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Predator–prey interactions are a major driver of the
dynamics of populations, communities, and ecosys-

tems (Sergio et al. 2006), as well as the evolution of adap-
tive traits (Johnson and Agrawal 2003). Interactions
between predator and prey are also important in invasion
biology; indeed, release from natural enemies, including
coevolved predators, is often cited as a mechanism
enabling exotics to become hyper-successful nuisance
species (Colautti et al. 2004). A large body of literature is
rapidly accumulating on the role of adaptation in preda-
tor–prey interactions, but the overwhelming majority of
studies focus on how prey respond to predation risk (Lima
2002; Johnson and Agrawal 2003). Likewise, studies of
predator–prey interactions in invasion ecology have con-
centrated largely on how native prey adapt to exotic
predators by evolving anti-predator strategies (McIntosh
and Townsend 1994) or inducible defenses (Freeman and
Byers 2006), not on how exotic prey affect native preda-
tors (King et al. 2006).

This emphasis on the responses of prey neglects the rec-
iprocal responses of predators, which may be equally
important. In particular, we argue that invasion and evo-
lutionary ecologists should pay more attention to the
responses of native predators to exotic prey. Native preda-
tors may be an important factor regulating not only native
species, but also the long-term dynamics of invading
species. Furthermore, the exotic prey/native predator sys-
tem offers unique opportunities to study selection and
contemporary evolution of adaptive traits in predator pop-
ulations. The tendency of ecologists to focus on exotic
prey rather than native predators has left us without the
necessary information to assess how important native
predators are in controlling populations of exotic species.
If native predators are an important control on species
invasions, human decimation of predator populations may
not only destabilize native ecosystems, but leave them
vulnerable to invasion by non-native species as well.

Here, we describe the conditions under which native
predators should respond adaptively to the arrival of
exotic prey and review evidence indicating that exotic
species change the prey base and fitness of native preda-
tors. We further examine evidence that native predators
change their diets in response to invasion, and may adapt
to use exotic prey more efficiently. We argue that native
predators could supply considerable biotic resistance to
exotic invaders, in some cases after an “adaptive” lag
period, and suggest directions for future research on this
understudied topic.

�Why should native predators adapt to exotic prey?

Exotic species may represent an abundant prey resource
for predators and also displace the native prey that for-
merly made up the bulk of a predator’s diet. Con-
sequently, a predator that is able to feed on an exotic
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species will be at an advantage over a predator that can-
not. This advantage need not be large to affect predator
behavior and evolution, as long as it is persistent.
Broadly speaking, there are three possible responses of a
predator population to the arrival of an exotic species.
(1) The exotic species is well within the existing feed-
ing capabilities of the predator population (Figure 1a). If
the predator is abundant, it could supply biotic resis-
tance against the invasion, preventing the exotic from
becoming either established or, if already present, hyper-
successful. (2) The exotic species is so far from the feed-
ing capabilities of the predator that evolutionary con-
straints prevent adaptive predator responses (Figure 1b).
In this case, exotics that cause a dramatic change in the
prey base should indirectly lead to the decline of native
predators and a reduction in the trophic transfer of
energy up the food web. (3) The exotic species is near

the feeding capabilities of at least some individuals in
the predator population, creating scope for adaptive
change (Figure 1c). This adaptation can result from sev-
eral mechanisms operating across a range of time scales,
and will be the main subject of our review.

� Can predators compete in the arms race?

Theoretical arguments underpin the current strong
emphasis on the study of adaptation by prey, rather than
that by predators. Loose application of the “arms race”
analogy in the evolution of predator–prey interactions
has been criticized for failing to recognize that the selec-
tive forces on prey and predators may be asymmetrical
(Nuismer and Thompson 2006). Prey adapt to avoid
death, whereas predators adapt merely to acquire more
meals (the “life–dinner” principle; Dawkins and Krebs
1979), making the fitness gradient stronger in prey pop-
ulations. This asymmetry should drive stronger
responses by prey species than by predators. Following
this thinking, it seems reasonable to postulate that the
evolution of prey defense should be more likely (and
thus more rewarding to study) than the evolution of
predator offense. 

