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Abstract: COVID-19 is still prevalent around the globe. Although some SARS-CoV-2 vaccines have
been distributed to the population, the shortcomings of vaccines and the continuous emergence of
SARS-CoV-2 mutant virus strains are a cause for concern. Thus, it is vital to continue to improve
vaccines and vaccine delivery methods. One option is nasal vaccination, which is more convenient
than injections and does not require a syringe. Additionally, stronger mucosal immunity is produced
under nasal vaccination. The easy accessibility of the intranasal route is more advantageous than
injection in the context of the COVID-19 pandemic. Nanoparticles have been proven to be suitable
delivery vehicles and adjuvants, and different NPs have different advantages. The shortcomings of the
SARS-CoV-2 vaccine may be compensated by selecting or modifying different nanoparticles. It travels
along the digestive tract to the intestine, where it is presented by GALT, tissue-resident immune cells,
and gastrointestinal lymph nodes. Nasal nanovaccines are easy to use, safe, multifunctional, and
can be distributed quickly, demonstrating strong prospects as a vaccination method for SARS-CoV-2,
SARS-CoV-2 variants, or SARS-CoV-n.

Keywords: COVID-19; nasal vaccination; nanovaccine

1. Introduction

In 2019, a disease, COVID-19, started to break out all over the world. To date, it is
still spreading and mutating [1]. COVID-19 is a disease caused by SARS-CoV-2 (or 2019-
nCoV) infection. SARS-CoV-2 belongs to the coronavirus family and infects the host mainly
through the respiratory tract. It is important to seek methods of preventing and treating
COVID-19. Initially, drugs proven to be effective against viruses were research targets
for COVID-19 treatment. Remdesivir is an antiviral drug that is effective in reducing the
duration of COVID-19 [2,3] and was approved for the treatment of COVID-19 [4]. However,
some clinical trials have shown that Remdesivir only reduces recovery time for COVID-19
patients, and that it cannot be used as a treatment [5,6]. It was also found to have many
side effects. For example, patients are more prone to hypokalemia, nausea, and other
symptoms [7]. Petra Bistrovic et al. [8] reported transient bradycardia in COVID-19 pa-
tients treated with Remdesivir (mainly hepatic/hepatobiliary disorders, renal and urinary
disorders and cardiovascular disease [9–12]). Other drugs, such as Hydroxychloroquine,
Ribavirin, Favipiravir, Azithromycin, Lopinavir/Ritonavir, etc., have been confirmed to
inhibit the infection or replication of the SARS-CoV-2 to a certain extent [13]. However,
these drugs either have strong side effects or their efficacy is unsatisfactory [14–17]. In
the absence of appropriate treatment drugs, the development of vaccines has played an
essential role in controlling the expansion of the COVID-19 epidemic. The vaccines are
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rapidly being developed. More than 200 vaccines are under development, including vac-
cines for injections and mucosal vaccinations. Many vaccines have passed clinical trials,
and many people have received vaccines. However, there remain issues concerning the
high variability of SARS-CoV-2, the population’s acceptance of vaccination, and the relia-
bility, side effects, and safety of vaccines. These problems are hindering the development
of vaccines, and “vaccination hesitancy” is a common obstacle [18–22]. Therefore, it is
important to develop a SARS-CoV-2 vaccine that is efficient and safe. This review aims to
offer an overview of the state of the application of SARS-CoV-2 vaccines in animals and
humans. Based on the SARS-CoV-2 infection and mutation characteristics, the prospects of
nasal nanovaccine are emphatically described.

2. The Route of Vaccination
2.1. Vaccination with Syringe Needle

There are some types of vaccination that require the use of a syringe, including
Subcutaneous, Intradermal and Intramuscular injections (Figure 1) [23]. Intramuscular
injection, the traditional and most common means of drug delivery, is also a common
form of vaccination. This method of drug delivery is recognized and practiced around
the world. However, intramuscular injection is invasive, as the drug or vaccine must be
pierced into the skin and muscle by a needle [24]. People usually have relatively low
acceptance of intramuscular vaccinations [25]. Additionally, intramuscular injections must
be administered by professional medical staff, which limits the efficiency of this vaccination
method.
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Figure 1. Different routes of vaccination produce different types of immunity at different sites. Oral
vaccines along the digestive tract to the GALT, which produce mucosal and systemic immunity.
Aerosol vaccines reach BALT by inhalation into the bronchi, which produce mucosal and systemic
immunity. Nasal vaccines produce mucosal and systemic immunity at NALT.
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2.2. Mucosal Vaccination

