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ABSTRACT: Wastewater-based epidemiology has emerged as a
promising technology for population-level surveillance of COVID-
19. In this study, we present results of a large nationwide SARS-
CoV-2 wastewater monitoring system in the United States. We
profile 55 locations with at least six months of sampling from April
2020 to May 2021. These locations represent more than 12 million
individuals across 19 states. Samples were collected approximately
weekly by wastewater treatment utilities as part of a regular
wastewater surveillance service and analyzed for SARS-CoV-2
RNA concentrations. SARS-CoV-2 RNA concentrations were
normalized to pepper mild mottle virus, an indicator of fecal
matter in wastewater. We show that wastewater data reflect
temporal and geographic trends in clinical COVID-19 cases and
investigate the impact of normalization on correlations with case data within and across locations. We also provide key lessons
learned from our broad-scale implementation of wastewater-based epidemiology, which can be used to inform wastewater-based
epidemiology approaches for future emerging diseases. This work demonstrates that wastewater surveillance is a feasible approach
for nationwide population-level monitoring of COVID-19 disease. With an evolving epidemic and effective vaccines against SARS-
CoV-2, wastewater-based epidemiology can serve as a passive surveillance approach for detecting changing dynamics or resurgences
of the virus.
KEYWORDS: wastewater-based epidemiology, wastewater monitoring, wastewater surveillance

■ INTRODUCTION
The COVID-19 pandemic has galvanized the rapid develop-
ment of innovative approaches for pandemic preparedness and
response. Wastewater-based epidemiology (WBE) for monitor-
ing the SARS-CoV-2 virus in wastewater has emerged as a
promising technology for public health surveillance. The SARS-
CoV-2 virus is excreted in human feces early in the clinical
course of infection and provides a view of COVID-19 that is
independent of access to testing, making it an ideal candidate for
WBE. WBE has previously been demonstrated in infectious
disease monitoring, providing early warnings of polio re-
emergence and outbreaks of cholera, norovirus, hepatitis A,
and hepatitis B.1−4 During the SARS epidemic in 2002, traces of
SARS coronavirus were detected in wastewater near hospitals in
China.5

The first successful detection of SARS-CoV-2 in wastewater
was reported in TheNetherlands in earlyMarch 2020,6 followed
by demonstration of SARS-CoV-2 detection in wastewater in
the United States.19,21 Wastewater surveillance for the virus that

causes COVID-19 has since been broadly pursued by the
scientific community, municipal public health and public works
departments, the U.S. Centers for Disease Control and
Prevention, and other national organizing bodies in the United
States and globally.6−12,36,37

Multiple applications of WBE for COVID-19 have been
proposed, including as a leading indicator of new COVID-19
cases, an independent confirmation of disease trends, and as an
early warning system for COVID-19 re-emergence.13 Addition-
ally, wastewater has been proposed as an alternative method for
estimating the COVID-19 reproductive number14 or as an
indicator of clinical diagnostic testing capacity.15 Finally,
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wastewater monitoring provides a powerful approach for
monitoring existing and emerging variants at the community
level.38,39 In practice, WBE has been applied in multiple ways. In
Cambridge, MA, SARS-CoV-2 RNA concentrations were one of
three metrics used to evaluate school system reopenings.16 In
Australia, when the number of COVID-19 cases is small,
wastewater monitoring serves to warn residents of potential re-
emergence.17 Across the United States, wastewater analysis has
been deployed at universities to monitor and mitigate
transmission among students.18

This study presents results from a nationwide data set of
SARS-CoV-2 RNA concentrations in wastewater and represents
the largest U.S.-based temporal and geographic WBE data set
reported to date. In March 2020, our groups launched a
campaign to monitor the presence of SARS-CoV-2, the virus
that causes COVID-19, in wastewater across the United
States.19,20 Since then, we have had approximately 100
participating locations regularly monitoring SARS-CoV-2
RNA wastewater concentrations in their communities on a
weekly or monthly basis. As a result of this effort, we have
generated a wastewater SARS-CoV-2 data set consisting of
>15000 samples, allowing us to evaluate the applicability and
feasibility of implementing a nationwide wastewater monitoring
program for the virus that causes COVID-19. In this study, we
report results from a subset of these data, highlighting data from
55 sampling locations with approximately weekly sampling for at
least six months. These sampling locations represent 39 counties
across 19 states, and we show their data fromApril 2020 through
May 2021. We demonstrate that wastewater data broadly reflect
geographic and temporal trends in COVID-19 cases across the
United States, confirming the feasibility and applicability of
wastewater monitoring for current and future public health
COVID-19 surveillance.

