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Abstract  Since ancient times, drugs have been administered via the nasal route for therapeutic and recreational 
purposes. The interest in, and importance, of the systemic effects of drugs administered through the nasal route, have 
expanded over recent decades. Intra-nasal administration of drugs offers an interesting alternative for achieving 
systemic therapeutic effects of drugs that are comparable to the parenteral route, which can be inconvenient at times 
or oral administration, which can result in unacceptably low drug bioavailability. So, it is important to understand 
the potential and limitations of various nasal drug delivery systems. Therefore, the aim of this review article is to 
discuss the various pharmaceutical dosage forms that have the potential to be utilised for local or systemic drug 
administration. It is intuitively expected that this review will help to understand and further to develop suitable intra-
nasal formulations to achieve specific therapeutic objectives. 
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1. Introduction 
Nasal drug delivery, which is in the focus of this review 

article, has received a significant attention in recent years 
as a convenient and reliable route, not only for local but 
also for the systemic administration of drugs [1,2,3]. The 
nasal cavity offers a number of distinctive advantages for 
systemic delivery such as [4,5,6]:  

I- A large surface area for drug absorption. 
II- Convenience and good patient compliance. 
III- Rapid attainment of therapeutic drug levels in the 

blood.   
IV- High drug permeability, especially for lipophilic 

and low molecular weight drugs.  
V- Avoidance of harsh environmental and 

gastrointestinal conditions. 
VI- Bypassing of hepatic first-pass metabolism. 
VII- Potential direct drug delivery to the brain along the 

olfactory nerves.   
VIII- Direct contact site for vaccines with lymphatic 

tissues.  
The nasal cavity is an easily accessible route which is 

generally well tolerated [7]. The abundance of blood 
vessels in the nasal mucosa contributes to drug absorption, 
which is almost equal to intravenous injections in some 
instances [8]. The nasal route of drug delivery can be used 
for both local and systemic drug delivery [9]. For instance, 
localised nasal drug delivery is usually used to treat 
conditions related to the nasal cavity, such as congestion, 
rhinitis, sinusitis and related allergic conditions. A diverse 
range of drugs including corticosteroids, anti-histamines, 
anti-cholinergic and vasoconstrictors can be administered 
locally. In recent years, achieving a systemic drug action 
using the nose as the entry portal into the body has 

received more attention [10]. A wide range of 
pharmaceutical dosage forms including solutions, gels, 
suspensions, emulsions, liposomes and microparticles can 
be used to achieve systemic drug actions [11,12,13]. 
These dosage forms are mostly designed to exploit the 
advantage of a rapid onset of action when administered 
via nasal route. For example, morphine [14] and ketamine 
[15] can be delivered intra-nasally to achieve rapid 
analgesic effects. Moreover, vaccines can also be 
administered using the nose as a potential route, such as 
those for influenza [16]. 

2. Anatomy and physiology of nose 
The nose is the primary entrance to the respiratory tract, 

allowing air to enter into the body for respiration [11]. The 
nasal cavity is 120-140 mm deep, runs from the nasal 
vestibule to the nasopharynx and is divided into two by a 
cartilaginous wall called nasal septum. The nose has a 
surface area of around 160 cm2 and a total volume of  
~16-19 ml [12]. The nose serves as the mean of bringing 
warm humidified air into the lungs. It is the primary organ 
for filtering out particles in the inspired air, and it also 
serves to provide a first-line immunologic defence as it 
brings the inspired air into contact with the mucous-coated 
membrane. The nose has three main regions: vestibular, 
turbinate and olfactory regions (Figure 1). The vestibular 
region is the anterior part of the nose and it is the 
narrowest part of the nasal cavity. The vibrissae cover 
most of this area which renders it capable of filtering out 
particles with an aerodynamic particle size larger than 10 
µm that may be inhaled with air. In the vestibular region, 
the surface lining changes from skin, at the first part of the 
passage, to a stratified squamous epithelium [1,3]. The 
turbinate region is a large vascular part of the nose and 
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can be divided into superior, middle and inferior regions 
(Figure 1). It is lined with a pseudostratified columnar 
epithelium. It is composed of mucus secreting, ciliated, 
non-ciliated and basal cells (Figure 2). The ciliated and 
non-ciliated cells are covered with non-motile microvilli, 
which are responsible for increasing the surface area, thus, 
this is the region where the drug absorption is optimal. 
Ciliated cells are covered with approximately 100 motile 
cilia which are responsible for mucus transport so 
mucociliary clearance prevails. Once drug (as particles or 
in solution) find their way to the mucociliary area, they 
will be cleared from nasal cavity and then have limited 
access to the absorption site [17,18,19]. 