However, the life–dinner asymmetry may not apply
universally. The strength and perhaps direction of this
asymmetry ought to depend on (1) the degree to which
predation from a particular predator is a major cause of
mortality in the prey species, and (2) the importance of
a particular prey item in the predator diet. If a single
predator species is the primary source of mortality for a
prey species, whereas that prey item is not the major
component of the predator’s diet, then there should be
strong pressure for the prey to evolve anti-predator
defenses and little pressure for the predator to counter
these defenses; the life–dinner argument thus applies in
such a scenario. Alternatively, the prey may be the
major item (or an essential item) in the predator diet,
but mortality from the predator may represent a minor
risk for the prey. In this case, it is the predator that
should be pushed to evolve to more effectively detect,
capture, or handle the prey, and the prey will be under
little pressure to evolve anti-predator defenses. The lat-
ter situation should be especially relevant in many bio-
logical invasions, because exotic species often become
extremely abundant and may eventually come to consti-
tute a large part of the potential prey base available to
native predators (Figure 2). Native predators, on the
other hand, represent a small fraction of the mortality
sources for prey in the early stages of the invasion. 

� What evidence suggests adaptation in native
predators?

Much evidence now shows that native predators affect
the abundance, morphology, and behavior of native
prey (Lindström et al. 1994; Miner et al. 2005; Ripple

FFiigguurree  11.. Exotic prey may be (a) well inside the feeding
capabilities of a population of native predators, (b) outside its
feeding capabilities, or (c) within the feeding capabilities of only
some individuals in the population.   
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and Beschta 2005), with effects that reverberate
throughout the ecosystem (Shurin et al. 2002). It there-
fore seems likely that native predators will have analo-
gous effects on exotic prey species. 

In the following sections, we review empirical evi-
dence for (1) dramatic changes in the food base of
native predators after exotic invasions, (2) post-inva-
sion declines in native predator fitness, (3) predators
switching to exotic prey, (4) rapid changes in predator
behavior or morphology in response to a transformed
food base, (5) evolutionary responses of native preda-
tors, and (6) suppression of exotic prey populations by
native predators.

Dramatic changes in the food base of native
predators after invasion

It is well established that hyper-successful invaders alter
species composition and abundance at lower trophic lev-
els. For example, the New Zealand mud snail
(Potamopyrgus antipodarum) attained densities of up to
several hundred thousand individuals per square meter in
streams of Yellowstone National Park (Wyoming) just 7
years after their introduction (Hall et al. 2003); native
invertebrates in sampled areas within Yellowstone now
constitute only 3% of total biomass. Dramatic changes at
the food base are also found when species like the fresh-
water zebra mussel (Dreissena polymorpha; Strayer and
Smith 2001; Figure 3) and marine blue mussel (Mytilus
galloprovincialis; Geller 1999) invade and compete with
native species for substrate and other resources. Invasive
ants also drastically reduce the populations of both native
ants and other arthropods in invaded areas around the
globe (Holway et al. 2002).

Post-invasion declines in native predator fitness

The changes in the benthic animal community that fol-

lowed the zebra mussel invasion of Lake Michigan led to
steep declines in growth rates and health of several fish
species, including the most important commercial fish
in the Laurentian Great Lakes, lake whitefish
(Coregonus clupeaformis; Pothoven et al. 2001; Pothoven
and Madenjian 2008; Figure 4b). Size and body condi-
tion greatly influence survival and the number and qual-
ity of offspring in fish (Birkeland and Dayton 2005),
making it likely that the change in prey base negatively
affected whitefish fitness. Likewise, native ants are
rapidly being displaced by the invasive Argentine ant
(Linopithema humile) in California (Suarez et al. 2000).
The threatened coastal horned lizard (Phrynosoma coro-
natum) is a specialized predator of ants, but horned
lizards avoid eating Argentine ants. Juvenile coastal
horned lizards reared on only Argentine ants do not
gain weight (Suarez and Case 2002), thus leaving few
resources for reproduction in areas where the prey base
is dominated by exotic ants. 

