UNCLASSIFIED

Best
 Available Copy

nato reference mobility model, edition i

USERS GUIDE
VOLUME II
obstacle module

DA Project 1L162601AH91

October 1979

Prepared by

Stevens Institute of Technology Davidson Laboratory Castle Point Station Hoboken, NJ 07030

Contract DAAK30-77-C-0027
and by the

US Army Tank-Automotive Research \& Development Command Warren, MI 48090

C

Page
i Obstacle Module

ABSTRACT

Instructions in the organization and use of the computer programs which implement the Initial NATO Reference Mobility Model (INRMM) are presented. Volume II is devoted to the INRMM Obstacle-Crossing Module. A brief description of the mathematical equations and computing algorithms which predict the speed of a vehicle over a variety of terrain, the input data required, and the outputs generated is included. Same aid to the interpretation of various output variasables is given.

KEY WORDS

Mobility
Mobility Modeling
Computerized SImulation
Vehicle Performance
Terrain
Obstacle Crossing

R-2058, Volume 11 Page ii
Obstacle Module
table of contents
Ahstract
List of Figures iv
List of Tables v
List of Appendices v

1. INTRODUCTION aND OVERVIEW
A. Background 1
B. Modeling Off-Road Vehicle Mobility 5
C. Overall Structure of the INRMM 8
O. Model Inputs and Preprocessors 12
2. Terrain 12
3. Vehicle 13
4. Driver 15
5. Scenario. 15
E. Stand-Alone Simulation Modules 17
6. Obstacle-crossing Module -- 085788. 17
7. Ride Dynamics Module -- VEHDYN 18
a. Oriver model and tolerance crlteria 20
8. Maln Computational Modules -- NRMM. 21
a. Areal Terrain Unit Module 22
b. Road Module 28
F. Acknowledgements 30
II. ALGORITHMS AND EQUATIONS
A. Introduction 33
B. Coordinete Systems 40
9. Vehlcle Input Data Coordinates 40
10. Vehicle Coordinates 41
11. Ground Fixed Coordinate System. 41
12. Vehlele fixed-Ground Parallel Coordinate System 42
C. 085788 Vehicle Preprocessor 42
D. Subroutine OBGEOM. 50
E. Initial Values and Position. 52
F. Vehicie Movement Loop. 59
13. Subroutine CLEAR. 59
14. Subroutine FORCES 61
a. Coefficient of Tractive Forces 65
b. Force Relations for Single theel Support 65
c. Force Relations for Bogle Support 67
(1) Both wheels of the bogie support on the ground. 67
(2) Only one wheel of the bogie support on the ground. 70
d. Force and Moment Summation for Entire Vehicle 71
15. Subroutine MOVEB. 72
16. INPUTS AND OUTPUTS
A. Vehicle Data 79
B. Terrain Data 84
C. Scenario/Control Data. 86
D. Output 88
17. Control/Execution Report. 88
18. Basic Output. 88
19. Detalled Output 89
IV. REFERENCES 94
R-2058, Volume IIPage ivObstacle Module
LIST OF FIGURES
I.A.I Prospective Users of Vehicle Performance Prediction Methodology. 3
I.C.I GeneralStructure of the Initial NATO Reference Mobility Model 9
I.E.I General flow of INRMM Aresi Module 23
II.A.I Structure of the Obstacle Module 34
11.A. 2 Obstacle Geometry. 35
11.A. 3 Hub Profiles Across Mounds 37
II.A. 4 Hub Proflles Across Ditches. 37
II.A. 5 Vehicle Parameters 39
II.8.1 Vehicle Input Data Coordinates 40
II.B. 2 Vehicle Coordinates. 41
11.8.3 Ground Fixed Coordinates 42
ll.8.4 Relation of three bcordinate Systams 43
II.r..l Hitch and Trailer CG Location. 44
II.C. 2 Vehicle Suspension Support Polnt Location. 45
II.C. 3 Wheel Center Locations at Bogle Limits 45
II.C. 4 Traller CG and Suspension Support Location 46
II.C. 5 Trailer Bogie Wheel Locations at Bogie Limits. 47
II.C. 6 Specification of Vehlcle Bottom Profile Break Points 48
II.D.I Obstacle and Hub Proflle Break Polnt Indices 50
II.D. 2 Obstacle and Hub Profile Flank Indices 51
II.F.I Relat Ion of Bottom Profile of Vehicle to Obstacle Proflle 60
II.F. 2 Schematic of Bogle Suspension. 62
11.F. 3 Forces on a single wheel 66
II.F. 4 Forces on Bogle Suspension then Both Wheels Contact the Surface. 68
11.F.5 Possible States of Support of Bogle Suspension Element 73/74
II.F.E Spridler Interference for Tracked Vehicles 74
Ill.A.I Vehicle Input Datt Coordinate System 83
R-2058, Voicre 11Obstacle Module

LIST OF TABLES

I.C. 1 Terrain, Vehicle, Oriver Attributes Characterized In INRMM Data Base 11
III.A.I Vehicle Input File Format -- C8S788 81
Ill.B.I Terrain File Format -- 0BS78e 85
III.0.1 Detalled Output Headers -- 08578B 92
LIST OF APPENDICES
APPENDIX A -- Listirg of frosram OBS7B
ATPENDIX B -- Vehicle Input Files for Program 0BS78B
M60 Al "'ank 8-2
M 151 Jeep 8-3APPENDIX C -- Sample Terrain Input file for Program 0BS78BAPPENDIX D =- Sample Output From Program OBS $/$ QB
M60 Al Tank D-2
M 151 Jeep 0. 4

FOREWOKD

NATO AC/225 Panel II in 1976 recognized the need for standardized NATO techniques of comparirg overall vehicle performance in terms of mobility, armor protection, and fire power. The United States offered to help initiate thas effort in the field of mobility models.

Panel II accepted this offer and formed $A C$ 225/working Group I (WGI) in February 1977 to consider a NATO Reference Mobility Model. The membership of WGI was as follows: Canada, France, the Federal Repuolic of Germany, the Netherlands, the Initad Kinociom. and the United States of America.

The first meeting of WGI was held in the United States 6-9 June 1977. WGI reviowed the US Army Mobidity Model as a Fotential candidate. It was agreed that the US Army Mobility Model was acceptable as an initial model, pending improvements in certain submodels.

Shortly after the first meeting the US furnished a magnetic tape to each member country containing the source code of the US Army Mobility Model, and the U.S. extended aid in implementing the model on the national computers of the member countries.

WGI met the second time in Brussels 9-12 May 1978. The group identified certain shortcomings which had to be overcome before the Army Mobility Model vecame acceptable as a NATO Reference Mobility Model. The need for : Ciser's Guide was strongly emphasized at that time. NGI proposed to Panel II that a Technical Manayement Committee be formed to maintain tite model and to assess proposed revisions periodically. The proposed revisions and corrections were expected to evolve from mobility research and simulation work conducted by member countries and from continued use of the model.

Panel II aporoved the recomnendations, and WGI was tnen jisestablished. In its stedd, Ene Technical Managenent Committee (TMC) of the NATO Reference Mobility Model was formed with the same membership. Mr. Poter W. Haley of the US Army Tank-Automotive Research \& Development Command was named manager of the model, and serves as the focal point for the uniform maintenance of the model and as custodian of the official version. Panel II accepted the US Army Mobility Model as the "Initial NA'O Reference Mobility Model".

