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Nascent RNA sequencing of peripheral blood leukocytes reveal gene expression diversity 
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Nuclear Run-On sequencing is a powerful method to measure transcription with high resolution, sensitivity, and 

directional information, which provides alternative perspective from existing methods such as chromatin 

immunoprecipitation or mRNA sequencing. Current form of Nuclear Run-On assays such as Precision Run-On 

sequencing (PRO-seq) involves multiple RNA chemistry steps including RNA end repairs and ligations. These 

have limited the widespread use of PRO-seq by requiring robust RNA handling skills and multiple days of 

effort. To solve this, we developed an ultrashort PRO-seq (uPRO) method that requires minimal steps. In 

uPRO, the requirement of only two reactions - RNA adaptor ligation and template switch reverse transcription - 

reduced the procedure into less than a single day. Using uPRO, we generated genome-wide transcription 

profiles of human haploid cell lines (HAP1) and peripheral blood samples combined with Chromatin Run-On 

sequencing (pChRO). Blood cell handling procedure is dramatically reduced using pChRO directly on crude 

chromatin preparations, and enables utilizing archived specimens. As a result, we identified individual 

differences in the transcriptional profiles of human whole blood from a small volume (~1 ml). We also 

generated blood cell type specific transcription data, and deconvoluted the nucleated blood cell compositions 

by modeling to the reference datasets. Overall, uPRO and pChRO provided a powerful platform to identify 

differentially expressed genes between individuals with minimal sample requirements. 
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Introduction 

Analyzing and measuring the density of RNA polymerase in the genome enables us to see a glimpse of 

transcription both qualitatively and quantitatively1. These series of transcription, which are reactions from 

regulatory switches, come together to show specific genes that respond to specific signals. Identification of 

these genes and further analysis help to better grasp the mechanisms that explain their regulation. Not only 

that, the ability to quantify RNA polymerase density is crucial in breaking apart and understanding the 

regulatory steps involved in transcription2. 

 

Several other regions in the genome besides the protein-coding region are transcribed: enhancers, upstream 

divergent regions, and regions downstream of mRNA poly A sites. Short unstable RNAs called enhancer RNAs 

(eRNAs) are produced from enhancers and do not code for proteins3 but rather identifiers of active 

transcription regulation4. Differential regulation of enhancer-mediated transcription is involved in several 

diseases5. Analysis of this differential regulation is crucial in discovering transcriptional changes from 

nutritional, environmental, and developmental factors. However, using RNA-seq to sequence total RNA is not 

efficient enough to detect such unstable RNAs. 

 

Although there are several methods that have been proposed to enrich and sequence nascent RNAs attached 

to RNA polymerase, they depend on purification of insoluble chromatin6 or are built upon immunoprecipitation 

of RNA polymerase7-9. These imply that the methods currently available highly rely on antibody specificity or 

the efficiency of chromatin fractionation alone. Nuclear Run-On (NRO) based methods use nascent RNAs 

elongated by polymerases with nucleotide analogs and can accurately map the polymerases as well as their 

start sites10-12. Nascent RNAs are selectively labeled by nucleotide analogs using the endogenous activity of 

RNA polymerase. These analogs serve as affinity purification tags, providing highly specific enrichment of the 

nascent RNA over other forms of RNA11. In addition, the direction of transcription is unambiguously identified 

through the directional sequencing of RNA. 

 

Therefore, NRO methods are not only useful to analyze gene expression, but also to access the activities of 

regulatory elements and enhancers by capturing the noncoding RNAs simultaneously3,12,13.  

A larger scale analysis would be able to provide several advantages: 1) identification of context specific 

transcription and regulatory landscape, such as in human population or disease samples14,15; 2) comparison of 

genotype variations and transcriptional variation to identify complex transcription related quantitative trait loci 

(QTLs)15; 3) high statistical power to identify disease-specific transcription profiles from patient samples.  

 

Use of unsupervised machine learning could allow novel discoveries in gene expression and regulatory 

element architecture, but requires a large number of training set data. The advantages in NRO methods to 

identify both gene expression and regulatory activity with high sensitivity and specificity make them a powerful 

platform to accumulate large scale databases. 

 

However, practical limitations exist such as feasibility of the method and accessibility of the samples. The 

Precision Run-On sequencing (PRO-seq) method requires multiple days of hands-on procedure and robust 

RNA handling skills. Additionally, Nuclear Run-On requires the isolation of nuclei from intact cells, which is 

often a challenge for in vivo samples12. We previously introduced a Chromatin Run-On method (ChRO-seq) 

that uses insoluble chromatin isolates14. We demonstrated that the chromatin fraction contains enzymatically 

active RNA polymerases that are suitable for nuclear run-ons. Therefore, a combination of shortened PRO-seq 

procedure coupled to ChRO-seq in easily accessible samples would provide a powerful strategy to explore 

gene expression and regulatory landscape profiles in patients of specific diseases.  

