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NASH-MFG EQUILIBRIUM IN A SIR MODEL WITH TIME

DEPENDENT NEWBORN VACCINATION

EMMA HUBERT AND GABRIEL TURINICI

Abstract. We study the newborn, non compulsory, vaccination in a SIR model with
vital dynamics. The evolution of each individual is modeled as a Markov chain.
His/Her vaccination decision optimizes a criterion depending on the time-dependent
aggregate (societal) vaccination rate and the future epidemic dynamics. We prove
the existence of a Nash - Mean Field Games equilibrium among all individuals in the
population. Then we propose a novel numerical approach to find the equilibrium and
test it numerically.

1. Introduction

To analyze the impact of societal vaccination policies on epidemic dynamics, one has
to distinguish two situations. First, when the vaccination is compulsory or when the
public adheres to a very large extent to the official recommendations, the vaccination
policy can be supposed implementable in full and the problem can take the form of an
optimization problem of costs with respect to benefits (either in terms of money or of
medical states, or of both), see for instance [36, 1, 47, 53, 22, 41].

On the contrary, when vaccination is not compulsory or the official recommendations
are followed to a lesser extent, the individual choices have to be taken into account.
Works in this direction include [26, 12, 32, 7, 8, 54, 19, 18, 49, 31, 21, 20, 14, 13, 23,
24, 50, 30, 56, 10, 15, 48, 29, 5] (see also the recent review [57]). It was shown that this
decision depends on the present and past states of the epidemic (see [46]), sometimes on
the prediction of its future course (see [50]) and on the individual perception of two costs:
a cost rV incurred if the individual vaccinates and a cost rI incurred if the individual
is infected; again, the costs are not necessarily expressed in terms of money but can
also be medical side effects or general morbidity (see [58, 2, 52] for an introduction on
QALY/DALY).

So, on the one hand, each individual chooses according to his/her own perception and
interests. His/Her decision, as single individual, cannot influence the societal epidemic
dynamics but is influenced by it. Such a situation is called in physical sciences a ”mean
field” that mediates the interaction between agents. At its turn, the mean field is the
aggregation of the decisions of all individuals. An important question is the existence of
a stable equilibrium between the individual decisions and the overall observed dynamics.
From the mathematical point of view, the formalism is that of a Nash equilibrium in
a game with an infinity of players. Recently, such approaches witnessed an important
development with the introduction of the Mean Field Games (henceforth MFG) tech-
niques in the works of Lasry and Lions [44, 43, 45] and of Huang, Malhamé and Caines
[38, 37] (see also [9] and [35] for entry points to the litterature).
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2 E. HUBERT AND G. TURINICI

Within this framework, the contribution presented here is more specifically targeted
to analyze newborn vaccination in a SIR model with vital dynamics. Such a model has
already been considered in [6] which is the main inspiration and starting point of our
work; however in [6] the newborn vaccination rate is supposed constant in time. Our
goal is

(1) to show that an equilibrium exists when also considering time depending vacci-
nation rate;

(2) that this is the generic situation;
(3) and to propose a numerical algorithm to compute the equilibrium dynamics

(because now the unknown is not just a real number but a real valued function
defined on R+).

As a technical remark, our analysis follows the line of thought formalized in [27, 42, 50]
with the distinction that here we have no analytic solution and have to resort to more
general techniques.

The balance of the paper is the following: in section 2 we introduce the model and
see that keeping the vaccination rate constant may not be realistic: several hundreds of
years may be required to reach the constant-rate equilibrium, which is not compatible
with the individual time span. Nevertheless the long time limit is right and one has only
to study the transitory regime. This is done in section 3, where we prove that the model
with a time-varying newborn vaccination rate has an equilibrium. The computation of
the equilibrium is then explained in section 4 and numerical simulations are presented
to illustrate the results.

2. Motivation and model notations

2.1. The model and previous works. We consider the SIR model with vital dynam-
ics and newborn vaccination (see [3, 4, 22]) :

S′(t) = µ(1− p)− βSI − µS (2.1)

I ′(t) = βSI − γI − µI (2.2)

R′(t) = γI − µR (2.3)

V ′(t) = µp− µV, (2.4)

where µ is the death / birth rate, β is the transmission rate, 1/γ is the infectious period
and p(t) is the vaccine uptake level for the individuals born at time t (assuming, for
simplicity, that infection cannot occur before vaccination). In this model S represents
the susceptible individuals, I the infected ones, R the recovered and V the vaccinated.

The initial conditions are set once for all:

S(0) = S0, I(0) = I0, R(0) = 1− S(0)− I(0), V (0) = 0. (2.5)

Remark 2.1. The population is supposed at equilibrium i.e., the birth rate equals the
death rate; the model can be adapted in a straightforward manner to treat the general
case.

The model has already been considered in [6], but there, p is assumed constant. It
was proved that, if the individuals act according to their own self-interest (see later in
section 2.4 the precise definition of the individual decision criterion), then the overall
dynamics will converge, in some unknown time, to an endemic equilibrium characterized
by some level of susceptibles S∞, of infected I∞ and an equilibrium vaccination rate
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(stable Nash equilibrium), denoted pcsne. Let us set R0 = β/(γ+µ) and r = rV /rI (the
quotient of the costs of the vaccine and of the illness).

