10,000 p samples.

The extremevalues of J1 and J2 for the refined uncertaintymodel are presented in Table 12. For J1, themaximumvaluewas estimated byCSN-
ERR to be 275.5. However, when a MCS with 10,000 p samples was performed at this location, the calculated value of J1 was only 5.7. Despite
the large error in CSN-ERR approximation at this location, the optimization with CSN-ERR found a more extreme value of J1 than was found
using DLS (5.7 vs 1.6). The minimum value of J1 found from optimization with CSN-ERR is also more extreme than the value found using DLS
(0.02 vs 0.14). For J2, CSN-ERRhas large errors at themaximumandminimum locations (0.84 vs 0.40 atmaximum/0.11 vs 0.07 atminimum). In
addition, theminimum andmaximum J2 values foundwith CSN-ERR are not as good as those obtained fromDLS (0.11 vs 0.07 atminimum/0.40
vs 0.73 at maximum). The results are similar for the reduced uncertainty model, as shown in Table 13. For both uncertainty models, optimization
with CSN-ERR outperforms DLS when finding the extreme values of J1 but does not work as well as DLS for finding the extreme values of J2.

The values presented in Tables 12 and 13may bemisleading if not taken within the context of the overall J1 and J2 distributions. In Fig. 20, the
CDFs of J1 and J2 fromMCS for the reduced uncertaintymodel are compared to the extremevalues found using optimizationwithCSN-ERR. For
J1, the CSN-ERR results bound the entire range of the CDF, since the values aremore extreme than any found during theDLS. For J2, we see that,
although there is a large difference between themaximumCSN-ERRvalue of 0.40 and theMCSvalue of 0.73, thevalue of 0.40 is a high percentile
of the overall distribution. Similarly, theminimumCSN-ERRvalue of 0.11 corresponds to a lowpercentile of the J2 distribution. The optimization
with CSN-ERR has bounded a large majority of the J2 distribution, as indicated by the dashed vertical lines in the figure. In Fig. 21, the same
comparison ismade for the reduced uncertaintymodel. ForJ1, we see that several DLS samplesweremore extreme than theCSN-ERRmaximum.
However, since these values are based on only 1000 p samples, we are not sure if the true value at these locations is actually larger than the CSN-
ERR maximum or if this is due to random error (as can be seen from the comparison of values from 1000 to 10,000 Monte Carlo samples in
Table 12). For example, when the maximum value from DLS was checked with more samples, the value dropped from 1.12 to 0.11, as shown in
Table 13. Some strengths and limitations of the different approaches are presented in Appendix E.

Table 11 Finding the range of J1 and J2 and the epistemic realizations that
correspond to the extreme values requiring the solution of eight stochastic global

optimization problems, each in 31 dimensions

Uncertainty model J1 J2

Refined maxθ J1 maxθ J2
subject to θlowerrefined ≤ θ ≤ θ

upper
refined subject to θlowerrefined ≤ θ ≤ θ

upper
refined

minθ J1 minθ J2
subject to θ

lower
refined ≤ θ ≤ θ

upper
refined subject to θ

lower
refined ≤ θ ≤ θ

upper
refined

Reduced maxθ J1 maxθ J2
subject to θlowerreduced ≤ θ ≤ θ

upper
reduced subject to θlowerreduced ≤ θ ≤ θ

upper
reduced

minθ J1 minθ J2
subject to θlowerreduced ≤ θ ≤ θ

upper
reduced subject to θlowerreduced ≤ θ ≤ θ

upper
reduced

Table 12 Refined uncertainty model: estimated range of J1 and J2 from DLS and optimization with CSN-ERRa

Worst-case requirement
metric (J1)

Probability of failure
(J2)

Method Min Max Min Max

DLS (1000 Θ samples by 1000 p samples) 0.02 3.15 0.07 0.73
Optimization with CSN-ERR 0.00 275.51 0.01 0.84
MCS at DLS extrema (Θ at extrema, 10,000 p samples) 0.14 1.58 0.07b 0.73b