During the ensuing period, the member countries, especially the US, invested significant effort improving the model. The obstacle module was improved; the on-road module was reworked; the acceleration routines were improved;

```
maneuver:ng in vegetation was newly modeled. rinally, tne
venicle dynamics, module, VE{fIN, was substancially augmentcd.
A d=aft of this guide was also completed.
```

The first meeting of the Technical Management Committee took place in Frankfurt, Cermany 6-3 November i979. The participating countries and the heads of delegations were as follows: France (Mr. Grosjean), Germany (Mr. Schenk), the Netherlands (COL van Assenrdad), the United Kingdom (Mr. Iaggett), and the United States (Mr. Janosi). Each country was represented by several additional officials and/or technical experts. The Ccmmattee accepted the improved Initial Mobility Model as Jescribed in this repoit. Therefore, this model is no longer referred to as the Initial N^{\wedge} ro Reference Mobility Model. It is now the NATO Reference Mobility Model, Edition I. It will be "frozen" until the next TMC meeting. (Note that the term "Initial NATO Reference Mobility Model" or "INRMM" is often used in this report because it was written frior to the first TMC meeting.)

Members of the TNC agreed that orderly changes and extensions are desirable to meet furure needs. Each country listed tasks whi!h would lead to such cranges and extensions. It was agreed that the most important feature to be included into a future edition is tracked vehicle steering.

Currently, the member countries are enqaged in pertinent research work which will lead to further improvement and extension of the NRMM. Canada's main contribution is expected to be in the area of improved simulation in mobility over snow, ice, and muskeg; france is engaged 1.7 research concerning tracked vehicle turning; Germany $1 s$ active in vehicle dynamics research, Field testing, mobility evaluation techniques, and on-the-road mobiijty simulation; the Netherlands is pursuing a study to improve the vehicle data preprocessor, and to develop a uniform vehicle data acquisition procedure; the United kingdom deveioped an advanced power train simulation which may be ircorporared into a later edition; the United States motalıy! research effort is ancentrated mainly on vehicle agllity modeling.

The NATO community agreed to use this model as a commen basis for communication with respect to quantifying of f road mobility performance. Neanwhile steps have been taken in the US to introduce the NATO Reference Mobility Model into the initial acquisition process of military vehicles. In other , ords, quantitative mobility performance frojections, analysis and evaluation by bidders and source selecrion boards will be based on the NRMM during the initial acquisition process. The degree of required details in the computational projections will depend on the scope cf the acquisition.

Potential bidders should request additional information from TARADCOM, DRDTA-2SA.

Foreign companies with legitimate need should send their requests through channel established within the tramework of Data Exchange Agreements between the US Army and the military establishment of their country.
We hope that the Nato community will find the User's Guide a useful sool in the vehicle research development and acquisition process.

2OLTAN J. IANOSI
TARADCCM
Chairman, NatO Reference
Mobility Model, Technical
Management Coinmittee

I INTRODUCTION AND OVERVIEW"

Abstract

rhe Initial NATO Reference Mobility Model (INRMM) is a collection of equations and aigorithms designed to simulate the cross-country movement of vehicles. It was developed from several predecessor inodels, princifally AMC-74 (Jurkat, Nutt.sll and Haley (1975)). This report, in several volumes, provides some background and motivation for most aspects of the Model, and presents documentation for the coded version now available through the U. S. Army Tank-Automotive Research and Development Command (TARADCOM).

A. Background

Rational design and selection of military ground vehicles requires objective evaluation of an ever-increasing number of vehicle system options. Technology, threat, operational requirements, and cost constraints change with time. Current postures must be reexamined, new options evaluated, and new trade-offs and decisions made. In the single area of combat vehicles, for example, changes in one or another influencing factor migint require trade-offs that run the gamut from opting for an air or ground system, through choosing wheels, tracks or air cushions, to designating a new tire.

The former Mobility Systems Laborato:y of the then U. S. Army Tank-Automotive Command (TACOM) and the U. S. Army Engineter Waterways Experiment Station (WES) are the Army agencies responsible for

- This chapter is adapted from Jurkat, Nuttall and Hiley (1975).

conducting ground mobility research. In 1971, a unified U. S. ground mobillty program, under the direction of the then Arry Materiel Command (AMC), was implemented that specifically geared the capabilities of both laboratories to achieve common goals.

As a first step in the unified program, a detailed review was made of existing vehicle mobility technology and of the problems and requirements of the various engineering practitioners associated with the military vehicle life cycle. One basic requirement was identified as common to all practitioners surveyed: the need for an objective analytical procedure for quantitatively assessing the performance of a vehicle in a specified operational environment. This is the need that is addressed to a substantial extent by the INRMM and its predecessors.

In theory, a single methodology can serve some of the needs of all major practitioners, provided it relates vehicle performance to basic characteristics of the vehicle-driver-terrain system at appropriate levels of detail.

Three principal categories of potential users of the methodology were identified: the vehicle development community, the vehicle procisement community, and the vehicle user community (Figure I.A.1). The greatest level of detail is needed by the design and development engineer (vehicle design and development community) who is interestey in subtle engineering details--for example, wheel geometry, sprung masses, spring rates, track widths, etc.--and thelr
vemicle desicin and DEVELOPMENT COMMUNITY

PROSPECTIVE IISERS OF VEHICLE PERFORMANCE PREDICTION METHODOLOGY

FIGURE : $-\lambda-1$
interactions with soil strength, tree stems of various sizes and spacings, approach angles in ditches and streams, etc. At the other end of the spectrum is the strategic flanner (user community), who is interested in such highly aggregatec characteristics as the average cross-country speed of a given vehicle throughcut a specifien region--the net result of mayy interactions of the engineering details with features of the total operational environment. Between these two extremes, is the person responsible for selection of the vehicles who must evaluate the effect of changes of major subsystems or choos? from
concepts of early design stages. To be responsive to the needs of all three user communities, the methodology must be flexible enough to provide compatible results at many levels and in an appropriate variety of formats.

Interest in a single, unified methodology applicable to the needs of these three principal users led to the creation of a cross-country vehicle computer simulation combining the best available knowledge and models of the day. Much of this knowledge was collected in Rula and Nuttall (1971). The first realization of the sianation was a series of computer programs known as the AMC-71 Mobility Model, called AMC-7i for short (US ATAC(1973)). This model first becane operativnai in i971; it :as published in 1973. It was conceived as the first generation of a family whose descendants, under the evolutionary pressures of subsequent research and validation testing results, application experiences, and growing user requirenents, would be characterized by greater accuracy and applicability. A relatively current status report may be found in Muttall, Rula and Dugoff (1974).

The first descendant, known as AMC-74, 1s the basis for the IMRMM. It is documented in Jurkat, Muttall and Haley (1975). The following is a description of this model.

In undertaking mobility modeling, the first question to be answered was the seemingly easy one: what is mobility? The answer had been elusive for many years. Semantic reasons can be traced to the beginnings of mobility research, but there was also a pervasive reluctance to accept the simple fact that even intuitive notions about a venicle's mobility depend greatly on the conditions under which it is operatang. By the mid-1960s, however, a consensus had emerged that the maximum feasible speed-made-good* by a vehicle between two points in a given terrain was a suitable measure of its intrinsic mobility in rhat situation.