In order to see a numerical illustration, we take the relevant situation when R0(1−r) >
1; then the equilibrium vaccination is pcsne = 1 − 1

R0(1− r)
and the system converges

to the endemic equilibrium:

S∞ = 1/R0, I
∞ =

µ

γ + µ

r

R0(1− r)
, R∞ =

γ

µ
I∞, V∞ = pcsne. (2.6)

For the parameters in [6], even if we start close to the theoretical equilibrium, the
model may take long to converge (see figure 1). Therefore, even if the long time in-
dividual vaccination behavior is known, this still does not provide information on the
transitory dynamics i.e., on the evolution towards this equilibrium, because the indi-
viduals are not expected to plan over such a long horizon. On the other hand, a time
dependent vaccination rate results in faster dynamics and lowers the time-horizon of
the individual decision.. Of course, the precise values of the time horizon depends on
the specific parameters of the model. See also section 4.3 and figure 5 for additional
advantages of a model with time dependent vaccination rate.
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Figure 1. Dotted line: evolution of the susceptibles and infected
classes in the time independent vaccination rate model [6] with param-
eters : µ = 1/80, R0 = 15, γ/µ = 1000, β = R0 ∗ (γ + µ), r = 0.1,
T = 80(years) and initial parameters S0 = 6.53%, I0 = 7.4e − 6. For
these parameters pcsne = 0.9259 is a convergently stable Nash equilib-
rium (within class of the time independent vaccination rates) with limit
state S∞ = 6.6%, I∞ = 7.4e− 6. More than a hundred years is required
in order for the long time limit to be reached. Solid line: the evolution
of the susceptibles and infected classes in the time dependent vaccination
rate model (2.8)-(2.11) for a total time T = 5; faster convergence towards
(S∞, I∞) is observed.

2.2. First notations. We denote the set of all admissible vaccination strategies as:

P = { p : R+ 7→ [0, 1] , p measurable} . (2.7)

The interpretation is that the individual born at t will be vaccinated with probability
p(t); note that this implies that we are dealing with mixed strategies (see [28] for some
discussions on mixed versus pure strategies).
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As a technical remark, note that the system (2.1)-(2.4) does not satisfy the usual
hypothesis for the existence of a solution because p may have no regularity at all (other
than being bounded and measurable). To show that a solution exists, one has to write
the system in the form:

S′(t) = µ(1− u̇)− βSI − µS (2.8)

I ′(t) = βSI − γI − µI (2.9)

R′(t) = γI − µR (2.10)

V ′(t) = µu̇− µV, (2.11)

where we used the cummulative vaccination function u(t) =
∫ t

0 p(τ)dτ which belongs to
the set:

C = {u : [0,∞[→ R|u(0) = 0, ∀b ≥ a ≥ 0 : |u(a)−u(b)| ≤ |a− b|, u(b) ≥ u(a)}. (2.12)

Here, we replaced p by u̇ which is a Clarke generalized gradient of u (see appendix A
and [17, 16]; we also denote p ∈ ∂u or p ∈ u̇). In this form, the results from [11] apply
and allow to estimate the solution in terms of the L1 norm of u.
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Recovered

(R)
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(V )

Death without

infection (D1)

Death after

infection (D2)
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µ
∆
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Figure 2. Individual model is a continuous time non-homogeneous
Markov chain.

Remark 2.2. The model can accommodate the situation when vaccination may occur
later during the lifetime of the individual (i.e., not necessarily at birth). In this case the
term µp in equations (2.1) and (2.4) is to be replaced by the vaccination rate and more
importantly the sets P and C are to be adapted in order to ensure S(t) ≥ 0 at all times.

Individuals seek to optimize an individual cost function. In order to define it, we
have to consider the individual dynamics (see figure 2 for an illustration). It takes the
form of a controlled Markov chain with several states, Susceptible (S), Vaccinated (V),
Recovered (R), Infected (I), Death without any infection (D1) and Death after infection
(D2).
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The Markov chain of the individual born in t ≥ 0, whose state at time τ ≥ t is denoted
M t
τ , is described in terms of the passage probabilities :

P
(
M t
τ+∆τ = S |M t

τ = S
)

= 1− βI(τ)∆τ − µ∆τ + o(∆τ) (2.13)

P
(
M t
τ+∆τ = I |M t

τ = S
)

= βI(τ)∆τ + o(∆τ) (2.14)

P
(
M t
τ+∆τ = D1 |M t

τ = S
)

= µ∆τ + o(∆τ) (2.15)

P
(
M t
τ+∆τ = I |M t

τ = I
)

= 1− γ∆τ − µ∆τ + o(∆τ) (2.16)

P
(
M t
τ+∆τ = R |M t

τ = I
)

= γ∆τ + o(∆τ) (2.17)

P
(
M t
τ+∆τ = D2 |M t

τ = I
)

= µ∆τ + o(∆τ) (2.18)

P
(
M t
τ+∆τ = R |M t

τ = R
)

