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for Double Patterning Technology
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Abstract—Double patterning technology (DPT), in which a
dense layout pattern is decomposed into two separate masks
to relax its pitch, is the most popular lithography solution for
the sub-22 nm node to enhance pattern printability. Previous
work focused on stitch insertion to improve the decomposition
success rate. However, there exist native conflicts (NCs) which
cannot be resolved by any kind of stitch insertion. A design
with NCs is not DPT-compliant and may fail the decomposition,
resulting in design for manufacturability redesign and longer
design cycles. In this paper, we give a sufficient condition
for the NC existence and propose a geometry-based method
for NC prediction to develop an early-stage analyzer for DPT
decomposability checking. Then, a wire perturbation algorithm
is presented to fix as many NCs in the layout as possible. The
algorithm is based on iterative 1-D compaction and can easily
be embedded into existing industrial compaction systems. The
algorithm is then further applied to further reduce the number
of stitches required for the decomposition process. Experimental
results show that the proposed algorithm can significantly reduce
the number of NCs by an average of 85% and reduce the number
of stitches by an average of 39%, which may effectively increase
the decomposition success rate for the next stage.

Index Terms—Compaction, double patterning technology,
lithography, native conflict, stitch minimization, wire
perturbation.

I. Introduction

F
OUNDRIES have been systematically reducing the

printed feature size (half pitch) for years. The main

challenges for this reduction can be seen from the Rayleigh

criterion [20]

Pmin

2
= k1

λ

NA

where Pmin denotes the minimum pitch, k1 denotes the process

difficulty factor, λ denotes the wavelength of the light, and NA
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is the numerical aperture. Currently, the 193 nm wavelength is

still the smallest wavelength used in semiconductor production

since the technology for extreme ultraviolet is continually

delayed. Also, with the highest feasible NA at 1.35 for water

immersion lithography, the theoretical limit of the k1 value

is 0.25. Therefore, the half pitch is limited to 36 nm, which

cannot satisfy the desired sub-22 nm technology nodes.

The most popular solution for sub-22 nm node is double

patterning technology (DPT) [1], [9], [17]. One of many

double patterning processes is called the litho-etch-litho-etch

process. The two exposures are executed on the same layer and

regarded as completely independent. Such a process enables

pitch relaxation and hence reduces the effective k1 factor.

To achieve pitch relaxation, DPT requires decomposition

of a dense layout pattern into two sparse patterns; i.e., two

features have to be assigned to different masks if the minimum

Euclidean distance between them is less than the minimum

double patterning spacing (DP-spacing). Note that the pitch

size is defined as the distance between the center axes of two

features; thus, the minimum pitch size is equivalent to the

following:

Pmin = Wmin + Smin

where Wmin denotes the minimum width and Smin denotes the

minimum spacing in a layout. Therefore, we define the DP-

spacing as 2Pmin −Wmin in this paper, as indicated in Fig. 1(a).

In addition, the DP-spacing can be regarded as a new spacing

rule for these two masks.

The DPT decomposition problem can be modeled as a two-

coloring problem. First, we construct a conflict graph, where

each vertex represents a feature in the layout and an edge

exists if the distance between these two corresponding features

is less than the DP-spacing. Then, we find a two-coloring

solution on the conflict graph, such that no edge connects

to two vertices of the same color. Finally, the features are

assigned to two masks according to their colors, i.e., each mask

contains all the features of the same color. Fig. 1 illustrates

a decomposition process. Five features with pitch distance

α are shown in Fig. 1(a), and the distance of each pair of

{(A, B), (B, C), (C, D), (A, E), (C, E)} is less than the DP-

spacing. Therefore, in the corresponding conflict graph, the

edges are introduced between the two vertices of the pairs, as

shown in Fig. 1(b). On the other hand, the distance between

A and C is not less than the DP-spacing, indicating these two

features can be assigned to the same mask. By finding a two-

coloring solution on the conflict graph, we can decompose the

0278-0070/$31.00 c© 2012 IEEE
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Fig. 1. Decomposition problem is modeled as a two-coloring problem.
(a) Five features with pitch distance of α. (b) Conflict graph and its two-
coloring solution. (c) By assigning A and C to Mask 1, and B, D, and E to
Mask 2, the pitch size is relaxed to 2α.

Fig. 2. Stitch insertion. (a) Conflict resulted from two neighboring features
being assigned to the same mask. (b) Conflict can be resolved by inserting a
stitch that splits the top feature into two parts.

layout into two partitions {A, C} and {B, D, E}, as illustrated

in Fig. 1(c).

However, not all the patterns can be directly decomposed

into two masks. In some cases, two neighboring features

within the DP-spacing might be in the same mask, which

is regarded as a conflict in the layout. In order to resolve

the conflict, stitch insertion which splits a feature pattern

into two parts to be manufactured with different masks can

resolve the conflict and thus further improve the decomposition

success rate. Fig. 2(a) illustrates a conflict resulted from two

neighboring features being assigned to the same mask. The

conflict can be resolved by inserting a stitch that splits the

top feature into two parts as shown in Fig. 2(b). Nevertheless,

stitch insertion may cause yield loss due to overlay errors [16].

Stitch minimization thus becomes an important issue in DPT.

Much previous work focuses on the layout decomposition

problem. Chiou et al. [4] proposed a rule-based approach

for pattern decomposition, which first pre-fragments the pat-

terns and then iteratively colors the polygons in a greedy

manner. Kahng et al. [15] presented a decomposition flow

with conflict graph construction, node splitting, and integer

linear programming (ILP) optimization. Also, due to the yield

loss causing from stitches, Yuan et al. [23] addressed on

simultaneous minimization of conflicts and stitches. Xu and

Chu [21] proposed an efficient matching-based decomposer

that addresses the same objective as [23]. Hsu et al. [12], [13]

proposed a simultaneous layout migration and decomposition

algorithm based on an ILP formulation. Recently, Yang et

al. [22] proposed an efficient layout decomposition framework

by using a graph-theoretical approach. They also extended

their work to contact layer decomposition and timing-driven

decomposition to reduce the timing variation due to overlay.

Yuan et al. [24] presented a wire spreading technique to

enhance layout decomposition. The work first identifies wire-

spreading candidates and then simultaneously minimizes the

number of conflicts and stitches with an ILP formulation.

At first glance, the DPT layout decomposition looks similar

to the phase assignment problem of alternating phase-shift

mask (Alt-PSM). The problem asks to find a set of phase

conflicts so that by removing them, we can ensure two-

colorable for its conflict graph. However, there are some differ-

ent characteristics between these two topics, so that the method

of Alt-PSM cannot be directly extended to the DPT domain.

