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Abstract

The semantic representation of individual

word senses and concepts is of fundamental

importance to several applications in Natu-

ral Language Processing. To date, concept

modeling techniques have in the main based

their representation either on lexicographic re-

sources, such as WordNet, or on encyclope-

dic resources, such as Wikipedia. We pro-

pose a vector representation technique that

combines the complementary knowledge of

both these types of resource. Thanks to its

use of explicit semantics combined with a

novel cluster-based dimensionality reduction

and an effective weighting scheme, our repre-

sentation attains state-of-the-art performance

on multiple datasets in two standard bench-

marks: word similarity and sense clustering.

We are releasing our vector representations at

http://lcl.uniroma1.it/nasari/.

1 Introduction

Obtaining accurate semantic representations of indi-

vidual word senses or concepts is vital for several

applications in Natural Language Processing (NLP)

such as, for example, Word Sense Disambigua-

tion (Navigli, 2009; Navigli, 2012), Entity Linking

(Bunescu and Paşca, 2006; Rao et al., 2013), seman-

tic similarity (Budanitsky and Hirst, 2006), Informa-

tion Extraction (Banko et al., 2007), and resource

linking and integration (Pilehvar and Navigli, 2014).

One prominent semantic representation approach is

the distributional semantic model, which represents

lexical items as vectors in a semantic space. The

weights in these vectors were traditionally computed

on the basis of co-occurrence statistics (Salton et al.,

1975; Turney and Pantel, 2010; Dinu and Lapata,

2010; Lappin and Fox, 2014), whereas for the more

recent generation of distributional models weight

computation is viewed as a context prediction prob-

lem, often to be solved by using neural networks

(Collobert and Weston, 2008; Turian et al., 2010;

Mikolov et al., 2013). Unfortunately, unless they

are provided with large amounts of sense-annotated

data these corpus-based techniques cannot capture

polysemy in their representations, as they conflate

different meanings of a word into a single vector.

Therefore, most sense modeling techniques tend to

base their computation on the knowledge obtained

from various lexical resources. However, these tech-

niques mainly utilize the knowledge derived from

either WordNet (Banerjee and Pedersen, 2002; Bu-

danitsky and Hirst, 2006; Pilehvar et al., 2013) or

Wikipedia (Medelyan et al., 2009; Mihalcea, 2007;

Dandala et al., 2013; Gabrilovich and Markovitch,

2007; Strube and Ponzetto, 2006), which are, re-

spectively, the most widely-used lexicographic and

encyclopedic resources in lexical semantics (Hovy

et al., 2013). This restriction to a single resource

brings about two main limitations: (1) the sense

modeling does not benefit from the complementary

knowledge of different resources, and (2) the ob-

tained representations are resource-specific and can-

not be used across settings.

In this paper we put forward a novel concept rep-

resentation technique, called NASARI, which ex-

ploits the knowledge available in both types of re-

source in order to obtain effective representations of

arbitrary concepts. The contributions of this paper

are threefold. First, we propose a novel technique
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for rich semantic representation of arbitrary Word-

Net synsets or Wikipedia pages. Second, we provide

improvements over the conventional tf-idf weight-

ing scheme by applying lexical specificity (Lafon,

1980), a statistical measure mainly used for term

extraction, to the task of computing vector weights

in a vector representation. Third, we propose a

semantically-aware dimensionality reduction tech-

nique that transforms a lexical item’s representation

from a semantic space of words to one of Word-

Net synsets, simultaneously providing an implicit

disambiguation and a distribution smoothing. We

demonstrate that our representation achieves state-

of-the-art performance on two different tasks: (1)

word similarity on multiple standard datasets: MC-

30, RG-65, and WordSim-353 similarity, and (2)

Wikipedia sense clustering, in which our unsuper-

vised system surpasses the performance of a state-

of-the-art supervised technique that exploits knowl-

edge available in Wikipedia in several languages.

2 Semantic Representation of Concepts

Lexical resources and concepts. The gist of our

approach lies in its combination of knowledge from

two different lexical resources: (1) the expert-

based lexicographic WordNet, whose basic con-

stituents are synsets, i.e., concepts expressed by

sets of synonymous words (Miller et al., 1990),

and (2) the collaboratively-constructed encyclopedic

Wikipedia, whose articles can be considered as indi-

vidual concepts. Throughout the paper, by a concept

we mean a tuple b = (p, s) where p is a Wikipedia

page and s is the corresponding WordNet synset.