= 1− µ∆τ + o(∆τ) (2.19)

P
(
M t
τ+∆τ = D2 |M t

τ = R
)

= µ∆τ + o(∆τ) (2.20)

P
(
M t
τ+∆τ = V |M t

τ = V
)

= 1− µ∆τ + o(∆τ) (2.21)

P
(
M t
τ+∆τ = D1 |M t

τ = V
)

= µ∆τ + o(∆τ) (2.22)

P
(
M t
τ+∆τ = D1 |M t

τ = D1

)
= 1 (2.23)

P
(
M t
τ+∆τ = D2 |M t

τ = D2

)
= 1 (2.24)

Since the individual born in t vaccinates with probability p (t), the initial state M t
t

follows the Bernoulli distribution :

M t
t =

{
S with probability 1− p (t)
V with probability p (t) .

2.3. The probability of infection. In order to explain the choice of an individual (to
vaccinate or not and with which probability), we have to compute the probability of
being infected. Let φuI (.) be a function from R+ to [0, 1] such that, for any t ∈ R+,
φuI (t) is the probability of infection during the life of an individual, born in t and not
vaccinated, when the rest of the population follows the vaccination function p ∈ u̇. In
mathematical terms, for any individual born in t ≥ 0,

φuI (t) = P
(
∃τ ≥ t such that M t

τ = I |M t
t = S

)
. (2.25)

We can prove (see Section B) that:

φuI (t) = 1−
∫ +∞

t
µ exp

(
−
∫ τ

t
(µ+ βIu (s)) ds

)
dτ. (2.26)

Moreover

φuI (t) = 1−
F uI (∞)− F uI (t)

fuI (t)
, φuI (0) = 1− F uI (∞) , (2.27)

where the functions fuI (t) and F uI (t) satisfy, for t ≥ 0, the following differential equa-
tions:

d

dt
fuI (t) = − (µ+ βIu (t)) fuI (t) , (2.28)

d

dt
F uI (t) = µfuI (t) , (2.29)

with initial conditions:

fuI (0) = 1, F uI (0) = 0. (2.30)
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2.4. The individual cost. Recall that rI is the individual cost of the illness and rV
the vaccination cost. We suppose that rI > rV and work with r = rV /rI . Suppose
that the entire population follows the vaccination schedule u̇, the expected cost for any
individual born in t with vaccination probability pI(t) is:

pI(t)rV + (1− pI(t))rIφuI (t) = pI(t)rV − pI(t)rIφuI (t) + rIφ
u
I (t) . (2.31)

We consider that all individual are rational and minimize their cost. Given the vaccina-
tion u̇ of the population, the minimization problem for an individual born in t is:

min
pI(t)∈[0,1]

{pI(t) (rV − rIφuI (t))}. (2.32)

2.5. Nash equilibrium. A set of strategies is a Nash equilibrium if no individual can
do strictly better by unilaterally changing his/her strategy. The goal is to prove that,
in our model, there exists a Nash equilibrium. It is equivalent to finding a fixed point
of the function which associate to any element in P all strategies in P which minimize
the cost of an individual (supposing everybody else uses as strategy the argument of the
function). See section 3.3 for a precise mathematical definition.

3. Existence of an equilibrium

Set L = C0 ([0,+∞[ ,R), the set of continuous functions in [0,+∞[ with real values.

For any p ∈ P, the function t 7→ u (t) =
∫ t

0 p (s) ds belongs to the set C ⊂ L defined by
equation (2.12).

Conversely, for any u ∈ C, the set u̇ of its Clarke generalized gradients [17] is a subset
of P. In particular ∀τ ≥ 0 : u(τ) =

∫ τ
0 u̇(s)ds.

Finding a Nash equilibrium in our model is equivalent to finding a fixed point of the
following multivalued correspondence T : u ∈ C 7→ T (u) ∈ P(C) (here P(C) is the
ensemble of subsets of C) where

T (u) = {v ∈ C|∃p ∈ v̇ : p (τ) (rV − rIφuI (τ)) ≤ q (τ) (rV − rIφuI (τ)) ,∀q ∈ P, ∀τ ≥ 0} .
(3.1)

One of the main results of this work is the proof of existence of a Nash-MFG equilib-
rium and is formalized in the following

Theorem 3.1. The model (2.1)-(2.4) admits at least one Nash equilibrium.

Proof We use the following fixed-point theorem (see [33, 25]):

Theorem 3.2 (Kakutani-Fan-Glicksberg). Let L be a locally convex topological linear
space and C a compact convex set in L. Let R(C) be the family of all closed convex (non
empty) subsets of C. Then, for any upper semi-continuous point to set correspondence
T from C to R(C), there exists a point x0 ∈ C such that x0 ∈ T (x0).

The assumptions of the theorem will be checked one by one in the rest of this Section.

3.1. The space L. In order to apply the previous theorem, we need to define a topology
on L. Let Kn = [0, n] be a sequence of compact sets in R+, we consider the countable
family of seminorms ηn(f) = supx∈Kn |f(x)| for f ∈ L. This family of seminorms is
well defined, separated and induce the compact-open topology. The set L is completely
metrizable with the distance d, which induce the same topology :

d (f, g) =
∑
n∈N∗

ηn (f − g)

2n (1 + ηn (f − g))
.
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The set L equipped with this family of seminorms is a locally convex topological
vector space. Hence, L satisfies the assumptions of the theorem.