This definition not only identified the engineering measure of mobility, but also its dependence on both terrain and mission. When, at a suitably high resolution, the terrain involved presents the identical set of impediments to vehicle travel throughout its extent, mobil:ty in that terrain (ignoring edge effects) is the vehicle's maximum straight-line speed as limited only by those impediments. But when, as is typically the case, the terrain is not so homogeneous, the problem immediately becomes more complex. Maximum speed-made-good then becomes an interactive function of terrain variations, erid points specified, and the path selected. (Note that the last two constitute at least part of a detailed mission statement.) As a way to achieve a useful simulation in this complicated situation the INRMM deliberately

[^0]```
simplifies the real areal terrain into a mosaic of terrain units
wlthın each of which the terrain character:stics are considered
sufticiently unsform to permit use of the simple, maximum
straight-line speed of the vehicle to define its mobility in, along,
or across that terrain unit. A terrain unit or segment specified for a
road or trail is, similarly, considered to have uniform
```

characteristics throughout its extent.

Maximum speed predictions are made for each terrain unit without concern for whether or not distances within the unit are adequate to permit the vehicle to reach the predicted maximum．This yonicle and terrain－specific speed prediction is the basic output of
 predict operational vibration levels，mission fuel consumption，etc．， and can provide diagnostic information as to the factors limiting speed performance in the terrain unit．

The speed and other performance predictions for all terrain units in an area can be incorporated into maps that specify feasible levels of performance that a given vehicle might achieve at all points in the area．At this point，the output is reasonably general and is essentially independent of mission and operational scenario influences．The basic data constituting the maps must usually be further processed to meet the needs of specific users．These needs vary from relatively simple stat sics or indices reflecting overall vehicle compatibility with the terrain，to extensive analyses involving detailed or generalized missions．None of these so called
$\therefore$ varali Structure of the IMRMM

In formulating AMC－71，it was recognized that its ultimate defulness to decision makers in the vehicle development，pro urement， and user communities would depend upon its realism and credibility． （See Nuttall and Dugoff（1973）．）These perceived requirements led to several more concrete objectives related to the overall structure of the model．It was determined that the model should be designed to：

1．Allow validation by parts and as a whole．
2．Make a clear distinction between engineering predictions and any whose outcome depends significantly upon human judgment， with the latter kept visible and accessible to the model user．
$\therefore$ Se updated readily ir response i：new venire ansi rehsele－ierrain cecnnolosy．

4．Use measured subsystem performance data in place of analytical predictions when and as available and desired．

These objectives，plus the primary goal of supporting decision making relating to vehicle performance at the several levels，clearly dictated a hishiy modular structure that could both provide and accept data at the subsystem level，as well as make predictions for the vehicle as a whole．The resulting gross structure of the model is illustrated in Figure I．C．I．

At the heart of the model are three independent computational modules，each comprised of analytical relations derived from laboratory and field research，suitably coupled in the particular type of operation．These are：
picure 1.6.1-genemal orcanilation of the initial mato ateraence moollity mooel


Repeat fon varlous oestacle :HAPS IO PORM:

feature such as a stream, ditch, or embankment (not currently available).
3. The Road Module, winch computes the maximum feasible speed of a single vehicle traveling along a uniform segment of a roc or trail.

These Modules and the Terrain and Vehicle Preprocessors are collected in a computer program called NRMM and are describes in Volume I.

These three Modules may be used separately or together. Alternately, INRMM has the ability to simulate travel from terrain unit to terrain unit in the sequence given by the terrain input file. In this mode, known as the traverse mode, sufficient output data can be provided so that the user may calculate acceleration and leceleratıon times and distances between and across terrain unit coundaries, and thereby determine actual ravel time and speed-made-good over a chosen route.

All three modules draw from a common data base that describes quantitatively the vehicle, the driver, and the terrain to be examined in the simulation. The general content of the date base is shown in Table I.C. 1.

## TABLE i.C.

Terrain, Venicle, Driver Attributes Characterized in INPMM Data Base

| Terrain | Vehicle | Driver |
| :---: | :---: | :---: |
| Surface Composition | Geometric | Reaction Times |
| Type | characteristics |  |
| Strength |  | Recognition distance |
|  | Inertial |  |
| Suriace Geometry | characteristics | Acceleration and |
| Slope |  | impact tolerances |
| Altitude | Mechanicai |  |
| Discrete Obstacles | characteristics | Minimum acceptable |
| Roughness |  | speeds |
| Road Curvature |  |  |
| Road Width |  |  |
| Road Superelevation |  |  |
| Vegetation |  |  |
| Stem Size |  |  |
| Stem Spdcing |  |  |
| Linear Ceometry |  |  |
| Stream cross section |  |  |
| Water velocity |  |  |
| Water depth |  |  |

i). Yodel Inputs and Preprocessors

1. Terrain

For the purposes of the model, each terrain unit is described at any given time by values for a series of 22 mathematically independent terrain factors for an areal unit (including lake and mars factors), 10 for the cross section of a linear feature to be negotiated, and 9 to quantify a road segment. General-purpose terrain data also include sefarate values for several terrain factor values that vary during the year. For example, at present such general data for areal terrain inciude four values for so:l strength (dry, average, wet, and wet-wet seasons) and : distances in vegetated areas. Similar variations in effective ground roughness, resulting from seasonal changes in soll moisture (including freezing) and in the cultivation of farm land, can be envisioned for the future. Further details on the terrain factors used are given in Rula and Nuttall (1975).

As discussed earlier, the basic approach to representing a complex terrain is to subdivide it into areal patches, ilnear feature segments, or road segments, each of which can be considered to be uniform within its bounds. Besides supplying actual values for the terrain ractors, this concept may be implemented by dividing the range of each individual terrain factor value into a number of ciass intervals, based upon considerations of vehicle response sensitivity and practical measurement and mapping resolution probiems. A patch or

R-2058, VOLUME I:
Jostacle Module


#### Abstract

a segment is then defined by the condition that the class interval designator for each factor involved is the same throughout. A new


 patch or segment is defined wnenever one or more factors fall into a new ciass interval.Before deing used in the three computational Modules, the basic terrain data 3 re passed through a Terrain Data Preprocessor, called TPP in the Computer Program NRMM. This predrocessor does three things:

1. Converts as necessary all data from the units in which they are stored lo inches, pounds, seconds and radians, which are used throughout the subsequent performance calculations.
2. Selects prestored soil strengths and visibility distances according tc rin specificaticns, wnien are supoiled as part of the sceario data (see beiow).
3. Calculates from the terrain measurements in the basic terrain data a small number of mathematically dependent terrain variables used repeatedly in the computational moduies.
4. Vehicle

The venicle is specified in the vehlcle data base in terms of its basic geometric, inertial, and mechanical characteristics. The complete vehicle characterization as used by the performance computation modules includes measures of dynamic response to ground roughness and obstacle impact, and tne clearance and traction requirements of the venicle while it is negotiating a parametric series of discrete obstacles.

The model structure permits use at these points of appropriate data $u$ erived either from experiments or from supporting stand-alone jlmulations used as preorocessors. One supporting two-dimensional ride and obstacle crossing Dynamics Module for obtaining requisite dynamics responses(currently called VEHDYN and described in Volume III) and a second supporting Module for coinputing obstacle crossing traction requirements and interferences (currently called OBS78Z and described in this Volume) are available as elements of the INRMM. Both derive some required information from t'e basic vehicle data base, and both, when used, constitute stand-alone vehicle data preprocessors.

There is aiso a Vehicle Data Preprocessor called VPP (integral to NRMM) wnich, like tne Terrain Data preprccessor. has shras functions:

1. Conversion of vehicle input data to uniform inches, pounds, seconds, and radians.
2. Calculation, from the input data, of controlling soil performance ?arameters and other simpler dependent vehicle variables subsequently used by the computational modules, tut usually not readily measured on a vehicle or available in its engineering specifications.
3. Computation of the basic steady-state traction versus speed characteristics of the vehicle power train, from engine and power train characteristics.

As in the case of dynamic responses and obstacle capabilities, the lust item, the steady-state tractive force-speed relation, may be input directly from proving ground data, when avallable and desired.