As a bridge between the two resources we use the

synset-to-article mappings provided by BabelNet1

(Navigli and Ponzetto, 2012), a high coverage mul-

tilingual encyclopedic dictionary and semantic net-

work that merges, among other resources, Wikipedia

and WordNet. Note that the concept b can also con-

tain a Wikipedia page or a WordNet synset only, if a

mapping is not provided by BabelNet.

Semantic representation: NASARI. Our concept

modeling approach consists of two phases. First,

for a given concept, we collect a set of relevant

Wikipedia pages by leveraging the structural infor-

mation in Wikipedia and WordNet (Section 2.1).

1http://www.babelnet.org/

Figure 1: The process of obtaining contextual informa-

tion for a WordNet synset or a Wikipedia article.

Then, we analyze the obtained contextual informa-

tion and construct two vector representations of the

concept (Section 2.2).

2.1 Collecting contextual information

Figure 1 illustrates the process of obtaining a set of

relevant Wikipedia pages Tb as contextual informa-

tion for a given concept b = (p, s). Let Lp be the

set containing p and all the Wikipedia pages hav-

ing an outgoing link to p, and Rs be the set con-

sisting of s and all other synsets that are in its di-

rect neighbourhood. We further enrich Rs by in-

cluding the coordinate synsets of s and the related

synsets from its disambiguated gloss2. Let B be a

function mapping each WordNet synset s′ to its cor-

responding Wikipedia page p, if such mapping ex-

ists in BabelNet, and to the empty set otherwise.

Hence, B(Rs) = ∪s′∈Rs
B(s′). Then, our con-

textual information is the set of Wikipedia pages

Tb = Lp ∪ B(Rs). In the case either p or s is not

present in the concept b, we take the contextual in-

formation as Tb = B(Rs) or Tb = Lp, respectively.

2.2 Vector construction

By processing the collected contextual information

Tb, NASARI represents the concept b as two vec-

tors in two semantic spaces: (1) word-based and (2)

synset-based. LetWb be the bag of words of all the

Wikipedia pages in Tb after lemmatization and stop-

2http://wordnet.princeton.edu/glosstag.shtml
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word removal. We use lexical specificity in order to

extract the most representative words (Section 2.2.1)

and synsets (Section 2.2.2) ofWb.

Lexical specificity. Lexical specificity (Lafon,

1980) is a statistical measure that has been used

in a wide range of NLP applications, such as tex-

tual data analysis (Lebart et al., 1998), term ex-

traction (Drouin, 2003), and domain disambigua-

tion (Camacho Collados et al., 2014). However, to

our knowledge, it has never heretofore been used

to calculate weights in a vector-based representa-

tion (Turney and Pantel, 2010). Lexical specificity

is based on the hypergeometric distribution over

word frequencies. This statistical measure is partic-

ularly suitable for extracting an accurate set of rep-

resentative terms for a given subcorpus of a refer-

ence corpus (Lafon, 1980). Unlike the conventional

term frequency-inverse document frequency weight-

ing scheme (Jones, 1972, tf-idf ), lexical specificity

is not especially sensitive to different text lengths.

Assume a reference corpus of T words and a t-
words subcorpus of that corpus. The goal is to find

a set of terms that are peculiar to the subcorpus,

but not to the whole reference corpus. Formally,

given a word w that occurs f and k times in the

corpus and subcorpus, respectively, positive speci-

ficity computes the relevance of w to the subcorpus

as P (X ≥ k) if k ≥ ft
T

, where X is a random vari-

able following a hypergeometric distribution with

parameters f , t and T , and ft
T

is the expected value

of X . In our setting we are only interested in the pos-

itive specificity, i.e., the set of most relevant words

appearing in the contextual information. We ap-

ply the standard procedure of applying log10 and

then inverting the sign of the specificity probabili-

ties in order to re-scale them to the real line, which

is more easily interpretable (Drouin, 2003; Cama-

cho Collados et al., 2014). We only retain words

with specificity greater than two, which is equal to

−log10(0.01). This threshold leads to a set of repre-

sentative words that are relevant to the context with

a confidence of at least 99%, i.e., P (X ≥ k) ≤ 0.01
(Billami et al., 2014).

2.2.1 Word-based representation

This word-based representation models the con-

cept b in a conventional semantic space whose di-

mensions are individual words. We leverage lexical

specificity to compute a weighted set of most repre-

sentative words forWb with respect to the reference

corpus, i.e., the whole Wikipedia. As an example,

the obtained word-based vector for the edge of wa-

ter sense of shore has water, ocean, lake, beach and

sea among its most relevant dimensions.