We observe that the conflict graph used in DPT has a different

nature from that in Alt-PSM. The algorithms for finding a set

of phase conflicts that need to be removed heavily rely on the

dual graph of a planar embedding [2]. The work [21] claims

that the DPT conflict graph for a 2X (1.4X) pitch reduction is

planar based on the Manhattan (Euclidean) distance. However,

the DPT problem should be handled based on the Euclidean

distance due to the lithographic nature. Since DPT is a very

costly technology, a 1.4X pitch reduction is not economical.

(We observe that a conflict graph used in DPT based on

the Euclidean distance is not necessarily planar for 2X pitch

reduction.) Cho et al. also showed a limitation to extend

the method of Alt-PSM to the DPT domain: with the stitch

insertion, the vertices can be split and hence the corresponding

conflict graph might be changed dynamically [5], i.e., stitch

insertion provides more flexibility for handling the conflicts.

Nevertheless, the stitch insertion might not be powerful

enough for resolving all the conflicts. A conflict that cannot

be resolved by inserting stitches anywhere is called a native

conflict (NC). Some previous work pointed out the issue

of NCs. For example, from the results of decomposition,

Oosten et al. [18] found that NCs may occur, which prohibits

the existence of a DPT solution by any approach, even

manually. Chiou et al. [4] also stated that the unresolvable

conflicts require modifications in the design to achieve a DPT-

compliance design. Therefore, dealing with the NC problem

is a crucial part of implementing the DPT process. The

work [12], [13] first proposed a simultaneous layout migration

and decomposition algorithm based on an ILP formulation.

However, the ILP formulation is time-consuming, and thus

the algorithm can only handle circuits like standard cells

and cannot scale to very large-scale designs. In addition, the

algorithm used in [24] performs wire spreading to enhance

layout decomposability with an ILP formulation. However, the

method which only locally spreads conflict patterns might not

be effective in resolving NCs for a compact layout. Therefore,

a method to predict the occurrences of NCs and a more flexible

wire perturbation algorithm is desired.

In this paper, we deal with the NC issue by two stages:

1) NC prediction, which locates the positions of NCs, and

2) NC removal, which perturbs the layout to remove the NCs
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found in the previous stage. In detail, we give a sufficient

condition for the NC existence and propose a geometry-based

method for NC prediction to develop an early-stage analyzer

for DPT decomposability checking. Then, a wire perturbation

algorithm based on iterative 1-D compaction is presented

to fix as many NCs in the layout as possible. In addition

to NC minimization, we further extend our algorithm flow

to minimize required stitches for layout decomposition by

reusing the wire perturbation technique. We summarize the

major features of the proposed prediction method and wire

perturbation algorithm as follows.

1) Our NC prediction method is based on the geometry

relation of patterns. It does not rely on an explicit

coloring; hence, the running time of prediction can be

improved.

2) The proposed NC-aware wire perturbation algorithm

based on an iterative 1-D compaction method could

efficiently enhance the decomposability and effectively

resolve NCs of a layout, which remedies the deficiencies

of the previous ILP-based algorithms.

3) The proposed algorithm flow can be extended to further

reduce the number of stitches required for layout de-

composition, which shows the flexibility of the use of

the compaction method.

4) Experimental results show that the proposed wire per-

turbation algorithm significantly reduces the number

of NCs by an average of 85% and the number of

stitches by an average of 39%, which may increase the

decomposition success rate for the next stage.

The remainder of this paper is organized as follows. Sec-

tion II provides preliminaries on DPT. Section III proposes

an NC-prediction method. Sections IV and V present wire

perturbation algorithms to minimize the number of NCs and

the number of stitches in the layout, respectively. Experimental

results are shown in Section VI, and conclusions are given in

Section VII.

II. Preliminaries

Some preliminaries on DPT are provided in this section.

Section II-A gives an example of the occurrence of NCs. Then,

a DPT-compliance redesign that can remove NCs is introduced

in Section II-B. Finally, the overall problem formulation is

stated in Section II-C.

A. Native Conflict

Some layout patterns cannot be directly decomposed into

two masks, as the layout shown in Fig. 3(a). To prove it, we

first give some definitions and then show that there is no two-

coloring solution for the conflict graph of this layout.

Definition 1: An odd cycle is a cycle with odd number of

edges.

It is well-known that a graph with an odd cycle does not

have a two-coloring solution, and thus a layout cannot be

decomposed into two masks if there is an odd cycle in its

corresponding conflict graph [15].

To resolve the odd cycles and improve the decomposition

success rate, we can apply stitch insertion. A stitch can split a

Fig. 3. Challenges in decomposition. (a) Layout cannot be directly decom-
posed into two masks since there is an odd cycle in its conflict graph.
(b) Resolve the odd cycle by stitch insertion, which is regarded as a vertex
splitting operation on the conflict graph. (c) Moving the wire A downward
causes the stitch insertion failing to resolve the odd cycle in this layout.
(d) Odd cycle from arbitrarily small point regions, R1, R2, and R3, cannot be
resolved by any kind of stitch insertion, indicating the existence of NCs.

feature into two parts, and the corresponding vertex in the

conflict graph is also split into two vertices. As shown in

Fig. 3(b), a stitch is inserted on A and split the feature into A1

and A2; hence, the odd cycle in the conflict graph is eliminated,

and the layout can be decomposed into two masks.

Assume that the wire A in Fig. 3(a) is moved downward

as illustrated in Fig. 3(c), and the same stitch is also inserted

on wire A to attempt to break the odd cycle. However, after

splitting A into A1 and A2, the distance between features A1

and C is still less than the DP-spacing. Thus, the new odd

cycle < A1, B, C > forms in the conflict graph. Also, the

same situation occurs for features A2 and B. The combination

of these two situations indicates that the original odd cycle

< A, B, C > is unresolvable.

The reason for the existence of unresolvable odd cycle <

A, B, C > is explained in Fig. 3(d). Considering three point

regions R1, R2, and R3 on wires A, B, and C, respectively,

and a point region is regarded as an arbitrarily small region.

We found that any position in R1 is within the DP-spacing

from R2 or R3. Therefore, even we split R1 into two parts,

each of these two parts still forms an odd cycle with R2 and

R3. As a result, it is impossible to break this odd cycle by

stitch insertion, and the conflict is “native” in the layout. The

NC is defined as follows:

Definition 2: A NC is a conflict that must exist in the

layout, and the conflict cannot be resolved by any kinds of

decomposition methods even with stitches.

From the discussion above, we know that the cause of

a NC is an odd cycle forming by the neighboring point

regions within the DP-spacing on different wires. However,

predicting the odd cycle is not easy since there could be many

combinations for selecting those point regions. Therefore,

developing a systematic prediction method is desirable. We

show that it can be achieved by a pattern projection and an

odd cycle detection approach.