 

Figure 1. Sagittal section of the nasal cavity showing the nasal vestibule 
(A), atrium (B), respiratory area: inferior turbinate (C1), middle turbinate 
(C2) and the superior turbinate (C3), the olfactory region (D) and 
nasopharynx (E). Reproduced with permission from ref. [20] 

The olfactory region is an area comprising about 8% of 
the total surface area of the nasal epithelium and is made 
of a non-ciliated, pseudostratified columnar epithelium. It 
is important for transporting drugs to the brain and 
cerebrospinal fluid (CSF). There is a mucus layer of 5 µm 
in thickness covering the epithelium cells which traps 
unwanted particles. The mucous secretion consists of 
mucin, water, salts,proteins such as albumin, 
immunoglobulin, lysozyme, and lactoferrin, and lipids 
[21]. The pH of the nasal secretions ranges from 5.0 to 6.5 
[12,22]. 

 

Figure 2. Cell types of the nasal epithelium with covering mucous layer 
showing ciliated cell (A), non-ciliated cell (B), goblet cells (C), mucous 
gel-layer (D), sol layer (E), basal cells (F) and basement membrane (G). 
Reproduced with permission from ref. [20] 

3. Biopharmaceutical Consideration 
The easy accessibility and higher surface area makes 

the nose a potentially viable drug delivery organ. 
Pharmaceutical product development is a crucial task 
which is directly dependent on its therapeutic objectives. 
Therefore, before product development, important 
biopharmaceutical aspects need to be considered-firstly, 
whether it is intended for: 

I-    Localised delivery 
II-    Systemic delivery  
III-    Single or repetitive administration 
The feasibility of being able to achieve the therapeutic 

objectives will determine whether the development of a 
nasal delivery system is appropriate [5,7,10]. 
Comprehending the factors that can affect drug deposition, 
retention and absorption are essential to enable intelligent 
design of nasal formulations. Numerous physiological, 
anatomical, and pathological conditions must also be 
considered. Different types of nasal formulations available 
in the UK at the time of publication are enlisted in Table 1 
[22]. However, a major challenge in designing nasal drug 
delivery formulations is to introduce the drug into a 
suitable vehicle system that provides drug stability and 
ideal dispensing characteristics. Elements such as 
selection of specific pharmaceutical excipients, delivery 
devices and processing methods need careful 
consideration. A schematic illustration of all the key 
parameters of a successful nasal formulation is shown in 
Figure 3. 

 

Figure 3. Consideration of formulation elements of nasal product 
development 

4. Nose as a Drug Delivery Route: 
Advantages and Limitations 

In addition to its benefits over parenteral routes in terms 
of convenience, the potential for delivering drugs directly 
into the brain along the olfactory nerves makes this route 
even more attractive [23]. The brain is a delicate organ 
with many vital functions and it is isolated and protected 
from the outside environment by several specific 
mechanisms. The blood-brain barrier (BBB), a tight tissue 
junction surrounding the brain, is one of such mechanisms 
resulting in a greater trans-endothelial electric resistance 
which hinders drug transport. 
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Table 1. Current formulations for nasal drug delivery [22] 
Indication Active pharmaceutical ingredient Formulation 
Analgesia Diamorphine hydrochloride 

 
Fentanyl citrate 

Powder and diluent for reconstitution-aqueous 
spray Nasal spray, solution 

Acute treatment of migraine Sumatriptan 
Zolmitriptan 

Nasal spray, solution 
Nasal spray, solution 

Endometriosis 
Ovarian stimulation 

Nafarelin acetate Nasal spray, solution 
 

Nasal congestion (associated with sinusitis, 
common cold, rhinitis and other UTIs) 