2.2.2 Synset-based representation

Given that the amount of contextual informa-

tion gathered for a concept can be small, the re-

sulting word-based vector can be sparse and as a

consequence prone to noise, especially in the case

of less frequent concepts. Therefore, we put for-

ward a method that tackles the issue, providing rich

semantically-aware representations. To this end,

we group - and thereby generalize - similar dimen-

sions in the obtained word-based vector, to produce

a smaller vector in which dimensions are WordNet

synsets and weights are computed on the basis of the

combined information of the individual words in the

group. The generalization procedure can be summa-

rized in two main steps.

First, for each word w in Wb, we obtain from

WordNet the set Hw of all the direct hypernyms

of all the synsets containing w. For each synset

h ∈ Hw we check whether there exists another

word w′ from the contextual information that is a

hyponym of h, i.e., h ∈ Hw ∩ Hw′ . When such

is the case, letting Yh be the set of all words in the

hyponym synsets of h, we combine w, w′ and all

the other words in Yh into a single dimension repre-

sented by their common hypernym h. Thus for our

earlier example, the three words ocean, lake, and sea

are grouped into a single dimension represented by

their hypernym, i.e., the synset containing the body

of water sense of water (water2
n in WordNet 3.0)3.

Then, we compute the weight associated with the

new dimension by calculating the lexical specificity

of the word cluster. Formally, we calculate the lex-

ical specificity of h by setting the parameters k and

f as the total number of times the words in Yh occur

in Wb and the whole Wikipedia, respectively. The

values of t and T remain unchanged.

Our generalization procedure is similar to the di-

mensionality reduction that is performed using sin-

gular value decomposition in Latent Semantic Anal-

ysis (Landauer and Dumais, 1997, LSA). However,

3We denote the ith sense of word w with POS p as wi
p.
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LSA is not applicable to our setting because, due

to the usage of lexical specificity, our vectors are

relatively small in size and different vectors usually

have few overlapping dimensions. Moreover, unlike

LSA, in which the size-reduced vectors have opaque

conflations of multiple words as their dimensions,

our new semantic space has human- and machine-

readable synsets as its dimensions. Our general-

ization procedure produces three advantages: (1) it

maps the vectors from a word-based semantic space

to a lower-dimensional space of synsets, (2) while

merging multiple words into a single synset an im-

plicit disambiguation of context words takes place,

providing better means for sense distinction, and

(3) the dimensionality reduction tackles the potential

noise and sparsity, resulting in smoother vectors.

3 NASARI for Semantic Similarity

So far we have explained how NASARI constructs

two types of representations, i.e., word-based and

synset-based, for arbitrary WordNet synsets and

Wikipedia pages. In this section we provide a

method that leverages NASARI representations for

effective measurement of concept and word simi-

larity. Semantic similarity between a pair of lexi-

cal items (e.g., words or concepts) lies at the core

of many applications in NLP and hence it has re-

ceived a considerable amount of research interest,

leading to a wide range of semantic similarity mea-

sures (Mohammad and Hirst, 2012).

3.1 Concept similarity

Given a pair of concepts, we first use the procedure

described in Section 2 to obtain for each concept

the two corresponding vector representations, i.e.,

word-based and synset-based. For each representa-

tion type, we then compute the similarity of the two

concepts by comparing their corresponding vectors.

This results in two similarity scores, one for each

representation type. The final similarity is computed

as the average of the two similarity scores. We use

Weighted Overlap for comparing vectors.

Weighted Overlap. Proposed by Pilehvar et al.

(2013), Weighted Overlap (WO) first sorts the el-

ements of each vector vi and then harmonically

Algorithm 1 NASARI-based word similarity

Input: words w1 and w2

Output: Sim, similarity score

1: for each synonym set H ∈ S
2: if w1 ∈ H & w2 ∈ H then

3: return Sim = 1
4: for each word wi ∈ {w1, w2}
5: Cwi

← ∅, set of concepts associated with wi

6: if wi ∈ WordNet & wi not Named Entity then

7: for each sense s ∈WordNet senses (wi)

8: Cwi
← Cwi

∪ {s}
9: else

10: for each page p ∈ piped links (wi)

11: Cwi
← Cwi

∪ {p}
12: Vi ← ∅, set of representations for concepts in Cwi

13: for each concept c ∈ Cwi

14: vwrd ←NASARI word-based rep. of c
15: vsyn ←NASARI synset-based rep. of c
16: v ← (vwrd, vsyn)
17: Vi ← Vi ∪ {v}