MCS at CSN-ERR optima (Θ at optima, 10,000 p samples) 0.02b 5.73b 0.11 0.40

aA MCS was performed at extreme values to obtain a more accurate estimate.
bMost extreme values.
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There are several issues that affect the confidence in the results. We take steps to reduce uncertainty in the results whenever possible but do not
have an overall estimate of the confidence due to the computational cost of the NASA problem. The first issue is whether we have in fact located
the global optimum for ERR.We cannot know for sure that we have located the true global optimum since theDIRECToptimization algorithm is a
sampling-based search algorithm and our computational time is finite. However, by using an optimization algorithm, we expect to have a better
chance of locating the global optimum than random sampling (i.e. DLS). The second issue is, even if we locate the global optimum for the CSN-
ERRobjective function, it may not coincidewith the true optimumdue to error inCSN-ERRor bias due to the fixed initial sample. For example, in
both cases for the optimization for minima of J2, we found that the CSN-ERR approximation does not well identify the minima found by DLS.
This is due to the noise in CSN-ERR,which becomes comparable to range of the J2 function. However, sincewe cannot afford to optimize the true
function using DLS as an objective function, we must accept this risk that comes with any sort of approximation-based technique (either
surrogates or ERR). This risk is also unavoidable, as the computational cost of the NASA problem dictates that we consider some approximation
techniques.We also take steps to improve the accuracy of CSN-ERR in order to limit this risk. In fact, the results showed that we can successfully
identify an extreme percentile value as compared to aMonte Carlo test sample. The third issue is how accurate our estimate of J1 and J2 are at that
point, assuming it is the global optimum. To check the CSN-ERR andDLS results at the predicted extreme locations, we ran a largerMonte Carlo
simulation at these points. A potential improvement could be to use an adaptive sampling strategy to refine CSN-ERR by adding the information
from the predicted optimum. This would refine our model in these regions, and we can continue iteratively. This would require the use of multiple
sampling PDFs, which requires further research.

Table 13 Reduced uncertainty model: estimated range of J1 and J2 from DLS
and optimization with CSN-ERRa

Worst-case
requirement
metric (J1)

Probability
of failure

(J2)

Method Min Max Min Max

DLS (1000 θ samples by 1000 p samples) 0.03 1.12 0.15 0.79
Optimization with CSN-ERR 0.00 3.32 0.14 0.69
MCS at DLS extrema (θ at extrema, 10,000 p samples) 0.04b 0.11 0.16b 0.77b

MCS at CSN-ERR optima (θ at optima, 10,000 p samples) 0.05 0.16b 0.31 0.46

aA MCS was performed at extreme values to obtain a more accurate estimate.
bMost extreme values.

Fig. 20 Refined uncertainty model: Comparison of CDF from DLS to CSN-ERR extrema for a) J1, and b) J2.
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Fig. 21 Reduced uncertainty model: Comparison of CDF from DLS to CSN-ERR extrema for a) J1, and b) J2.
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Epistemic realizations leading to extremevalues of J1 and J2 based on themost extremevalues fromoptimizationwith CSN-ERR are presented
in Table 14. When based on optimization with ERR, epistemic realizations for p2, p13, p14, and p15 are not available, since they are fixed by a
sensitivity analysis.

IX. Conclusions

This work is aimed at tackling the uncertainty quantification challenge posed by NASA, consisting of mixed aleatory and epistemic
uncertainties. One of the major challenges was dealing with the dimensionality and the computational cost of the challenge problem. Another
challengewas testing the validity of all the different methods that were tested and debugging them.When facedwith such a complex problem, it is
difficult to test the validity of the results. A simpler toy problemwas created, mimicking the performance of the NASA problem, which was faster
and easier to analyze. The true solution for the toywas known,which enabled testing of the confidence in the results of differentmethods. It helped
in rigorous debugging, as well as in learning useful lessons to enable modifications to make the methods more efficient.

ACDFmatching UQmethod is proposed for uncertainty reduction in epistemic parameters based on some available data. A standardMarkov
chain Monte Carlo-based Bayesian method is also tested for comparison. The CDF matching approach gave similar results as the Bayesian
approach using considerably fewer samples. The effect of the number of given observations was also checked, and it showed that using a very low
number of observations could be misleading. The methods were applied to the NASA problem, and results were validated to show the
effectiveness of the uncertainty reduction. The two different methods for UQ showed similar reduction in bounds for epistemic uncertainty, which
further increased confidence in the results. The complementary nature of the CDFmatchingmethod also openedways for future research on using
the CDF matching method to guide the Bayesian approach instead of Markov chain Monte Carlo.