Symptomatic relief of rhinorrhoea 

Xylometazoline hydrochloride 
Oxymetazoline hydrochloride 

Azelastine Hydrochloride  
Ephedrine 

Ipatropium bromide 

Nasal spray, solution, nasal drops  
Nasal spray, solution 
Nasal spray, solution 

Nasal drops 
Nasal spray, solution 

 
Prophylaxis and treatment of perennial and 

seasonal allergic rhinitis  
Budesonide,  

beclometasone dipropionate (and monohydrate 
(micronized), 

Mometasone furoate 
Triamcinolone acetonide 
Fluticasone propionate 

Fluticasone furoate 
Fluticasone with azelastine HCl 

Sodium cromoglicate 

Nasal spray suspension 
Nasal spray suspension 

 
 

Nasal spray suspension 
Nasal spray suspension 
Nasal spray suspension 
Nasal spray suspension 
Nasal spray suspension,  

spray solution 
Prostatic carcinoma (hormone -dependent) Buserelin acetate Nasal spray, solution 

 
Nasal congestion Levomenthol Nasal ointment 
Nasal infection Neomycin sulfate and Chlorhexidine 

dihydrochoride 
Nasal cream 

Nicotine withdrawal symptoms Nicotine Nasal Spray Solution 
Nocturia associated with multiple sclerosis  
The diagnosis and treatment of vasopressin-

sensitive cranial diabetes insipidus. 
Establishing renal concentration capacity. 

 

Desmopressin acetate Nasal Spray Solution 

Vaccinations Influenza vaccine Nasal spray suspension 

Table 2. Nasal drug absorption enhancers and mechanisms 
Class of compound  Example  Possible action  Reference 

Fatty acids Dideconoylphosphatidylcholine, 
lysophosphatidylcholine 

Membrane disruption [24] 

Surfactants Sodium lauryl sulphate, saponin, 
polyoxyethylene-9-lauryl ether 

Membrane disruption [25-28] 

Bile salts  Sodium deoxycholate, sodium glycocholate, 
sodium taurodihydrofusidate 

Open tight junctions, enzyme 
inhibition, mucolytic activity 

[29-31] 

Cyclodextrines and derivatives  α-, β-, γ-cyclodextrin 
DMβ-, HPβ-cyclodextrin 

Open tight junctions, membrane 
disruption 

[32,33] 

Enzyme inhibitors Bestatin, amastatia Enzyme inhibition [34] 

Bio-adhesive materials Carbopol, starch microspheres, chitosan Reduce nasal clearance, open tight 
junctions 

[35] 

In this context, over the last few years, an intra-nasal 
route has emerged as a promising approach for delivery of 
drugs to the brain. The delivery from the nose to the CNS 
may occur via the olfactory neuroepithelium and may 
involve paracellular, transcellular and/or neuronal 
transport [36] with this olfactory pathway presenting the 
potential to bypass the BBB [37]. The nasal route can also 
be a useful alternative to the oral route for drug absorption 
in situations where a use of the gastrointestinal route is 
unfeasible. Examples include: patients with nausea and 
vomiting; patients with swallowing difficulties children 
and geriatrics [38]. The rate and extent of absorption as 

well as plasma concentration vs time profiles are 
comparable with I.V. administration [39]. 