■ METHODS
Sample Collection. The samples in this study were

collected by participating wastewater treatment facilities as
part of regular wastewater surveillance service provided by our
company (Biobot Analytics, Inc.). Because samples were
originally collected for nonscientific purposes, we consider this
a secondary research study and details related to sample
collection were determined by each participating sampling
partner. Participating facilities were mailed a sampling kit with
instructions to collect a standard 24 h composite sample.
Composite samples were shaken to homogenize them, aliquoted
into three 50 mL conical tubes, and shipped within 24 h of
collection overnight with ice packs to our laboratory (Cam-
bridge, MA). Received samples were immediately pasteurized at
60 °C for 1 h. One of the three sample tubes was used for analysis
and processed immediately after pasteurization.
Samples were collected by the participating municipalities,

which sampled at wastewater treatment facilities or pump
stations. A majority of samples were collected using
autosamplers that these facilities already had in house, including
both refrigerated and nonrefrigerated models. A majority of
samples were collected as 24 h composite samples: 1349 samples
were collected as 24 h time-proportional composites, 1084 were
collected as 24 h flow-proportional composites, seven samples
were grab samples, and the others were another type of sample
or did not have a samplingmethod specified.We encouraged our
sampling partners to increase their autosampler’s pumping
frequency to ensure the representativeness of samples. The
sampling frequency was determined by the participating

municipal partners, with the majority providing weekly samples.
Participating municipalities provided metadata about their
sampling locations, including catchment population and average
daily flow rate (Table S1).
Lab Analysis. Our lab method changed over the sampling

time course to improve the sample processing time, throughput,
and sensitivity, also accounting for supply chain availability. In
both methods, samples for analysis were first filtered to remove
large particulate matter using a 0.2 μm vacuum-driven filter
[typically a Steriflip unit (EMD-Millipore SCGP00525), though
highly turbid samples that clogged the initial filter were
transferred to a secondary bell-style filter unit (Corning
430320), and filtrates were pooled to afford ∼45 mL of filtered
wastewater]. Our initial lab method (“PEG-concentrated”) used
PEG salt precipitation to concentrate viruses from 40 mL of
wastewater, as described by Wu et al.19 The resulting pellets
were resuspended in TRIzol (ThermoFisher 15596026), and
RNAwas purified via phenol/chloroform extraction and ethanol
precipitation. The resulting RNA was resuspended in 30 μL of
nuclease-free water. Two-step RT-qPCR was used to quantify
the RNA. First, 10 μL of RNA samples was first reverse
transcribed in a 25 μL reaction (NEB M0368), and then 2 μL
per reaction of cDNA was assayed by qPCR (ThermoFisher
4444557) using a SARS-CoV-2 nucleocapsid (N) gene (N1 and
N2 regions), and PMMoV amplicons,31,32 (Table S4) on
CFX96 or CFX-Connect instruments (Bio-Rad).
In June 2020, we switched to our second method (“Amicon-