```
R-2053, VOLUME II
Page 1!
ibstacle Yodule
```

3. Driver

The driver attributes used in the model characterize the driver in terms of his limiting tolerance to shock and vibration and his ability to percelve ard react to visual stimuli affecting his behaviour as a venicle controlier. Whale these attributes are Identifiec in Figure I.C.l and Table I.C.l as part of the data base INRMM prov.des for their specific ldentification and user control so that the effects of various levels of driver motivation, associated with combat or tactical missions, for example, can be considered.
4. Scenar:o

Several optional features are available to the user of the INRMM (weather, presumed driver motivation, operational variations in tire irfiation pressure) which allow the user to match the model predictions to features or assumptions of the full operational scenario for which predictions are required. Model instructions which select and control thase options are referred to as scenario inputs.

The scenario options include the specification of:

1. Season, which, when seasonal differences in soil strength constitute a part of the terrain data, allows selection of the soil strength according to the variations in soil moisture with seasonal rainfall, and
2. Weatier, which affects soll slipperiness and driving visibility, (including dry snow over frozen ground and associated conditions).
3. Several levels of operational influences on driver tolerances to ride vibrations and shock, and on driver strategy in

## negotiating vegetation and using orakes.

4. Reasonable play of tire pressure variations to suit tile mode of operatiori-on-ruad, cress-country, and in sand.

R-2058, VOLUME II
Gage 1
Obstacle Module
E. Stand-Alone Simulation Modules

As indicated above, the Mor: $:$ is implemented oy a series of independent Modules. The Terrair and Venicle Preprocessors, aıready described, form two of these. Two further major stand-alone simulation Modules will now be outlined.

1. Obstacle-crossing Module-OBS78B

This Module determines interferences and traction requirements when vehicles are crossing the kind of minor ditches ard monds characterized as part of the areal terrain; $2 t$ a desericed fully in this Volume. It is used as a stand-alone Preprocessor Yodule to the Areal Module of INAMM.

The Obstacle-crossing Module simulates the inclination and position, interferences, and traction requirements of a two-dimensional (vertical center-line plane) vehicle crossing a single obstacle in a trapezoidal shape as a mound or a ditch. The module determines a series of static equilibrium positions of the vehicle as it progresses across the obstacle profile. Extent of interference is determined by comparison of the obstacle profile and the displaced vehicle bottom profile. Traction demand at each position is determined by the forces on driven running gear elements, tangential to the obstacle surface, required to maintain tine vehicle's static position. Pitch compliance of suipension elements is not accounted for but frame articulation (as at pitch jolnts, trailer hitches, etc) is permitted.


#### Abstract

Fine costacie-crossing Module rroduces a table of minmum learances (or maximum interfer $n c e s$ ) and average and maximum force requires to cross a representative sample of obstacles defined by combinations of obstacle dimensions varied over the ranges appropriate for features included in the areal terrain description. This simulation $i s$ done only once for each vehicle. Included in the INRMM Areal Modile is a threedimensional linear interpolation routine which, for any glven set of obstacle parameters, approximates from the derived table the corresponding vehicle clearance (or interference) and associated traction requrements. Obviously, the more entries there are $1 n$ the tade, the more precise wall be the determination.


2. Ride Dynamics Modula- VEHCYN


#### Abstract

The Areal Modure examınes as possible vehicle speed limits in a Given terrain situation two limits which are functions of vehicle dynamic perceptions: speed as limited by the driver's tolerance to his vibrational environment when the vehicle is operating over continuously rough ground, and speed as limited by the driver's toleranct to impact received while the vehicle is crosing discrete obstacles. It is assumed that the driver will adjust his speed to ensure that his tolerance levels will not be exceeded.


The Ride Dynamics Module of INRMM, called VEHDYN and described in Volume III, computes accelerations and motions at the driver's station (and other locations, if desired) while the vehicle is operating at a given speed over a specific terrain profile. The


#### Abstract

profile may be continuously, randomly rough, may consist solely of a single discrete obstacle, uniformly spaced obstacles of a specific height or may be anything in between. From the computed motions, associated with driver modeling and specified tolerance criteria, simple relations are developed for a given vehicle between relevant terrain measurements and maximum tolerable speed. The terrain measurement to which ride speed is related is the root mean square (rms) elevaticn of the ground profile (with terrain slopes and long-wavelength components removed). The terrain descriptors for obstacles are obstacle height and obstacle spacing.


The terrain parameters involved, rms elevajıon and gbstacle neight and spacing, are factors quantified in each patch description, and rms elevation is specified for each road segment. Preprocessing of the vehicle data in the ride dynamics module provides an expedient means of predicting dynamicy-based speed in the patch and road segment modules via a simple, rapid table-lookup prccess.

The currently Implemented Ride Dynamics Module is a digital simulation that treats vehicle motions in the vertical center-ine plane only (two dimensions). It is a generalized model that kill handle any rigid-frame vehicle on tracks and/or tires, with any suspension. Tires are modeled using a segmented wheel representation, (see Lessem (1968)) and a variation of this representation is used to introduce first-order coupling of the road wheels on a tracked vehicle by its trecks.
3) jriver model and tolerance criteria.

It has been shown empirically that, in the continuous rougness istuation, driver tolerance is a function of the vibrational power beıng absorbed by the body. (See Pradko, Lee and Kaluza (1966).: The seme work showed that the tolerance limit for ripresentative young American males is approximately 6 watts of continuously absorbed power, and the research resulted in a relatively simple isodel for juwer absorption by the body. The body power absorption model, based upon shaping filters applied to the decomposed acceleration spectrum at the driver's station, is an integral part of the INRMM two-dimensional dynamice simulation.

In the past, only the 6 watt criterion was used to determine a given vehicle's speed as limited by rms roughness. More recent measurements in the field have shown that with sufficient motivation young military drivers will tolerate more than 6 watts for periods of many minutes. Accordingly, INRMM will accept as vehicle data a series of ride speed versus rms elevation relations, each corresponding to a different absorbed power level, and will use these to select ride-speed limits according to the operationally related level called for by the scenario. The Ride Dynamics Module will, of course, produce the required additional data, but some increased running tiae is involved.

The criterion limiting the speed of a velifcle crossing a single discrete obstacle, or a serles of closely, regularly spaced obstacles,

```
Is a peak acceleration at the driver's seat of 2.5-g passing a 30-Hz.
filter. Data relating the 2.5-g speed limit to obstacle height and
spacing can be developed in the ride dynamics module by inputting
afpropriate obstacie profiles.
```

INRMM requires two obstacle impact relations: the first, speed versus obstacle height for a single oostacle (spacing very great); and the second, speed versus regular obstacle spacing for that single obstacle height (from the single obstacle relation) which limits vehicle speed to $s$ maximum of 15 mph . For obstacles spaced at greater than two vehicle lengths, the single-obstacle speed versus obstacle height relation is used. For cicser spacings, the least spopd allowable by either relation is selected.
3. Mán Computational Modules - NRMM

The nighly iterative computations required to predict vehicle perfurmance in each of the many terrain units needed to describe even limited geographic areas are carried out in the three main computational modules. Each of these involve only direct arithmetic algorithms which are rapidly processed in modern computers. In INRMM, even the integrations reguired to compute acceleration and deceleration between obstacles within an areal patch are expressed in closed, algebraie fcrm.

Terrain input data include a flag, which signifles to the model whether the data describes an areal patch, a linear feature segment,
or a road segment. This flag calls up the appropriate computational Module.
a) Are . Terrain Unit Module

This Module calculates the maximum average speed a vehicle could achieve and maintain while crossing an areal terrain unit. The speed is limited by one or combination of the following factors:

1. Traction available to overcome the combined resistances of soil, slope, obstacles, and regection.
2. Driver discomfort in negotiating rough terrain (ride comfort) and his tolerance to vegetation and obstacle impacts.
3. Driver reluctance to proceed faster than the speed at which the vehicle could decelerate io a stoc withas the, possibly limated, visibility distance prevailing in the areas unit (braking-visioidity limit).
4. Maneuvering to avoid trees and/or obstacles.
5. Acceleration and deceleration between obstacles if they are to be overriden.
6. Damage to tires.

Figure I.E.l shows a general flow chart of how the calculations of the Areal Module are orisanized.

After determination of some vehicle and terrain - dependent factors used repetitively in the patch computation (i), the Module is entered with the relation between vehicle steady-state speed and theoretical tractive force and with the minimum soil strength that the vehicle requires to maintain headway on level, weak solls. These data

[^1]R-2058, VOLUME Ii
Costacle Module