A key challenge was the computational cost of the quantities of interest in the rest of the work. Efficient reliability analysis was leveraged to
reduce the computational burden of the double-loop Monte Carlo simulation for the NASA problem computation. A way to handle fixed but
unknown constants was proposed in the ERR methodology using narrow normal distributions with fixed standard deviations. In addition, two
modifications to the ERR method were proposed by introducing a cap on the maximum sample weight and by using a self-normalized
formulation. This methodwas dubbed capped self-normalized ERR or CSN-ERR. It was also shown that CSN-ERR outperformed the surrogates
tested in approximating J1 and J2.

A sensitivity analysis was conducted to understand the effect of revised uncertainty models. The analysis was based on a double-loop Monte
Carlo simulation using the efficient reliability analysis and p-box area as a metric describing the remaining uncertainty. Estimates for the p-boxes
of each parameter were obtained by comparing empirical CDFs from multiple uncertain subparameter realizations. The CSN-ERR method was
used to reduce the computational burden. Finally, the DIRECT global optimization algorithm was used to attempt to fix values of certain
parameters while maximizing the remaining uncertainty captured in the model.

The key contribution in uncertainty propagation and extreme-case analysis was the use of CSN-ERR to perform the optimization. The
effectiveness of thesemethodswas evaluated by comparing the results of CSN-ERRwith optimization to the results of a double-loopMonte Carlo
simulation (DLS) that had the same computational cost in terms of the number of constraint function evaluations. The CSN-ERR method
outperformed the DLS method for finding extreme cases of J1, but DLS worked better on J2. But, for all the cases, it was seen that an extreme
percentile value could be successfully identified as compared to aMonte Carlo test sample. It is hypothesized that the better performance of ERR

Table 14 Epistemic realizations leading to extreme values of J1 and J2 based onmost extreme values
from optimization with CSN-ERR

Refined uncertainty model Reduced uncertainty model

Min J1 Max J1 Min J2 Max J2 Min J1 Max J1 Min J2 Max J2

p1 E�p1� 0.7642 0.7667 0.7659 0.6336 0.6400 0.6400 0.6400 0.6333
V�p1� 0.0233 0.0230 0.0231 0.0340 0.0360 0.0360 0.0320 0.0320

p2 p2 — — — — — — — — — — — — — — — —

p4, p5 E�p4� −0.1852 −3.2815 0.0434 −0.0328 −1.6600 −1.6600 0.1577 −4.7576
E�p5� −4.3621 −3.2735 0.1449 0.1449 −2.4688 −2.4688 0.1449 0.1449
V�p4� 0.5582 0.2249 0.2468 0.4841 2.6267 2.6267 0.2320 3.4492
V�p5� 3.1647 1.5079 2.4482 2.3188 1.5079 1.5079 3.9111 1.5226
ρ 0.8586 0.8915 0.8806 0.8879 0.8915 0.8915 −0.3064 0.8586

p6 p6 0.9815 0.4445 0.2531 0.2531 0.4262 0.4262 0.2531 0.2531
p7 a 3.4897 3.5368 3.5212 2.6801 2.6851 2.6851 3.5212 3.5212

b 0.6275 0.6190 0.6218 0.6199 1.0800 1.0800 0.6218 0.6218
p8 a 13.9700 9.6638 11.8377 12.8491 14.0925 14.0925 14.0520 9.6233

b 4.3513 7.7317 7.5326 6.2660 7.8637 7.8637 6.7373 7.8419
p10 a 4.3467 4.5128 1.6124 1.5262 2.5006 2.5006 4.4945 4.4945

b 3.8572 4.5122 4.6905 4.7434 4.7498 4.7498 1.5558 1.5558
p12 p12 0.4630 0.7105 0.8827 0.0021 0.5428 0.5428 0.7716 0.0062
p13 a — — — — — — — — — — — — — — — —