18: Sim← maxv∈V1,v′∈V2

WO(vwrd,v′

wrd)+WO(vsyn,v′

syn)

2
19: return Sim

weights the overlaps between the two vectors:

WO(v1, v2) =

∑
q∈O(r1

q + r2
q)

−1

∑|O|
i=1

(2i)−1

(1)

where O is the set of overlapping dimensions be-

tween the two vectors and rj
q is the rank of dimen-

sion q in the vector vj . Given that our vectors are

significantly smaller than those in the original set-

ting of WO, the overlaps are also generally smaller

in size. Hence, we apply a square root operation

to the computed value in order to obtain a more

uniformly-distributed range of scores across the sim-

ilarity scale, i.e., [0, 1]. In our experiments we show

the advantage we gain by using WO in comparison

to the conventional cosine measure.

3.2 Word similarity

Algorithm 1 shows the procedure we devised for

measuring semantic similarity between two words.

There are three main steps:

1. Given a pair of words w1 and w2 the algorithm

first checks whether they are synonymous ac-

cording to our synonym set collection S. In

Section 3.2.1, we explain how we obtain this

set. If the words are defined as synonyms in S,
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the algorithm returns the maximum similarity

score of one (lines 1-3).

2. If the words are not defined as synonyms, we

proceed by obtaining, for each word wi, its set

of possible senses (Cwi
, lines 5-11). We accord-

ingly obtain the set of their respective NASARI

vector representations (Vi, lines 13-17), two

(word-based and synset-based) for each con-

cept in Cwi
. Section 3.2.2 describes the concept

extraction process.

3. Finally, the algorithm returns the similarity

score Sim (line 19), calculated as the similarity

of the closest senses of w1 and w2. In our de-

fault setting, we linearly combine our two vec-

tor representations by averaging them (line 18).

3.2.1 Wiktionary synonyms S

Wiktionary is a rich collaboratively-constructed

lexical resource that provides a considerable amount

of multilingual lexical information for a large num-

ber of words. We use this resource in order to ob-

tain sets of synonymous words S. To this end, we

first extract all the pre-specified synonymy relations

in the English Wiktionary. This results in 17K sets

with an average size of 2.8 synonyms.

In order to enrich the set we introduce a method

that exploits the multilinguality of Wiktionary to

extract synonymous words. Our approach utilizes

translations of words in other languages as bridges

between synonymous words in English. Specifi-

cally, for each sense s of word w in Wiktionary, we

first get all the available translations. Assume that

the sense s of w translates into the word tl in lan-

guage l. If there is another word sense s′ of another

word w′ in Wiktionary that is also translated to tl in

language l, we hypothesize that w and w′ are syn-

onyms. In order to avoid ambiguity, as tl we only

consider words that are monosemous according to

language l.

This procedure results in around 9K additional

synonymous sets with an average size of 2.1. For in-

stance, the Finnish noun ammatti, which is monose-

mous according to Wiktionary, links seven English

words into a single set of synonyms: career, busi-

ness, profession, occupation, trade, calling, and vo-

cation. The final synonym set collection S contains

25K sets, each having, on average, 2.6 words.

3.2.2 Concept extraction

If the two input words w1 and w2 are not found in

the same synonym set in S, we proceed by obtain-

ing their sets of senses Cw1
and Cw2

, respectively.

Depending on the type of wi, we use two different

resources for obtaining Cwi
: the WordNet sense in-

ventory and Wikipedia.

WordNet words. When the word wi is defined in

the WordNet sense inventory and is not a named

entity (line 6 in Algorithm 1), we set Cwi
as all

the WordNet synsets that contain wi, i.e., Cwi
=

{synset s ∈ WordNet : wi ∈ s}. We use Stan-

ford Named Entity Recognizer (Finkel et al., 2005)

in our experiments.

WordNet OOV and named entities. For named

entities and words that do not exist in WordNet’s

vocabulary (OOV) we construct the set Cwi
by ex-

ploiting Wikipedia’s piped links (line 10 in Algo-

rithm 1). To this end, we take as elements of Cwi

the Wikipedia pages of the hyperlinks which have

wi as their surface form, i.e., piped-links (wi). If

|Cwi
| > 5, we prune Cwi

to its top-5 pages in terms

of their number of ingoing links. Our choice of

Wikipedia as a source for named entities is due to

its higher coverage in comparison to WordNet.