3.2. The subset C. We have to prove that C, defined by (2.12), is a compact convex
set in L. Straightforward computations show that C is convex. In order to prove that
C is a compact set, we will use the following result, which is a form of [39, Theorem 17,
page 233] :

Theorem 3.3 (Arzela-Ascoli). Let X be a separated topological space and Y be a metric
space. Let C be a subset of C0 (X,Y ) such that :

• C is equicontinuous;
• C is closed;
• for all x in X, the set C(x) = { u(x) | u ∈ C } is relatively compact in Y .

Then the subset C is compact in C0 (X,Y ) for the compact-open topology.

First of all, X = R+ is a separated topological space and Y = R is a metric space.
For the first point, the functions in C are Lipschitz functions (with Lipschitz constant
equal to 1), hence the space C is equicontinuous.

In order to prove the second assumption on C, let (uk)k≥1 ⊂ C be a sequence con-
verging to a limit u in the topology of L. First, u is an uniform limit (on com-
pact sets) of a sequence of continuous functions, hence u is continuous. Secondly,
u(0) = limk→∞ uk(0) = 0 because (uk)k≥1 is converging uniformly on compact sets
to u, hence is also simply converging. Finally, u is a Lipschitz continuous function :
indeed, let a, b ∈ R+, we have :

| u(a)− u(b) | = | u(a)− uk(a) + uk(a)− uk(b) + uk(b)− u(b) |
≤ | u(a)− uk(a) | + | uk(a)− uk(b) | + | uk(b)− u(b) |

The first and the last members are converging to zero when k is converging to +∞.
The second member can be bounded by | a − b | because for all k, uk ∈ C, hence uk is
Lipschitz. Thus, the limit u of the sequence (uk) is in the subset C, hence C is closed.

Finally, for all x in R+, we have to show that the set C(x) = { u(x) | u ∈ C } is
relatively compact in R. As C(x) is a subset of R, we just have to prove that C(x) is
bounded. Let u(x) ∈ C(x) :

|u(x)| = |u(x)− u(0)| ≤ |x− 0| = |x|.

Hence, for all x ∈ R+, the set C(x) = {u(x)|u ∈ C} is bounded, thus relatively compact,
in R. By applying the previous theorem, the subset C is compact in L = C0 ([0,+∞[ ,R)
for the compact-open topology.

3.3. The mapping T . Recall that the mapping T : u ∈ C 7→ T (u) ∈ P(C) is such that
T (u) is defined by equation 3.1.

For given u ∈ C, and v ∈ T (u), then there exists p ∈ P ∩ v̇ such that, for any t ≥ 0: p (t) = 0 if φuI (t) < r
p (t) arbitrary in [0, 1] if φuI (t) = r
p (t) = 1 if φuI (t) > r

We need to show that T is with values in R(C), the family of all closed convex (non
empty) subsets of C, and that T is an upper semi-continuous point to set correspondence.
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3.3.1. The set T (u) is closed. Let u in C and (vn)n≥1 be a sequence in T (u) such that

vn converges in L to a limit v. The sequence (vn)n≥1 ⊂ T (u) is included in the compact
set C, hence v ∈ C. Moreover, for all n ∈ N, there exists pn associated to vn in the sense
of relation (3.1). Let us consider two cases :

(1) If φuI (t0) < r for t0 ≥ 0 : since φuI (·) is continuous, there exists ε > 0 such that
φuI (·) < r on Vt0,ε = ]t0 − ε, t0 + ε[. Hence, on Vt0,ε, pn = 0, i.e. vn = cst. Since
vn converges uniformly to v on Vt0,ε, v = cst on Vt0,ε. Hence, for any p ∈ v̇ we
have p = 0 on Vt0,ε and in particular p(t0) = 0.

(2) If φuI (t0) > r for t0 ≥ 0 : in this case, we can construct a neighborhood Vt0,ε
with pn = 1 on Vt0,ε i.e., for all t ∈ Vt0,ε, vn (t) − vn (t0 − ε) = t − (t0 − ε). By
uniform convergence on compact sets, v (t)− v (t0 − ε) = t− (t0 − ε), hence, for
any p ∈ v̇ we have p = 1 on Vt0,ε.

In both cases, we showed that for any p ∈ v̇ we have p = 0 when φuI (·) < r and p = 1
when φuI (·) > r. Recall that φuI (t0) = r for t0 ≥ 0 does not impose and constraint on
p which can be chosen arbitrary in [0, 1]. Hence, p and v satisfy the relation (3.1) and
thus v ∈ T (u).