Mucosal vaccination, an alternative method of inoculation, includes oral, aerosol
and nasal vaccination (Figure 1) [23]. The mucosal immune system (mucosa-associated
lymphoid tissues, MALT) defends pathogens from infecting the body via the mucous
membranes (the mucosal tissues of the nose, lungs, gastrointestinal tract, vagina, and rec-
tum). Classified by location, it includes nasopharynx-associated lymphoid tissue (NALT),
bronchus-associated lymphoid tissue (BALT), and the most distal gut-associated lymphoid
tissue (GALT) [26]. Oral vaccines mainly target pathogens by oral-fecal route of trans-
mission. Poliomyelitis vaccine, administered orally, has been successful. It mimics polio
infection for better vaccination [27]. Some oral SARS-CoV-2 vaccines are undergoing clin-
ical trials. It travels along the digestive tract to the intestine, where it is presented by
GALT, tissue resident immune cells, as well as gastrointestinal lymph nodes. A review
of nanostructure-based strategies targeting GALT is discussed in [28]. Resistance to oral
vaccines comes from the stomach and intestines. The digestive system is complex, and
the vaccine may be destroyed by factors such as gastric acid and protease before reaching
GALT [29,30]. Aerosol vaccines, when inhaled, produce mucosal and systemic immunity
on BALT in the lungs [31–33]. There has been little research and development (Figure 1).
SARS-CoV-2 is mainly transmitted through the respiratory tract [34–36]. According to the
transmission characteristics of SARS-CoV-2, nasal mucosal immunization is an ideal vacci-
nation method for the SARS-CoV-2 vaccine and is theoretically the easiest to obtain [37].
SARS-CoV-2 is readily adsorbed onto the nasal mucosa through nasal inhalation. The
nasal mucosa is the first and most important line of defense against SARS-CoV-2 infection.
NALT strategically distributed in the nasopharynx and oropharyngeal regions is similarly
exposed to the air, and antigens reach NALT through dendritic cells (DCs) or other antigen-
presenting cells. Antigens can be collected directly by the synapses of DCs that extend
between mucosal epithelial cells [38]. The ideal SARS-CoV-2 vaccines can stimulate the
nasal mucosa to produce systemic immunity and mucosal immunity. Among them, the
nasal mucosal immune effect evaluation is most important. The spike protein and envelope
protein of SARS-CoV-2 can be inhibited by antibodies produced by mucosal immunity, and
SARS-CoV-2 in DCs is neutralized [37].

Although intramuscular vaccination is still a common method, nasal vaccination of
the SARS-CoV-2 vaccine has become a research trend, and there has been a positive attitude
surrounding the development of this type of vaccine.