concentrated”) that uses Amicon Ultra-15 centrifugal ultra-
filtration units (Millipore UFC903096) to concentrate 15 mL of
wastewater (filtered to remove solids as described above)
approximately 100-fold. Viral particles in this concentrate are
immediately lysed by adding AVL buffer containing carrier RNA
(Qiagen 19073) to the Amicon unit before transfer and a >10
min incubation in a 96-well 2 mL block. To adjust binding
conditions, 100% ethanol was added to the lysate and the
entirety of the lysate and ethanol was applied to RNeasy Mini
columns or RNeasy 96 cassettes (Qiagen 74106 or 74181),
processed per the manufacturer’s recommendations, and eluted
in a total of 75 μL of nuclease-free water. For a subset of samples,
we processed 30 mL of wastewater across two separate Amicon
units, extracted each separately, and pooled the duplicate RNA
extracts together prior to analysis. Then, 3 μL per reaction of
RNA sample was subjected to one-step RT-qPCR (Thermo-
Fisher 4444436) analysis in triplicate for N1, N2, and PMMoV
amplicons on CFX96 and/or CFX-Connect instruments. Cts
were called from raw fluorescence data using the Cy0 algorithm
from the qpcR package (version 1.4-1) in R22 and manually
inspected for agreement with the raw traces in the native BioRad
Maestro software. Overall, we processed 138 samples with the
first PEG concentration method, 2577 samples with the second
Amicon concentration method, and eight samples with both
(see a discussion of sample reruns below). We confirmed that
changing between methods would not introduce a systematic
bias by showing that the variability between samples introduced
by the method change was comparable to the inherent sample-
to-sample variability (Figure S8).
In both methods, we ran a variety of laboratory controls.

Positive synthetic SARS-CoV-2 RNA controls were included on
every qPCR plate. Ct values for N1/N2 assays outside 31−33
triggered a plate rerun, and Cts on the original plate were
discarded. Two no-template controls were included on every
qPCR plate; N1/N2 Ct values of >40 and PMMoV Ct values of
>35 for these controls triggered a plate rerun. One set of
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extraction blank controls was also run each day. Matrix
inhibition was assessed manually by reviewing the raw qPCR
curves for gradual slope and failure to reach the same maximum
fluorescence as other samples on the plate (Figure S1). Samples
with potential inhibition were flagged for more additional
downstream data review. Finally, we used PMMoV as a proxy
measure for per-plate recovery and flagged any qPCR plates with
unusually low PMMoV values (relative to historical PMMoV
values for the locations represented on those plates) for further
review and potential plate rerun. Only results that passed all
quality controls are reported here.
In addition to these laboratory controls, we implemented a

thorough data review process, in which results were manually
reviewed if they met certain additional criteria. These criteria
included PMMoV being below first or above the 99th percentile
of previously observed values, SARS-CoV-2 RNA concen-
trations changing >5-fold since the prior sample, inhibition
suspected from manual inspection of qPCR curves, concen-
trations obtained from N1 and N2 primers not concordant, and
pigmentation present in extracted RNA. During the manual
review process, we inspected individual replicates of qPCR and
timelines of SARS-CoV-2 and PMMoV RNA concentrations for
the affected sampling locations. A small fraction of samples that
underwent the review process were flagged for a lab rerun.
Reruns were performed in duplicate if capacity allowed. If
sufficient filtered wastewater from the initially processed tube
remained, a second aliquot from that tube was tested. We also
always processed an aliquot using a second of the three 50 mL
tubes of sewage. Approximately 2% of all samples were rerun
through that process. If a rerun differed substantially from the
original result (i.e., more than ∼2-fold different), the original
result was discarded (approximately 8% of reruns) and the rerun
results were reported to the participating facility and included in
this analysis; if the rerun recapitulated the original result, the
averages of all results were reported to the participating facility
and included in this analysis.
Data Processing. A standard curve was generated using

serial dilutions of Twist Bioscience synthetic SARS-CoV-2 RNA
control 2 (MN908947.3) and used to convert Ct values into
copies per well (Figure S2). We used pepper mild mottle virus
(PMMoV) as a fecal indicator. Because synthetic RNA for
PMMoV was not available, we used a DNA gBlock to build a
standard curve for PMMoV quantification.
Copies per well measured by qPCR were multiplied by a

dilution factor accounting for the volume changes described
above (RNA extraction, concentration, etc.) and then divided by
the original sewage volume (40, 30, or 15 mL) to convert to a
sewage concentration. Nondetected wells were replaced with
zero for these calculations. Concentrations of N1 and N2
replicates were averaged first within each primer set and then
across primers to obtain the final SARS-CoV-2 RNA
concentration; replicates of the PMMoV amplicon were
averaged. Samples were required to have at least two detected
replicates between N1 and N2 and at least one detected
PMMoV replicate to be considered a detection and
subsequently quantified. To derive a normalized concentration,
SARS-CoV-2 RNA concentrations were divided by the PMMoV
RNA concentrations and multiplied by a reference PMMoV
concentration derived as the median of our data set comprising
samples up to July 31, 2020 (3.65 × 108 copies/L). Dividing by
the PMMoV concentration of the same sample helps account for
fecal content, dilution, and lab processing efficiency, while
multiplying by the reference PMMoV concentration converts