 

Here we present an ultrashort PRO-seq procedure (uPRO) coupled to peripheral blood Chromatin Run-On 

(pChRO) that takes less than a day to produce an Illumina compatible sequencing library. We demonstrate that 

uPRO provides nascent RNA data with a quality comparable to the conventional PRO-seq method. We used 
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uPRO to explore the transcriptional landscape of human haploid cell line HAP1. This cell line was specifically 

selected for its haploid characteristics which made CRISPR genome editing more efficient16,17. 

 

We applied pChRO on whole peripheral blood samples from different individuals and were able to calculate 

blood cell type compositions including Peripheral Blood Mononuclear Cells (PBMC) and Polymorphonuclear 

Leukocytes (PMNL). Not only that, we were able to measure and analyze inter-individual differences which 

allowed us to evaluate gene expression diversity that is unaffected by cell composition variations that we have 

observed. pChRO was also used on PBMC and PMNL cells separated which were experimentally isolated 

from whole blood samples. 

 

 

Materials and Methods 

Materials 

HAP1 cells were maintained in IMDM media with 10% FBS and 1% penicillin-streptomycin. Only cells less than 

passage 10, mostly between 4-6 were used. 

 

Chromatin preparation from human whole blood 

1 ml of frozen blood sample is thawed and lysed in 10 ml of the NUN buffer (0.3M NaCl, 1M Urea, 1% NP-40, 

20mM HEPES, pH 7.5, 7.5mM MgCl2, 0.2mM EDTA, 1x protease inhibitor cocktail, 1 mM DTT, 4 u/ml RNase 

inhibitor) with gentle mixing. Blood chromatin is pelleted by centrifugation at 15,000 g for 20 min, 4°C, and 

resuspended in Wash buffer (50 mM Tris pH 7.5). After brief centrifugation, the pellet is washed once more in 

Buffer D (50 mM Tris-HCl, pH 8.0, 25% glycerol, 5 mM Mg Acetate, 0.1 mM EDTA, 5 mM DTT), then 

homogenized using short sonication cycles in 50 μl of Buffer D. 

 

Isolation of Peripheral Blood Mononuclear Cells (PBMC) and Polymorphonuclear Leukocytes (PMNL) 

5-10 ml of peripheral whole blood is sampled from brachial veins. A final concentration of 1.5 mM EDTA is 

added to the whole blood to prevent clotting. To isolate PBMC and PMNL from the peripheral blood, 3 ml of 

Poly Cell Separation Media, 4 ml of Human Cell Separation Media, and 5 ml of blood are carefully layered 

consecutively with minimal mixing. Separation occurs with a centrifugation of 450-500 g for 30-35 minutes at 

18-22°C. 3 interface layers should be visible. The top interface is PBMC and the middle interface including the 

layer right below is PMN. 5ml of each PBMC and PMN layers are collected in 1.7 ml microcentrifuge tubes. 

PBMC and PMN are pelleted by centrifugation at 4,000 for 4 min, 4°C, and washed in PBS. Centrifugation and 

wash is repeated once more. After brief centrifugation, the pellet is washed in Buffer D (50 mM Tris-HCl, pH 

8.0, 25% glycerol, 5 mM Mg Acetate, 0.1 mM EDTA, 5 mM DTT), then resuspended in 50 μl of Buffer D. 

 

uPRO library preparation 

Chromatin or cells were incubated in the nuclear run-on reaction condition (5 mM Tris-HCl pH 8.0, 2.5 mM 

MgCl2, 0.5 mM DTT, 150 mM KCl, 0.5% Sarkosyl, 0.4 units / μl of RNase inhibitor) with biotin-NTPs and rNTPs 

supplied (18.75 μM rATP, 18.75 μM rGTP, 1.875 μM biotin-11-CTP, 1.875 μM biotin-11-UTP for uPRO; 18.75 

μM rATP, 18.75 μM rGTP, 18.75 μM rUTP, 0.75 μM CTP, 7.5 μM biotin-11-CTP for pChRO) for 5 min at 37°C. 

Run-On RNA was extracted using TRIzol, and fragmented under 0.2 N NaOH for 15 min on ice. Fragmented 

RNA was neutralized, and buffer exchanged by passing through P-30 columns (Biorad). 3′ RNA adaptor 

(/5Phos/NNNNNNNNGAUCGUCGGACUGUAGAACUCUGAAC/3InvdT/) is ligated at 5 μM concentration for 1 

hours at room temperature using T4 RNA ligase (NEB), followed by 2 consecutive streptavidin bead bindings 

and extractions. Extracted RNA is converted to cDNA using template switch reverse transcription with 1 μM 

RP1-short RT primer (GTTCAGAGTTCTACAGTCCGA), 3.75 μM RTP-Template Switch Oligo 

(GCCTTGGCACCCGAGAATTCCArGrGrG), 1x Template Switch Enzyme and Buffer (NEB) at 42°C for 30 

min. After a SPRI bead clean-up, the cDNA is PCR amplified using primers compatible with Illumina Small 

RNA sequencing. The whole procedure takes ~6 hours with ~3.5 hours of hands on time. 
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Sequencing data processing 

Illumina sequencing data is processed using a PRO-seq specialized analysis toolkit STOAT 

(https://github.com/sl2665/stoat). STOAT automatically converts a raw read fastq file to unique molecular 

identifier (UMI) sorted alignment file (bam) and genome wide read count coverage files (bedgraph) on both 

strands, and gene expression tables in promoter proximal, gene body and exon regions in one step. To map 

transcriptional regulatory elements (TREs) de novo, we used dREG (https://github.com/Danko-Lab/dREG)13. 