3. The Current Status of Nasal Vaccines in SARS-CoV-2

SARS-CoV-2 nasal vaccines are being developed, and nine of them are in clinical
trials. SARS-CoV-2 vaccines include inactivated vaccines, live attenuated vaccines, protein
subunit vaccines, nucleic acid vaccines, viral vector-based vaccines, and other vaccines [39].
Inactivated vaccines are prepared using chemical stress or heat stress. In the process of
heat stress or chemical stress, inactivated vaccines may lose immunogenicity, so these
vaccines often need to be mixed with adjuvants. So far, a total of 28 inactivated vaccines
for SARS-CoV-2 have been recorded by the WHO, of which 17 have entered clinical trials,
and only one inactivated nasal vaccine has entered a phase I trial (NCT04871737) [40]. Live
attenuated vaccines are vaccines made by removing or attenuating parts of the virus. Live
attenuated vaccines have appropriate immunogenicity, although live attenuated vaccines
require a long time to construct a suitable attenuated virus strain, and the constructed virus
strain may undergo virulence reversal at any time. Only eight live attenuated vaccines
have been recorded by the WHO. Among the eight vaccines, two nasal vaccines have
entered clinical trials (NCT04798001, NCT04619628). Due to the long development time,
live attenuated vaccines are not the preferred vaccine for SARS-CoV-2. Viral vector-based
vaccines, on the other hand, are vital in the development of SARS-CoV-2 vaccines. This
method is to insert antigens into existing successful and safe viral vectors (adenovirus, HIV,
etc.) and enter the host through the viral vectors. It is easy for the viral vector to enter the
host, causing a stronger host immune response and cross-reaction. In total, 70 viral vector-
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based vaccines have been recorded by the WHO and 26 viral vector-based vaccines have
entered clinical trials, three of which are nasal vaccines (ChiCTR2000037782, discontinued
test NCT04679909, NCT04751682, NCT04954287). Nucleic acid vaccines directly introduce
the exogenous gene (DNA or RNA), transferring the antigen protein to the host cell to
produce the antigen through the expression system of the host cell. The antigens can
be recognized by the host immune system to produce anti-SARS-CoV-2 antibodies to
achieve the purpose of prevention and treatment. Nucleic acid vaccines can select antigenic
determinants by modifying the target gene carried by the gene expression vector. Moreover,
the vaccine recipients can benefit from long-term immunity once vaccinated. A total
of 76 nucleic acid vaccines have been recorded by the WHO, of which 36 have entered
clinical trials. Among them, nasal mRNA vaccines can induce strong mucosal immunity
and systemic immunity [41,42]. Protein subunit vaccines are made from one or more
immunologically active fragments of SARS-CoV-2. Protein subunit vaccines discard some
of the epitopes of SARS-CoV-2, whose immune effect is low and improves the effective
antigen utilization efficiency of SARS-CoV-2. It needs to be used together with an adjuvant.
In total, 122 protein subunit vaccines have been recorded by the WHO, and 47 have
entered clinical trials, including two kinds of nasal protein subunit vaccines (RPCEC0000,
IRCT20201214049709N2). All the SARS-CoV-2 vaccines data are from the WHO [23].

Other vaccine platforms recorded include intracellular vaccines, VLP vaccines, and
bacterial vector vaccines. The development of SARS-CoV-2 vaccines is diverse, and the
development of nasal vaccines is mainly focused on viral vector vaccines and protein
subunit vaccines. As a vaccine vector, adenovirus is weakly pathogenic to humans. Even
replication-deficient recombinant adenovirus has unapparent side effects on humans and
is used as the first choice for nasal vaccines. However, the reason for the failure of a
clinical trial of the HIV1 Ad5 vector-based vaccine candidate was existing immunity
against the Ad5 vector itself. At the same time, a phase I trial of Ad5-nCoV (a Canadian
biotech company) demonstrated reduced vaccine efficacy in individuals with high Ad5
immunity [43]. Viral vector-based vaccines face the possibility of significant inefficiency
when they are administered with the same or similar vectors, and the efficacy of human
vaccines previously infected with these viruses will also be reduced. The virus vector-based
vaccine of the same vector may only be administered once in an individual. This reduces the
effectiveness and efficiency of population vaccination. Many nonhomologous viral vectors,
such as Newcastle disease virus [40], Poxvirus [44–46], etc., can be used as candidates for
vaccine vectors. The biosafety of these candidate viruses is still unknown, however, the
candidate viral organisms even include uncertain mutations and biosafety of adenoviruses.
It is important to consider that the abuse of viral vectors may spell disaster in the future.

The choice of a reliable delivery platform is an important reason to ensure that the
vaccine is efficient, safe, and durable. Recently, the delivery platform of nanoparticles (NPs)
has seen improvements.

4. Nanovaccines

A vaccine-based NP delivery vehicle is the inoculum to deliver an antigen in vivo. The
nanovaccine has been a novel vaccine delivery platform in recent years [47]. NPs function
as an adjuvant to enhance the immune response and the effect of cross-reactivity [48].
Functional NPs in SARS-CoV-2 vaccines mainly include promoting cell uptake of antigens,
protecting antigens, and fully mimicking pathogens (like nano-virus) (Figure 2). NPs
are mainly divided into four categories: polysaccharide NPs; lipid NPs and protein NPs;
Nano-biomimetic delivery vehicles; polymer NPs [49,50].
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Figure 2. Functional NPs in SARS-CoV-2 vaccines mainly include promoting cell uptake of antigens,
protecting antigens, and fully mimicking pathogens. Part of the structure of SARS-CoV-2 was selected
to be wrapped in a nanocapsule, or superfluous structures removed from SARS-CoV-2 were replaced
with NPs.