the ratio back into units of concentration (copies per liter) on a
similar scale as the original measured concentration. The
reference PMMoV concentration does not have a specific
meaning and was primarily used to adjust the normalized
concentration ratio back into more interpretable numbers. The
results were returned to participating municipalities in the form
of a report containing the raw viral copies per liter of sewage and
normalized concentrations.
Data Analysis. We excluded locations representing fewer

than 5000 people in their catchment population to protect
participant privacy and exclude small locations that are not
expected to reflect community-level COVID-19 case dynam-
ics34 and locations that did not consent to data sharing. To
evaluate the correlations between wastewater results and
COVID-19 cases, we analyzed time series for all sampling
locations with at least one sample per month for at least six
months in the period of June 2020 throughMay 2021. Sampling
location characteristics, including the population and associated
county serviced by the catchment, were provided by treatment
plant operators from each location (Table S1).
Daily COVID-19 cumulative case data were downloaded

from USAFacts.org, which collated daily case counts for each
U.S. county from publicly available reports.23 To prevent
negative new cases, any days with nonmonotonically increasing
cumulative case numbers (or with missing or non-numeric
values) were replaced with the prior valid cumulative case
number. New cases were then calculated as the difference in
cumulative cases between consecutive days. Seven-day centered
moving averages were calculated using the pandas. rolling()
function.24 To derive daily incidence rates per 100 000 people,
seven-day averages of reported cases were divided by the
reported county populations, which were also downloaded from
USAFacts.org.23 All analyses reported here use these incident
case values derived fromUSAFacts.org. The date associated with
each case is the date that is reported by each public health agency
as compiled by USAFacts.org.23

Monthly averages for the maps were calculated as follows. For
the SARS-CoV-2 RNA concentration, we calculated the average
normalized concentration per location for each month and then
averaged these values across locations within individual states.
For the reported cases, we first calculated the per capita new
cases by dividing daily reported cases by the county population
and multiplying by 100 000. We then selected just the subset of
counties represented in our selected sampling locations and
averaged daily reported cases per capita over the month within
each county and then averaged across counties within the same
state per month.
Statistical analyses and visualizations were performed in

Python 3.8.

■ RESULTS
Sampling Locations. We selected sampling locations that

had a suitably long time series starting from June 2020, when we
started offering COVID-19 wastewater surveillance as a
commercial service. Prior to June 2020, sampling locations
participated pro-bono as part of an academic collaboration.20

Fifty-five sampling locations collected at least one monthly
sample for at least six months from June 2020 through May
2021. These 55 locations represent approximately 12 500 000
people [mean of 245 000 and median of 55 000 people per
location (Table S1 and Figure S3)] distributed across 39
counties in 19 states, with a maximum of five locations in one
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county. These locations took an average of 4.4 samples per
month (Table S1 and Figure S4).

Temporal Trends. We compared the trends in wastewater
virus concentration with reported cases in the respective

Figure 1.Time series of results from sampling locations with at least onemonthly sample for at least six months from June 2020 throughMay 2021 (n =
55): blue line, centered three-sample average of normalized wastewater concentrations (genome copies per liter); blue dots, individual normalized
wastewater concentration measurements (genome copies per liter); orange line, centered seven-day average of daily new cases in the respective county
(new cases). Y-Axes are normalized to the maximum of each time series, and lines are shown without units to emphasize relative trends within each
location. X-Axes are consistent across plots, with monthly ticks ranging from April 1, 2020, to May 1, 2021. Plots are labeled with county and state
names of the associated catchment. Sampling locations are organized in order of decreasing catchment population; i.e., the largest catchment
(1 950 000 people) is at the top left (A1), and the smallest catchment (6400 people) is the bottom right most plot (K5). Rows are labeled with letters
and columns with numbers for ease of reference. Individual time series for each location, including daily new cases and detailed units for both axes, are
provided in the Abstract Graphic.
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counties for the 55 sampling locations. Wastewater SARS-CoV-
2 RNA concentrations closely followed the seven-day average of
new clinical cases (Figure 1), correlating well in the majority of
locations [median Spearman correlation = 0.75; IQR = 0.65−
0.83 (Figure 4)]. Wastewater measurements mirrored a rapid
increase in clinical COVID-19 cases in late October through
November 2020 that occurred in every county we sampled. It is
noteworthy that many locations experienced the highest viral
concentrations and highest clinical case counts observed to date
in their November 2020 through January 2021 samples,
reflecting the COVID-19 winter resurgence experienced
nationwide in the United States (Figures 1 and 2). Wastewater