Read counts on de novo gene annotations were made using the BEDtools suite 

(https://bedtools.readthedocs.io/en/latest/content/bedtools-suite.html) 

 

Differential expression analysis and Distal Enhancer (DE)-gene interaction analysis  

We used the raw read count tables generated by STOAT on reference gene annotations or on dREG identified 

TREs. The raw read count tables were processed through DESeq234 and selected differentially expressed 

genes or TREs with FDR < 0.05. To identify DE-gene pairs, we search for the nearest transcription start sites 

(TSS) from each dREG TRE entry. The nearst TSS was paired to the TRE, then the location of the TRE 

relative to the gene TSS was categorized into one of promoter (PRM), gene-body (GB) or distal-enhancer (DE) 

categories. Only the DE and gene TSS pairs were used in the distant interaction analysis.  

 

Cell type signature gene selection and decomposition analysis 

Gene body uPRO data from PBMC and PMNL are normalized to reads per million mapped reads per kilobase 

(RPKM). PBMC and PMNL signature genes were selected by log2 ratio between the two, using ±4 (16 fold 

difference) as a cutoff. Gene ontology analysis of the signature genes were performed using the PANTHER 

geneontology analysis35. Cell type fractions were calculated from the relative expression levels of each 

signature gene subset relative to the reference data, assuming reference peripheral leukocyte compositions of 

PBMC = 0.35 and PMNL = 0.65, B = 0.07, T = 0.21, and CD4 = 0.0625. 

 

 

Results 

Comparison between PRO-seq and uPRO procedures 

Compared to PRO-seq, uPRO requires less RNA chemistry and handling steps (Fig 1A)12. In PRO-seq, 

Nuclear Run-On (NRO) using biotin-NTPs is performed on isolated nuclei. In uPRO, the NRO reaction is 

performed directly on washed cells or resuspended chromatin isolates. After the NRO reaction, the biotin-

labeled nascent RNA is fragmented and the buffer is exchanged to remove excess biotin-NTPs and salts. In 

uPRO, 3' RNA adaptor ligation takes place for 1 hour before biotin-RNA enrichment as opposed to the 6 hour - 

overnight ligation after biotin-RNA enrichment in PRO-seq. This change greatly shortens the amount of time 

spent. 2 consecutive streptavidin bead binding then take place and an extraction is performed to enrich biotin-

labeled nascent RNA. Rather than having 3 streptavidin affinity purifications throughout the procedure, we 

found that 2 consecutive affinity purifications were sufficient to remove potential adaptor dimers and unlabeled 

endogenous RNAs. In PRO-seq, RNA extraction from the beads includes multiple ethanol precipitations which 

often serves as a point of failure and loss of RNA materials. In uPRO, we replaced it with direct buffer 

exchange between the consecutive affinity purifications and a column based RNA purification to further shorten 

time and improve RNA yield. 

 

PRO-seq requires two 5' RNA end pair chemistries: de-capping and phosphorylation to modify the 5' ends to 

become acceptor sites for RNA adaptor ligation. In uPRO, we proceed directly to reverse transcription using 

template switching to produce cDNA and add 5' adaptor sequence at the same time28. The cDNA product is 

processed through SPRI bead clean-up steps which removes short unused excess adaptors and primers. This 

serves as an additional enrichment step that reduces unwanted adaptor dimer products. As a result, the 

amount of amplified product in uPRO is more predictable than the conventional PRO-seq. Not only that, uPRO 

does not require test amplifications or polyacrylamide gel electrophoresis (PAGE) purifications (Fig 1B). The 

relatively small amount of adaptor dimers are usually negligible for the Illumina sequencing (Fig 1C). Overall, 
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uPRO may take as short as 6 hours to complete, compared to the 4-day conventional PRO-seq procedure (Fig 

1A). 