```
ure provided by the venicle data preproce3sor. Soil and slope
resistances (2) and braking force limit3 (4) are computed, and the
uasic tractive force-speed relation is modifitd to account for
soil-limited traction, soil and slope resistances, and resulting tire
or track slip. Forces required to override prevailing tree stems are
calculated for eight cases (3): rirst, overriding only the smallest
stems, then overriding the next largest class of stems as well, etc.,
until in the eighth case all stems are being overridden.
```

Stem override resistances are combined with the modified tractive force-speed relation to predict nine speeds as limited by ?asic resistances (5). The ninth speed corresponds to ayeidine all cree stems.;

Maximum braking force and recognition distance are combined to compute a visibility-11mited speed (6). Resistance and visibility-limited speeds are compared to the speed limited by tire ioading and inflation (7), if applicable, and to the speed limit imposed by driver tolerance to vehicle motions resulting from ground roughness (8). The least of these speeds for each tree override-and-avoid option becomes the maximum speed possible between obstacles by that uption, except for degradation due to maneuvering (9).

Obstacle avoidance and/or the tree avoldance implied by limited stem override reyuires the vehicle to maneuver (or may be impossible).

Using speed reduztion factors (derived in l) associated with avolding all obstacles (if possible) and avoiding the appropriale classes of tree stems, a series of nine possible speeds (possibly including zero, or NOGO) 15 computed (10).


#### Abstract

A similar set of nine speed frediccions is made for the vehicle maneuvering to avoid tree stems only (10). These are further modified by several oostacle crossing considerations.


Possible NOGO interference between the vehicle and the obstacle is checked (12). If obstacle crossing proves to be NOCO, all associated vegetation override and avoid options are alsc NOGO. If there are no aritical interferences, the increase in traction required to negotiate the obstacle is determined (12).

Next, sostacle approach speed and the speed at which the venicle will depart the obstacle, as a result of the momentarily added resistance encountered, are computed (13). Obstacle approach speed is taken as the lesser of the speed between obstacles, reduced for maneuver required by each stem override and avoid option, and the speed limited by the driver to control his crossing impact (11). Speeds off the obstacle are computed on the basis solely of the soil-and slope-modifled tractive force-speed relation (22), 1.e. before the tractive force speed relation is modified to account for vegetation : $r$ ride forces, the traction increment required fom obstacle neg iation, or any kinetic energy avallable as a result of the associated obstacle approach speed (13).
 override and avoid options, while the vehicle is overriding patch obstacles, is computed from the speed profile resulting, in general, from considering the vehicle to accelerate from the assigned speed off the obstacle to the allowable speed between obstacles (or to a lesser speed if obscacle spacing is insufficient), to brake to the allowable obstacle approach speed, and to cross the cbstacle per se at the computed crossing speed.

Following a final check to ensure that traction and kinetic energy are sufficient for single-tree overrides required (and possible resetting of speeds for some options to NOCO) a single maximum :n-jatch speed (for the direction of travel being considered relative to the in-unit slops) is selected from among the nine available values associated with obstacle avoidance and the nine for the obstacle override cases. If all 18 options are NOGO, the patch is NOGO for the direction of travel. If several speeds are given, selection is made by one of two logics according to scenario input instructions.

In the past the driver was assumed to be both omniscient and somewhat mad. Accordingly, the maximum speed possible by any of the 18 strategies was selected as the final speed prediction for the terrain unit (and slope direction). Field tests have shown, however, that a driver does not often behave in this ideal manner when driving among trees. Rather, he will take heroic measures to reach som: reasonable minimum speeo, but will not continue such offorts when those measures involve knocking down trees that he judges it imprudent to attack,

```
even though by dolng so he could go stall faster. in INRMM, either
```

assignment of maximum speed may be made: the absolute maximum which addresses the vehicle's ultimate potential, or a lesser value which in effect more precisely models actual driver behavior.

If the scenario data specify a traverse prediction, the in-unit speed and other predictions are complete at this point, and the model stores those results specified $b:$ the user and goes on to consider the next terrain unit (or next vehicle, condition, etc). When a full areal prediction is called for, the entire computation is repeated three times: once for the vehicle operating up the in-unit slope, once across the slope, and once down the slope. Desired data are stored from each such run prior to the next, and at the conclusion of the third run, the three speeds are averaged. Averaging is done on the assumption that one-third of the distance" will be travelled in each direction, resulting in an omnidirectional mean.

[^2]The Road Module calculates the maximum average speed a vehicle can be expected to attain traveiing along a nowinally uniform stretch of road, termed a road unit. Travel on super highways, primary and secondary roads, and trails is distinguished by specifying a road type and a surface conaition factor. From these characteristics, values of tractive and rolling resistance coefficients for wheeled and tracked vehicles on rard surfaced roads are determined by a table look-up. For trails, surface condition is specified in terms of cone index. (CI) or rating cone incex (RCI). Traction, rotion resistance, and slip are computed using the soil submodel of the Areal Module, with scenario weather factors used in the same way as in making off-road predictions.

The relations used for computing vehicle performance on smooth, hard pavements are taken from the literature (Smith (1970) and Taborek (i957)).

The structure of the Rnad Module, whlle much simpler, parallels that of the Areal Module. Separate speeds are computed as limited by available traction and countervalling resistances (rolling, aerodynamic, grade, and curvature), by ride dynamics (absorbed power), by visibility and braking, by tire load, inflation and construction, and by road curvature per se (a feature not directly considered in the Areal Module). The least of these five speeds is assigned as the maximum for the road unit (for the assumed direction relative to the

```
R-2058, YOLUME II
 Page è
Ubstacle Module
specified grade).
```

The basic curvature speed limits are derived from American Association of State Highway Officials (AASHO) experience data for tr four classes of roads (AASHO (1975)) under dry conditions and are not vehicle dependent. These are appropriately reduced for reduced traction conditions, and vehicle dependent checks are made for tippin or sliding while the venicle is in the curve.

At the end of a computation, data required by the user are stored. If the model is run in the wraverse mode, the model returrs $t$ oompute valuey for the rext unit; if in the areal mode, $1 t$ automatically computes performance for both the up-grade and down-grade situations and at the conclusion computes the bidirectione (harmonic) average speed. Scenario options are similar to those for the Areal Module.
F. Acknowledgments


#### Abstract

As with any comprehensive compendium covering knowledge in a particular subject area, the results are due to the combined effort of all workers in the discipline. The authors, in this case, are somewhat akin to the scribes of ancient days, recording and organizing the wisdom and folly of those around them.


There are those, however, whose contributions stand out as related to the creation of the Mobility Model itself. The authors wish to acknowledge these pecple explicitly.

Clifford $j$. Nuttal: $\dot{\sim}$. , currently with the Mobllity Systems Division, Geotechnical Laboratory at the U. S. Army Engineer Waterwa:s Experiment Station (WES) provided the inspiration for many of the submodels, guided the evolution of the content of the entire model, and provided the wisdom and judgement which nopefully kept che various portions in proportion with each other. Additional experience in use of this and predecessor models came from many studies conducted by Donald Randolph at WES. During the model development period, general direction and supervision at WES came from W. G. Schockley, A. A. Rula, E. S. Rush and J. L. Smith.

Peter Haley, from the Tank Automotive Concepts Laboratory, USA TARADCOM and, also the manager of the NATO Reference Mobility Model, In addition to providing overall guidance and judgment


#### Abstract

did much of the seemingly endless detailed design and testing of the aigorithms and code. He was aided in the coding by Thomas Washburn. Direct supervision of the model development at TARADCOM came from Zoltan J. Janosi, who also now serves as Chairman of the Technical Yanagement Committee of the NATO Reference Mobility Model. General 3 upervision during the project was provided by J. G. Parks, O. Renius, and Lt. Col. T. H. iluber. Dr. E. N. Petrick, Chief Scientist of USA TARADCOM, the moving force of the NATO RSI effort in the U. S. Army vehicle community, provided overall guidance and support for this activity. He has been aided in this by Edward Lowe, NATO Standardization and ietrication Officer at. TARADCOM.


Newell Murphy, of the Mobility Systems Division, WES provided the driving force behind the current version of the Ride Dynamics Module, supervising its conception, creatior, and testing as well as guiding the field work supporting it. Richard Ahlvin of WES and Jeff Wilson of Mississippi State University bore primary responsibility for the production uf the sequence of computer programs which have implemented this Module.

The authors also wish to acknowledge the contributions of their colleagues at Stevens Institute of Technology. Jan Nazalewicz was responsiole for much of the Obstacle Module. Supervision and guidance during the project came from I. Robert Ehrlich and Irmin O. Kamm.

The arduous task of entering and formatting the text of this report was performed by M. Raihan $A l 1$ and Gabriel Totino. Graphics and charts were prepared by Mary Ann McGuire and Christopher Mclaughlin. The authors benefited from a careful review of the first draft by Peter Haley. Finally each of the authors notes than any errors are the fault of the other author.