4 Experiments

We evaluated NASARI on two different tasks that

require the computation of semantic similarity be-

tween words or concepts: word similarity (Section

4.1) and sense clustering (Section 4.2).

4.1 Word similarity

4.1.1 Datasets

We took as benchmark for our word similarity

experiments three standard datasets that are widely

used in the literature: RG-65 (Rubenstein and Good-

enough, 1965), MC-30 (Miller and Charles, 1991),

and WordSim-353 (Finkelstein et al., 2002; Agirre

et al., 2009). WordSim-353 originally conflated

similarity and relatedness, leading to high similar-

ity scores for pairs such as computer-keyboard de-

spite the dissimilarity in their meanings. To correct

the conflation, Agirre et al. (2009) partitioned the

dataset into two subsets: relatedness and similarity.

Given that our similarity measure is targeted at se-

mantic similarity, we took the similarity subset of
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WordSim-353 (WS-Sim) as test bed for our evalua-

tions. The subset comprises 203 word pairs.

4.1.2 Experimental setup

In this task, we assess the performance of dif-

ferent systems in terms of Pearson correlation. We

compare our system against six similarity measures

that have reported best performance on the three

datasets. Lin (Lin, 1998) and ADW (Pilehvar et al.,

2013) are WordNet-based approaches that leverage

the structural information of WordNet for the com-

putation of semantic similarity. Most similar to our

work are Explicit Semantic Analysis (Gabrilovich

and Markovitch, 2007, ESA), which represents a

word in a high-dimensional space of Wikipedia arti-

cles, and Salient Semantic Analysis (Hassan and Mi-

halcea, 2011, SSA), which leverages the linking of

concepts within Wikipedia articles for generating se-

mantic profiles of words. Word2Vec (Mikolov et al.,

2013) and PMI-SVD are the best predictive and co-

occurrence models obtained by Baroni et al. (2014)

on a 2.8 billion-token corpus that also includes the

English Wikipedia.4 Word2Vec is based on neu-

ral network context prediction models (Mikolov et

al., 2013), whereas PMI-SVD is a traditional co-

occurrence based vector wherein weights are cal-

culated by means of Pointwise Mutual Information

(PMI) and the vector’s dimension is reduced to 500

by singular value decomposition (SVD). We use the

DKProSimilarity (Bär et al., 2013) implementation

of Lin and ESA in order to evaluate these measures

on the WS-Sim dataset.

4.1.3 Results

Table 1 shows the Pearson correlation of the dif-

ferent similarity measures on the three datasets con-

sidered. NASARI proves to be highly reliable on

the task of word similarity, providing state-of-the-

art performance on RG-65 and MC-30, and compet-

itive results on WS-Sim. Importantly, the improve-

ment we attain over measures that utilize as their

knowledge base either WordNet (i.e., ADW, Lin) or

Wikipedia (i.e., ESA and SSA) shows that our usage

of the complementary information of the two types

of resource has been helpful. We note that our Wik-

tionary module detects four additional synonymous

pairs (i.e., similarity = 1.0) in MC-30 (13%), eight in

RG-65 (12%), and thirteen in WS-Sim (6%) that are

4clic.cimec.unitn.it/composes/semantic-vectors.html

Measure RG-65 MC-30 WS-Sim

NASARI 0.91 0.91 0.74

SSA 0.86 0.88 NA

Word2Vec 0.84⋄ 0.83‡ 0.76‡

Lin 0.83 0.82 0.66

ADW 0.81 0.79 0.63

PMI-SVD 0.74⋄ 0.76‡ 0.68‡

ESA 0.72 0.74 0.45

Table 1: Pearson correlation of different similarity mea-

sures on RG-65, MC-30, and WordSim-353 similarity

(WS-Sim) datasets. Results for Lin and ESA on RG-65

and MC-30 are taken from (Hassan and Mihalcea, 2011).

We show the best performance obtained by Baroni et al.

(2014) out of 48 configurations specifically tested on RG-

65 (highlighted by ⋄) and across different datasets includ-

ing WS-Sim (highlighted by ‡).

not defined as synonyms in WordNet. We also ob-

tain competitive results according to the Spearman

correlation (a setting in which the absolute similarity

scores do not play a role and it is solely their ranking

that matters) on all the three datasets: MC-30 (0.89),

RG-65 (0.88), and WS-Sim (0.73).

WS-Sim is the only dataset on which we do not

report state-of-the-art performance. An analysis of

the outputs of our system on the WS-Sim dataset re-

vealed that there are pairs in this subset of WordSim-

353 that are not assigned proper scores according

to the similarity scale. Hill et al. (2014) had previ-

ously pointed out this deficiency of WS-Sim, mainly

due to its original relatedness-based scoring scale.