 

Global transcriptional landscape of the human haploid cell line HAP1 

We applied uPRO and PRO-seq on the human haploid HAP1 cell line derived from human myeloid leukemia 

cells16, as well as one of the widely used cancer cell lines HeLa. Haploid cell lines provide an advantage over 

other diploid or multiploid cell lines since only one allele of the gene or elements needs to be modified. This is 

a critical advantage in large scale genetic screening using genome editing technologies such as TALE or 

CRISPR. Therefore, a HAP1 transcriptional landscape profile will serve as a useful baseline dataset18. We also 

used the PRO-seq data from human embryonic kidney HEK293 cells and human lymphoblastoid cell lines 

(LCLs) previously presented in our publications19,15. Overall, uPRO shows transcription profiles to be 

equivalent to PRO-seq results in HAP1 as well as HeLa cells. For example, both uPRO and PRO-seq show 

highly consistent transcription profiles at TAL1 gene, a HAP1 specific gene that is often up-regulated in T cell 

origin leukemias (Fig 2A)20. Both the sense and antisense strand transcription patterns are efficiently captured. 

An adjacent gene STIL is expressed in both HAP1 and HEK293 cells, and the expression pattern between 

uPRO and PRO-seq is in high agreement. 

 

As a quantitative measure of uPRO’s reproducibility of previously presented PRO-seq data, we compared 

promoter proximal and gene body read counts. Promoter proximal regions are defined as ± 500 bp from the 

transcription start sites and reflect the amount of RNA polymerases that are paused. Gene body regions reflect 

the amount of actively transcribing RNA polymerases which represents overall gene expression levels. 

Correlation coefficients between regions are greater than 0.9 between uPRO and PRO-seq in promoter 

proximal regions and 0.97-0.98 in gene body regions in HAP1 and HeLa cells (Fig 2B, 2C). These correlation 

coefficients between uPRO and PRO-seq are slightly less than between PRO-seq replicates in HEK293 cells 

(Fig 2D), but still demonstrates that uPRO quantification is a reasonably close estimate of PRO-seq 

quantification, in particular on the gene bodies. When we included other blood cell derived LCLs (GM18520, 

GM19222) from different individuals in the hierarchical clustering analysis, uPRO and PRO-seq results cluster 

together within the same cell lines and clustering isn’t affected by the method. This demonstrates the 

robustness of uPRO in agreement with PRO-seq (Fig 2E). In particular, HAP1 cells cluster together with other 

aggressively growing transformed cell lines (HEK293 and HeLa), compared to less aggressively immortalized 

cell lines with normal karyotypes (LCLs) 

 

Identification of HAP1 specific genes and regulatory elements 

Nascent RNA sequencing can be used to measure both gene expression level and activity of regulatory 

elements such as enhancers. We used a machine learning tool called dREG to identify these regulatory 

elements from bidirectional patterns of transcription from nascent RNA sequencing data. Using dREG, we 

identified 68,896 annotated genes and 29,461 transcriptional regulatory elements which included both 

promoters (n = 14,980) and enhancers (n = 14,481)from our collection of HAP1, HeLa, and HEK293 cell data. 

Of the enhancers, 11,212 were distal enhancers (DEs) located upstream of the promoters. 

 

We used uPRO and PRO-seq data to identify differentially expressed genes in HAP1 cells compared to HeLa 

or HEK293 cells using the gene body expression levels. 8,565 genes are differentially expressed in HAP1 (Fig 

3A), showing that more than 10% of the genes are involved in cell type specification in HAP1 cells. 3,469 

dREG promoters (23%) are differentially expressed (1,968 up-regulated) in HAP1 cells (Fig 2B), indicating that 

a large fraction of active promoters are cell type specifically regulated. Likewise, 2,644 distal enhancers (24%) 

are differentially expressed (1,557 up-regulated) (Fig 3C) in HAP1 cells. 

  

To determine if these dREG-identified DEs in HAP1 cells are associated with target gene expression, we 

tested the correlation between nascent RNA expression levels at DEs and the gene bodies of their nearest 

TSSs. Only the upstream intergenic DEs are tested to remove confounding effects from the gene body 
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transcription of other genes. When we compared the expression level of the elements normalized by the 

HEK293 cell levels, we observed significant correlation of expression levels between the DEs and their nearest 

target genes (Fig 3D). This indicates that the DEs and their paired genes are co-regulated and that the DEs 

are likely regulators. We further categorized the DE-gene pairs dependent on their distances and saw overall 

decay in correlation over the distance (Fig 3E). This distance dependent decay trend is more apparent in HeLa 

cells than in HAP1 cells. While we cannot completely rule out the effect of technical variabilities, this result may 

suggest the presence of differential genome organization between haploid HAP1 and hyper-triploid HeLa cells.   

 

We also investigated whether specific transcription factor binding sites are enriched in HAP1 specific dREG 

elements. While we did not observe statistically strong enrichment, CEBPA sites are marginally enriched (1.3 

fold) in HAP1 specific elements which agrees with other reports that CEBP transcription factors are involved in 

hematological malignancies. 