3.3.2. T has values in R(C). Let u in C, we need to show that T (u) is a closed convex
(non empty) subset of C. By the Section 3.3.1, T (u) is a closed subset of C. For the
convexity, let v, w ∈ T (u) and α ∈ [0, 1]. There exist pv and pw associated respectively
to v and w, in the sense of relation (3.1). Denote z = αv + (1 − α)w. Let us consider
two cases :

(1) If φuI (t0) < r for t0 ≥ 0 : since φuI (·) is continuous, there exist ε such that φuI (.) <
r on Vt,ε = ]t− ε, t+ ε[. Hence, on Vt,ε, pv = pw = 0, thus v and w are constant
on Vt,ε. This implies that z is also constant. Hence, pz = αpv + (1−α)pw ∈ ż is
such that pz = 0 on Vt,ε.

(2) If φuI (t0) > r for t0 ≥ 0 : in this case, on some Vt,ε we have pv = pw = 1, i.e. for
all τ ∈ Vt,ε :

v(τ)− v(t− ε) = τ − (t− ε), w(τ)− w(t− ε) = τ − (t− ε). (3.2)

Hence z(τ)− z(t− ε) = τ − (t− ε). Thus, pz = 1 on Vt,ε.

Using the same arguments than those given in the Section 3.3.1, z ∈ T (u).

3.3.3. T is upper semi-continuous. Since L is metrizable and T (u) is a compact set
(closed and included in the compact set C), in order to prove that the mapping T is
upper semi-continuous, we can use the definition in terms of limits of sequences.

Let (un)n≥1 be a sequence in C converging to a limit u and (vn)n≥1 a sequence such

that for all n, vn ∈ T (un) and converging to a limit v. We define, for all n ∈ N, pn
associated to vn in the sense of relation (3.1). We need to prove that v ∈ T (u).

Consider the system (2.8)-(2.11) to which we adjoin (2.28)-(2.29) with initial condi-
tions (2.5) and (2.30), written for the un:

S′n(t) = µ(1− u̇n(t))− βSn(t)In(t)− µSn(t), Sn(0) = S0 (3.3)

I ′n(t) = (βSn(t)− γ − µ) In(t), In(0) = I0 (3.4)

R′n(t) = γIn(t)− µRn(t), Rn(0) = 1− Sn(0)− In(0) (3.5)

V ′n(t) = µu̇n(t)− µVn(t), Vn(0) = 0 (3.6)[
funI (t)

]′
= − (µ+ βIn(t)) funI (t) , funI (0) = 1 (3.7)[

F unI (t)
]′

= µfunI (t) , F unI (0) = 0. (3.8)
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This system is of the form Ẋ(t) = A(t) + u̇(t)B(t) and has been studied in [11] where
it is shown that is has a well defined meaning for un, u ∈ L1

loc(R+). In particular
for any finite horizon T when (un)n≥1 converges in L1([0, T ]) to u then the solution
Sn, ..., F unI (·) (corresponding to un) converges pointwise to the solution S, ..., F uI (·)
(corresponding to u).

On the other hand, one can see that F uI (τ) converges when τ → ∞ to F uI (∞)
uniformly with respect to u (their difference is bounded by e−Tµ).

In conclusion since (un)n≥1 converges to u for the uniform convergence on compacts,
we obtain by equation (2.27) that φunI (t) is converging to φuI (t) for any fixed t. Let us
consider two cases :

(1) If φuI (t) < r, then for some ε > 0 small enough there exists nε such that φunI (t) <
r−ε for all n ≥ nε > 0. Remark now that φunI (·) are Lipschitz (with constant CL
independent of un). Then on Vε = ]t− ε/(2CL), t+ ε/(2CL)[ we have φunI (·) <
r − ε/2 < r. In this neighborhood, and for n ≥ nη, pn(·) = 0, which implies
that vn(·) = cst, thus v(·) = cst. Hence, v̇ = 0 in the neighborhood Vη and in
particular v̇(t) = 0.

(2) We can prove, in the same way, that if φuI (t) > r, then v̇(t) = 1.

Hence v ∈ T (u).
�

Remark 3.4. The Theorem 3.1 only guarantees the existence of an equilibrium and not
its uniqueness. Proving uniqueness requires in general more information on the problem
(for instance convexity / monotony as in [44, 43, 34], which is not true in our cases, or
analytic formulas as in [42]) and can break down in general (see [40]). Nevertheless in
all situations we tested numerically, only one equilibrium was found.

4. Numerical simulations

In order to find the Nash equilibrium, we need to minimize the cost of any individual;
thus we need to simulate the model (2.1)-(2.4) but also the probability of infection φuI (·).

4.1. Approximation for a finite horizon time T . Note that, in the numerical ap-
proach, the time horizon, denoted T , is finite. Hence, in order to compute F uI (∞),
we need to make an approximation; here we suppose that the population of infected is
constant after T , that is for any t ≥ T , Iu (t) ' Iu (T ). Under this assumption, we can
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estimate F uI (∞) in the following way :

F uI (∞) =

∫ ∞
0

µ exp

[
−
∫ τ

0
(µ+ βIu (s)) ds

]
dτ

'
∫ T

0
µ exp

[
−
∫ τ

0
(µ+ βIu (s)) ds

]
dτ

+

∫ ∞
T

µ exp

[
−
∫ T

0
(µ+ βIu (s)) ds

]
× exp

[
−
∫ τ

T
(µ+ βIu (T )) ds

]
dτ

= F uI (T ) + exp

[
−
∫ T

0
(µ+ βIu (s)) ds

]
×
∫ ∞
T

µe−(µ+βIu(T ))(τ−T )dτ

= F uI (T ) + µfuI (T )×
∫ ∞
T

e−(µ+βIu(T ))(τ−T )dτ

= F uI (T ) + µfuI (T )×
∫ ∞

0
e−(µ+βIu(T ))sds

= F uI (T ) +
µfuI (T )

µ+ βIu (T )
.