For instance, word pairs that are barely related (e.g.,

street-children) or antonyms (e.g., profit-loss and

smart-stupid) are assigned relatively high similar-

ity values (respectively, 4.9 for the former and 7.3

and 5.8 for the latter case, in the 0-10 scale). In

all these cases our system produces more appropri-

ate judgements according to the similarity scale. On

the other hand, there are highly similar pairs in the

dataset with relatively low gold scores. Examples in-

clude school-center5 and term-life6 with the respec-

tive gold similarity scores of 3.4 and 4.5, whereas

5School and center have a pair of highly similar senses in

WordNet 3.0: center3n: “a building dedicated to a particular

activity” and school2n: “a building where young people receive

education.”
6Term and life are in coordinate synsets (with time period as

their common hypernym) in WordNet 3.0.
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Measure System type 500-pair SemEval

NASARI unsupervised 84.6% 88.4%

Dan-mono supervised 77.4% 83.5%

Dan-multi supervised 84.4% 85.5%

Baseline - 71.4% 82.5%

Table 2: Accuracy of different systems on two manually-

annotated English datasets for sense clustering in

Wikipedia. Dan-mono and Dan-multi are the monolin-

gual and multilingual systems of Dandala et al. (2013).

NASARI computes their similarities as 8.4 and 9.6.

4.2 Sense clustering

Our second set of experiments focuses on sense clus-

tering of the Wikipedia sense inventory. Wikipedia

can be considered as a sense inventory wherein the

different meanings of a word are denoted by the arti-

cles listed in its disambiguation page (Mihalcea and

Csomai, 2007). Given the high granularity of this

inventory, clustering of senses can be highly bene-

ficial to tasks that take this encyclopedic resource

as their sense inventory (Hovy et al., 2013), such as

Wikipedia-based Word Sense Disambiguation (Mi-

halcea, 2007; Dandala et al., 2013).

4.2.1 Datasets

For the sense clustering task, we take as our

benchmark the two datasets created by Dandala et

al. (2013). In these datasets, clustering has been

viewed as a binary classification problem in which

all possible pairings of senses of a word are anno-

tated whether they ought to be clustered or not. The

first dataset contains 500 pairs, 357 of which are

set to clustered and the remaining 143 to not clus-

tered. The second dataset, referred to as the Se-

mEval dataset, is based on a set of highly ambigu-

ous words taken from SemEval evaluations (Mihal-

cea, 2007) and consists of 925 pairs, 162 of which

are positively labeled, i.e., clustered.

4.2.2 Experimental setup

In this task we use the procedure explained in Sec-

tion 3.1 for measuring the similarity of concepts. A

pair of pages is set to belong to the same cluster

if their similarity exceeds the middle point in our

similarity scale, i.e., 0.5 in the scale of [0, 1]. We

compare our results with the state-of-the-art systems

of Dandala et al. (2013) that perform clustering by

exploiting the structure and content of an English

page (monolingual variant), or several pages in dif-

ferent languages (multilingual variant that uses En-

glish, German, Spanish and Italian pages). These

systems are essentially multi-feature Support Vec-

tor Machine classifiers that use an automatically-

labeled dataset for their training.

4.2.3 Results

Table 2 lists the results of NASARI as well as the

state-of-the-art systems of Dandala et al. (2013). We

also report the results for a baseline system that sets

all pairs as not clustered. As can be seen from the ta-

ble, our system proves to be highly robust and com-

petitive by outperforming, in an unsupervised set-

ting, the supervised monolingual and multilingual

systems of Dandala et al. (2013) on both datasets.

As regards the F1, we obtain 72.0% and 64.2% on

the 500-pair and SemEval datasets, respectively, a

measure that is not reported by Dandala et al. (2013).

4.3 Analysis

Recall from Section 2 that our system has two vec-

tor representations, for each of which we compute

vectors based on lexical specificity. We also men-

tioned in Section 3 that we opt for Weighted Overlap

as our vector comparison method. In order to ana-

lyze the impact of each of these elements, we carried

out a series of experiments with the conventional

logarithmically-scaled tf-idf weighting scheme and

the cosine vector comparison technique. For a word

w, we calculate the tf-idf by taking tf as the fre-

quency of w in the corresponding contextual infor-

mation, and idf = log(|D|/|{p ∈ D : w ∈ p}|),
where D is the set of all pages in Wikipedia.