B. DPT-Compliant Redesign

A NC can only be resolved by DPT-compliant redesign.

Fig. 4 illustrates a wire perturbation solution for NCs. The
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Fig. 4. NC can only be resolved by DPT-compliant redesign. By moving the
wire w1 leftward, and separating wires w2 and w4, the odd cycle is eliminated.

Fig. 5. Example showing a conflict graph used in DPT is not necessarily a
planar graph.

wires w2, w3, and w4 are on the metal-1 layer and form a NC,

due to their neighboring endpoints. To overcome this NC, the

wire w1 on the metal-2 layer is moved leftward. Thus, the odd

cycle is eliminated because the right end of w2 is shortened

and separated from w4.

One of the most important stages for DPT-compliant re-

design is identifying real NCs from all the odd cycles since the

others can be removed in the decomposition process. That is,

DPT-compliant redesign should first predict the occurrence and

the locations of NCs, and then further correct them. Therefore,

an analyzer for NC prediction is desirable and crucial for

developing a true DPT-friendly design.

As mentioned in Section I, there are some limitations to

extend the methods of Alt-PSM to the DPT domain. One is

the flexibility provided by stitch insertion for DPT. Another is

that the conflict graph used in DPT may not be planar (based

on the Euclidean distance), different from that in Alt-PSM. We

show the fact with the following example shown in Fig. 5. In

this example, we assume that the DP-spacing is 2Pmin − Wmin

as defined in Section I. Fig. 5 shows that five features lie on

the corners of a pentagon with the minimum pitch size being

1. There are totally two kinds of pitch sizes in the layout, 1 and
1+

√
5

2
. Both of them are smaller than 2 (twice of the minimum

pitch size). Therefore, if we construct the conflict graph, it will

form a K5 (the complete graph with five vertices). A graph

with a K5 is known not planar.

C. Problem Formulation

In this paper, we develop a DPT-compliant redesign system

by wire perturbation. The problem can be defined as follows.

Given a postrouting layout, the minimum spacing, and the DP-

spacing, finds a perturbed layout so that the number of NCs

Fig. 6. Stitch candidate positions can be determined by projection from wire
w1 to its neighboring wires. For example, the intersection point on w2 is a
candidate position since it splits the wires into two regions, R1 and R2, where
one region is within DP-spacing from w1, and another is not.

and the number of stitches required for layout decomposition

are minimized, subject to the minimum-spacing rule and the

double-patterning constraint. In addition, the locations of pins

should not be changed and the layout boundary should not be

enlarged after the perturbation.

In order to minimize the number of NCs in the layout,

two steps are necessary. One is a method for prediction and

measurement of NCs, and another is perturbation algorithm

that can modify the layout to remove them. These two steps

are described in Sections III and IV, respectively. Also, the

extended wire perturbation technique for stitch minimization

is presented in Section V.

III. NC Prediction

In this section, we propose a geometry-based method for

NC prediction, which assists the DPT-compliant redesign in

the later stage. As discussed in Section II, an odd cycle

in the conflict graph is not necessarily a NC because of

the possible solution by stitch insertion. Therefore, to utilize

the capability of stitch insertion, the prediction method first

exploits the set of stitch candidate positions by pattern pro-

jection. It guarantees that the optimal stitch combination with

the fewest conflicts is within this set. That implies that the

results found by our prediction method are indeed NCs since

we have already considered the possibility of resolving them.

Then, based on the projection results, a segmentation stage is

performed to split a feature into several tiles, and a sufficient

condition for the NC existence is stated that the NCs can be

examined by finding the odd cycles on the tile conflict graph,

which is different from the previous feature conflict graph.

Finally, an odd cycle detection algorithm is given to locate

the NCs.

A. Pattern Projection

The set of stitch candidate positions is found by pattern

projection, which is a similar process used in some previous

works [9], [15]. Fig. 6 illustrates the projection process.

Considering the wire w1, its neighboring wires can be split

into several parts according to the conflict relation with w1.

For example, the wire w2 is split into two regions, R1 and

R2, where R1 conflicts with w1 and cannot be assigned to the
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Fig. 7. Algorithm of pattern projection to horizontal wires.

same color, while R2 is not. Accordingly, the position that

splits the wire w2 is considered as a stitch candidate position.

The method is detailed as follows. We draw a line with its

length equal to the DP-spacing from the corners and edges of

w1. The intersections of the lines and the neighboring wires are

the candidate positions. Also, each split part belongs to one of

these two categories: 1) within the DP-spacing from w1, and

2) out of the DP-spacing from w1. Notice that the projection

is performed only once since the positions obtained by the

projection from the first-time stitches are not needed for odd

cycle minimization. (The first-time stitches are the positions

determined by our projection method, and the positions that

can be projected from the first-time stitches are referred to as

the second-time stitches.)

The algorithm of pattern projection from wires to their

neighboring horizontal wires is summarized in Fig. 7. The

algorithm for the projection to vertical wires is similar. In the

algorithm, a wire w1 is first selected. Then, we consider all

the other wires w2 within the DP-spacing from w1. Finally,

two stitch positions are computed and added if they are valid

for w2. Note that for bent polygons, we first segment them

into horizontal and vertical wires, and then perform pattern

projection.

We have the following theorem for the set of stitch candidate

positions found by the pattern projection.

Theorem 1: There exists an optimal stitch combination

within the set of stitch candidate positions generated from the

algorithm in Fig. 7 that introduces the fewest conflicts.

Proof: As shown in Fig. 8(a), the set of stitch candidate

positions is {A, B}. Assume that in the optimal solution, there

is a stitch C between A and B, and C is not contained in the

set. There must be one of the following two cases.

1) Case A: If the color of the region R3 can be the same as

one of R4, C can be replaced by A or B without causing

any conflicts. Therefore, an optimal stitch combination

can be found within the set {A, B}, and thus adding C

is redundant.

2) Case B: If the color of the region R3 cannot be the

same as one of R4, it implies that there must be a

region R1 which conflicts with R3, but not R4, or vice

Fig. 8. Set of stitch candidate positions computed by pattern projection is
optimal for conflict minimization. (a) Additional stitch C between A and B

must be projected from a region R1. Therefore, C is in the candidate set. (b)
Position projected from a stitch is not helpful for resolving the conflict. Even
with stitches C, R3 still conflicts with R1 and R2. Therefore, removing the
stitch C also keeps the same conflict configuration.