also reflected the decrease in the number of clinical cases in the
first months of 2021 (Figure 1).
Wastewater also tracked location-specific qualitative trends

throughout the year. For example, a subset of counties
experienced peaks in COVID-19 cases in the summer (June to
August 2020) that were also well-tracked by wastewater data.
For example, wastewater concentrations in all three sampling
locations in Miami-Dade County, Florida (Figure 1, A5, B1, and
B2), reliably reflected the two distinct waves of COVID-19 that
Florida experienced during the sampling period. Cases and
wastewater concentrations both increased in summer 2020,
decreased to a new baseline, increased again in late 2020, and

Figure 2.Monthly geographic trends in wastewater SARS-CoV-2 RNA concentrations and COVID-19 cases. Blue data (first and third columns from
the left): Monthly state-level normalized wastewater SARS-CoV-2 RNA concentrations. The monthly state average is calculated as the average
normalized concentration per sampling location per month and then averaged across sampling locations within the same state. Orange data (second
and fourth columns from the left): monthly state-level new COVID-19 cases per 100 000 people for counties with at least one wastewater sampling
location in that month. The monthly state average is calculated as the monthly average of new daily cases per 100 000 people in counties with a
corresponding sampling location and then averaged across counties within the same state. States that did not include any sampling locations are
outlined in gray. Color scales apply to all maps and are truncated at the 95th percentile of each data set.
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decreased once more in early 2021. Similar patterns were
observed in the other smaller Florida sampling locations (Figure
1, E1, F5, and K5). Counties in other states experienced
COVID-19 peaks earlier in 2020. For example, Suffolk County,
Massachusetts, experienced a peak in COVID-19 cases in April
2020, which was reflected in the wastewater data from both
associated sampling locations (Figure 1, A3-4). A similar trend
was observed in Hampshire County, Massachusetts (Figure 1,
I3). Finally, wastewater reflected different dynamics within the
decreasing clinical cases early in 2021. For example, in Suffolk
County, Massachusetts, wastewater seemed to plateau in
February and March 2021 before decreasing again in April, a
trend that was also seen in clinical cases. Similarly, many
locations [Stafford County, Virginia (D3 and F3); Arapahoe
County, Colorado (C2); Dauphin County, Pennsylvania (D2);
Erie County, Pennsylvania (C4); and Lake County, Indiana

(C5)] had a slight uptick in clinical cases around April 2021,
which was reflected by the wastewater measurements. The
ability of wastewater to track these more nuanced epidemio-
logical dynamics supports its ability to provide independent
confirmation of relative disease burden and trends (Figure 1).
We observed a range of correlations between wastewater

measurements and new clinical cases across the 55 sampling
locations (Figure 4A and Table S2). We first explored whether
the correlation was associated with a sampling location’s
population, average reported flow, sampling frequency, or
county coverage (Figure S5). None of these associations were
statistically significant. Notably, wastewater treatment plants
that covered more of their respective counties did not yield
wastewater virus levels that were better correlated with county-
level case counts than plants that served smaller proportions of
their counties. These results imply that precise co-location of a

Figure 3. Geographic correlations per month. Scatter plots showing normalized concentrations (X-axis) vs new cases per 100 000 (Y-axis), averaged
within each state (points) per month (subplots). Spearman correlations were calculated using scipy.spearmanr; correlations and uncorrected p values
are provided on each plot.