b — — — — — — — — — — — — — — — —

p14 a — — — — — — — — — — — — — — — —

b — — — — — — — — — — — — — — — —

p15 a — — — — — — — — — — — — — — — —

b — — — — — — — — — — — — — — — —

p16 p16 0.5000 0.4412 0.9979 0.9979 0.8100 0.8100 0.9979 0.9979
p17 a 1.0934 1.0600 1.4502 1.6608 1.6620 1.6620 1.2570 1.6583

b 1.4609 1.4880 1.2259 1.4850 1.0000 1.0000 1.4850 1.1657
p18 a 4.2055 3.1771 4.2458 4.2593 1.0001 1.0001 2.5901 1.0099

b 0.5778 1.0000 0.5558 0.5539 1.0000 1.0000 0.8708 0.8836
p20 a 11.6151 11.5042 10.9526 12.7928 13.4915 13.4915 13.4552 13.4552

b 8.0844 7.0021 6.1749 8.0136 4.7113 4.7113 5.4960 4.7322
p21 a 0.4317 1.0000 0.4246 0.5104 1.0000 1.0000 0.8708 0.9575

b 29.2164 7.7737 29.4861 29.5760 19.0003 19.0003 22.9753 22.9753
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on J1 may be because the larger range of J1 was clearly distinguishable from the noise in the ERR approximation. Since J2 is confined to [0,1], it
may be more difficult to find the extreme values, depending upon the noise in the ERR approximation.

Appendix A: Bayesian-Based Approach for Uncertainty Characterization

A Bayesian-based approach was also used for the uncertainty characterization. Let Θ � �θ1; : : : ; θ8� be a set of eight parameters for the
uncertainty variablesp1–5, such as themeans and variances. By applying theBayes’s theorem [24], the probability density function of the set of the
parameters for the given observation x1;obs, called posterior, is defined by

f�Θjx1;obs� �
L�Θjx1;obs�P�Θ�

R

L�Θjx1;obs�P�Θ� dΘ
(A1)

where L�Θjx1;obs� is the likelihood function of a particular set of the parameters for given observation x1;obs.
We assume that the ranges of the parameters are known to the designer, as NASA provides, but the designer cannot tell which value is more

likely to other values of each parameter. Thereby, the distribution of each parameter ismodeled as a uniformdistribution; that is, all possible values
within the range are equally likely.

Since calculating a marginal distribution for eight parameters involves multiple numerical integrations, its computational cost is very
expensive. To overcome this issue, we used an efficient sampling technique, the so-called Markov chain Monte Carlo (MCMC) simulation [11].
MCMC is a technique of drawing the values of parameters θ and keeping the ones that approximate the target distribution, i.e., posterior
distributions. To obtain good convergence of the MCMC sampling, we applied the Gelman and Rubin method [12] to evaluate the convergence,
and repeated the MCMC 10 times, for each of which 10; 000�� 2n� posterior samples of Θ were calculated. Then, the last n draws from all
MCMC repetitions were combined together as a set of posterior samples (10 × 5000 � 50; 000 draws in total). Figures A1 and A2 show the
posterior distributions of the uncertain parameters and the results of the K-S test, respectively. Table A1 describes the corresponding 95%
confidence interval of each uncertain parameter. The current implementation of theMCMCmethod requires 1e-8 aleatory samples. TheMarkov
chain Monte Carlo-based Bayesian method also indicated that there is small linear correlation between the epistemic realizations.
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Fig. A1 Marginal posterior distributions of parameters by MCMC a) with the first 25 observations, and b) with all 50 obervations.
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Fig. A2 Results of K-S test by all 50 observations.
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Appendix B: Beta Subparameters

The expected value (E�x�) and variance (V�x�) of a beta distribution x can be converted to beta subparameters of a and b by using Eqs. (B1) and
(B2), respectively, conditional on V�x� < E�x��1 − E�x��:

a � E�x�

�

E�x��1 − E�x��

V�x�
− 1

�

(B1)

b � �1 − E�x��

�

E�x��1 − E�x��

V�x�
− 1

�

(B2)

Appendix C: Results for Toy Problem

C.1. Results for Uncertainty Characterization of Toy Problem

The epistemic uncertainties are updated using a first set of five given observations of g1 and a second set of 20 observations, generated using the
known true values of epistemic uncertainty (Table 1) for the toy problem.