```
R-2058, VOLUME II
Page j3
Obstacle Module
```


## II ALGORITHMS AND EQUATIONS

A. Introduction

The Obstacle Module, OBS78B, is a stand alone program which simulates the placement of the vehicle at a sequence of positions across the obstacle and for each position calculates

1. the tractive forces under the running gear to maintain that positiun,
and
2. the clearances/interferences between the frame of the vehicle and the obstacle at that position,
and then
3. selects the maximum interierence, CLRMIN, (or minimju clearanse if there is no interference) and the maximum tractive effort, FOOMAX, and calculates the average tractive effort, FOO, across the various positions.

Figure II.A. 1 gives an overall view of the structure of the Obstecle Module.

The obstacles are restricted to the "standard" trapezoidal shape used throughout the INAMM. The effect of the predominant slope may be included in OBS78B, but there are currently no provisions for incorporating the predominant slope in combination with obstacle crossing in the Operational Modules. Thus, for the Obstacle Module the terrain input may be characterized as illustrated in Figure II.A.2.

There is a restriction in OBS78B that the combination of slope and obstacle approach angle may not exceed the vertical for any obstacle flank on which the vehicle may rest.



FIGURE II.A.2 - Obstacle Geometry

The vehicle is restricted to two units, a prime mover, supported by suspension assemblles at two points, and a trailer, supported by a suspension assembly at one point with a hitch rigidly attached to the prime mover about which the trailer may pivot. The suspension assemblies are rigid (no springs or dampers) and may be single wheeled or "bogied", which for the purposes of OBS78B means twr wheels attached to a rigid member which pivots about its center at thi suspension support point. This motion is restricted by, possibly different, pitch up and down limits with respect to the frame of the vehicle. Any mix of single wheeled or bogie suspensions may exist on the prime mover-trailer combination. The wheels are also assumed rigic but reed not have the same radil for all suspension assemblies.

Nowever, ooth wheals on a bogle have the same radius.

Tracked rehicles may be simulated jy a doubie bogic wheeled vehicle where tine wheel radius is the road wheel radius plus the thickness of the track. The bogie centers may be located anywhere the user wishes; reasonable results have ceen obtained by using the location of the second and second-from-last roadwheel centers. The width of the bogie, Cefined as the distance between the centers of the two wheels on the bogie, ls also at the discretion of the user; reasonable results have been obtained by choosing the distance between two road wheels. Whien the bogie center and width have been chosen, the bogle angular limits should then be set to ref:sct the actual road whee: displaced as $: f$ the tiack were eresent at its normal tension. Tals wil: result in d large pitch up angular ismat for the front bogie ard a smallor pitch down angular limit. The rear bogie will have the reverse angular limits.

When the vehicle da*a has been read by the program, some initial calculat.!ons are done. These are described more fully below. The program then reads the obstacle shape and calculates hub profiles. These profiles are intended to simulate the path taken by the wheel conters across the obstacle, assuming a rigid wheel and uninterrupted contact. The program will use one of these two possible rub profiles across a mound:

figure 11.A.3 - Hub Profiles Across Mounds
or one of these four possible hub profiles across a ditch:


FIGURE II. 4 - Hub Profiles Across Ditches
It may be observed that the vertical variation of the hub profile may be attenuated when compared to that of the obstacle profile; this effect may occur both for the net change in elevation and for the rate of that change. This attenuation increases as the radius of the wheel increases with respect to the obstacle dimensions.

Tracked vehicles, in effect, attenuate obstacles as if they were equipped with very large wheels. The exact equivalent wheel diameter which attenuates an obstacle as does the tracked suspension
element is not readily calculated, and for any one vehicle may not te constant for all ubstacles. In the Obstacle Module, two different wheel sizes are used to simulate tracked venicles:

1. for a flexible track the radius of the wheel used to calculate the hub profile is set at one-half the distance between suspension element support points, and
2. for a non-flexible (girderized) track the radius of the wheel used to calculate the hub profile is set at the full distance between suspension element support points.

Figure II.A. 5 shows the venicle parameters used in the module and indicates the venicle configurations which can be simulated. Tracked vehicles pulling trailers are not simulated.

All harizontai almensions are pcsitive to the rignt of the niech and negati"e to the ieft. dib vertisal jimensions are measured witn respect : 2 the ground when the vehicle is empty and at rest on level, hard ground. Vehicle motion is assumed from left to right.


#### Abstract

N.B.: Either or both of the suspension elements of the prime mover may be single wheel or bogie supports. The nitch pay be located before the second axle to possibly simulate a fifth wheel.


The wheels of a suspension element ay be powered braked, both or neither. Suspension types may be mixed in any combination but both wheels of bogie suspension are assuned to have the same radius and ability to be powered and braked. During execution of the program, however, at any position on the cbstacle oither all braked wheels are braked or all powered wheels are powered.


1


FIGURE II.A. 5 -- Vehicle Parameters
B. Coordinate Systems

Four separate coordinate systems are used in OBS78B, vehiele input data coordinates, vehicle soordinates, grounc fixed coordinates and venicle/ground coordinates. Each system is specifled below.

1. Vehicle input Data Coordinates

This coordinate system (Figure II.B.1) is centered at a point on the ground directly under the hitch when the vehicle is resting on a hard, flat suriace and facing toward the right of the observer.


FIGURE 11.B.1 -- Vehicle Input Data Coordinates

All vehicle input data is given with respect to this coordinate system. it is used only for the conveniance of the investigator; all data is immediately transferred to the Vehicle Coordinates.
2. Vehicle Coordinates

This coordinate system is centered at the hitch and moves with the prime mover. Sea figure II.B. 2.


The $x$-axis is horizontal and fixed to the vehicle when the vehicle is at rest on hard, flat ground. Thus the Vehicle Coordinates are initially parallel to the Input Data Coordinates translated verticall a distance of the height of the hitch for an empty venicle. The pitch angle of the vehicle, $Q$, is in effect the angle the vehicle x-axis makes with the Ground Fixed Coordinate System.