ACS ES&T Water pubs.acs.org/estwater Article

https://doi.org/10.1021/acsestwater.1c00434
ACS EST Water 2022, 2, 1899−1909

1904

https://pubs.acs.org/doi/suppl/10.1021/acsestwater.1c00434/suppl_file/ew1c00434_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsestwater.1c00434/suppl_file/ew1c00434_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsestwater.1c00434?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsestwater.1c00434?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsestwater.1c00434?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsestwater.1c00434?fig=fig3&ref=pdf
pubs.acs.org/estwater?ref=pdf
https://doi.org/10.1021/acsestwater.1c00434?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


wastewater catchment and the geographical case reporting area
is not critical to wastewater’s ability to model COVID-19
burden.
Next, we explored the impact of normalizing raw SARS-CoV-

2 RNA concentrations with a human fecal marker (PMMoV) on
the observed correlations (Figure 4A,B). We found that
normalizing by PMMoV did not always improve the correlation
between wastewater measurements and reported clinical cases
within individual time series (Figure 4A,B, Figure S6, and Table
S2). In some locations, normalization improved the correlation,
but in others, raw virus concentrations correlated better with
cases (Figure 4B). These results confirm findings by others who
have investigated the impact of normalization in multisite
studies and found mixed results on the impact of normalization
on correlations.25,26,35 We hypothesize that the broad range of
locations profiled leads to a large variability in wastewater

matrices and therefore a similarly large variability in the impact
of normalization on data quality.
Geographic Trends. We next compared geographic trends

in average monthly SARS-CoV-2 RNA wastewater concen-
trations and reported COVID-19 cases across states (Figures 2
and 3 and Table S3). Overall, wastewater concentrations
showed similar relative patterns across states as did clinical cases
[median Spearman correlation across states = 0.6; IQR = 0.52−
0.81 (Figure 3)]. These results indicate that normalized
wastewater concentrations can be used to compare the relative
COVID-19 burden across different geographies.
The strength of the geographic correlation varied throughout

the course of the pandemic (Figure 3). The second-lowest
correlation was observed early in the pandemic in May 2020
(Spearman correlation = 0.4), which could be explained in part
by different testing capacities across states, leading to geographic
differences in the completeness of the case data. Similarly, a

Figure 4. Impact of PMMoV normalization on correlations between wastewater SARS-CoV-2 RNA concentrations and COVID-19 cases, within and
across locations. The top row shows temporal correlations between wastewater concentrations and new reported COVID-19 cases within locations.
(A) A box plot shows the Spearman correlation between wastewater SARS-CoV-2 RNA concentrations (copies per liter) and new reported clinical
cases (total cases). Each point is the correlation for one location. Correlations were calculated using three different measures of wastewater
concentration: raw, unadjusted SARS-CoV-2 concentrations, SARS-CoV-2 concentrations normalized to a fecal maker (PMMoV), and a three-sample
average of the normalized concentrations. (B) Difference in the Spearman correlation when calculated using normalized or raw concentrations. Each
point is a sampling location; a positive delta indicates that the Spearman correlation calculated using normalized concentrations is higher than the
correlation calculated using raw concentrations. The bottom row shows the geographic correlations with normalized vs raw concentrations. (C) Each
point is a month. The Y-axis shows the correlation between states during that month. The X-axis indicates which concentration measure was used to
calculate the correlation. (D)Difference in the Spearman correlation when calculated using normalized or raw concentrations. Each point is a month; a
positive delta indicates that the Spearman correlation across states calculated using normalized concentrations is higher than the correlation calculated
using raw concentrations.
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lower correlation in December 2020 could have been affected by
irregularities in case reporting around the American winter
holidays. In contrast, some of the highest correlations between
wastewater and clinical cases across states were observed in the
summer 2020wave, whenCOVID-19 was rapidly increasing and
clinical testing was well-established nationwide [June 2020,
0.79; July 2020, 0.90; August 2020, 0.86) (Figure 3 and Table
S3).
We next investigated the effect of normalization on the ability

for wastewater concentrations to reflect patterns in clinical cases
across locations (Figure 4C,D). We found that raw wastewater
concentrations across states did correlate with cases in most
months but that these correlations were weaker than when
looking at the normalized concentration (Figure 4C and Table
S3). In fact, normalization improved the geographic correlation
in all but two months (Figure 4D). These findings align with
prior work that has also shown that normalizing wastewater
measurements improves comparisons across locations.35