C.1.a. Update Uncertainty Models Using Various Observation Sets

The reducedmedian bounds of θ using theCDFmatchingUQmethod for 50 repetitions using the first set of five observations and a larger set of
20 observations are given in Table C1. The random stream for generating 100 samples ofp for a particular θ realization is fixed to reduce the noise
in objective function calculation. To check the variation due to fixing the stream, the entire process is repeated 50 times.

Using five observations, the CDFmatchingUQapproach showed amaximum reduction in range forE�p2�. The reduced bounds forV�p2� using
the CDF matching method does not include the true value of the epistemic uncertainty and predicts it to be lower. This is due to the first five
observations of g1 being biased (Fig. C1). The other parameters mostly remain the same. A high standard deviation in the upper bound forE�p2� is
seen because of the presence of a few outliers (Fig. C2, which gives a box plot of the variation in the lower and upper bounds of reduced epistemic
uncertainties due to 50 repetitions). The robustness of the method is really good for the rest of the parameters.

Using 20 observations, we get maximum reduction in range for E�p2� and V�p3� � 0.03. The reduced bounds for p1 obtained using the CDF
matching method are also centered at the true value of the epistemic uncertainty. Except for the variation in the lower bound of V�p2�, all the other
higher standard deviations are found to bemostly due to outliers (as can be seen from the box plots in Fig. C3). Even after considering the standard
deviations from 50 repetitions, the true values are still included in the reduced bounds for almost all p1 (Fig. C3), indicating good robustness.

C.1.b. Effect of Number of Observations on Uncertainty Models

For theCDFmatching approach, theK-S test is conducted by generating 7032 θ realizations in the updatedmedian bounds fromTableC1 (7000
using Latin hypercube sampling and 32 corner points in five dimensions). For each θ realization, 1000 g1 samples are generated using the aleatory
uncertainty, and the ECDF from these generated samples is compared against the ECDF of 20 given observations of g1. This process is repeated
for all the θ realizations to obtain the variation in the K-S statistic. If the K-S statistics for the posterior distributions are smaller than those for the

Table A1 Refined epistemic bounds using MCMC

Updated uncertainty model

Symbol Given prior With first 25 observations With all 50 observations

E�p1� [0.6, 0.8] [0.6034, 0.7568] [0.6783, 0.7762]
V�p1� [0.02, 0.04] [0.0208, 0.0394] [0.0215, 0.0395]
p2 [0,1] [0.0283, 0.9885] [0.0279, 0.9906]
E�p4� �−5; 5� �−4.8151; 4.6114� �−4.8513; 4.3975�
V�p4� [0.0025, 4] [0.1087, 3.8893] [0.1119, 3.8975]
E�p5� �−5; 5� �−4.8356; 4.850� �−4.6209; 4.9289�
V�p5� [0.0025, 4] [0.0842, 3.9047] [0.0644, 3.8799]
ρ �−1; 1� �−0.9458; 0.9533� �−0.9347; 0.9606�

TableC1 Reduced epistemic bounds usingCDFmatchingUQmethod for first set of five observations and a larger set of 20 observations of g1 for the
toy problem for 50 repetitions

Using 5 observations Using 20 observations

Epistemic uncertainty
parameter

True
value

Given
prior

Reduced bounds
(median)

Reduction in median
range (% of prior range),

%

Reduced bounds
(median)

Reduction in median
range (% of prior range),

%

Δp1 0.5 [0,1] [0.0185, 0.9815] 3.7 [0.0185, 0.9938] 2.5
E�p2� 0 �−2; 1� �−1.1481; 0.5� 45.1 �−0.6111; 0.5� 63
V�p2� 1 [0.5, 1.1] [0.5037, 0.9333] 28.4 [0.9667, 1.0988] 78
E�p3� 0.7 [0.6, 0.8] [0.6037, 0.7963] 3.7 [0.6037, 0.7963] 3.7
V�p3� 0.03 [0.02.