 

Chromatin Run-On from peripheral blood samples (pChRO) 

While cell lines are reliable sources for transcriptional profiling, there are limited resources to established cell 

lines. Using a large scale study will increase the analytical power in discovering inter-individual or disease 

associated gene expression differences. But it is not always feasible to generate cell lines (primary cells or 

iPSCs) from clinical subjects at a large scale. One of the most accessible clinical specimens is peripheral 

blood. Gene expression analysis performed directly on blood samples may provide a feasible approach in 

large scale studies. However, blood plasma has high-concentrations of nucleases that degrade the quality of 

RNA. Additionally, over-abundance of globulin mRNAs from red blood cells (RBCs) complicate RNA 

expression profiling experiments. Isolated leukocytes can be used for RNA expression of other transcriptional 

assays such as ChIP or chromatin accessibility assays, but the isolation step itself can add variability and be 

laborious to implement at a large scale. 

 

Chromatin Run-On (ChRO) is an alternative Nuclear Run-On (NRO) based assay that uses precipitated 

chromatin isolates that contain active RNA polymerases. ChRO-seq is able to successfully generate nascent 

RNA data from cryopreserved archived solid tissue specimen, despite that RNA is degraded over time from 

these harsh conditions, because RNA polymerases can remain actively engaged. With length extension of the 

nascent RNAs in NRO, RNA polymerase levels and positions can be mapped even under severe RNA 

degradation conditions. We applied this strategy to human peripheral blood samples. Since leukocytes unlike 

RBCs contain a nucleus, ChRO-seq results will reflect the transcriptional landscape of peripheral leukocytes. 

We were able to successfully generate ChRO-seq libraries from just 1 ml of peripheral blood samples that did 

not undergo any special treatment but simple storage in -20°C after sampling (pChRO). 

 

The resulting pChRO data shows high correlation in gene body read counts (0.97 - 0.98) within technical three 

replicates (Fig 4A). We also compared pChRO data from a different individual and observed slightly less but 

correlated gene body levels (0.95 - 0.96). The pChRO profile is reproducible between different individuals and 

within cell types. For example, the expression of IKZF1 gene, a known regulator of lymphocyte differentiation, 

is consistently high in the pChRO data from both individuals but is not expressed in HeLa cells (Fig 4B). On 

the other hand, the FIGNL1 gene is only expressed in HeLa cells but not in either of the pChRO data from the 

two individual samples. When we tested the gene body correlation between the pChRO replicates and 

individuals against HeLa and LCL samples, we saw clear clustering of pChRO data among the pChRO 

replicates (Fig 4C). The pChRO data reflecting peripheral leukocytes correlate relatively better with LCLs, B 

cell derived cell lines, than HeLa cells indicating that the cell type lineage is still preserved in immortalized 

LCLs.   

 

Leukocyte decomposition between Peripheral Blood Mononuclear Cells (PBMCs) and 

Polymorphonuclear leukocytes (PMNLs) 
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One of the challenges in identifying differentially expressed genes and regulatory elements from primary cells 

is cellular heterogeneity. If there are factors that influence cell type compositions, this will lead to false 

identification of cell type specific genes as differentially expressed genes. Peripheral leukocytes are composed 

of PBMCs that include B, T lymphocytes, and monocytes; PMNLs are considered as the granulocyte 

population composed of neutrophils, eosinophils, and basophils. The nuclear morphology and gene expression 

profiles are known to be different between the two, but there has been no systematic comparative transcription 

analysis. In particular, the gene expression profiles of PMNLs are not as extensively studied as PBMCs. 

 

To address this, we isolated PBMCs and PMNLs fresh from peripheral blood samples and applied uPRO on 

the isolated cells. The majority of the transcription profile appears to be similar between PBMC, PMNL, and 

whole leukocyte. However, we found genes that are differentially and almost exclusively expressed in one cell 

type versus the other (Fig 5A). For example, the ALPL gene is exclusively expressed in PMNLs but not in 

PBMCs. Therefore, since the level of ALPL expression is specific to PMNL cells, its expression level should 

also be reflected from the amount PMNL cells in the whole blood. 

 

On the other hand, a nearby gene USP48 is more highly expressed in PBMCs compared to PMNLs (Fig 5A). 

Quantitative assessment of these exclusively expressed signature genes should allow us to precisely estimate 

the PBMC and PMNL ratio in the whole blood. 

 

To identify PMNL or PBMC exclusive genes, we calculated the ratio between PMNL and PBMC normalized 

gene body read counts. We identified 157 PMNL and 429 PBMC signature genes that have at least 16 fold 

expression differences (Fig 5B). Gene ontology analysis of these signature genes were consistent with the 

expectation. For example, PMNL signature genes are enriched with granulocyte activation (GO:0036230), 

neutrophil involved pathways (GO:0002446, 0002283, 0043312, 0042119), and cell motility/migration 

(GO:0040011, 0048870, 0050900) (Fig 5C). These pathways are consistent with the function of granulocytes 

and neutrophil innate immune responses. On the other hand, PBMC signature genes are enriched with 

adaptive immune response (GO:0002250), receptor mediated immune signaling (GO:0050851, 0002768, 

0002429), T cell pathways (GO:0050852, 0050853, 0045058), and B cell pathway (GO:0050853) (Fig 5C). 