4.1. Polysaccharide Nanoparticles

Polysaccharide nanoparticles belong to a class of natural polymers composed of carbo-
hydrate monomers connected by glycosidic bonds [51]. With inherent immunomodulatory,
biocompatibility, biodegradability, low toxicity, and safety characteristics, polysaccha-
rides have attracted much attention in the preparation of nanovaccines and nanomedicine.
Polysaccharide adjuvants mainly include chitosan and its derivatives, in addition to glucan,
mannan, inulin, and Chinese medicinal herbs.

Chitosan is a cationic polysaccharide biopolymer that exists in the exoskeleton of
crustaceans and is produced by acetylation [52]. Chitosan NPs have a large surface area, are
capable of the controlled release of drugs, have excellent antibacterial and other biological
properties, are non-toxic to humans, and are environmentally friendly and used as a
drug delivery vehicle [53–55]. Chitosan nanovaccines have proven that the vaccines with
chitosan as a carrier can stimulate immune responses in animals [56,57]. In particular,
chitosan is soluble in acidic environments and has adhesive properties. The excellent
adhesion of chitosan reduces the nasal clearance of the vaccine [58–60]. Chitosan can
prolong the retention time of drugs or vaccines and improve their efficacy. It has significant
advantages as an adjuvant for oral or nasal nanovaccines. Priscila Diniz Lopes et al. [61]
confirmed that a chitosan-based IBV-cs vaccine, alone or in combination with a heterologous
live attenuated vaccine, can cause humoral and cell-mediated immune responses at the
primary site of virus replication and can be localized (the trachea) or in the whole body
(kidney) and provide effective protection against IBV infection. Santosh Dhakal et al. [62]
confirmed that chitosan NPs improve mucosal immunity and influenza vaccine protection
in pigs. Mucosal immune response and systemic immunity are generated after nasal
vaccination with chitosan-based nanovaccines. Chitosan NPs are theoretically feasible as
the delivery system and adjuvant of SARS-CoV-2 nanovaccines. Adel M. Talaat et al. [63]
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developed a quil-A-loaded chitosan (QAC) nanovaccine for COVID-19. Neutralizing
antibodies and IgA were tested in vaccinated mice (Table 1). The effect of cationic chitosan-
based nanovaccines in improving animal humoral immunity is more significant than other
chitosan-based nanovaccines [64]. The feasibility of chitosan and its derivatives as SARS-
CoV-2 nanovaccine carriers is emphasized in some reviews [65,66]. Chitosan can also
be associated with other poly nanoparticles, such as association chitosan-polymers. The
associated nanoparticles may be an option in nanovaccine development [67].

Table 1. Nasal nanovaccines information in COVID-19.

Nasal Candidate Nanovaccines NPs Types of NPs Developers Functions

A DNA nanovaccine, modified
vaccinia ankara expressing
SARS-CoV-2 S and N antigens and
based with quil-A-loaded chitosan
(QAC) [63]

Quil-A-loaded chitosan
(QAC) Polysaccharide Shaswath

et al.
Protection of plasmid
integrity and as a adjuvant

A SARS-CoV-2 spike ferritin
nanoparticle vaccine
(NCT04784767) [68]

Ferritin and Army
Liposomal Formulation
QS21 (SpFN-ALFQ)

Self-
assembled
proteins

Kathryn et al.

Enhanced cellular uptake
of ferritin and lipidosome
NPs, and protection of
antigens by liposomes

A Toll-like receptor-4 (TLR4)
agonist-based intranasal
nanovaccine [69]

inulin acetate (InAc) Polysaccharide Kathryn et al. As toll-like receptor-4
(TLR4) agonist

A inhalable nanovaccine with
biomimetic coronavirus structure [70]

poly(I:C) and
biomimetic pulmonary
surfactant (bio-PS)
liposomes

Nano-
biomimetic
delivery
vehicles

Bin Zheng
et al.