The foremost limitation on adoption of the nasal route 
is that it is not applicable to all drugs.  The extent of drug 
absorption may depend on many physicochemical 
properties including acid-base dissociation constant (pKa) 
and partition coefficient, molecular weight, particle size 
and solubility of the drug [11]. In general, for a drug to be 
absorbed it must be in solution and this can be 
problematic for drugs with low solubility. For instance, 
polar drugs and some macromolecules are not absorbed in 
sufficient concentrations because of poor membrane 
permeability, rapid clearance, and enzymatic degradation 
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within the nasal cavity [12]. The nasal mucosa is sensitive 
to local irritation by either drug or excipient [40]. 
Formulation factors such as the type of formulation (liquid, 
gel, and powder), excipient (solubilizer or absorption 
enhancer), drug concentration, pH and delivered volume 
also have a significant impact [41]. Physiological and 
anatomical factors include nasal blood flow, enzymatic 
degradation, mucociliary clearance and the physical 
condition of the nose; some conditions such as nasal 
atrophic rhinitis and severe vasomotor rhinitis can reduce 
the capacity of nasal drug absorption [38,39] and the drug 
can be lost by dripping out of the nose or down the back 
of the throat, thus reducing bioavailability [13]. Nasal 
mucociliary clearance can also reduce contact time and 
drug absorption by transporting the drug to the 
nasopharynx and then to the gastric intestinal tract [42]. 
Mucociliary clearance can be overcome by incorporating 
mucoadhesive polymers into the formulation, which may 
increase nasal absorption [43]. The mucus layer can also 
be a barrier for drug absorption either by limiting drug 
diffusion or by binding drugs to mucins. Some conditions 
such as the common cold and hay fever can also change 
the conditions within the nose, either by increasing or 
decreasing mucociliary clearance, or altering the 
permeability of the absorbing mucosa. These limitations 
must be recognised and addressed when designing 
formulations to target drug absorption by the nasal route 
[44,45,46,47]. 

5. Mechanism of Drug Absorption 
The principal step in the absorption of a drug from the 

nasal cavity is the passage through the mucus. Fine 
particles easily pass through the mucus layer; however, 
large particles may find some difficulties [48]. Mucus 
contains mucin, a protein with the potential to bind with 
solutes and thus affect the diffusion process. Structural 
changes can occur within the mucus layer as a result of 
environmental or physiological changes [49]. Subsequent 
to a drug’s passage through the mucus, there are numerous 
mechanisms for absorption through the mucosa. These 
include transcellular or simple diffusion across the 
membrane, paracellular transport via movement between 
cell and transcytosis by vesicle carriers. Several 
mechanisms have been proposed, but paracellular and 
transcellular routes dominate [50]. 

Paracellular transport is slow and passive. There is an 
inverse correlation between intranasal absorption and the 
molecular weight of water-soluble compounds. Poor 
bioavailability was reported for drugs with a molecular 
weight greater than 1000 Daltons [48]. 

The second mechanism involves transport through a 
lipoidal route that is also known as the transcellular 
process and is responsible for the transport of lipophilic 
drugs that show a rate dependency on their lipophilicity. 
Drugs also cross cell membranes by an active transport 
route via carrier-mediated means or transport through the 
opening of tight junctions [50]. 

Obstacles to drug absorption are potential metabolism 
before reaching the systemic circulation and inadequate 
residence time in the nasal cavity. 

5.1. Drug Absorption Enhancement  

Many drugs having high water solubility have poor 
permeability across nasal epithelia and may present 
insufficient bioavailability. To enhance their permeation 
and bioavailability permeation enhancers are frequently 
employed [34]. In principle, permeation enhancers induce 
reversible modifications on the structure of the epithelial 
barrier. Although the exact mechanism of drug 
absorption/permeation enhancement is not well known, it 
is widely accepted that these materials modify the 
permeability of epithelial cell layer by modifying the 
phospholipid bilayer [35]. Different types of 
absorption/permeation enhancers are enlisted in Table 2 
with their possible mechanism of action. 

6. Nasal Drug Delivery Systems 

6.1. Nasal Drops and Sprays 
Nasal drops are one of the simplest and most 

convenient delivery systems among all formulations. The 
main limitation is the lack of precision in the administered 
dosage and the risk of contamination during use [51]. 
Nasal drops can be delivered with a pipette or by a 
squeezy bottle. These formulations are usually 
recommended for the treatment of local conditions, but 
challenges include microbial growth, mucociliary 
dysfunction and non-specific loss from the nose or down 
back the throat [13,41]. 