Table 3 shows the performance of the NASARI-

based similarity system and its individual vector

representations for different weight computation

schemes, i.e., lexical specificity and tf-idf, and for

different vector comparison techniques, i.e., cosine

and WO, on word similarity and sense clustering

datasets. As can be seen from the Table, the perfor-

mance of the word-based representation consistently

improves on both tasks when combined with the ad-

ditional information from the synset-based vectors,

demonstrating that the sense distinctions offered by

the generalization process have been beneficial.

Between the two vector comparison methods,

WO proves to better suit our specificity-based vec-
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Vector

representation

Weighting

scheme

Vector

comparison

Word similarity Sense clustering

MC-30 RG-65 WS-Sim 500-pair SemEval

Combined
specificity

WO ⋆0.91 ⋆0.91 ⋆0.74 ⋆84.6% ⋆88.4%
cosine 0.88 0.89 0.75 76.2% 83.6%

tf-idf
WO 0.85 0.87 0.73 60.4% 67.8%
cosine 0.79 0.84 0.70 81.4% 86.1%

Word-based
specificity

WO 0.90 0.91 0.73 82.0% 85.0%
cosine 0.86 0.88 0.72 73.2% 83.4%

tf-idf
WO 0.86 0.87 0.72 78.4% 82.6%
cosine 0.83 0.87 0.71 79.2% 84.4%

Synset-based
specificity

WO 0.91 0.90 0.75 78.8% 83.8%
cosine 0.90 0.88 0.75 79.8% 85.0%

tf-idf
WO 0.86 0.85 0.73 37.2% 41.1%
cosine 0.71 0.80 0.66 79.4% 85.0%

Word-based specificity WO †0.86 †0.87 †0.71 †80.0% †85.1%

Table 3: Performance of NASARI and its individual vector representations for different weight computation schemes,

i.e., lexical specificity and tf-idf, and for different vector comparison techniques, i.e., cosine and Weighted Overlap

(WO), in terms of Pearson correlation (word similarity) and accuracy (sense clustering). The scores highlighted by ⋆
are the ones obtained using our default NASARI setting, and the ones highlighted by † correspond to the setting of our

system using Wikipedia as its only knowledge source.

tors by outperforming cosine in most cases. The

reason behind the lower performance of WO for the

synset-based vectors on the task of sense clustering

can be explained by the nature of the corresponding

datasets. Since the synset-based vectors and their

overlapping dimensions are small, their cosine sim-

ilarity scores also tend to be relatively low, unlike

WO whose range of values is not affected by the

number of overlapping dimensions. Given that in

the experiments the threshold is fixed to the mid-

dle point of the scale (cf. Section 4.2.2), gener-

ally low similarity values lead to a high-precision,

low-recall system, which is rewarded by higher ac-

curacy performance in datasets in which a large por-

tion of instances are negative. In fact, for the synset-

based vector representation weighted using speci-

ficity, the F1 performance of the cosine is signifi-

cantly lower than WO. On the SemEval dataset the

F1 performance of WO is 60.1%, whereas cosine at-

tains 37.1%. Similarly, on the 500-pair dataset, WO

leads cosine by 16.8%: 68.5% vs. 51.7%.

As far as the weighting scheme is concerned, lex-

ical specificity outperforms tf-idf on both tasks, ir-

respective of the vector comparison technique and

representation. We attribute the better performance

of lexical specificity to the probabilistic nature of

weights in its vectors. The tf-idf weighting scheme,

in contrast, suffers from insensitivity to the relative

size of the contextual information. Thus, subse-

quently, specificity-based vectors provide the advan-

tage of accurately reducing the vectors’ dimension,

unlike the tf-idf scheme in which the size-insensitive

weights are not comparable across vectors. As a re-

sult, the specificity-based vectors are substantially

smaller in size, bringing about better space utiliza-

tion and faster running time. In our experiments the

vectors obtained by using lexical specificity were,

on average, almost nine times (2505 vs. 21825) and

four times (335 vs. 1311) smaller than the tf-idf -

based vectors for the word-based and synset-based

vector representations, respectively.

We were also interested in verifying the advantage

gained by combining the complementary knowledge

of Wikipedia and WordNet. To this end, we carried

out an experiment in which NASARI uses Wikipedia

as its only knowledge source (i.e., without using

WordNet). The last row in the Table (highlighted

by †) shows the results for this setting. Note that

since WordNet is not used in this setting, we are

constrained to the word-based vector representation

only. The results show that the combination of the

types of resource leads to a consistent performance
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improvement across tasks and datasets, with the av-

erage improvement being 5%.