Fig. 9. Differences between feature conflict graph and tile conflict graph.
(a) Feature conflict graph with two odd cycles. (b) After projection, wires are
split into several tiles and form a tile conflict graph. Only the top odd cycle
incurs a NC.

versa. Therefore, C must lie in the position that can be

projected from the edge of a region R1, and that edge

must be a wire boundary or a first-time stitch.

a) Case B1: If the edge is a wire boundary, as in

Fig. 8(a), the position C will be marked when the

projection is applied from this wire boundary to

its neighboring wires. Thus, this case violates our

assumption that C is not contained in the set of

stitch candidate positions.

b) Case B2: If the edge is a first-time stitch D, as

in Fig. 8(b), the colors R1 and R2 are different.

Therefore, R3 is both within the DP-spacing from

R1 and R2, and it must cause one conflict. Thus,

it means that C is not helpful in resolving the

conflicts and odd cycles, and we can remove C

and keep the same conflict configuration.

B. Segmentation

After the pattern projection, a wire is split into several parts.

We refer to the part on a wire as a tile in the remainder of

this paper.

Definition 3: A tile is a region on a wire enclosed by two

neighboring stitches or a boundary edge of a wire with its

neighboring stitch.
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Then, a tile conflict graph is constructed. Different from

the feature conflict graph, each tile is represented by a vertex

in the graph, and an edge exists if two tiles from two

different features are within the DP-spacing. Fig. 9(a) shows a

feature conflict graph. After segmentation, the results and its

corresponding tile conflict graph are shown in Fig. 9(b).

C. Condition of NC Existence

Based on the tile conflict graph, a sufficient condition of

NC existence is stated as follows.

Theorem 2: Every odd cycle on the tile conflict graph is a

NC.

Proof: From Theorem 1, the set of stitch positions ob-

tained by pattern projection is optimal for minimizing the

number of conflicts. It means that inserting any stitches to

split tiles will not further reduce the number of odd cycles in

its conflict graph. In other words, the odd cycles on the tile

conflict graph cannot be resolved by stitch insertion, and they

are indeed NCs.

Fig. 9(a) shows a feature conflict graph with two odd cycles.

However, after segmentation and the construction of the tile

conflict graph as shown in Fig. 9(b), only the top odd cycle is

detected as a NC, which indeed cannot be resolved by stitch

insertion.

D. Odd Cycle Detection

An odd cycle in the tile conflict graph indicates that there

is a NC in the layout. The existence of odd cycles can be

determined by a DFS algorithm. However, we still need to

know how many odd cycles are in the layout to measure the

level of DPT-friendly for a design. Unfortunately, the total

number of odd cycles in a graph could be exponential. Thus,

finding all the odd cycles is time-consuming. Therefore, an

easy-to-compute metric is desired. We show that the number of

odd cycles in a cycle basis, which is a well-known concept [7],

is good enough for guiding our perturbation system since we

can achieve odd cycle free by making the number of odd cycles

in cycle basis zero.

Definition 4: A basis is a set of vectors that, in a linear

combination, can represent every vector in a given vector

space. In addition, no element of the set can be represented

as a linear combination of the others. In other words, a basis

is a linearly independent spanning set.

Definition 5: A cycle basis is a basis if we treat every

cycle as a vector represented by a series of edges, and the

linear combination of cycles is a ring sum operation of cycles.

Then the basis form a linearly independent spanning set for

all cycles.

Definition 6: Let the edges in the cycles C1 and C2 be sets

E1 and E2, respectively. A ring sum operation on C1 and C2

is denoted as C1 ⊕ C2, which is a cycle with its edge being a

set, (Ē1 ∩ E2) ∪ (E1 ∩ Ē2) (symmetric difference).

Definition 7: A ring sum operation on cycles

C1, C2, . . . , Cn is denoted as
⊕

{C1, C2, . . . , Cn}, which

equals ((C1 ⊕ C2) ⊕ . . . ) ⊕ Cn. The operation is commutative

and associative.

Fig. 10 illustrates the cycle basis and the ring sum operation.

There are totally three cycles in the graph, < A, B, C >, <

Fig. 10. Cycle basis and ring sum operation. (a) There are totally three cycles
in the graph, < A, B, C >, < A, C, D >, and < A, B, C, D >. (b) Any two
cycles consist of a cycle basis, since the remaining one cycle can be obtained
by performing the ring sum operation on those two cycles in the basis.

Fig. 11. Algorithm of finding the cycle basis.

A, C, D >, and < A, B, C, D >. Any two cycles consist of a

cycle basis, since the remaining one cycle can be obtained by

performing the ring sum operation on those two cycles in the

basis.

Cycle basis of a graph can be found by applying a modified

DFS algorithm [6], [19]. For a connected graph G = (V, E), the

result of DFS traversal forms a spanning tree T on V . Inserting

any other edge e ∈ (E − T ) causes a cycle. Therefore, there

exists a cycle basis consisting of those cycles, since every

cycle has an edge (the edge we inserted) that is not contained

in other cycles, and hence the cycle cannot be generated by a

linear combination of others. Fig. 11 shows an algorithm for

finding the cycle basis.

The number of odd cycles and that of odd cycles in cycle

basis are in a positive correlation. Furthermore, the following

theorem states that we can achieve odd cycle free by making

the number of odd cycles in cycle basis zero.

Theorem 3: If there is no odd cycle in the cycle basis of a

graph, then the graph contains no odd cycle.

Proof: Assume that there are two cycles, A and B, with

the lengths of la and lb, respectively. Then, the new cycle

C = A ⊕ B must be with the length of la + lb − 2k, where k

is an integer. Therefore, if there is no odd cycle in the cycle

basis, all the cycles spanned by the cycle basis must be with

the length of an even number.

With Theorem 3 and the fact that the number of odd

cycles and that of odd cycles in cycle basis are in a positive

correlation, the number of odd cycles is approximated by that

of odd cycles in cycle basis. Note that the computation can be
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Fig. 12. Compaction approach is suitable for NC-aware wire perturbation
problem since it can globally redistribute the spacing between patterns. (a) NC
caused by the end points of wires w2, w3, and w4. However, it is impossible
to resolve this conflict by moving the wire w1 or w5. (b) Performing the x-
directional compaction releases the resources that make the wire w5 could be
moved right more. (c) After moving wire w5 rightward, the NC is resolved.

done by a modified DFS algorithm; thus it is both effective

and efficient.

IV. NC-Aware Wire Perturbation

Pattern decomposition for the metal layer is one of the most

challenging problems, due to the complex 2-D metal design.

The complex layout patterns might cause a large number of

NCs that cannot be resolved. Therefore, it is desirable to

incorporate the DPT-compliant issue into the current design

flow. In this section, we propose a wire perturbation algorithm

on metal layers to convert a layout into a decomposable

one. The perturbation algorithm is based on iterative 1-D

compaction and can easily be embedded into an existing

industrial compaction system.