Completely simulate the
structure of the
coronavirus

4.2. Lipid Nanoparticles
4.2.1. Liposomes

Driven by hydrophobicity in water, self-assembled liposomes are spherical vesicles
encased by at least a double layer of phospholipids. They are highly fat-soluble and
can fuse with cell membranes. Liposome-based vaccines enter the cell by endocytosis.
Liposomes were first discovered by Bangham et al. using electron microscopy in the early
1960s [71] and later named “Liposome” by Sessa and Weissmann in 1968 [72]. Generally,
liposomes are composed of different types of amphiphilic phospholipids. Combined
with other lipids, liposomes can modify the surface characteristics and electrical charge.
Liposomes include multilamellar vesicles (MLV), large unilamellar vesicles (LUV), and
small unilamellar vesicles (SUV). Gregoriadis et al. [73] have confirmed that liposomes
have inherent adjuvant properties. Vaccinated mice produced strong antibody immune
responses to the Ags (such as diphtheria toxoid) carried. Moreover, it was found that
mice vaccinated with liposome-based vaccines did not have the side effects brought about
by conventional vaccine adjuvants, such as granulomas. Most liposomes are negatively
charged, and positively charged liposomes composed of positively charged lipids can
better adsorb to the nasal mucosa [74]. Ellen K. Wasan et al. [75] intranasally inoculated
mice with the L-TriADJ complex coated with cationic liposomes and produced a stronger
immune response in mice. Rui Tada et al. [76] found that adhesion of class B CpG ODN
to DOTAP/DC-Chol liposomes in nasal vaccine preparation enhances antigen-specific
immune responses in mice. Liposomes, especially cationic liposomes, have great potential
in the development of SARS-CoV-2 nasal nanovaccines.
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4.2.2. Other Lipid Nanoparticles

Liposomes are only an early version of the nanomedicine delivery platform. Many
different lipid nanoparticles have been developed, such as solid lipid nanoparticles, lipid
nanocapsules and virosomes. These lipid nanoparticles are used in vaccine delivery [50,77,78].
They may provide a direction in the development of nasal nanovaccines for SARS-CoV-2.

4.3. Protein Nanoparticles
Self-Assembled Proteins

Self-assembled proteins are a higher-level structure made by self-assembly of oligopep-
tides, nucleotides, and non-biological amphipathic building blocks. To achieve different
purposes, researchers have designed different self-assembled proteins. Self-assembled
proteins have been widely used in biomolecular engineering and biomedical platforms [79].
In the field of vaccine development, self-assembling proteins can be fused with inactivated
pathogens or parts of antigens to produce safe molecular entities that can be effectively
delivered to cells to induce immune responses [80]. The development of candidate vaccines
based on protein assemblies is a powerful strategy. Ferritin self-assembled NPs are already
in clinical trials as nasal nanovaccines [68] (Table 1).

4.4. Nano-Biomimetic Delivery Vehicles

Nano-biomimetic delivery vehicles are generally assembled from nanomaterials with
a variety of different functions. It is more capable of delivery with nanocarriers synthesized
with polymers and lipids [81]. Nano-biomimetic delivery vehicles are made with pathogen
antigens into nanovaccines, such as virus-like particles (VLPs), a virus-derived structure
composed of one or more different molecules with the ability to self-assemble [82,83]. VLPs
mimic the form and size of viruses, however, they lack genetic material, so they have high
biological safety due to low infectious doses [84,85]. So far, a series of VLPs candidate
vaccines against COVID-19 have been developed, and the effect is being evaluated. Cyrielle
Fougerou et al. [86] developed two vaccines based on capsid-like particles (CLP), showing
RBD of the SARS-CoV-2 spike protein. Furthermore, the vaccines stimulated strong virus-
neutralizing activity in mice. Jing et al. [87] designed a genetic vaccine encoding SARS-
CoV-2 virus-like particles. This vaccine induces a strong antiviral-like immune response in
mice. Typically, VLPs require nano-biomimetic delivery vehicles in nanovaccines [88]. By
improving the charge, size, and other characteristics of VLPs, NPs can better deliver VLPs
to the host. Zheng bin et al. [70] designed a nasal nanovaccine, which can induce mucosal
immunity by nasal delivery to prevent virus infection. The nanovaccine was composed of
poly(I:C) mimicking viral genetic material as adjuvant, biomimetic pulmonary surfactant
liposomes as capsid structure of virus and RBDs of SARS-CoV-2 as “spike” to completely
simulate the structure of the SARS-CoV-2 (Table 1). NPs may be assembled with antigens
to form a SARS-CoV-2-like molecule that mimics the process of viral infection for effective
vaccination.