Nasal spray systems consist of a chamber, a piston and 
an operating actuator. Nasal sprays are comparatively 
more accurate than drops and generate precise doses (25 - 
200 µl) per spray [41]. Several studies have shown that 
nasal sprays can produce consistent doses of reproducible 
plume geometry. Formulation properties such as 
thixotropy, surface tension and viscosity can potentially 
influence droplet size and dose accuracy [52,53,54,55]. 
Other factors such as the applied force, orifice size and 
design of the pump can also affect the droplet size which 
can impact the nasal deposition of sprays [10,13]. 

6.2. Nasal Gels 
A gel is a soft, solid or semi-solid-like material 

consisting of two or more components, one of which is a 
liquid, present in substantial quantity. The semi-solid 
characteristics of gels can be defined in terms of two 
dynamic mechanical properties: elastic modulus G’ and 
viscous modulus G” [11]. The rheological properties of 
gels depend on the polymer type, concentration and 
physical state of the gel. They can range from viscous 
solutions (e.g. hypromellose, methylcellulose, xanthan 
gum and chitosan) to very hard, brittle gels (e.g. gellan 
gum, pectin and alginate). Bioadhesive polymers have 
shown good potential for nasal formulations and can 
control the rate and extent of drug release resulting in 
decreased frequency of drug administration and improved 
patient compliance [8,56]. Moreover, the prolonged 
contact time afforded at the site of absorption can improve 
drug bioavailability by slowing down mucociliary 
movement [57]. Gavini et al. (2011) observed 
improvements in the solubility of roxithromycin loaded 
into chitosan microspheres compared with the free drug 
when the intranasal drug absorption was assessed in vivo 
in rats [58]. The mechanism of  mucoadhesion in the nasal 
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cavity can be explained by a number of theories, but it is 
generally accepted that the mechanism is based on two 
key stages, the contact and consolidation stages. So, when 
formulations containing bioadhesive polymers are instilled 
in the nasal cavity, they can spread over the nasal 
epithelium. Due to the increased surface contact, the 
polymer chains can diffuse within the mucus. This creates 
sufficient contact for entanglement. Secondary chemical 
bonds are then formed between the polymer chains and 
mucin molecules [13]. Various biocompatible and 
biodegradable polymers have been used to formulate 
mucoadhesive systems. These include poly-vinyl alcohol 
[59], chitosan [60], carbopol, alginate, hydroxypropyl 
methylcellulose, hydroxypropyl cellulose, starch and 
gellan gum [13,61]. Nasal administration using 
mucoadhesive gels has been studied for different drugs: 
antibiotics such as roxithromycin and ciprofloxacin [23], 
insulin [62], scopolamine hydrochloride [63], mometasone 
furoate [64], carvedilol [65], sumatriptan succinate [66], 
vaccines and proteins [67,68]. Ozsoy et al., 2000 [21] has 
investigated the formulation of ciprofloxacin 
hydrochloride using hydroxypropyl methylcellulose 
(HPMC) and the results suggested that the bioavailability 
of ciprofloxacin gel formulation prepared with HPMC was 
almost identical to the oral route [23].  

In spite of most gels exhibiting shear-thinning 
behaviour (pseudoplasticity), some gel formulations with 
suitable rheological properties cannot be easily delivered 
using a normal nasal spray device. In situ gelation can be 
used to overcome this problem, [69] and has been 
investigated for the nasal delivery of mometasone furoate, 
carvedilol and influenza vaccine [66,67,68,69]. In such 
systems, the viscosity of the formulation must be low 
enough to allow dispensing from nasal spray device and 
viscous enough for adhesion on the application site.  

In situ gel-forming polymeric formulations are drug 
delivery systems that are in solution form before 
administration in the body, but once administered, 
undergo in situ gelation, to form a gel. The formation of 
gels depends on factors like temperature modulation, pH 
change and presence of ions from which the drug gets 
released in a sustained and controlled manner. Fluid gels 
are potential alternative to in situ gels. These fluid gels are 
essentially structured liquids containing a gel forming 
polymer. They are prepared by applying a shear force to 
the polymer solution during the gelation process. This 
results in gelled particles suspended in an un-gelled 
polymer solution [70]. These can be formulated to behave 
as a viscoelastic liquid whilst maintaining a true gel 
microstructure within the gel particles. Recently, Mahdi et 
al., (2014) reported the development of a fluid gel 
formulation to achieve suitable viscoelastic properties to 
develop nasal sprays [13]. 