■ DISCUSSION
Effective and long-term systems will be required to continuously
monitor SARS-CoV-2 across the United States. While
diagnostic testing and clinical case reporting continue to drive
public health recommendations, wastewater assessment of
SARS-CoV-2 is a practical and sustainable complement that
can be integrated into existing wastewater infrastructure to
provide cost-effective population-level monitoring. With
effective vaccines against SARS-CoV-2, persistent surveillance
to detect resurgences of the virus will become increasingly
important. Here, we demonstrate that wastewater data reflect
both temporal and geographic trends in COVID-19 disease
burden across the United States, suggesting its utility on a
national scale as a SARS-CoV-2 surveillance system.
Lessons Learned from Nationwide Implementation.

Through this work, we identified several key practical
considerations for implementing a long-term nationwide
wastewater monitoring program. First, the impact of changing
laboratory methods on overall data interpretation was minimal.
From a scientific standpoint, changing methods throughout the
course of a study is usually not recommended due to the
possibility of introducing batch effects. However, this secondary
research study uses a data set generated through a regular
commercial wastewater surveillance service, which required that
the laboratory methods changed as our experience improved
and reagent supply chains stabilized (Methods).We investigated
the impact of these method changes on our data set and found
that the overall interpretation of the data remained unaffected
(Figures S7 and S8). Importantly, updating methods to reflect
current scientific understanding and changing epidemiological
contexts will be required for any nationwide WBE monitoring
system implemented in practice. For example, as the number of
COVID-19 cases decreases substantially, methods will need to
be updated to improve sensitivity. Long-term wastewater
monitoring studies should evaluate the impact of method
changes on data interpretation and ensure that data can be
continuously interpreted across methods, or otherwise imple-
ment correction factors to adjust data for continuity. Normal-
ization to PMMoV or other fecal markers may aid in this
analytical effort. The results presented here demonstrate
agreement between wastewater measurements and clinical
cases despite our methodological changes, highlighting that
while addressing the impact of variations in laboratory methods
remains an important area of scientific inquiry, it is not necessary

to have a gold standardmethodology established for wastewater-
based epidemiology to be implemented at scale and to provide
reliable reflections of public health trends. From our experience,
clearly and transparently communicating about methods was
also critical to maintaining trust in our data across academics,
wastewater and public health officials, and groups deploying
WBE at scale.
Second, we found that identifying best practices for

wastewater-based epidemiology requires a holistic approach
beyond purely scientific considerations. For example, the rapid
turnaround time of the data quickly emerged as a key
requirement for our data to be useful to our sampling partners
and their public health counterparts. Therefore, our method
development efforts prioritized minimizing the operational
impact to turnaround time above other considerations. Even at
this nationwide scale, we were able to achieve a rapid turnaround
time of approximately one to two business days for the majority
of the sampling period. In addition to these considerations, any
changes to our methods and data interpretation required careful
considerations of data continuity and communication to
relevant stakeholders. Moreover, we found that a manual data
review process was essential for ensuring the quality of the data,
development of QC metrics, and understanding of the data
trends. As WBE expands in practice, difficult trade-offs will need
to be made when improving data quality conflicts with
operational requirements.
Finally, logistical considerations also dictate which data sets

can be used as epidemiological comparisons for WBE at scale.
For example, precise geographic alignment between catchment
sewersheds and reported cases was not feasible, as it would have
required requesting and coordinating GIS data across a different
set of municipal partners for each sampling catchment. We used
data provided by USA Facts for our clinical comparison because
at the time we launched this work, it was the only data source
that provided geographical comparisons more granular than
state level and was licensed appropriately for our use. Future
WBE efforts implemented at scale will similarly need to leverage
systematically collected and curated third-party data sets or
expend significant resources to compile them themselves.
Importantly, clinical data itself are not necessarily a gold
standard for comparing wastewater-based results. In the case of
COVID-19, reported cases are used as a benchmark to evaluate
how well wastewater is reflecting broad trends but are not
necessarily comprehensive due to asymptomatic infections and
limitations or inequalities in access to diagnostic testing.13 In
fact, the comprehensiveness of wastewater is one of its key
strengths, and deviations between wastewater and clinical data
may reflect limitations in the clinical data itself.15