The compaction approach is suitable for this problem since

it can globally redistribute the spacing between patterns to

intelligently handle the minimum-spacing constraint and dou-

ble patterning constraint. Fig. 12 illustrates an example of

its power. In Fig. 12(a), there is a NC caused by the end

points of wires w2, w3, and w4. To resolve this conflict, the

wire w1 should be separated from the wire w5. However, the

wire w1 cannot be moved leftward or rightward; otherwise,

it violates the spacing rule. For another choice, w5, although

it can be moved rightward, the spacing is still not enough

for separating w2 and w4. Considering performing the x-

directional compaction as Fig. 12(b), all the vertical wires

on metal-2 layer are moved left as much as possible. The

resources are now released, and w5 has the capability to move

right. Then, we separate w2 and w4 by moving w5 rightward

as shown in Fig. 12(c). Finally, the NC is resolved.

The objective of the proposed wire perturbation algorithm

is to fix as many NCs in the layout as possible. The number

of NCs is measured by the number of odd cycles in the cycle

basis of the tile conflict graph of the layout. (We use the term

Fig. 13. Overall flow for our NC-aware wire perturbation algorithm.

Fig. 14. Symbolic layout representation is used in our compaction system.
Each wire is represented by two points. The wire w1(P3, P4) is on the metal-2
layer, while w2(P1, P2), w3(P5, P6), and w4(P7, P8) are on the metal-1 layer.
In addition, there are two vias, (P2, P3) and (P5, P4).

odd cycle basis to indicate odd cycles in the cycle basis.) We

have shown that this number is a significant metric and can

be computed by a linear-time DFS algorithm; thus, it can

effectively and efficiently guide our perturbation algorithm.

The overall flow of our perturbation algorithm is depicted in

Fig. 13. Given a postrouting layout, we first construct its sym-

bolic representation, which is the fundamental data structure in

our system for representing a layout and is appropriate for the

operations of perturbations. Then, a decomposability checking

described in Section III is performed to detect the NCs in the

layout. We then use a 1-D compaction-like approach to resolve

the NCs we found. In each compaction process, we adjust

the distances between wires on one dimension such that the

number of odd cycles can be reduced as many as possible.

Each step is detailed in the following sections.

A. Symbolic Layout Representation

In order to maintain the connections through vias, some

wires should be shortened or stretched when others are moved.

Therefore, the symbolic layout representation is used in our

compaction system. As shown in Fig. 14, every wire (via) is

represented by two points. (Note that in the routing result of

DEF format, L, U, T, W shape wires are represented by a

series of rectangular wires.) The operation of moving a wire

is achieved by moving the points. For example, if we move
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four points (P2, P3, P4, P5) of two vias leftward, the wire w1 is

moved leftward automatically since its location is recomputed

according to P3 and P4. Also, the left end of the wire w3 is

stretched and the right end of the wire w2 is shortened. With

the symbolic representation, we can perform the compaction

across layers simultaneously.

B. DPT-Compliance Checking

We implement the NC prediction method described in

Section III. The flow for DPT-compliance checking is depicted

in Fig. 13. First, the pattern projection is performed to exploit

the set of stitch candidate positions. After that the features

are segmented to several tiles according to the stitch positions

on each feature. Then, we construct a tile conflict graph, and

detect the odd cycles on the graph. Finally, the number of

odd cycle in cycle basis is reported to measure the level of

DPT-compliance of the layout.

C. Wire Perturbation

Fig. 13 shows a flow for resolving the NCs by x/y-

directional wire perturbation. We use x-direction here to

describe the main idea of flow. First, we compact the layout

along the x-direction, and then perform the DPT-compliance

checking method to find the locations of NCs. Every NC con-

sists of an odd cycle. By separating two corresponding wires

for an edge, the odd cycle can be eliminated. Thus, for all the

odd cycles, the DPT constraints that model these separating

operations are generated. Then, we add the constraints into

our compaction system, and perform a trial compaction to see

whether the level of DPT-compliance is improved. The trial

compaction is an incremental approach, i.e., we just consider

the new constraint’s effect on the current result. Therefore, by

implementing an event-driven approach, and propagating from

the new constraint, the running time of this trial compaction

can be speeded up. After the trial compaction, the DPT

constraint is permanently added into the system if it makes

a better decomposability. Otherwise, all locations of wires

are restored. Then, we move to the next DPT constraint, and

consider its effect in the same manner.

The detailed method for the DPT constraint generation is

described as follows. We enumerate the separating wire pairs

that can resolve the odd cycles and perturb the layout by sepa-

rating the most beneficial wire pair, which can resolve several

odd cycles at a time. The separating operation is modeled as

an edge in a constraint graph used in the compaction system;

hence, it is easy to incorporate our NC-aware perturbation into

an existing industrial compactor.

In order to perform this wire perturbation method, two core

parts, compaction algorithm and DPT constraint generation,

are needed. We describe them in Sections IV-D and IV-E,

respectively.

D. Compaction

As in most existing work [10], the compaction problem is

modeled as a longest-path problem on the constraint graph,

which records the topology information of a layout and the

minimum allowable distance between two wires. The longest-

path distance from a super source to each wire is the new

Fig. 15. Three types of constraints are modeled as an edge in the point
constraint graph. (a) Design-rule constraint that ensures the minimum spacing
between w1 and w2. (b) Wire-shape constraint that keeps the wire w3 being
horizontal. (c) Fixed-pin constraint that ensures the pin location not be
changed during the perturbation.

location for that wire after compaction. In our compaction

system, the positions of points are adjusted, and then the wires

are reconstructed from the locations of points to which they

connect. Therefore, a point constraint graph is needed. We first

generate a wire constraint graph and use the graph and the

nature of layout to help us build the desired point constraint

graph. Note that to maintain the correct topology of a final

layout in our compaction system, we need to simultaneously

consider all patterns on the same layer instead of separately

considering patterns on two masks after decomposition.

1) Wire Constraint Graph Construction: In this stage, a

wire-to-wire constraint graph is constructed. We use the x-

directional constraint graph to describe the main idea. (The

construction for the y-directional constraint graph is similar.)

The graph is a directed graph, where each vertex represents a

wire in the layout, and an edge from u to v or (u, v) indicates

that the wire u is on the left of v. Thus, the topology relation

of wires can be recorded in the constraint graph. Note that the

layout boundary is modeled as four wires, left-most, right-

most, top-most, and bottom-most, to measure the area change

after the layout compaction.

To reduce the size of the constraint graph (e.g., the number

of edges) without loss of information, the transitive edges

in the graph can be removed. In other words, if there are

two edges (u, v) and (v, w), then the transitive edge (u, w) is

redundant. Doenhardt and Lengauer [8] proposed a O(n lg n)-

time algorithm for generating nonredundant constraint graph

by using perpendicular sweep lines.