Hence we set :

φuI (t) = 1− 1

fuI (t)
(F uI (∞)− F uI (t)) ' 1− 1

fuI (t)
×
[
F uI (T ) +

µfuI (T )

µ+ βIu (T )
− F uI (t)

]
.

(4.1)
Thus, to simulate the model (2.1)-(2.4) and the probability infection, we solve numer-

ically the system (3.3)-(3.8) and apply (4.1). Moreover in order to improve the precision
of the numerical solver, we sometimes rewrite the system (3.3)-(3.8) by replacing I(t)
by log(I(t)) and solve the corresponding equivalent ODE.

4.2. Finding the fixed point. The result of the Section 3 guarantees the existence of
at least one equilibrium. But this method is not constructive and has to be supplemented
by a procedure to find the fixed point. The presentation of this procedure is the object
of this section.

The procedure is iterative, denote by n the iteration counter. For n = 0, any p ∈ P
can be chosen; for our numerical tests, we take p0(t) = pcsne. Suppose now that we are
at the iteration n. To pn we associate un(·) =

∫ .
0 p

n(s)ds and the probability of infection

φu
n

I (·) is calculated as indicated in section 4.1. As shown in the equation (2.32), the
minimization problem of the cost of an individual born in t is equivalent to:

min
p(t)∈[0,1]

{
p (t)

(
rV − rIφu

n

I (t)
)}
. (4.2)

The specific of our procedure is that we do not take as next iterate the minimizer in
the above term. Instead, in a way similar to gradient flows as implemented in [51], we
ask that the transition from pn to pn+1 be smooth; the intuitive interpretation is that
the individual wants to minimize his/her cost but the new vaccination strategy need to
be near the previous one. Hence, we minimize for all t and for given parameter δτ > 0 :

min
p(t)∈[0,1]

{
(p (t)− pn(t))2

2δτ
+ p (t)

(
rV − rIφu

n

I (t)
)}

. (4.3)

The constant δτ plays the role of a pseudo-time; we denote τn = nδτ . If one forgets for
a moment the restriction that p ∈ P, when δτ → 0 the sequence of pn will approach a
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solution of the following equation set in the space of curves ∂
∂τ pτ (t)+rV −rIφuτ (·)

I (t) = 0
(here uτ is the primitive of pτ ), see [55] for details.

The next iterate pn+1 is the solution of the minimization problem (4.3):

pn+1(t) = proj[0,1]

{
pn(t)− δτ

(
rV − rIφu

n

I (t)
)}
,

where proj[0,1](x) = max (min (x, 1) , 0). Hence, we have a new vaccination function
and the procedure iterates until a stopping criterion is met.

The stopping criterion is related to the incentive to vaccinate: given pn and un, one
may ask whether a Nash equilibrium has been reached. Recall that a Nash equilibrium
is a strategy such that there is no gain in changing it unilateraly. We define the best
obtainable cost at any time t by:

min
p∈[0,1]

{
prV + (1− p)rIφu

n

I (t)
}

= min
{
rV , rIφ

un

I (t)
}
. (4.4)

In other terms, the Nash equilibrium is reached when, for the given un and any time t,
the best obtainable cost defined in equation (4.4) equals the cost obtained with pn(t).
Since the second cost is always larger than the first, a good stopping criterion is:

Epn(t) := pn(t)rV + (1− pn(t))rIφ
un

I (t)−min
{
rV , rIφ

un

I (t)
}
. (4.5)

This will also be called the incentive to change strategy.

4.3. Results. We consider, in this section, an epidemic with the following characteris-
tics: µ = 1/80, R0 = 15, γ = 1000µ, β = R0 ∗ (γ + µ), r = 0.1, T = 80, S0 = 6.53%,
I0 = 7.4e− 6.

In this case the long-term, time independent, convergently stable Nash equilibrium is
attained at a level of pcsne = 1−1/(R0 ∗ (1− r)) = 0.9259. We implement the procedure
described in Section 4.2 (with δτ = 0.1) which converges as shown in figure 3, where
the incentive to change strategies decreases by several orders of magnitude. We observe
thus that a good solution has been obtained.

0 200 400 600 800 1000 1200

=n

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

m
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t6
0
E

p
n
(t

)

Figure 3. Decrease, with respect to τ , of the incentive to change strat-
egy as defined in equation (4.5). The maximum mismatch between the
current cost and optimal cost decreases by several orders of magnitude
and as such one can consider the solution attained.