6.3. Nasal Suspensions and Emulsions 
Suspensions are rarely used or investigated as nasal 

drug delivery systems. Analogous to marketed aqueous 
ophthalmic suspensions of the soft corticosteroid, 
loteprednol etabonate (e.g. Alrex®, Bausch and Lomb 
Pharmaceuticals), a nasal aqueous suspension of same 
drug containing microcrystalline sodium 
carboxymethylcellulose for stabilisation and retention in 
the nasal cavity was patented by Senju Pharmaceuticals 

Inc., Osaka, Japan [71] and was intended for the local 
treatment of allergic rhinitis. Moreover, a nasal suspension 
for the delivery of insulin was investigated by Ando et al. 
(1998) [72]. Here, soybean-derived steryl glycoside and 
sterol mixtures (1%) were used as absorption enhancers 
and pharmacological bioavailabilities of 6.7% and 11.3% 
were achieved. However, for oral drug delivery it has been 
reported by several authors [73,74,75,76] that emulsions 
were superior to suspensions in enhancing the 
bioavailability of poorly soluble drugs and the trend is 
similar with nasal formulations. Absorption enhancement 
has been attributed to solubilisation of the drug and the 
lipophilic absorption enhancers in the composition. 
Similarly, other low solubility compounds have been 
formulated in emulsions to increase the drug solubility, 
e.g. diazepam [77] and testosterone [78]. 

Klang et al., 2015 [79] used a nano-suspension to target 
the brain through the nose. Formulation as a 
nanosuspension facilitated bypassing of the blood-brain 
barrier (BBB) for particles ranging between 1-500 nm. 
Moreover, recently researchers have also reported nasal 
administration of nano-emulsions for brain targeting 
[80,81,82]. 

6.4. Nasal Micellar and Liposomal 
Formulations 

Different types of adjuvants can affect the drug 
absorption (described earlier, see section 5.1) and are 
often required to reach therapeutic plasma levels when 
hydrophilic macromolecular drugs such as peptides and 
proteins are delivered by the nasal route [83,84,85]. 
Among other surfactants used, bile salts are often used as 
enhancers, e.g. as micellar solutions. Tengamnuay and 
Mitra [86,87] described the use of micelles of sodium 
glycocholate and micelles thereof mixed with fatty acid 
(linoleic acid) as absorption enhancers for the model 
dipeptide (D-Arg2)-kyotorphin and for insulin in rats. The 
effect of mixed micelles was synergistic and superior 
compared to the single enhancer. Mixed micelles of 
sodium glycocholate and linoleic acid reduced the blood 
glucose level after nasal insulin administration to 47% of 
the glucose level after an identical nasal dosage of 
unenhanced insulin. Pure sodium glycocholate resulted in 
a reduction to 55%. Regarding the mechanism, in a 
difference to the membrane solubilizing effect of pure bile 
salts, the mixed micelles were proposed to have an effect 
on the nasal paracellular pathway. Hereby, the bile salts 
were considered to act as solubilizing agents for the fatty 
acids thus making them more available at the nasal 
mucosa [86]. The absorption modifying effect of mixed 
micelles was reversible after 20-40 min and the 
morphological alterations of the nasal mucosa were only 
mild to moderate after 5 h of exposure [86,87]. However, 
measurement of marker enzymes in rat nasal perfusate 
showed that the damaging effect of mixed micelles on the 
epithelial membrane is significantly greater compared 
with pure sodium glycocholate solution and phosphate 
buffered saline after 90 min exposure [88].  