Predators switching to exotic prey

There are numerous examples of native predators con-
suming exotic prey; for example, > 90% of the diet of
the threatened Lake Erie water snake (Nerodia sipedon
insularum) now consists of Eurasian round goby
(Neogobius melanostomus), which invaded the Great
Lakes in the early 1990s (King et al. 2006). Zebra mus-
sels have become an important food item for many
North American turtles (Bulté and Blouin-Demers
2008), birds (Petrie and Knapton 1999), fish
(Magoulick and Lewis 2002), and decapods (Molloy et
al. 1994), and now constitute a large proportion of the
whitefish diet as well (Figure 4c). However, we do not
know if per capita consumption rates of exotic prey by
these native predators increased over time after inva-
sion – that is, whether the native species responded
adaptively to a dramatically altered food base. An adap-

FFiigguurree  22.. (a) The South American golden apple snail (Pomacea canaliculata) has become a hyper-successful invader throughout
Southeast Asia. (b) Canoe in Laos with approximately 100 000 golden apple snail eggs, ready to hatch in two weeks.
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tive response might help explain the enormous increase
in waterfowl use of Long Point Bay in southern Ontario
following the zebra mussel invasion (from 43 200 water-
fowl-days [ie one waterfowl for one day] in 1986 to 3.6
million in 1997; Petrie and Knapton 1999), or higher
rates of zebra mussel disappearance in the Mississippi
River in cages open to fish predation in 1998 (7 years
after invasion; Bartsch et al. 2005) versus that in 1994
(3 years after the invasion; Thorp et al. 1998). 

There are several mechanisms by which native preda-
tors may become better able to use exotic species as
prey, including learning, social transmission, ontologi-
cal changes in morphology, and evolutionary adapta-
tions. These mechanisms operate over a wide range of
time scales, from the lifetime of an individual to many
generations.

Rapid changes in predator behavior or
morphology

Predators can modify their behavior from experience.
For example, predatory wasps learn to overcome the
defenses of their sheltered prey (Weiss et al. 2004), and
European green crabs (Carcinus maenas) can transfer
handling skills learned from previous prey encounters
to new and similar food items (Hughes and O’Brien
2001). Numerous examples show that predators aggre-
gate in patches with high prey densities (eg Petrie and
Knapton 1999). It is well known that higher-order
(including mammalian) predators teach their young
what to eat and what to avoid, but social learning is
important in lower-order predators as well (eg fish;
Brown and Laland 2003). 

Phenotypic plasticity – where organisms fine-tune
their behavior, life history, or morphology during the
individual’s lifetime to match a changing environment

– is common in nature (Nussey et al. 2005).
Predators may change morphologically to
become more efficient at consuming abun-
dant prey. Red rock crabs (Cancer productus)
that are grown on fully shelled prey, for
example, grow larger and stronger claws than
conspecifics that are raised on nutritionally
equivalent but unshelled prey (Smith and
Palmer 1994). During ontogeny, the mouth
morphology or gape size of many fish
(Mittelbach et al. 1999) and snakes (Aubret
et al. 2004) develops to match the size of the
most important prey. Such modest changes in
behavior or morphology could make some
predators more effective at consuming exotic
prey almost immediately, an example of our
third scenario (Figure 1c).

Evolutionary responses of native
predators

Over time, however, drastic and directional change
caused by a hyper-successful invader should favor the
most adaptive traits in a predator – be they tooth or
gape size, search image, or otherwise – through natural
selection. Existing variability within predator popula-
tions, such as individual foraging specializations (eg
Schindler et al. 1997), may serve as raw material for
rapid evolution in habitats invaded by hyper-successful
invaders. Natural selection should favor traits that
increase detection, capture, and use of abundant and
energetically profitable prey or avoidance of unprof-
itable or poisonous prey. To our knowledge, such rapid
evolution by predators has rarely been studied in the
specific context of native predators and exotic prey, but
empirical studies on related subjects suggest that evolu-
tionary adaptation of predators should be common
(Agrawal 2001; Strauss et al. 2006). For instance, it is
well known that native herbivores evolve to feed more
effectively on exotic plants – the Australian soapberry
bug (Leptocoris tagalicus) has evolved larger mouthparts
to increase foraging on fruit of the invasive balloon
vine (Cardiospermum grandiflorum) in just a few
decades, for example (Carroll et al. 2005). 

Likewise, predators that suffer reductions in fitness
from exotic species invasions, such as lake whitefish,
should evolve through natural selection or undergo
decline. For example, it is especially difficult for small
whitefish to consume larger, more energetically prof-
itable zebra mussels (Pothoven and Nalepa 2006). In
this case, then, whitefish individuals that are better at
consuming larger mussels at an earlier age (Figure 1c)
would have a fitness advantage.