The probability of vaccination p(t), which is the main result of the simulation and
which completely characterize the equilibrium, is given in figure 4. Note that in order
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for the numerical simulation to complete, we had to choose a finite time horizon. So
we have also checked that the solution is robust with respect to T . The comparison
between two solutions, one with time horizon T = 20 and another with T = 80, is also
presented in figure 4. Further numerical tests for T = 800, not shown here, display
similar behavior. The similarity between the solutions for T = 20 and larger values of
T shows that the main dynamics happens already in the T = 20 time horizon, which is
more compatible with the time span of the individuals than the time-independent pcsne
vaccination strategy (see section 2).

0 10 20 30 40 50 60 70 80

time

0.75

0.8

0.85

0.9

0.95

1

pr
ob

ab
ili

ty
 p

(t
)

p(t) (T=20)
p(t) (T=80)
pcsne

Figure 4. The probability of vaccination (for T = 20 and T = 80).

We refer to figure 1 for the curve t 7→ (S(t), I(t)) .
Finally, we compare in figure 5 the quality of two equilibrium strategies: the p(t) =

pcsne vaccination rate, which is an equilibrium within the class of time independent
strategies (but not necessarily so in the class of time dependent vaccination rates) and
the equilibrium strategy in figure 4 within the class of time dependent vaccination rates.
The quality of each equilibrium is illustrated by plotting, for an individual born at t = 0,
the two terms of the incentive to change strategies (see equation (4.5)): in grey the cost
p(t)rV +(1−p(t))rIφuI (t) experienced by the individual following the equilibrium strategy
and in white the minimum possible cost min {rV , rIφuI (t)}. The time dependent optimal
strategy has lower incentive to change, resulting in a higher quality equilibrium.
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Appendix A. Clake generalized gradients

To recall the definition of the Clarke generalized gradients we follow the presentation
in [16, section 10.1 page 194] and [17]. Let X be a Banach space, X∗ its dual and x ∈ X;
also take f : X → R to be a functional which is Lipschitz with constant L > 0 in a
neighborhood of x, that is, for some ε > 0, we have ‖f(y)− f(z)‖ ≤ L‖y− z‖ for all y, z
in the ball of center x and radius ε. The generalized directional derivative of f at x in
the direction v, denoted fo(x; v), is defined as

fo(x, v) = lim sup
y→x,t↓0

f(y + tv)− f(y)

t
. (A.1)
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Figure 5. The comparison of the incentive to change the equilibrium
strategy for the time dependent / independent classes. The parameters
are as in figure 1. The grey bar is always superior to the white bar and
their difference is related to the quality of the equilibrium: smaller the
difference higher the quality.

Note that ‖fo(x, v)‖ ≤ L‖v‖ for any v ∈ X; moreover, as function of v, the directional
derivative fo(x, v) is subadditive i.e. fo(x, v + w) ≤ fo(x, v) + fo(x,w), ∀v, w ∈ X. In
particular it can be lower bounded by a linear functional in X∗. The (Clarke) generalized

gradient of f at x denoted ∂f(x) or ḟ(x) is the set of all such linear functionals; the
formal definition is the following:

∂f(x) = {ξ ∈ X∗|fo(x, v) ≥ 〈v, ξ〉, ∀v ∈ X}. (A.2)

It can be shown that the Clarke generalized gradient is a non empty, convex, (weakly-∗)
compact subset of X∗. In particular when X = Rk for some k ∈ N∗, ∂f(x) is the convex
hull of the set {lim`→∞∇f(x`)} for any sequence x` converging to x such that:

- ∇f(x`) exists ∀` (recall that since f is Lipschitz it is differentiable a.e.) and
- the limit lim`→∞∇f(x`) exists.

Appendix B. Technical details concerning the probability of infection

Recall that φuI (.) is a function from R+ to [0, 1] such that, for any t ∈ R+, φuI (t) is
the probability of infection during the life of an individual, born in t and not vaccinated,
when the population follows the vaccination strategy u. In mathematical terms, for any
individual born in t ≥ 0,

φuI (t) = P
(
∃τ ≥ t such that M t

τ = I |M t
t = S

)
. (B.1)

In order to compute φuI (t) we introduce the probability ϕu,tI (.) of infection before τ :

ϕu,tI (τ) = P
(
∃s ∈ [t, τ ] such that M t

s = I |M t
t = S

)
. (B.2)
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Hence, we have :

ϕu,tI (τ + ∆τ) = P
(
M t
τ+∆τ ∈ I ∪R ∪D2 |M t

t = S
)

= P
(
M t
τ+∆τ ∈ I ∪R ∪D2 |M t

τ = S
)
× P

(
M t
τ = S |M t

t = S
)

+ P
(
M t
τ+∆τ ∈ I ∪R ∪D2 |M t

τ = I
)
× P

(
M t
τ = I |M t

t = S
)

+ P
(
M t
τ+∆τ ∈ I ∪R ∪D2 |M t

τ = R
)
× P

(
M t
τ = R |M t

t = S
)

+ P
(
M t
τ+∆τ ∈ I ∪R ∪D2 |M t

τ = D1

)
× P

(
M t
τ = D1 |M t

t = S
)

+ P
(
M t
τ+∆τ ∈ I ∪R ∪D2 |M t

τ = D2

)
× P

(
M t
τ = D2 |M t

t = S
)
,

with

P
(
M t
τ+∆τ ∈ I ∪R ∪D2 |M t

τ = D1

)
= 0

P
(
M t
τ+∆τ ∈ I ∪R ∪D2 |M t

τ = I
)

= 1

P
(
M t
τ+∆τ ∈ I ∪R ∪D2 |M t

τ = R
)

= 1

P
(
M t
τ+∆τ ∈ I ∪R ∪D2 |M t

τ = D2

)
= 1

P
(
M t
τ+∆τ ∈ I ∪R ∪D2 |M t

τ = S
)

= βIu (τ) ∆τ + o(∆τ).