4.5. Polymer Nanoparticles

Polymer NPs are nanoparticles formed by the polymerization of one or more organic
substances. Poly(D,L-lactic-co-glycolic acid), or PLGA, is the most commonly used syn-
thetic polymer in developing nanoparticle delivery vaccines due to its biodegradability
and biocompatibility [89,90]. It was originally used as a suture material for surgery as
PLGA is non-toxic and can be degraded into two safe and non-toxic monomers, lactide and
glycolide [91,92]. Later, it was found that PLGA functions as an adjuvant and an antigen
delivery vehicle. As an antigen delivery vector, PLGA can either encapsulate antigens
to form nanocapsules or make antigens adhere to the surface to form nanospheres. The
nanocapsules formed by PLGA are similar to liposomal nanovesicles. The pharmacoki-
netics is regulated by encapsulating the antigen in PLGA particles, and continuous and
controlled protein release is allowed to improve the immune response. The sustained
release characteristics of PLGA can be used in a single-dose vaccine, which is important for
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the development of the SARS-CoV-2 vaccine. Some researchers tend to develop single-dose
vaccines to achieve rapid vaccination [93–97].

PLGA can also prevent the degradation of antigens. The preservation of antigens is
considered by many developers. PLGA-encapsulated vaccines have advantages in antigen
protection and can delay the release of antigens. Patki M. et al. [98] found that PLGA loaded
with the anti-SARR-CoV-2 drug Remdesivir can continuously and stably release antigen.
Qingqin Tan et al. [99] determined that drugs with PLGA as a vector can neutralize a variety
of pro-inflammatory cytokines and effectively inhibit the activation of macrophages and
neutrophils. Inhibiting inflammation is conducive to reducing the side effects caused by
the SARS-CoV-2 vaccine, which means that a nanovaccine with PLGA as a vector is safe.
As a nanoparticle, PLGA can provide a characteristic delivery system for antigens and be
used as an adjuvant [100,101]. It has great prospects in the development of the SARS-CoV-2
vaccine [102]. In addition to PLGA, other polymer nanoparticles, such as Poly (I:C) as an
agonist, also play a similar role [103].

5. Combination of Antigen and NPs

Antigens and NPs are generally combined in two ways. The first is to cover the
surface of the NPs with antigens. Haptens are not enough to cause recognition by the
immune system. The hapten cannot stimulate the body to produce an immune response;
thus, the hapten needs to rely on a macromolecular vector [104]. NPs are used as vectors,
and antigens are covered on the surface to form a vaccine the same size as the virus to
improve its antigenicity. The second way is that the NPs encapsulate the antigen in a vesicle,
and this nanovaccine can form a suitable delivery system. Some NPs that are compatible
with cell membranes, such as liposomes, cationic NPs, etc., can retain antigens on the cell
membrane surface longer and even help the antigen enter the cell. Nanovaccines offer a
favorable delivery function, the sustained release of antigens, and the protection of antigens.
Incorporating functional NPs can improve the delivery of vaccines. Nanovaccines have
diversified functions and diversified design directions, and with different combinations,
nanovaccines have different characteristics.

6. Nasal Mucosal Immunity of Nanovaccine

After NPs enter the nasal cavity, they first stay in the mucus, and then pass through the
airway epithelial barrier. The stay of the nanovaccine in the mucus is affected by the size of
the NPs and other factors. Generally, the 20–80 nm nanovaccine can cause a better immune
response in nasal mucosal immunity [105]. Some special NPs can extend the residence time
in the nasal mucosa, such as liposomes, chitosan, and so on. Nanovaccines are presented to
immune cells in the epithelial cell barrier in different ways. In pathway 1, nanovaccines can
be directly captured by dendritic cells through the synapses of the epithelium. In pathway
2, the nanovaccine passively penetrates through the epithelial cell gap and reaches the
underlying DC cells. In pathway 3, the vaccine in nanovesicles is captured into the barrier
pathway by M cells. In pathway 4, nanovaccines can also enter cells through endocytosis
and deliver the antigens to cells (Figure 3) [49,106].
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Figure 3. (1) Dendritic cells (DC) pass through mucosal epithelial cells to capture NPs in the mucosal
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(3) A pocket enriched in APC (macrophages-Mϕ, DC, and lymphocytes T) created by the M cells,
which perform the sampling of the luminal antigens so that the immune cells contact the NP/antigen.
(4) NPs can also enter cells through endocytosis and deliver the antigens to cells.