5 Related Work

Given that in this work we focused mainly on simi-

larity for the evaluation of our semantic representa-

tion, in addition to concept representation, we also

briefly discuss related works for semantic similarity.

Concept representation. Distributional semantic

models are usually the first choice for represent-

ing textual items such as words or sentences (Tur-

ney and Pantel, 2010). These models have attracted

considerable research interest, resulting in various

co-occurrence based representations (Salton et al.,

1975; Evert, 2005; Pado and Lapata, 2007; Erk

and Padó, 2008) or predictive models (Collobert and

Weston, 2008; Turian et al., 2010; Mikolov et al.,

2013; Baroni et al., 2014). Although there have

been approaches proposed in the literature for learn-

ing sense-specific embeddings (Weston et al., 2013;

Huang et al., 2012; Neelakantan et al., 2014), their

coverage is limited only to those senses that are cov-

ered in the underlying corpus. Moreover, the ob-

tained sense representations are usually not linked

to any sense inventory, and therefore such linking

has to be carried out, either manually, or with the

help of sense-annotated data. Hence, unless they

are provided with large amounts of sense-annotated

data, these techniques cannot furnish an effective

representation of word senses in an existing standard

sense inventory.

Consequently, most sense modeling techniques

have based their representation on the knowledge

derived from resources such as WordNet (Mihal-

cea and Moldovan, 1999; Agirre and Lopez, 2003;

Agirre and de Lacalle, 2004; Pilehvar et al., 2013),

or Wikipedia (Gabrilovich and Markovitch, 2007;

Mihalcea, 2007). None of these techniques, how-

ever, combine knowledge from multiple types of

resource, making their representations resource-

specific and also prone to sparsity. In contrast,

our method is based on the complementary knowl-

edge of two different resources and their interlink-

ing, leading to richer semantic representations that

are also applicable across resources. Most similar

to our combination of complementary knowledge is

the work of Franco-Salvador et al. (2014) for cross-

lingual document retrieval.

Concept similarity. Concept similarity tech-

niques are mainly limited to the knowledge that

their underlying lexical resources provide. For

instance, methods designed for measuring semantic

similarity of WordNet synsets (Banerjee and Peder-

sen, 2002; Budanitsky and Hirst, 2006; Pilehvar et

al., 2013) usually leverage lexicographic or struc-

tural information in this lexical resource. Similarly,

Wikipedia-based approaches (Hassan and Mihalcea,

2011; Strube and Ponzetto, 2006; Milne and Witten,

2008) do not usually benefit from the expert-based

lexico-semantic knowledge provided in WordNet.

In contrast, our approach combines knowledge from

both resources, providing two advantages: (1) more

effective measurement of similarity based on rich

semantic representations, and (2) the possibility of

measuring cross-resource semantic similarity, i.e.,

between Wikipedia pages and WordNet synsets.

6 Conclusions

In this paper we presented a novel semantic

approach, called NASARI, for effective vector

representation of arbitrary WordNet synsets and

Wikipedia pages. The strength of our approach

lies in its combination of complementary knowl-

edge from different types of resource, while at the

same time it also benefits from an effective vec-

tor representation with two novel features: lexi-

cal specificity for the calculation of vector weights

and a semantically-aware dimensionality reduc-

tion. NASARI attains state-of-the-art performance

on multiple standard benchmarks in word similarity

as well as Wikipedia sense clustering. We release

the representations obtained for all the Wikipedia

pages and WordNet synsets in http://lcl.uniroma1.it/

nasari/. As future work we plan to integrate NASARI

into BabelNet and apply our representation to a mul-

tilingual setting, enabling the comparison of pairs of

concepts across languages. We also intend to use

our approach on the task of multilingual Word Sense

Disambiguation.

Acknowledgments

The authors gratefully acknowledge

the support of the ERC Starting Grant

MultiJEDI No. 259234.

575



References

Eneko Agirre and Oier Lopez de Lacalle. 2004. Pub-

licly available topic signatures for all WordNet nom-

inal senses. In Proceedings of LREC, pages 1123–

1126, Lisbon, Portugal.

Eneko Agirre and Oier Lopez. 2003. Clustering Word-

Net word senses. In Proceedings of RANLP, pages

121–130, Borovets, Bulgaria.

Eneko Agirre, Enrique Alfonseca, Keith Hall, Jana
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