0.04]
[0.0210, 0.0396] 6.8 [0.0211, 0.0396] 7.4
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prior distributions, the uncertainty can be considered to be reduced. Figure C4 compares the box plots of theK-S statistics tested against the ECDF
of all the 20 observations. We see that the K-S statistics for the posterior by all 20 observations are substantially smaller than the others for both
approaches, which indicates a successful uncertainty reduction for both approaches.

We also look at the percentage of ECDFs for which the null hypothesis of the K-S test (the ECDFs are identical) is rejected with α � 5%. The
results for rejection percentages for different sample observation sizes are given in Table C2. The CDF matching method yielded a low rejection
rate of 1.6% when all 20 observations were used.

Thus, the toy problem shows that the proposed CDFmatchingmethodworks successfully. The repeatability of the CDFmatchingmethod also
showed very good performance, giving us more confidence in the method.

Fig. C1 Distribution of g1 based on the true parameters and the sets of observations (dotted squares): a) first 5 observations, and b) all 20 observations.
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Fig. C2 Variation in reduced epistemic uncertainties using first set of five observations when CDF matching method is repeated 50 times for the toy
problem.
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Fig. C3 Variation in reduced epistemic uncertainties using all the 20 observations when the CDF matching method is repeated 50 times for the toy
problem.
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C.2. Sensitivity Analysis for Toy Problem

We next tested our sensitivity analysis methods on our toy problem. Because there are no intermediate variables in this toy problem, we
calculate the effect of the bounds of each subparameter on the p-box of our two constraints. Table C3 shows the final ranking of the effect of
revising the uncertainty model for each toy problem parameter on the p-boxes of both g1 and g2.

We see that, as expected, p2 and p3 are the most influential factors for g1 and g2, respectively. We also see that the bounds of p1 and p2 have a
nonzero influence on g2, despite not entering the formulation of g2. This represents the magnitude of numerical error in the area estimate due to
limited samples.

Next, we attempt to fix the values of parameters 1, 2, and 3, such that the area of the p-box of constraint 1 is maximized. Table C4 shows the
percent change of the p-box of constraint 1 after fixing each parameter at the value shown.

We next calculate the effect of a reduction in the bounds of our subparameters on the ranges of both J1 and J2 for our toy problem.Averaging the
effect of each of the three cases of bound reductions and combining effects into their relevant parameters, we obtain the final ranking for each
parameter in terms of the range of J1 and J2, displayed in Table C5.

Finally, we attempt to find fixed values of each parameter that maximize the range of one of our values of interest: J1 or J2. These results are
shown in Table C6.
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Fig. C4 Comparison of K-S statistics between prior distributions and posterior distributions tested by all 20 observations for the toy problem using and
the CDF matching UQ approach.

Table C2 K-S test rejection percentage for the prior range compared to
refined epistemic uncertainty range fromCDFmatchingmethodusing first set of 5

observations and all 20 observations for toy problem

Parameter Value, %

Prior range 64.1
Refined range by 5 observations 41.5
Refined range by 20 observations 1.6

Table C3 Combined expected change of constraint p-
box from refined uncertainty model

Parameter Percent change in g1, % Percent change in g2, %

p1 4 8
p2 21 2
p3 3 30

TableC4 Change in the p-boxofg1 with fixedparameters

Fixed parameter Percent change, % Optimal parameter value

p1 3 0.5
p2 91 −2.24
p3 2 0.5
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C.3. Extreme-Case Analysis for Toy Problem

Optimization for the toy problemwas performed using ERR to find the epistemic realizations that resulted in extreme values of J1 and J2. ERR
was performed using a sample size of 1e − 4 samples. The results of optimization with ERRwere compared to aDLS of equivalent computational
cost using 100 θ samples each,with 100p samples. After finding the locations that corresponded to extremevalues of ERR, aMCSwas performed
at those locations using 1e − 6 p samples. Similarly, a MCS with 1e − 6 p samples was also performed at the locations corresponding to the
extrema found using DLS. As shown in Table C7, optimization with ERR found locations corresponding to more extreme values in all cases
except for the minimum value of J1, where both methods returned similar results. In addition, the estimated values from ERR were close to the
MCS results at those locations.