2) Point Constraint Graph Construction: The topology

relation of points is recorded in the point constraint graph.

Similar to wire constraint graph, the edge (u, v) with its weight

w indicates that the point v should be on the right of point

u, and the distance between them should be at least w. (A

negative weight means that v is on the right of u.)

According to the nature of layout, there are four types of

constraints: 1) design-rule constraint; 2) wire-shape constraint;

3) fixed-pin constraint; and 4) layout-boundary constraint.

Below, we describe how to embed these four constraints in

the graph, see Fig. 15 for an illustration.

a) Design-rule constraint: The distance between any two

nontouching wires in the same layer should be larger

than a given value, the minimum spacing. The con-

straints are read from the wire constraint graph, i.e., any
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edge in the wire constraint graph is converted to edges in

the point constraint graph. Although there are four points

for two wires, we only need to add one edge in the point

constraint graph. Fig. 15(a) shows a wire w1 on the left

of wire w2. Then, we just add an edge from the top/right

point of w1 to the bottom/left point of w2 and set the

weight as the minimum spacing. Note that the values

of the minimum spacing differ for side-to-side, side-to-

line-end, and line-end to line-end spacing. In addition, if

there are two or more constraints of different types (e.g.,

side-to-side and side-to-line-end) between two points, all

constraints need to be satisfied simultaneously.

b) Wire-shape constraint: The wires should maintain their

horizontal or vertical shapes and also the via property

during the compaction. Fig. 15(b) shows a horizontal

wire w3 which connects to two points, u and v (u is

the left one). This wire should always be horizontal,

i.e., the x-coordinate of v must be larger than the one

of u, and the y-coordinates of u and v should be the

same. Therefore, we add the edge (u, v) and two edges

(u, v), (v, u) in the x-directional and y-directional point

constraint graphs, respectively (all with weight 0). Note

that we treat each via as a wire, and convert it to the

constraints. Both the x and y-coordinate of two end

points of a via should be the same, so that the upper layer

and lower layer could be aligned correctly during the

compaction. That means our method can simultaneously

perform the compaction on all layers, and maintain the

connection through vias.

c) Fixed-pin constraint: The locations of pins should not

be changed during the perturbation. Fig. 15(c) shows a

pin point u located at (x, y). Then, to model the fixed-

location property, the edge from the super source s to

u with weight x, and a backward edge from u to s

with weight −x are added into our x-directional point

constraint graph. The process for the y-directional point

constraint graph is the same.

d) Layout-boundary constraint: The layout boundary

should not be enlarged after compaction. Therefore, we

modeled the layout boundary as four wires and maintain

their topology relationship with other wires. Then, we

just treat every endpoint of these four wires as a pin

point and apply the fix-pin constraint. Note that the

minimum distance between other wires and boundary

wires is set to zero instead of the minimum design-rule

spacing. By the above setting, it ensures that the actual

layout boundary may only be only be smaller but not

larger.

Fig. 16 illustrates the final point constraint graph for Fig. 14.

Note that for ease of implementing the longest-path algorithm

to compute the new locations after compaction, the edges are

classified into two groups: 1) forward edges, and 2) backward

edges. The backward edges are marked with dashed lines in

the figure.

3) Longest-Path Algorithm: After the construction of the

point constraint graph, the longest-path algorithm is performed

to compute the location of each point. The translations of

Fig. 16. Overall point constraint graph for Fig. 14. The edges with dashed
lines are backward edges.

Fig. 17. Separating wire pairs generation. (a) Three tiles t2, t3, and t4 on
wires w2, w3, and w4, respectively, forms an odd cycle. The cycle can be
broken by separating (w2, w3), (w2, w4), or (w3, w4). (b) Wire pairs solution
table. The number denotes the occurrence of the pair since one pair may be
added several times by different odd cycles. The higher the value indicates
the higher potential to resolve the odd cycle by breaking that edge.

wire-shape constraints and fixed-pin constraints may introduce

some backward edges, which incurs cycles in the graph.

Therefore, we perform the algorithm which can handle cycles

to compute the location of each point (Bellman–Ford or

Liao–Wong [10]). If there is no feasible solution, the set of

constraints is mutually conflicting, and thus it is impossible to

obtain a desired layout.

E. DPT Constraint Generation

DPT constraints are the additional constraint edges in the

point constraint graph that can help the compaction system

further relax the DPT hotspots. We first generate a set of

candidate separating wire pairs from the tile conflict graph.

Each wire pair corresponds to one edge in the odd cycle. By

separating these two wires, the edge in the conflict graph can

be broken. Then, the wire pairs are translated into edges in

the point constraint graph so that they can be inserted into the

graph, hence guiding the compaction system.

1) Separating Wire Pairs Generation: After compaction

and DPT-compliance checking, the odd cycles on the tile

conflict graph are reported. To relax the conflict between two

tiles, the wire pairs formed by the edges corresponding to one

of the edges in the odd cycle should be separated. Notice that

for a corner tile, it corresponds to two wires, the horizontal

one and the vertical one. Both of them can be adjusted to

resolve the conflict between tiles.

Fig. 17(a) illustrates how the candidate separating wire pairs

are generated. There is an odd cycle formed by the tiles t2, t3,

and t4 on the tile conflict graph. The cycle can be eliminated

by breaking any one of its edges. Thus, according to the

corresponding wires for these tiles, we have three possible

wire pairs that can be separated to break the conflict edges,

(w2, w3), (w2, w4), and (w3, w4). Then, we enumerate all these
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Fig. 18. Breaking edge (B, C) can only resolve odd cycle 1. Choosing the
common pairs (A, B) or (A, C) can resolve two cycles at a time.

Fig. 19. Separating the wires w1 and w2 can be achieved by adding
several kinds of point constraint edges according to their topologies. (a)–
(c) Topologies that can be resolved by x-directional compaction. (d)–(f)
Topologies that can be resolved by the y-directional compaction.

kinds of separating wire pairs from the odd cycles in the graph,

and record them in a wire pair solution table. The occurrence

of each wire pair is also recorded since it may be added several

times by different cycles. Fig. 17(b) shows a solution table for

the wire pairs generated from Fig. 17(a).

Wire pairs in the solution table are sorted by their oc-

currence, since it is a significant index for their potential

to resolve the odd cycles. For example, in Fig. 18, there

are totally two odd cycles in the graph. To resolve the odd

cycle 1, < A, B, C >, we can break any one of three edges.