This is consistent with the fact that PBMCs are mostly composed of T cells and B cells. 

 

Interestingly, we found that many of the top PBMC signature genes are among the ZNF subfamily genes. 

These genes are clustered on chr19 q13.31 ~1 megabase region (chr19: 43,700,000 - 44,700,000). We found 

that the whole 1 megabase region is repressed in PMNLs but is expressed in PBMCs (Fig 5D). This variation 

in transcription could potentially lead to a mis-interpretation that a factor affecting the PBMC and PMNL ratio 

may appear to influence the large range repression of this ZNF cluster. This case illustrates the importance of 

deconvoluting cell type heterogeneity in peripheral blood gene expression profiling. 

 

Decomposition of leukocyte subtype fractions from pChRO and reference PBMC/PMNL data 

For exclusively expressed signature genes, the ratio between normalized pChRO data and the signature cell 

type will reflect the relative cell fraction in the whole blood leukocyte population. Since PMNLs normally 

compose 65% of the leukocyte population, we should expect to see the pChRO data recapitulate the PMNL 

profile more than the PBMC profile. However, PBMC profiles are closer to the whole blood pChRO profile and 

log2 fold difference is closer to 0 after normalizing to the pChRO data (Fig 5E). This indicates that PBMCs are 

transcriptionally much more active than PMNLs; Even though PMNLs compose greater fraction of the cells, 

PBMCs override the transcriptional profiles. We calculated the relative transcriptional activities and PBMCs are 

on average ~ 4.1 fold transcriptionally more active than PMNLs. Regardless, the expression difference 

between the two cell types is pronouncedly distinct in the signature genes (Fig 5E). 

 

To calculate the PBMC and PMNL compositions, we calculated the average expression level of signature 

genes relative to the reference pChRO data. This average is proportional to the relative fraction of the 
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signature cell type. From the pChRO profiles of the individuals 1 and 2, Individual 2 appears to have a slightly 

higher overall expression level of PMNL signature genes than Individual 1 (Fig 5F). We were able to calculate 

the cell subtype fractions from these signature gene averages (Fig 5G). Individual 2 has marginally but 

significantly higher levels of PMNL fractions while the two technical replicates of Individual 1 showed 

overlapping error margins. 

 

Cell type decomposition using comparative analysis between mRNA expression data and pChRO 

Whereas the distinction between PBMC and PMNL is the biggest portion of peripheral leukocyte fractions, 

subpopulation compositions within PBMC can also influence the overall pChRO profile. Since PBMCs have 

much higher transcriptional activity than PMNL, PBMC subpopulations such as B cell and T cell subtypes can 

also influence the overall pChRO expression profile. To further investigate this possibility and subclassify 

PBMC populations, we performed a comparative analysis between existing RNA expression data in PBMC 

subtypes26 and our pChRO data. 

 

We first compared our uPRO data from PBMCs and PMNLs to a microarray data in all leukocytes: PBMC, B 

cell, T cells, and CD8+ T cells. Direct comparison between nascent RNA sequencing and mRNA microarray 

results can be affected by a lot of variables which does not make it feasible. Instead, we normalized the cell 

type specific uPRO data by all leukocyte pChRO profiles and microarray subtype data by all leukocyte results. 

We saw that there is significant global correlation between uPRO PBMC and microarray PBMC when 

normalized by all leukocyte data (Fig 6A). In addition, microarray data in other PBMC subtypes such as B cells 

and CD4+ T cells are correlated with the uPRO PBMC data. On the other hand, uPRO PMNL data did not 

show any significant correlation with any other microarray-based cell subtype data. Normalizing the microarray 

data by cell types other than all leukocytes made the correlations disappear, indicating that the correlation 

between uPRO PBMC and microarray PBMC cell subtypes are specific to the cell subtype and proper 

normalization (Fig 6A).  

 

After confirming that the nascent RNA sequencing data is in agreement with the existing mRNA expression 

data, we compared the signature gene lists from both data sets. The PBMC signature genes from the uPRO 

data are driven mostly by strong depletion in the PMNL population (Fig 6B). According to the mRNA data, 

enrichment of the signature genes in PBMC subpopulations was variable. However, we identified groups of the 

uPRO PBMC cluster genes that appear more specific to B cell or T cell subpopulations. On the other hand, 

PMNL signature genes that are depleted in PBMC cells also appear depleted in the mRNA microarray data 

(Fig 6B). 

 

Conversely, the mRNA microarray signature genes show expression level differences in the uPRO data (Fig 

6C). The mRNA data did not include PMNL cell isolates as an exclusive comparison but rather used the 

subtractive enrichment or depletion in PBMC over all leukocyte as a PBMC marker (labeled LYMPHS) or 

PMNL marker (labeled GRANS). Therefore the PBMC(LYMPHS, green) signature gene expression was not as 

prominent in the uPRO PBMC data (pPBMC). However other signature genes in B, T, and CD8 cells are more 

strongly enriched (Fig 6C). Conversely, the PMNL (GRANS, blue) signature gene expression is markedly 

reduced in PBMC showing the reproducibility of mRNA microarray signature genes in uPRO data. 