Limitations. Our study has several limitations. First,
wastewater SARS-CoV-2 RNA concentrations are highly
variable due to sampling, lab processing, and qPCR analysis.
While some variability reflects true fluctuations in COVID-19
incidence and SARS-CoV-2 levels in the wastewater samples, we
attempted to reduce the impact of method-related variability
through normalization with a fecal virus with biological
similarities to SARS-CoV-219 and by optimizing our lab
protocols (Methods). However, we still observed large spikes
in wastewater concentrations in some locations that were not
explained by changes in reported COVID-19 cases. Some spikes
could be reflective of unreported cases, while others may simply
be outlier wastewater measurements. These data challenges are
common in the field of wastewater-based epidemiology, and our
group and others are actively developing models to correct for
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variability and better interpret spikes. Second, the geographic
comparisons between wastewater results and reported cases are
not exact, as sampling location catchments may represent a
subset or superset of the respective comparison counties (Table
S1). However, we found no relationship between a catchment’s
coverage of its comparison county and its correlation between
wastewater and cases, indicating that these wastewater catch-
ments were sufficient to identify broad and general trends in
their associated communities (Figure S5). Alternative public
health applications of wastewater-based epidemiology like
building-level or manhole sampling may require more granular
insight, in which geographies may need to be more precisely
aligned. Third, wastewater data showed a range of correlation
strengths with reported cases (Figures 1 and 4). In addition to
technical and geographic factors, these differences could also be
due to different testing capacities across space and time. For
example, access to testing was extremely limited early in the
pandemic, which may in part explain the lower geographic
correlation at that time.
Implications for National Wastewater Surveillance

Implementation.Despite these limitations, wastewater assess-
ment of SARS-CoV-2 reliably reflected trends in clinical
COVID-19 cases within and across locations, confirming the
feasibility of acquiring useful data from a broad variety of
wastewater facilities. The sampling locations profiled in this
study were selected in a nonbiased fashion without any
preconsideration of the wastewater results; we imposed no
exclusion criteria beyond a catchment size cutoff of 5000 people
and a suitably long sampling period for the analysis.
Furthermore, wastewater data reflected clinical trends across a
range of wastewater facility characteristics, including catchment
populations ranging from just more than 6000 people to close to
2 million individuals. Results in this study are comparable to
prior work that has profiled individual sampling locations and
found a range of correlation strengths between wastewater
SARS-CoV-2 RNA concentrations and clinical cases.19,27−29,35

Deploying WBE to this large number of communities
demonstrates the generalizability of these results on a large
nationwide scale.12

This study also provides additional insight into whether and
how normalization impacts wastewater data interpretation.
When analyzing wastewater concentrations as a reflection of
COVID-19 trends within individual sampling locations, we
found that normalization improved the correlation between
wastewater and reported cases in some sampling locations, but
not in others (Figure 4B). In contrast, we found that
normalization did improve correlations when comparing across
locations, perhaps because different wastewater matrices with
differing levels of dilution can be corrected for by a common
normalization marker (Figure 4D). Finally, in our experience,
fecal normalization had additional practical benefits beyond
improving correlations, addressing concerns related to sample
quality and potential dilution and serving as an additional
endogenous laboratory control for all samples.
This work also demonstrates the practical feasibility of

implementing and scaling a national wastewater surveillance
system for COVID-19. Wastewater surveillance is straightfor-
ward to implement with the participation of wastewater utilities;
we achieved broad uptake among different municipalities across
the United States.20 All of our participating municipalities were
able to reliably collect samples using standard wastewater
sampling devices and often as part of their regular sampling
schedules, requiring little extra work on their part. Additionally,

samples were sent to us through traditional mail services and the
majority passed our internal quality control process (Methods).
This confirms that national wastewater surveillance programs
like those supported by theU.S. Centers for Disease Control and
Prevention are logistically and practically feasible.12 With
sufficient resources, a national WBE dashboard could comple-
ment similar population-level mapping of SARS-CoV-2 based
on clinical reports,30,33 lending insights into key operational
decisions like phased reopenings, geographic selection of testing
locations, and hospital preparedness.
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