However, if the edge (B, C) is selected by us, even the odd

cycle 1 is eliminated, the odd cycle 2, < A, B, D, E, C > still

exists. It needs to break one more edge to make the layout

decomposable. With the information of occurrence, we found

that the pair (A, B) and pair (A, C) are added twice, and they

are the common separating wire pairs for odd cycles 1 and

2. Therefore, if we separate wire A from B, two odd cycles

can be resolved at a time. In this stage, the wire pair with

high occurrence is chosen first, i.e., the most beneficial pair is

considered.

2) DPT Point Constraint Edge: In this stage, the selected

separating wire pair is translated into an edge in the point

constraint graph so that it can be inserted into our compaction

system. Based on the topology relation for the two wires, there

are several kinds of solutions to separate them. Fig. 19 illus-

trates the topologies and their corresponding point constraint

Fig. 20. Methods to resolve odd cycles formed by features. (a) Three
patterns conflicting with each other and the corresponding feature conflict
graph. (b) Inserting a stitch can resolve the conflict. (c) By perturbing the
feature B, the conflict can be resolved without inserting a stitch.

edges. Without loss of generality, we assume that w1 is a

horizontal wire and w2 is a vertical wire, and we are going to

separate them. Fig. 19(a)–(c) shows three kinds of topologies

that can be resolved by the x-directional compaction, and the

cases that can be resolved by the y-direction is shown in

Fig. 19(d)–(f). In detail, w1 and w2 in Fig. 19(a) are in a left-

right relation; hence in order to separate them, we should move

w2 rightward by adding the edge (P2, P3) in the x-directional

point constraint graph. For the cases that w2 is on the top-right

of w1 shown in Fig. 19(b) and (e), we have two solutions to

separate them, moving w2 rightward or upward. The operation

can be achieved by adding an edge from P2 to P3 in the x-

directional or y-directional point constraint graphs. Fig. 19(d)

and Fig. 19(c) and (f) show the respective remaining cases for

w1 on the bottom of w2 and w1 on the top-left of w2. For both

cases, we can separate two wires by adding the edge into the

appropriate point constraint graphs.

V. Stitch Minimization with Wire Perturbation

To reduce the yield loss due to overlay errors, the second

objective of DPT-compliant redesign is minimizing the number

of inserted stitches. Therefore, after optimizing the number of

NCs in a layout, we utilize the wire perturbation technique

to further minimize the number of stitches required for layout

decomposition.

Fig. 20(a) shows three features conflicting with each other

and the corresponding feature conflict graph. Traditionally, the

conflict can be solved by traversing the conflict graph, finding

the odd cycle indicating a conflict, and then breaking the odd

cycle by splitting an appropriate node, which is equivalent to

inserting a stitch on the corresponding feature, as illustrated in

Fig. 20(b). However, the wire perturbation technique provides

an opportunity to resolve conflicts without inserting stitches.

As shown in Fig. 20(c), the conflict formed by the three

features is resolved by simply moving down the feature B.

Thus, we reuse the wire perturbation framework proposed

for NC minimization to reduce as many required stitches for

layout decomposition as possible.
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Fig. 21. Flow of stitch minimization with the wire perturbation technique.

Fig. 22. Conflict elimination with the wire perturbation technique. (a) Re-
solving the conflict between A and B by moving the horizontal wire of B
downward. (b) Resolving the conflict between A and B by moving the vertical
wire of B rightward.

A. Stitch Minimization Flow

Fig. 21 shows the algorithm flow of stitch minimization

with the wire perturbation technique, which is modified from

the NC-aware wire perturbation algorithm flow proposed in

Section IV. Instead of performing pattern projection and

segmentation beforehand, we directly construct the feature

conflict graph for a layout with the minimum number of

NCs. After that, odd cycle detection is performed to find the

locations where stitch insertion is needed. Note that we only

target the odd cycles that are not NCs since the odd cycles

of NCs have been shown that they cannot be resolved by this

iterative compaction approach. For a non-NC odd cycle, we

perturb its corresponding features by X/Y compaction. DPT-

compliance checking is required for each successful odd cycle

elimination because it is undesired that the number of stitches

is reduced but the number of NCs increases.

B. Stitch Constraint Generation

For a detected odd cycle in a feature conflict graph, the

feature pairs corresponding to the edges of the odd cycle

are examined as described in Section IV-E1. We also keep a

feature pair solution table to record the occurrences of feature

pairs, and try to separate the features of a feature pair with

the highest frequency of its occurrences. Instead of moving

a whole feature as shown in Fig. 20(c), we may just adjust

a part of a feature to resolve conflicts, which may make

the wire perturbation technique more flexible. As shown in

Fig. 22, to resolve the odd cycle formed by the features A,

B, and C, we try to separate the feature B from the feature

A. This can be achieved by moving the horizontal wire of the

TABLE I

Statistics of the ISCAS-89 Circuits

Design Cells Layers Nets Wires Tiles Conflict Points Constraint
Edges Edges

s27 19 3 26 174 116 52 200 1158

s208−1 73 5 86 851 586 227 946 5946

s298 141 4 147 1623 1075 385 1783 11 555

s344 132 4 144 1695 1189 470 1849 12 069

s349 123 4 135 1466 937 269 1620 10 450

s382 159 6 165 1956 1273 375 2143 13 987

s386 167 4 177 1908 1398 523 2105 13 886

s400 163 5 169 1985 1520 669 2182 14 489

s420−1 187 5 208 2360 1493 461 2587 16 771

s444 162 5 168 1897 1376 579 2087 13 867

s510 256 5 278 3132 2563 1270 3437 23 494

s526 237 4 243 2729 2261 1065 2994 20 782

s526n 228 4 234 2822 2183 1026 3080 20 681

s641 193 6 231 2450 1621 449 2693 17 700

s713 192 6 230 2262 1546 527 2502 16 383

s820 351 6 372 4513 3393 1410 4919 33 497

s832 333 6 354 4512 3583 1669 4913 33 408

s838−1 367 5 404 4554 3431 1626 4994 33 888

s1196 483 5 500 7051 5473 2504 7608 52 357

s1238 586 5 603 7866 6745 3829 8528 59 982

s1423 607 4 627 7837 6031 2359 8549 61 190

s1488 636 6 647 9287 7847 4155 10 012 69 851

s1494 643 5 654 9240 7607 3786 9970 70 163

s5378 1294 6 1336 17361 12 455 4272 18 841 133 850

s9234−1 974 6 1016 12 414 8043 2109 13 539 94 713

s13207 1219 6 1313 16 214 10 196 2717 17 556 122 742

s15850 685 6 766 8277 4963 848 9057 62 671

Cells: number of standard cells. Layers: number of routing layers. Nets:
number of nets. Wires: number of wires (each net consists of several wire
segments). Tiles: number of tiles after segmentation. Conflict Edges: number
of edges in the tile conflict graph. Points: number of points in our symbolic
layout representation. Constraint Edges: number of edges in the point
constraint graphs.

feature B downward or by shifting the vertical wire rightward,

as illustrated in Fig. 22(a) and (b). In addition, successive

movements of wires of a feature may increase the success

rate of conflict elimination.