Appendix D: Prioritized Observation Uncertainty Quantification Approach

Both performance metrics (J1 and J2) measure in some way the risk of failure, so it makes sense to refine the epistemic uncertainties in the
random parameters p by prioritizing observations that lead to dangerous designs or higher probability of failure. In general, this ranking can be
done based on anydesired systemperformancemetric.We fix each of the observedvalues of x1 and generateNPf (here, 1000) sets ofΘ usingLatin
hypercube sampling for epistemic parameters associated withp6–21. For eachΘ, multiple aleatory samples ofp are sampled using the distribution
types provided in Table 2. This gives us Npf matrices of p and, using Eqs. (3–6), we get Npf values of x2–5. Then, we can get a distribution of
probability of failure or J2 for each x1;obs using Eqs. (7) and (9). The 95 percentile value of J2 is used to rank the x1;obs. The ones with a higher
probability of failure are ranked higher (top), as these observations lead to dangerous system performance and we want the refined uncertainty
model to capture themmore precisely. Now, this rankingR for each observation is used to effectively weight the observations during the analysis.

We use a weighting strategy to give more weight to the higher-ranked observations of x1. This leads to a weighted modified Kolmogorov–
Smirnov statistic:

DWn;n 0
�
X

x1;obs

�WR � jFn�x� − Fn 0�x�j� (D1)

where, WR is the weight according to the ranking, R of observation x as given by Eq. (D2).

WR � k −
�k − 1��R − 1�

n − 1
(D2)

where the value of k is fixed at two to ensure that the maximum weight given to any observation is two (user-defined). This is a linear weighting
function.

Then, the same process as the CDF matching method is used with DWn;n 0
as the objective function to identify the optimum range of Θ using

Eq. (16). To reduce the noise, we divided the range of x1;obs into three regions and randomly picked two observed values from each region to find
their respective 95 percentile value of J2. Then, the three regions are ranked from 1 to 3 (highest to lowest probability of failure) based on the
picked observations and assigned three weights according to Eq. (D2). Although using the NASA black-box function for getting g, we could not
get the results for this method because of the computational cost. The workaround would be to use ERR to find the weights, which we plan to
explore in the future.

Table C5 Combined effect of revised uncertainty model
on J1 and J2 range

Parameter Percent change in J1, % Percent change in J2, %

p1 0.2 1.1
p2 0.5 1.1
p3 0.4 0.9

Table C6 Remaining J1 and J2 range with fixed parameters

J1 J2

Fixed parameter Remaining J1 range Percent change, % Fixed parameter value Remaining J2 range Percent change, % Fixed parameter value

1 5.32 26 0 0.74 16 0.019
2 6.06 16 3.09 0.80 9 1.14
3 7.18 0 0 0.88 0 0.7

Table C7 Toy Problem: Comparison of predicted ranges of J1 and J2 using DLS vs
optimization with ERR

Worst-case
requirement
metric (J1)

Probability
of failure

(J2)

Method Number of constraint function evaluations Min Max Min Max

DLS 1e − 4 −0.31 2.55 0.02 0.56
ERR 1e − 4 −0.35 4.65 0.02 0.65
MCS at ERR optima 1e − 6 −0.30 4.09 0.04 0.62
MCS at DLS extrema 1e − 6 −0.30 1.89 0.08 0.45

32 CHAUDHURI ETAL.

D
o
w

n
lo

ad
ed

 b
y
 M

A
S

S
A

C
H

U
S

E
T

T
S

 I
N

S
T

 O
F

 T
E

C
H

 o
n
 J

u
ly

 2
0
, 
2
0
1
5
 | 

h
tt

p
:/

/a
rc

.a
ia

a.
o
rg

 | 
D

O
I:

 1
0
.2

5
1
4
/1

.I
0
1
0
2
6
9
 



Appendix E: Strengths and Limitations of ERR-Based Approaches

Table E1 and E2 provide an overview of the strengths and limitations of various methods considered for Efficient Reliability Reanalysis and
finding extreme values, respectively. These findings may assist others in assessing the best method to use based on their specific problem
and goals.
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