## 3. Ground Fixed Coordinate System

This coordinate system remains fixed to the ground and is centered at the first obstacle profile break point. Its coordinates are designated with primed quantities. The z'-axis is positive up, along the negative gravity vector, and the $x$-axis is positive to the

Ubstacle Module
rignt. See Figure II.B. 3 .


FIGURE II.B. 3 -- Ground Fixey Coordinates
firs coordinate system is zenternd at ihe hitch and moves with the vehicle; however it remalns parallel to the Ground $\overline{\text { rixed }}$ Coordinate System. Initially it coincides with the Vehicle Coordinates when the vehicle is at rest on hard, flat ground. Its coordinates are designated by a superscript $F$.

The relationship between the three program coordinate systems is Illustrated in Figure II.B. 4.
C. OBS78B Vehicle Preprocessor

After the vehicle data is read, several derived vehlcle descriptors are calculated. These descriptors are given in terms of the vehicle soordinates.


FIGURE II.B.4-- Relation of Thier Coordinate Systems

Since the vehicle load distribution is given ior an empty vehicle, a combined vehicle-load $C G$ is calculated (superscript e mean empty vehicle).

The empty vehicle weight at the vehicle $C G$ :
$F_{\mathcal{C}_{11}}=-F_{Q_{1}}-F_{Q_{2}}$
The $x$-coordinate of the empty venicle $C G:$

$$
x_{G} \mathcal{G}_{1}=-\left(F_{q} 1_{1}+F_{q_{2}} 1_{2}\right) / F_{G} \mathcal{C}_{1}
$$

The empty trailer weight at the trailer CG:
$F_{G 2}=-F_{q_{3}}-F_{h 0}$
The $x$-coordinate of the empty trailer $C G:$

The loaded weights at the combined $C G$ :

$$
\begin{aligned}
& F_{C G 1}=F E_{G 1}-\Delta W_{1} \\
& F_{C G 2}=F E_{G 2}-\Delta W_{2}
\end{aligned}
$$

The coordinates of the combined vehicle/load CG:
${ }_{C G i}=\left(F E_{G i} x \hat{E G i}-\Delta W_{1} d_{i}\right) / F_{C O i}$
${ }^{2} C G i=\left(F E_{G i} z Q_{G i}-\Delta W_{i} e_{i}\right) / F_{C G i}$
where il for the vehicle, 2 for the trailer.
From now on these coordinates of the loaded vehicle will be called $t$ vehicle and trailer $C G$ coordinates.

The radius vector from the $C G$ to the hitch in polar coordinates:
$R_{h i}=\left\{x Z_{G i}+2 \mathcal{E G i}^{1 / 2}\right.$
$\theta_{\text {obi }}=\arctan \left({ }^{2} C G i / x C G i\right) \pm \pi$
where $1=1$ for the vehicle, 2 for the trailer.


FIGURE II.C.1 =- HItch and Trailer CG Location

## N.B.: Radius vector is from vehicle CG to hitch and from hitch to trailer CG. <br> Coli is adjusted to lie in the interval $[-\pi, \pi]$.

The polar coordinates of the vehicle suspension support points:

$$
r_{B C i}=\left[\left(1_{1}-x_{C G} 1\right)^{2}+\left(r_{1}-n-2 C_{C G 1}\right)^{2}\right]^{1 / 2}, \quad 1=1,2
$$

$$
\theta_{B C i}=\arctan \left[\left(r_{i}-n-z_{C i}\right) /\left(1_{i}-x_{C G}\right)\right], 1=1,2
$$



FIGURE II.C. 2 -- Vehicle Suspension Support Point Locations

The following are calculated for each suspension element which is represented by a bogie:

The polar coorainates of the wheel centers when they are at their dimit position closest to the venicle:


FIGURE II.C. 3 -. Wheel Center Locations at Bogie Limits
( $x_{B, 2 B}$ ) are the coordinates of the suspension support center with respect to the first unit $C G$.

$$
\begin{aligned}
& R_{L i}=\left[\left(x_{B}+\left(D_{i} / 2\right) \cos B_{u i}-x_{C G i}\right)^{2}+\left(2_{B}+\left(b_{i} / 2\right) \sin \theta_{u i}-2 C G i\right)^{2}\right]^{1 / 2} \\
& R_{L_{i} 2}=\left[\left(x_{B}-\left(b_{i} / 2\right) \cos B_{d i}-x_{C G} 1\right)^{2}+\left(2_{B}-\left(b_{i} / 2\right) \sin \theta_{d i}-2_{C G 1}\right)^{2}\right]^{1 / 2} \\
& T_{L i}=\arctan \left[\left(z_{B}+\left(b_{i} / 2\right) \sin B_{u i}-z_{C G 1}\right) /\left(x_{B}+\left(b_{i} / 2\right) \cos B_{U i}-x_{C G 1}\right)\right] \\
& I_{L_{12}}=\arctan \left[\left(z_{B}-\left(b_{i} / 2\right) \sin \theta_{d i}-2 \operatorname{CG2}\right) /\left(x_{B}-\left(b_{i} / 2\right) \cos \theta_{d i}-x_{C G 2}\right)\right] \\
& \text { For the trailer, these polar coordinates are given with respect to }
\end{aligned}
$$ the hitch:



FIGURE II.C. 4 -- Trailer CG and Suspension Support Location

$$
\begin{aligned}
& r_{\text {h2 }}=\left[x_{C G 2}^{2}+2_{C G 2}^{2}\right]^{1 / 2} \\
& \boldsymbol{o}_{\text {On }}=\arctan \left(2_{C G 2} / x_{C G 2}\right) \\
& r_{B C 3}=\left[1_{3}^{2}+\left(r_{3}-h\right)^{2}\right]^{1 / 2} \\
& \theta_{\text {BC }}=\arctan \left[\left(r_{3}-h\right) / 1_{3}\right]
\end{aligned}
$$



FIGURE II.C. 5 -- Traller Bogie Wheel Locations at Bogie Limits
( $x_{h B}, z_{h B}$ ) are the coordinates of the trailer suspension support point in vehicle cocrainates.

$$
\begin{aligned}
& R_{L .31}=\left[\left(x_{h B}+\left(b_{3} / 2\right) \cos \beta_{u 3}\right)^{2}+\left(z_{h B}+\left(b_{3} / 2\right) \sin \theta_{u 3}\right)^{2}\right]^{1 / 2} \\
& T_{L 31}=\arctan \left[\left(z_{n B}+\left(b_{3} / 2\right) \sin B_{113}\right) /\left(x_{h B}+\left(b_{3} / 2\right) \cos \theta_{H_{3}}\right)\right] \\
& R_{L 32}=\left[\left(x_{h B}-\left(b_{3} / 2\right) \cos B_{d 3}\right)^{2}+\left(z_{h B}-\left(b_{3} / 2\right) \sin \theta_{d 3}\right)^{2}\right]^{1 / 2} \\
& T_{L 32}=\arctan \left[\left(z_{h B}-\left(b_{3} / 2\right) \sin B_{d 3}\right) /\left(x_{h B}-\left(b_{3} / 2\right) \cos \beta_{d 3}\right)\right]
\end{aligned}
$$

The effective radius of the wheels to be used in the hub profile calculations is set to

| $r_{t i}=r_{i}$ | for wheeled vehicle unit |
| :--- | :--- |
| $r_{t i}=1 / 2(1,-12)$ | ror tracked unit with flexible |

R-2058, volume It
Page 48
Ubstacle Module
track

$$
\begin{gathered}
r_{t i}=r_{t i}-r_{i} \quad \text { for tracked unit with girderized } \\
\text { track. }
\end{gathered}
$$

Since the use of $r_{t i}$ may have the effect of raising the entire venicle far above the ground level, the result may be that no interference between venicle bottom and the ground will be recorded when, in fact, it would actually occur. To avoid this difficulty, the difference between the hub profile effective radius and the normal radius

BPRFDL $=r_{t j}-r_{1}$
15 used to lower the vehicle bottom profile.

The venicle coticm jiofile inseif is specifled an the input. data as the location of breakpoints given in the vehicle input coordinates. These breakpoints are then shifted to the vehicle coordinates. The preprocessor calculates the length and direction of the radius vector to each of these breakpoints. The radius vector originates at ihe hitch joint for both the prime mover and the trailer.


FIGURE II.6.6 -- Specification of Vehicle Cottom Profile Breakpoints

In Figure II.C.6, the bottom profile points are marked with heavy jot and calculated as follows:
$r_{c k i}=\left[x_{c k i}^{2}+\left(y_{c k i}-B P R F D L\right)^{2}\right]^{1 / 2}$
$\sigma_{c k i}=\arctan \left[\left(y_{c k i}-B P R F D L\right) / x_{c k i}\right]$
where $k=1$ denotes the prime mover