 

Finally, we compared the individual pChRO data to the mRNA microarray signature genes (Fig 6D). Consistent 

with the uPRO signature genes (Fig 5G), we saw overall slight increase in PMNL (GRANS) signature genes in 

Individual 2 which indicates an increase in the PMNL subpopulation (Fig 6D). Overall, these results 

demonstrate that nascent RNA sequencing and mRNA microarray are in good agreement and can be used 

together to further deconvolute specific cell subtypes from the pChRO data. 
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Discussion 

 

Nascent RNA sequencing is a powerful method that can map and measure gene expression and the activities 

of the transcriptional regulatory elements such as enhancers at the same time. Existing methods are 

considered difficult and pose practical limitations for large scale applications. Our new uPRO approach, 

coupled to peripheral blood ChRO-seq is expected to lower the barrier and facilitate the production of nascent 

RNA data in larger scales. 

 

Using human cell lines, we demonstrated that uPRO data quality is comparable to conventional PRO-seq, but 

can be processed much faster. Removal and shortening of many critical enzymatic steps allowed a much 

efficient use of library preparation times. High correlation of the gene body read counts between uPRO and 

PRO-seq reassures that uPRO is equivalent to PRO-seq in terms of gene expression analysis. Correlation in 

the promoter proximal read counts were slightly lower, suggesting that there may be method specific biases in 

collect read counts from a shorter range region near the 5' end of the gene. One of the potential concerns was 

the use of template switch reverse transcription, since it has been reported that template switch is more 

efficient on 5' capped RNA ends than other forms of 5' ends27,28. While we observed minor differences in the 

uPRO peak patterns, we did not see systematic evidence that 5' capped ends are more enriched. In fact, the 

degree of promoter proximal correlation is similar to or better than previous reports of correlation between 

PRO-seq and PRO-cap, which use similar approaches with different adaptor ligation strategies29.  

 

We were further able to map and quantify the expression of cell type specific genes and regulatory elements. 

We further observed that the cell type specific distal enhancer transcription (eRNA transcription) correlated 

with the putative target gene in the vicinity. The strength of correlation was negatively associated with the 

distance as expected. But the degree of distance dependence was variable between the cell lines, polyploid 

HeLa cells30 appear to have more rapid decay than the haploid HAP1 cells within 1 Mb regions, and HAP1 

cells appear to have more long-range interactions. Although we will need to rule out potential biases, but this 

observation on potential association between ploidy and distance is somewhat consistent with a study 

reporting fewer short range interactions (< 1 Mb) in Arabidopsis tetraploid cells compared to diploid cells31. 

 

Peripheral blood is one of most accessible specimens, and can be a valuable resource to obtain large scale 

data. However, there are often limitations due to the presence of plasma nucleases and the requirement to 

isolate leukocyte from massively abundant red blood cells. Our pChRO procedure is best optimized for this 

purpose requiring no sample pretreatment and only very simple preparation steps. In turn, we successfully 

generated whole blood leukocytes as well as leukocyte subpopulation data. In particular, polymorphonuclear 

leukocytes (PMNLs) including neutrophils are known to be transcriptionally inert, and we have quantitatively 

analyzed the global transcriptional activity. However, we identified PMNL specific expressed genes as well as 

the large domain repression as seen in the ZNF cluster. The large domain repression may be related to the 

segmentation of the nuclei in neutrophils and would provide further insight in linking gross nuclear morphology 

with molecular events taking place at these domains32,33. 

 

Our pChRO data demonstrated high level of consistency between technical replicates, and showed potential to 

identify differentially expressed genes between different individuals. We also demonstrated that cell subtype 

fractions can be calculated and provide important check-points in discovering true differentially expressed 

genes. Furthermore, in addition to identifying differential gene expressions and mapping regulatory elements, 

these peripheral leukocyte pChRO data may provide further information on personalized health conditions, and 

may open up a new revenue in the studies of genome-wide transcription. 
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Figure legends 

 

Fig 1. Schematics of the uPRO procedure 

A. Comparison between conventional PRO-seq and uPRO procedures. Adapted from Mahat et al12 

B. Polyacrylamide gel electrophoresis of PRO-seq and uPRO libraries. 

C. Capillary electrophoresis trace (BioAnalyzer) of a representative uPRO library. LM: lower marker (50 bp), 

UM: upper marker (5,000 bp) 

 

 

Fig 2. Comparison between uPRO and PRO-seq. 

A. Browser view of a representative loci showing cell type specific genes. Red: plus strand gene or PRO-seq 

track, blue: minus strand gene or PRO-seq track.  