VI. Experimental Results

The proposed wire perturbation algorithm was implemented

in the C++ programming language on a 2 GHz Linux machine

with 8 GB memory. The ISCAS-89 circuits from the IWLS

benchmark [14] are used to evaluate our algorithm. To obtain

the layout, the circuits were scaled down for 45 nm technology,

and were placed and routed by Cadence SoC Encounter. Then,

the wire information was stored in a DEF file as the input

to our perturbation system. In addition, for the circuits, the

minimum width was equal to the minimum spacing. Thus,

the DP-spacing was set accordingly in the layout. The overlap

margin was set to be 20% of the minimum width.

Table I lists the statistics of the ISCAS-89 circuits. In this

table, “Design” gives the names of the circuits, “Cells” denotes

the number of standard cells, “Layers” denotes the number

of routing layers used, and “Nets” denotes the total number

of the nets. In the circuit, each net consists of several wire
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TABLE II

Results of NC-Aware Wire Perturbation for the

ISCAS-89 Circuits

Design NC−o NC−p NC−% S−o S−p S−% CPU

s27 0 0 – 0 0 – 0

s208−1 0 0 – 1 0 100 1

s298 21 0 100 1 1 0 2

s344 10 3 70 1 1 0 11

s349 1 0 100 0 0 – 0

s382 23 0 100 2 1 50 2

s386 0 0 – 4 3 25 37

s400 3 0 100 2 1 50 8

s420−1 6 4 33 5 3 40 21

s444 9 0 100 1 0 100 2

s510 26 0 100 10 4 60 72

s526 9 2 78 11 7 36 71

s526n 25 0 100 14 7 50 65

s641 0 0 – 8 3 63 43

s713 2 0 100 1 1 0 1

s820 13 1 92 5 3 40 124

s832 65 5 92 19 10 43 493

s838−1 26 7 73 19 11 42 449

s1196 60 0 100 17 15 12 257

s1238 70 16 77 36 22 39 3912

s1423 56 3 95 25 18 28 898

s1488 88 45 49 41 33 20 4560

s1494 77 8 90 43 27 37 3812

s5378 69 14 80 35 30 14 17 782

s9234−1 24 2 92 18 12 33 5277

s13207 15 2 87 14 6 57 4933

s15850 4 2 50 8 5 38 1440

85.51 39.24

NC−o (NC−p): number of NCs in original (perturbed) layout. NC−%:
reduction of NCs in terms of percentage. Iter.: number of iterations. S−o
(S−p): number of stitches before (after) wire perturbation. S−%: reduction
of stitches in terms of percentage. CPU: total running time (s).

segments, the total number is shown in “Wires.” Note that in

our perturbation system, each wire is regarded as the smallest

unit to be moved. Therefore, the number of wires can be

considered as the input size to our algorithm.

We also show the statistics about the problem size for our

prediction method. “Tiles” and “Conflict Edges” give the total

number of tiles after segmentation and the number of edges in

the tile conflict graph. From the results, the number of tiles is

linear to the number of wires, and thus the tile conflict graph

is a sparse graph, respectively. Thus, finding the cycle basis

can be done in O(n) time, and hence the overall method for

NC prediction is very efficient. For the problem size of our

compaction system, “Points” and “Constraint Edges” in Table I

are the number of points in our symbolic representation and

the number of edges in the point constraint graph, respectively.

Table II lists the number of NCs and the number of stitches

detected by our NC-prediction method for the original layout

and the perturbed one. “NC” shows the number of NCs. “S”

shows the number of stitches. “%” is the reduction in terms

of percentage. The running time is shown in “CPU.”

Experimental results have shown that the number of NCs

and the number of required stitches can be significantly

reduced by our algorithm. Although the order of x-directional

and y-directional perturbation might cause the difference in

Fig. 23. Wire perturbation resolves the NC. (a) Native conflict in circuit s400
is detected and highlighted by our prediction method. (b) NC was resolved
after wire perturbation.

Fig. 24. Example of unresolvable NC from circuit s820 is highlighted in
the center. Due to the limitations of neighboring pins, the wire w cannot
have enough perturbation range. Thus, the conflict is unresolvable by wire
perturbation.

solution quality, from the results, both the x–y iterative method

and y–x iterative method significantly reduce the number of

NCs by more than 85% and the number of stitches by more

than 39%, on average. Therefore, with the perturbed layout,

the decomposition success rate may be effectively increased

for the next stage, and the yield loss caused by overlay errors

may be reduced.
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Fig. 23 shows a local view for the perturbation result of

circuit s1196. In the center, there is a NC caused by the line

ends and the corner of wires. Obviously, the conflict cannot

be resolved by any kind of stitch insertion. As shown in

Fig. 23(b), after the perturbation, the corner part was moved

downward by our algorithm and thus the odd cycle was

resolved.

We found that some NCs are unresolvable by wire perturba-

tion. For example, as shown in Fig. 24, the wire w in the center

of figure conflicts with all the three neighboring wires at their

endpoints. However, these three endpoints are all pins, which

cannot be adjusted. Also, they limit the available perturbation

range of w. Therefore, there is no solution to perturb the w or

other three wires to resolve this NC. To conquer this problem,

we need a more advanced technique, e.g., detour or rerouting.

VII. Conclusion

In this paper, we have presented an NC-prediction method

based on geometry relation of features, and an NC and stitch-

aware wire perturbation algorithm was proposed to minimize

as many NCs and required stitches in a layout as possible.

The proposed NC-aware wire perturbation algorithm could

efficiently enhance the decomposability and effectively resolve

NCs of a layout, which makes up the deficiencies of the

algorithms based on ILP formulations proposed by some

previous work. In addition, the extended wire perturbation

technique can further reduce the number of stitches required

for the decomposition process. Furthermore, since our wire

perturbation system adopts an iterative 1-D compaction ap-

proach, it can easily be embedded into existing industrial

compaction systems. Experimental results have shown that our

algorithm can significantly reduce the number of NCs and the

number of stitches required for layout decomposition.

Future work of NC removal and automatic DPT-compliant

redesign includes the following.

1) Develop a wire perturbation algorithm with more ad-

vanced features, such as, layer assignment, detour, and

simple rerouting. Thus, we can have more flexibility

and capability to resolve the NCs which are originally

unresolvable by moving wire segments alone.

2) Incorporate the DPT-compliant issue to other stages of

the design flow, e.g., placement and routing. Thus, we

can ensure the decomposability of a layout at an earlier

stage.
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