Liposomes have also been investigated as nasal drug 
delivery systems and absorption enhancing effects were 
found for insulin and calcitonin in vitro permeability 
studies [89]. The enhancement effect was attributed to 
increased nasal retention of peptides. The best carrier 
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effect for calcitonin was demonstrated with cationic 
liposomes as they were found to adhere intimately to the 
nasal mucosal surface, facilitating the penetration of the 
encapsulated drug [89]. Similar observations were made 
for desmopressin-loaded cationic liposomes which 
resulted in enhanced antidiuretic effects in rats compared 
with anionic liposomes and solutions [90]. Muramatsu et 
al. (1999) [91] showed increased nasal absorption of 
insulin for liposomes of high membrane fluidity compared 
to more rigid particles. However, the absorption 
enhancing effect of liposomes is difficult to separate from 
the enhancing effects of the single components such as 
phosphatidylcholines and steryl glycosides. Moreover, 
proliposomes have also shown potential in nasal drug 
delivery. Proliposomes are dry, free-flowing granules 
composed of sorbitol as carrier and lipids that form a 
liposomal dispersion on contact with water. Their 
advantages are the combination of a fast onset (surface 
drug) and prolonged drug action (encapsulated drug) as 
demonstrated for propranolol and nicotine [92,93]. 

6.5. Nasal Powders 
Particulate nasal dosage forms are usually prepared by 

simply mixing the drug substance and the excipients 
[94,95], by spray-drying or freeze- drying of drug 
[96,97,98,99,100]. Dry-powder formulations containing 
bioadhesive polymers for the nasal delivery of peptides 
and proteins was first investigated by Nagai et al. (1984) 
[101]. Water-insoluble cellulose derivatives and 
Carbopol® 934P were mixed with insulin and the powder 
mixture was administered nasally. The powder took up 
water, swelled, and established a gel with a prolonged 
residence time in the nasal cavity. Glucose reduction was 
one-third of that achieved using an i.v. injection of the 
same insulin dose. Powder formulations for nasal drug 
delivery have since been widely investigated, e.g. for a 
somatostatin analogue using cross-linked dextran and 
microcrystalline cellulose [102], for glucagon using 
microcrystalline cellulose [103], for leuprolide and 
calcitonin using microcrystalline cellulose in combination 
with hydroxypropyl cellulose [104], and for gentamicin 
sulfate using hydroxypropyl methylcellulose [99]. A 
bioadhesive powder containing beclomethasone 
dipropionate for local treatment of allergic rhinitis and 
hydroxypropyl cellulose as the carrier had a significantly 
enhanced nasal residence time compared with 
administration of a solution as drops [105]. Ugwoke et al. 
(2000) [97] compared the nasal retention time of 
apomorphine, freeze-dried with lactose, Carbopol® 971P 
or sodium carboxymethylcellulose. Three hours post 
insufflation, 58%, 12%, and 27%, respectively, of the 
formulation, had been cleared from the nasal cavity. In all 
cases, the administered powder reduced the nasal 
mucociliary clearance. The difference in nasal residence 
time led to a sustained plasma peak level from the 
Carbopol® formulation of 52 min vs. 11 min for the 
lactose powder while maintaining similar bioavailabilities 
[105]. Callens and Remon (2000) [98] demonstrated nasal 
insulin delivery with freeze-dried powders of waxy maize 
starch and Carbopol® 974P, reaching an absolute 
bioavailability of 14.4%. Comparison of different starch / 
Carbopol® 974P and maltodextrin / Carbopol® 974P 
mixtures by oscillatory rheology showed no synergistic 

increase in the viscosity and elasticity when combined 
with mucus, which is often used as an indicator of 
bioadhesion [106]. However, the formulation with the 
highest bioavailability had the highest storage modulus, i.e. 
the most solid-like properties. It was also observed that 
the insulin bioavailability was markedly reduced after 
repeated administration of the powder formulations [107]. 
Although the reasons remained unclear, it was speculated 
that the powders were not completely cleared from the 
nasal cavity after each delivery but formed a physical 
barrier on the nasal mucosa inhibiting penetration of the 
drug on subsequent administrations. Thus, bioadhesion 
seemed to have reversed into deteriorating the 
bioavailability. Also inorganic, water-insoluble powder 
formulations such as calcium phosphates enhanced the 
drug absorption in rats after nasal administration [95], 
although they did not promote the in vitro drug 
permeability across rabbit nasal mucosa [108]. 
Retardation at the site of administration was proposed as a 
possible explanation. 