A few studies indicate that predator populations can
evolve adaptations to overcome prey defenses. The best
known are of cases in which the prey species negatively
affects predator fitness, such as when the prey is toxic

FFiigguurree  33.. Macrobenthos and zooplankton (mean biomass [g DM m–2]; DM
= dry mass) in the Hudson River, before and after zebra mussel invasion.
Modified from Strayer and Smith (2001).
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(Brodie and Brodie 1999), or when the predator–prey
relationship is tightly linked (eg Kishida et al. 2006).
These adaptations do not always require a long coevo-
lutionary history. In Australia, two snakes, the red-bel-
lied blacksnake (Pseudechis porphyriacus) and the green
tree snake (Dendrelaphis punctulatus), evolved an
altered morphology (a smaller head to avoid swallowing
large doses of toxin and a larger body size to dilute
ingested toxin) in response to the invasion of the poiso-
nous cane toad (Bufo marinus) over approximately 20
predator generations, or roughly 60 years (Phillips and
Shine 2004). We suggest that evolutionary responses by
other native predators that experience reduced fitness
in habitats invaded by hyper-successful exotic species
may be both common and important.

In contrast, some populations will have evolutionary
constraints that slow or prevent adaptation to exotic
prey. For instance, mainland and island populations of
tiger snakes (Notechis scutatus) vary with respect to
phenotypic plasticity in head size. Full-sibling experi-
ments have shown that head size in the island popula-
tion is a phenotypically plastic response to feeding on
bigger prey as juveniles. Mainland tiger snakes show no
such plasticity (Aubret et al. 2004), suggesting that the
mainland population would respond more slowly, if at
all, to a large-bodied invader (Figure 1b).

Do native predators suppress exotic populations?

There are several examples of native predators control-
ling both the abundance and distribution of exotic
species. Gruner (2005) reported up to an 80-fold
increase in the abundance of an established but uncom-
mon exotic spider when native birds were excluded
from an area, indicating that native birds kept this spi-
der from becoming hyper-successful. The exotic
European green crab (Carcinus maenas) is limited by
predation from the blue crab (Callinectes sapidus) in
eastern North America (deRivera et al. 2005) and by
predation by red rock crabs (Cancer productus) in south-
western North America (Jensen et al. 2007). Interest-
ingly, blue crabs may also suppress invasive rapa whelks
(Rapana venosa; Harding 2003) and zebra mussels in the
Hudson River (Molloy et al. 1994; Figure 5), which sug-
gests the importance of this heavily harvested native
predator as an agent of biotic resistance. 

�What can we conclude about predator adaptation
to exotic prey?

Although empirical studies on predator adaptation to
exotic prey are few, we propose several general conclu-
sions: (1) hyper-successful invasive species strongly alter
the food base of native predators; (2) this change is
often directional and persistent; (3) exotic prey are
often included in the diet of native predators, some-
times even as the main food item; and (4) switching to

exotic prey may affect predator growth and body condi-
tion, which strongly relate to fitness. There is large
genetic variation in natural populations, not only in
terms of fixed traits, but also in phenotypic plasticity,
which allows adaptive traits to evolve in response to a
world that has been dramatically restructured by exotic
invasions. Successful invasions by exotic prey may
therefore trigger adaptation in native predator popula-
tions. We do not know how common evolutionary adap-
tation in predator populations may be, but it is likely

FFiigguurree  44.. Effects of the zebra mussel (Dreissena polymorpha)
invasion of Lake Michigan on a native benthic amphipod
crustacean (Diporeia sp) and the lake whitefish (Coregonus
clupeaformis). The lake whitefish is the chief commercial fish of
the Great Lakes, and Diporeia was its predominant food before
the zebra mussel invasion. (a) The density of Diporeia declined
sharply after the arrival of zebra mussels. (b) Growth rates of
lake whitefish fell after the zebra mussel invasion. (c) Lake
whitefish began to eat zebra mussels after the invasion. Diet
composition is expressed as dry mass of gut contents. Note that
the proportion of Diporeia in the post-invasion diet was too
small (< 1%, by dry mass) to show in this diagram. Modified
from Pothoven et al. (2001).
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that, over time, evolution allows some predator popula-
tions to recover from decreased fitness. The relative
paucity of examples of predator evolution in response to
exotic prey may not reflect its rarity in nature, but
rather a lack of scientific attention, especially given the
obstacles associated with long-term studies.  