Hence,

ϕu,tI (τ + ∆τ) = βIu (τ) ∆τ × P
(
M t
τ = S |M t

t = S
)

+ P
(
M t
τ ∈ I ∪R ∪D2 |M t

t = S
)

+ o(∆τ)

= βIu (τ) ∆τ × P
(
M t
τ = S |M t

t = S
)

+ ϕu,tI (τ) + o(∆τ).

We denote ru,t (τ) = P
(
M t
τ = S |M t

t = S
)

the probability of staying susceptible be-
tween t and τ . We compute this probability :

ru,t (τ + ∆τ) = P
(
M t
τ+∆τ = S |M t

τ = S
)
× P

(
M t
τ = S |M t

t = S
)

= (1− βIu (τ) ∆τ − µ∆τ) ru,t (τ) + o(∆τ).

Hence, the probability of staying susceptible between t and τ is :

ru,t (τ) = e−µ(τ−t) exp

(
−
∫ τ

t
βIu (s) ds

)
.

Hence,

ϕu,tI (τ + ∆τ) = βIu (τ) ∆τe−µ(τ−t) exp

(
−
∫ τ

t
βIu (s) ds

)
+ ϕu,tI (τ) + o(∆τ),

which leads to

dϕu,tI (τ)

dτ
= βIu (τ) e−µ(τ−t) exp

(
−
∫ τ

t
βIu (s) ds

)
= e−µ(τ−t) exp

(∫ t

0
βIu (s) ds

)
× βIu (τ) exp

(
−
∫ τ

0
βIu (s) ds

)
= −e−µ(τ−t) exp

(∫ t

0
βIu (s) ds

)
d
[
exp

(
−
∫ τ

0 βI
u (s) ds

)]
dτ

= −e−µ(τ−t) exp

(∫ t

0
βIu (s) ds

)
dψuI (τ)

dτ
,
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by setting ψuI (τ) = exp
(
−
∫ τ

0 βI
u (s) ds

)
.

Finally, we just have to compute the probability of infection during the life of an
individual born in t who is not vaccinated, which is :

φuI (t) =

∫ +∞

t
dϕu,tI (τ)

= −
∫ +∞

t
exp

(
−µ (τ − t) +

∫ t

0
βIu (s) ds

)
[ψuI (τ)]′ dτ

= − exp

(
µt+

∫ t

0
βIu (s) ds

)∫ +∞

t
e−µτ [ψuI (τ)]′ dτ.

By an integration by parts, we obtain :

φuI (t) = 1−
∫ +∞

t
µ exp

(
−
∫ τ

t
(µ+ βIu (s)) ds

)
dτ.

In fact, this probability is solution of the differential equation :

dφuI (t)

dt
= µ exp

(
−
∫ t

t
(µ+ βIu (s)) ds

)
−
∫ +∞

t
µ
∂

∂t

[
exp

(
−
∫ τ

t
(µ+ βIu (s)) ds

)]
dτ

= µ− µ
∫ +∞

t
(µ+ βIu (t)) exp

(
−
∫ τ

t
(µ+ βIu (s)) ds

)
dτ

= µ− (µ+ βIu (t)) (1− φuI (t)) = (µ+ βIu (t))φuI (t)− βIu (t) .

In order to get an explicit form for φuI (0), we define, for all t ≥ 0 :

fuI (t) = exp

[
−
∫ t

0
(µ+ βIu (τ)) dτ

]
F uI (t) =

∫ t

0
µfuI (τ) dτ

FuI (t) = 1− φuI (t) .

The last function satisfies the following differential equation :

[FuI (t)]′ = −µ+ (µ+ βIu (t))FuI (t)

FuI (0) =

∫ +∞

0
µ exp

(
−
∫ τ

0
(µ+ βIu (s)) ds

)
dτ

=

∫ +∞

0
µfuI (τ) dτ = F uI (∞) .

Note that :

[FuI (t)× fuI (t)]′ =
{

[FuI (t)]′ −FuI (t) (µ+ βIu (t))
}
× fuI (t) = −µfuI (t)

Thus, FuI (t)× fuI (t) = FuI (0)−
∫ t

0 µf
u
I (τ) and therefore

FuI (t) =
1

fuI (t)
[F uI (∞)− F uI (t)] .

Hence, for all t ≥ 0, we obtain :

φuI (t) = 1−
F uI (∞)− F uI (t)

fuI (t)
, φuI (0) = 1− F uI (∞) .
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