6.6. Nasal Microparticles 
Using microparticles as another way of prolonging the 

residence time in the nasal cavity was introduced in 1987 
[109]. It was proposed that microspheres of albumin, 
starch, and DEAE-dextran (diethyl aminoethyl-dextran) 
absorbed water and formed a gel-like layer which was 
cleared slowly from the nasal cavity. Three hours after 
administration, 50% of the delivered amount of albumin 
and starch microspheres and 60% of the dextran 
microspheres were still present at the site of deposition. It 
was suggested that an increased contact time could 
increase the absorption efficiency of drugs. As proposed, 
the relative intranasal bioavailability (v.s. subcutaneous) 
of human growth hormone in sheep was increased from 
0.1% for the solution to 2.7% for the degradable starch 
microsphere formulation. The addition of absorption 
enhancer, lysophosphatidylcholine, further enhanced 
growth hormone absorption as a relative bioavailability of 
14.4% was achieved [110]. Björk and Edman (1990) [111] 
showed that plasma glucose reduction after nasal insulin 
administration was comparable for degradable starch 
microspheres (cross-linked with epichlorohydrin) and 
insoluble starch powder (molecular weight 25 kDa) but 
significantly lower for soluble starch powder (molecular 
weight 11 kDa). It was therefore concluded that crucial 
parameters for the absorption promoting effect of 
microspheres are water absorption and aqueous 
insolubility. No alteration of the nasal mucosa was 
observable by scanning electron microscopy after 8 weeks 
of twice daily administration of starch microspheres, 
except slight hyperplasia in the septum wall [112]. 
Although DEAE-dextran microspheres were retained 
strongly in the nasal cavity [109], they were not successful 
in promoting nasal insulin absorption in rats [113]. The 
insulin was too tightly bound to the DEAE-groups to be 
released by a solution with an ionic strength 
corresponding to physiological conditions. Dextran 
microparticles without ion exchange groups induced a 
25% decrease in blood glucose level about 40 min after 
administration compared with initial levels. In a later 
study, dextran microspheres with a different distribution 
of the encapsulated insulin were compared [114]. When 
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insulin was situated on the microsphere surface, a 52% 
reduction in plasma glucose was induced 30 min after 
administration in rats. However, microspheres, which 
included the insulin in the spherical matrix, reached a 
maximum plasma glucose level reduction of 30% after 60 
min. Possibly, the limited amount of fluid in the nasal 
cavity is responsible for the observed differences, as the 
microspheres must be completely swollen to release the 
entire amount of incorporated insulin [115].  

Chitosan also has potential as an excipient in 
microparticulate drug delivery systems. In vivo studies in 
sheep showed a half-life of nasal clearance for chitosan 
microparticles of 115 min compared with 43 min for a 
solution of the polymer [116]. In general, chitosan 
formulations, whether in the form of microparticles or 
powders, were shown to provide a better absorption 
enhancing effect than chitosan solutions [117,118]. 
Moreover, recently solid lipid nanoparticles have also 
shown promising results [119,120] and were shown to 
increase the brain targeting of rosmarinic acid following 
nasal delivery for potential management of Huntington’s 
disease [121]. 

7. Conclusions 
Over last decade, the nasal cavity has become one the 

promising and potentially versatile route for delivering 
drugs. In particular, its unique capability of extending the 
drug release, by passing the hepatic first-pass metabolism 
and direct delivery of drugs to brain holds great promise in 
the field of drug delivery. A growing body of evidence 
relating to nasal drug delivery suggest it might the used 
for challenging drugs which can facilitate the 
pharmaceutical manufacturing and drug delivery 
challenges. Various pharmaceutical dosage forms and 
their potential to be utilised for local or systemic drug 
administration has been discussed in their review article. It 
is intuitively expected that this review will help to 
understand and further to develop the intra-nasal 
formulations to achieve specific therapeutic objectives. 
However, a number of technical and practical issues, 
which are also highlighted in this review article, remain a 
hurdle to be overcome in order for the full potential to be 
realised. 
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