7. Why Choose Nasal Nanovaccine in SARS-CoV-2?
7.1. Some People Cannot Effectively Resist SARS-CoV-2 after Vaccination

Globally, millions of people have been vaccinated against COVID-19. The vaccines
used thus far have passed clinical trials. When COVID-19 re-emerges, part of the vaccinated
population will still be infected [107–109]. In some people, the SARS-CoV-2 vaccine can
only alleviate the symptoms of COVID-19, however, cannot completely resist the invasion
of the virus. A study has shown that the mucosal immunity produced by nasal mucosal
vaccination of respiratory virus vaccines is more effective in resisting the invasion of
respiratory viruses than the systemic immunity produced by injections [110]. Activation
of antigen-specific secretion of IgA or sIgA antibodies can prevent pathogens and toxins
from adhering to or infecting epithelial cells and destroying the mucosal barrier [111]. IgM
and IgG are produced by intramuscular injection, however, IgA can only be produced
when high concentrations of IgG are produced. This can protect the lower respiratory tract
but not the upper respiratory tract. Nasal immunization can lead to high neutralizing
antibody responses and mucosal IgA and T cell responses that almost eradicates SARS-
CoV-2 infection in both the upper and lower respiratory tract [112].

Nasal vaccination requires a better vaccine delivery system. Inactivated vaccines,
live attenuated vaccines, and viral vector-based vaccines usually produce strong mucosal
and systemic immunity following mucosal vaccination. However, the safety of these non-
synthetic vectors through human culture and modification is unknown (potential toxicity
of proteins, genetics and variation in nucleic acids). As a substitute for these biological
vectors, NPs have higher controllability and safety. Protein subunit vaccines tend to be
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neutralized by antibodies inherent in the mucosal layer, or some proteases present in the
nose can also cause their immunogenicity to be reduced [113]. Some NPs, such as PLGA,
liposomes or nanoparticle assemblies, prevent antigen neutralization and enhance cellular
uptake. As an alternative to vaccine delivery systems or as an additional component of
vaccines, NPs may be a better choice.

7.2. Troubling Feature: Mutation

The high mutation rate of SARS-CoV-2 is affected by its nucleic acid properties and
infection rate. As an RNA virus, its single-stranded structure is not as stable as its double-
stranded structure, and it is easy to mutate [114,115]. Strong infectivity can increase the
overall mutation rate in SARS-CoV-2. The more the virus replicates, the more mutant
strains are produced at the same time. In mutated virus strains, changes in the spike protein
cause a greater risk of vaccine ineffectiveness [116,117]. Due to its strong immunogenicity,
most researchers have chosen the spike protein as the research target when studying the
prevention and treatment of COVID-19. In the phylogenetic tree map of SARS-CoV-2,
many variants have appeared, including Delta (B.1.617.2), Alpha (B.1.1.7), Beta (B.1.351),
Omicron (B.1.1.529) and Gamma (P.1). These mutant strains all have variant positions in
the S gene. However, it is interesting that there are few mutations in the E gene. Thus, the
highly conserved E sequence may be a favorable target for vaccine development. We are
working on a project related to an S1-E-PLGA nanovaccine, in which we optimize vaccines
by reducing ineffective or variable epitopes. The E protein has low immunogenicity. We are
trying to improve the vaccine effect through the anti-degradability and adjuvant properties
of NPs.

SARS-CoV-2 mutates at an alarming rate. More recently, the Omicron variant has
emerged with more genetic mutations (NCBI) [118]. The continuous mutation of SARS-
CoV-2 may cause the vaccine to fail. Variants could infect vaccinated people, and the
newly established herd immunity could collapse in some areas. The structure of the variant
will be re-screened to make a vaccine. However, people would be less receptive to being
vaccinated again through a syringe. Inactivated vaccines, live attenuated vaccines, and
viral vector-based vaccines also take a long time to develop. It is a better possibility that
part of the variant structure and NPs were rapidly assembled for nasal vaccination in
dealing with a new pandemic.

8. Future and Outlook

COVID-19 continues to spread, and vaccine development and vaccination are on-
going. Many SARS-CoV-2 vaccines face challenges in terms of effectiveness, limitations
of vaccination methods, storage requirements, and safety. People have also expressed
concern regarding COVID-19 vaccines and many are unwilling to be vaccinated. The nasal
vaccine, however, seems to be more acceptable to the public, and the mucosal immunity
produced by nasal vaccination can better prevent infection. Nanovaccines have received
attention as a new type of vaccine. Nanovaccine technology not only improves the immune
effect of antigens, but also ensures the safety of the vaccine. Many kinds of NPs have the
function of preventing antigen degradation and sustained release of antigens. Therefore,
the development of nanovaccines, especially nasal nanovaccines, appears to have strong
prospects.
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