B. Correlation scatterplots between uPRO and PRO-seq in the promoter proximal and gene body regions in 

HAP1 cells. x- and y-axes: log10 reads per kilobase per million mapped reads (RPKM). Number on lower right 

corner is the Pearson’s correlation coefficient. 

C. Correlation scatterplots between uPRO and PRO-seq in HeLa cells. 

D. Correlation scatterplots between PRO-seq biological replicates in HEK293 cells. 

E. Correlation heatmaps among uPRO and PRO-seq samples from various cell types. Color scale bar 

represents Pearson correlation coefficient of the log10 RPKM reads. 

 

 

Fig 3. Identification of cell type specific genes and non-coding RNA expression 

A. Heatmap of HAP1 specific genes. Color label represents log2 fold difference from the mean of all cell types. 

Column labels suffixes are .u: uPRO, .pro: PRO-seq, 1: PRO-seq replicate 1, 2: PRO-seq replicate 2. 

B. Heatmap of HAP1 specific dREG promoters. See panel A for description. 

C. Heatmap of HAP1 specific dREG enhancers. See panel A for description. 

D. Correlation scatterplots between Distal Enhancer (DE) and paired target gene expression. x- and y-axes are 

log10 RPKM. Lower right corner: Pearson’s correlation coefficient. 

E. Correlation-distance plot. DE-gene pairs are classified into 0-1, 1-2, 2-4, 4-8, 8-16, 16-32, 32-64, >64 kb 

bins, and Pearson’s correlation coefficient between the log10 RPKMs of DE and gene body levels are plotted. 

 

 

Fig 4. pChRO and peripheral leukocyte transcriptome profiling 

A. Correlation scatterplots of the pChRO gene body data (3 technical replicates of Individual 1 + Individual 2). 

X- and y-axes: log10 RPKM. 

B. Browser view of an example site. Red: plus strand gene or PRO-seq track, blue: minus strand gene or 

PRO-seq track. 

C. Correlation heatmaps among uPRO and PRO-seq samples from various cell types. Color scale bar 

represents Pearson correlation coefficient of the log10 RPKM reads. Column labels suffixes are .u:uPRO, 

.pro:PRO-seq, 1.1: Individual 1 replicate 1, 1.2: Individual 1 replicate 2, 1.3: Individual 1 replicate 3, 2: 

Individual 2. GM18520 & GM19222: lymphoblastoid cell lines (LCL). 
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Fig 5. Decomposition of heterogeneous blood cell types between PBMC and PMNL 

A. Browser view of an example exclusively expressed site. Red: plus strand gene or PRO-seq track, blue: 

minus strand gene or PRO-seq track. 

B. PMNL/PBMMC ratio of all genes. Blue: PMNL signature genes, red: PBMC signature genes. Signature 

gene cut-off: greater than 16 fold difference. 

C. Gene ontology (GO) catagories of PMNL and PBMC signature genes. Top 25 are shown 

D. Browser view of the ZNF cluster at chr19q13.31. Red: plus strand gene or PRO-seq track, blue: minus 

strand gene or PRO-seq track. 

E. Heatmap of signature gene expression in PMNL and PBMC uPRO gene body normalized to whole 

leukocyte pChRO levels. Color scale bar: log2 fold difference. 

F. Heatmap of signature gene expression in pChRO individual samples. Thin ribbons on the right represent the 

average fold difference of the signature gene group in the corresponding individual. Color scale bar: log2 fold 

difference. 

G. Estimated cell type fractions calculated from signature gene expression levels. Error bars: standard error of 

the mean. 

 

 

Fig 6. Decomposition of sPBMC subtypes and identification of differentially expressed genes 

A. Correlation heatmap between PRO-seq and mRNA micrarray data from different peripheral leukocyte 

subpopulations. Color scale bar: Pearson correlation coefficient of the log2 read count/micrarray levels 

normalized to the reference cell type indicated on the denominator. 

B.  Heatmap of PRO-seq PBMC and PMNL signature gene expressions in PRO-seq or mRNA micrarray data 

in different subpopulations. Column prefixes: p-PRO-seq, r-mRNA microarray. Color scale bar: log2 fold 

difference. 

C. Heatmap of microarray leukocyte subtype (B, T, CD8+ T, LYMPHS = PBMC, GRANS = PMNL). signature 

gene expressions in PRO-seq or mRNA micrarray data. Column prefixes: p-PRO-seq, r-mRNA microarray. 

Color scale bar: log2 fold difference. 

D. Heatmap of microarray signature gene expression (B, T, CD8+ T, LYMPHS = PBMC, GRANS = PMNL) in 

pChRO individual samples. Thin ribbons on the right represent the average fold difference of the signature 

gene group in the corresponding individual. Color scale bar: log2 fold difference. 
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Figures 

 

Fig 1. 
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Fig 2 
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Fig 3 
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Fig 4. 
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Fig 5. 
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Fig 6 
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