Given that there may be a considerable lag period
before native predators become effective at controlling
an exotic species, short-term snapshots of biotic resis-
tance may provide a false impression of the long-term reg-
ulatory potential of native predators. For example, the
imported red fire ant (Solenopsis invicta) initially had dras-
tic negative impacts on abundance and species richness of
native ants and other arthropods in Texas. Studies con-
ducted a decade later, however, showed that red fire ants
had declined, while native ant and arthropod diversity
had recovered to pre-invasion levels (Morrison 2002).
The mechanisms behind this decline are not known, but
acquisition of natural enemies, such as predators, is one
plausible explanation. The timing and strength of preda-
tor adaptation to novel prey may strongly influence the
dynamics of nuisance exotic species. Lack of long-term
data on the population dynamics of hyper-successful
exotic species (Strayer et al. 2006), however, makes it dif-
ficult to assess this influence.

� Future research

One approach to the study of predator adaptation in the
context of invasion is to compare native populations of
a given species that have and have not coexisted with
an exotic prey species, in terms of their relative abilities
to recognize, handle, and consume the exotic. Full-sib-
ling experiments with second-generation predators

could then establish whether the feeding
adaptations are primarily phenotypically
plastic or genetically based. Such studies
could also be coupled to observations of
how the defenses of the exotic vary across
habitats with and without specific native
predators. Another approach is to quan-
tify the responses of exotic prey to preda-
tor removal, either via controlled field
experiments (eg Gruner 2005) or “nat-
ural” experiments, such as when disease
outbreaks decimate native predator pop-
ulations. Finally, unexplained crashes of
previously hyper-successful exotics (Sim-
berloff and Gibbons 2004) provide
opportunities to test hypotheses about
the mechanisms leading to collapse, and
may lead to the discovery of examples of
latent biotic resistance. 

� Conclusions

Drastic changes in the food base may be a
strong selective force on native predator populations,
and this phenomenon deserves more study in both basic
and applied ecology. Invasions by exotic species are a
growing threat to biodiversity, ecosystem function, and
local economies (Mack et al. 2000; Holway et al. 2002;
Carlsson et al. 2004), but there are still many gaps in our
understanding about why many species do not establish,
why well-established exotic species suddenly crash or
even go extinct (Simberloff and Gibbons 2004), and
why some exotic species become hyper-abundant. It is
likely that native predators are one important but over-
looked factor in controlling the long-term population
dynamics of invasive species and mitigating their
impacts on ecosystems.

Native predators structure ecosystems and may also
contribute to biotic resistance against exotic invaders.
The latter is often thought of as an “all-or-nothing” fac-
tor, so that tests for biotic resistance typically assess only
the failure or success of an invasion (Mack et al. 2000;
Jeschke and Strayer 2006; Lockwood et al. 2007).
However, partial biotic resistance may be important in
reducing the population size and detrimental impacts of
an exotic species. Consequently, there is a pressing need
for quantitative measurements of biotic resistance and
the extent to which individual predator species (or com-
petitors, or diseases) contribute to such resistance.

Finally, the prospect that predators may provide sub-
stantial biotic resistance to invasion raises the possibil-
ity that widespread human-driven declines in predator
populations could lead to trophic cascades – with
unknown effects to the ecosystem – and contribute to
hyper-successful biological invasions. Populations of
many predators have been reduced to a fraction of their
original abundance because of control programs targeting

FFiigguurree  55.. Native blue crab (Callinectes sapidus) eating invasive zebra mussels.
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“undesirable” species (eg wolves, coyotes) or overexploita-
tion of species that are valuable (eg many large, predatory
fish species; Pauly et al. 1998). For instance, intense fish-
ing for blue crabs, red rock crabs, and Great Lakes white-
fish may undermine the biotic resistance provided by
these native populations, but we know little about how
these reductions affect the success of invading exotics.
Steep declines in predator populations could reduce not
only the size of the predator population but also the phe-
notypic and genotypic variation that it contains, which,
in turn, could then reduce the ability of the native preda-
tor to respond over time to exotic species (Layman et al.
2007). If the harvesting of predators substantially reduces
biotic resistance to harmful invaders, then we need to
count the costs of these invasions against the economic
benefits provided by the harvesting of wild predators.
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