$k=2$ denotes the trailer
and
for $\quad i=1, \ldots, N_{c k}$
where $N_{c k}$ is the number $c f$ bottom profile breakpoints on unit $k$. The hitch may, but need not be, included as a bottom profile breakpoint.

This completes the calculations of the CBSOSB venicle preprocessor. The predominant slone, $\theta$; is read and then the program exters the obstacle loop. The set of three descriptors for each obstacle iz read; trese are $O B H, O B A A$, and $O B W$ as defined in section III.B. The program then transfers to subroutine OBGEOM where the hub profiles and the step size are calculated.

Before transfer to OBGEOM, a check is made to determine if the sum of the predominant slope and the obstacle approach slope exceeds the vertical. If it does, an error message is printea, calculations for the obstacle arc skipped and the next obstacle is read.
D. Subroutane OBGEOM

This subroutine introduces the obstacle and hub profile index scneme used throughout the program. For an obstacle/wheel combinatior juch that all hub profile flanks are present it is illustrated in Figure II.D.I.


FIGURE 11.0 .1 .- Obstacle and Hub Profile Breakpoint Indices

Observe that all obstacle breakpoints except 1 and 10 have two indices. This is to accomodate the hub profile breakpoint numbering which may result in two profile elements for each obstacle breakpoint. The obstacle and hub proflle flanks are given the number of their left end breakpoint index as shown in Figure II.D.2. For obstacle/wheel combinations that give rise to hub profiles of fewer elements, some hub profile breakpoivis may have up to six indices.

The ground fixed coordinate system always has its origin at the obstacle breakpoint 2.


FIGURE II.0.2 -- Obstacle and Hub Profile Flank Indices

The approach and departure flanks, numbered 1 and 9 respectively, are set so that their slope is the predominant slope. $\theta_{s}^{\prime}$, and their length is sufficient to accomodate ail suspension elements simultaneously plus 1 inch. The vehicle is started on the approach slope. 1 inches from initial contact with a mound or with its front wheel contact point. 1 inches from nub profile element number 2 for a ditch.

Subroutine OBGEOM first calculates the $x^{\prime}, z^{\prime}$-coordinates of the obstacle and hub profile breakpoints for zero predowinant slope. It then rotates the location of these points about obstacle breakpoint 2 (the $x^{\prime} z^{\prime}$ origin) through angle 0 ; . The length of each of the obstacle and hub profile elements is calculated. In addition, for each obstacle element, the angle with respect to the $x^{\prime}$-axis is also given. For the hub profile elements, the coefficients of the general quadratic

$$
A_{j j} x^{2}+B_{i j x^{2}}+C_{i j z^{2}}+D_{i j x}+E_{i j z}+F_{i j}=0
$$

are calculated. Here the subscript j refers to the hub profile element number and 1 refer i to the suspension element whose wheels generate :t. Since hub profile elements are always either points, lines, or ,res, $B_{i j}=0$ and $A_{i j}=C_{i j}=i$ for arcs whereas $A_{i j}=B_{1 j}=$ $c_{i j}=0$ for lines and points.

Finally, OBGEOM calculates STEF, the distance the first unit CG will be moved from position to position across the obstacle. For this version of the Obstacle Module, STEP is constant for a venicle/obstacle combination and is set to 498 of the shortest hub profile element length or 1 inch, whichever is greater.
E. Initial Values and Position

When the vehicle and obstacle have been completely defined, the initial position of the vehicle on the approach slope is calculated. Also, initial values for the solutions of the force balance equations are set. These variables (the solution variables for the force balance equations) are defined as

> XN (1) = overall traction coefficient
> XN(2) $=$ normal force on first suspension element
> $X N(3)=$ normal force on second suspension element
> $X N(4)=$ normal force on third suspension element
> $X N(5)=$ horizontal hitch force applied to vehicle
> $X N(6)=$ vertical hitch force applied to vehicle

For initialization, $X N(1)=\operatorname{RTOW}(1)$, the resistance over weight
coefficient of the first suspension element (an input number); $X N(2)$, $X N(3)$, and $X N(4)$ are set to the normal load on those suspension elements when the vehicle is at rest on level ground; $X N(5)=F_{h X^{\prime}}=$ 0 , and $X N(6)=F_{h z 1}$ o the initial hitch load when the trailer is at

R-2058, VOLUME II
Obstacle Module
rest on level ground.

To position the vehicle, the following calculations are
performed:
a) the first wheel is positioned $1 / 10$ inches before its second nub profile breakpoint

$$
\begin{aligned}
& x_{w 11}^{\prime}=x_{h 12}^{\prime}-.1 \cos \left(\theta_{j}^{\prime}\right) \\
& z_{w 11}^{\prime}=z_{h 12}^{\prime}-.1 \sin \left(\theta_{j}^{\prime}\right)
\end{aligned}
$$

b) for a single wheel first suspension element the bogie center is set equa: to the first wheel center

$$
\begin{aligned}
& x_{B C 1}^{\prime}=x_{w 11}^{\prime} \\
& z_{B C 1}^{\prime}=z_{w 11}^{\prime}
\end{aligned}
$$

for a bogie first suspension element, the second wheel is located one bogie width behind the first and the bogie center is set between the two wheels

$$
\begin{aligned}
& x_{w 12}^{\prime}=x_{w 11}^{\prime}-b_{1} \cos \left(\theta_{j}\right) \\
& z_{w 12}^{\prime}=z_{w 11}^{\prime}-b_{1} \sin \left(\theta_{j}\right) \\
& x_{B C 1}^{\prime}=\left(x_{w 11}^{\prime}+x_{w 12}^{\prime}\right) / 2 \\
& z_{B C 1}^{\prime}=\left(z_{w 11}^{\prime}+x_{w 12}^{\prime}\right) / 2 \\
& \left.B_{1}=\arctan \left(\left(z_{w 11}^{\prime}-z_{w 12}^{\prime}\right) /\left(x_{w}^{\prime}\right)-x_{w 12}^{\prime}\right)\right)
\end{aligned}
$$

c) the vehicle pitch angle is set parallel to the approach slope angle

$$
\theta_{1}^{\prime}=\arctan \left(D_{11} /-E_{11}\right)
$$

the vehicle CG location is determined

$$
\begin{aligned}
& x_{C G 1}^{\prime}=x_{B C 1}^{\prime}-r_{B C 1} \cos \left(\theta_{B C 1}+\theta_{1}^{\prime}\right) \\
& z_{C C 1}^{\prime}=z_{B C 1}^{\prime}-r_{B C 1} \sin \left(\theta_{B C 1}+\theta_{1}^{\prime}\right)
\end{aligned}
$$

and the location of the second suspension bogie center is calculated

$$
\begin{aligned}
& x_{B C 2}^{\prime}=x_{C C 1}^{\prime}+r_{B C 2} \cos \left(\theta_{B C 2}+\theta_{1}^{\prime}\right) \\
& 2_{B C 2}^{\prime}=2_{C C 1}^{\prime}+r_{B C 2} \sin \left(\theta_{B C 2}+\theta_{1}^{\prime}\right)
\end{aligned}
$$

d) for a single wheel second suspension, the location of the wheel center is set equal 1.0 the location $c f$ the bogle center

$$
\begin{aligned}
& x_{w 21}^{\prime}=x_{B C 2}^{\prime} \\
& z_{W_{21}^{\prime}}^{\prime}=z_{B C 2}^{\prime}
\end{aligned}
$$

for a bogle second suspension element, the dogie angle is assumed equal to the pitch angle of the vehicle and the th wheel centers are located by

$$
\begin{aligned}
& x_{w 21}^{\prime}=x_{B C 2}^{\prime}+\left(b_{2} / 2\right) \cos \left(\theta_{1}^{\prime}\right) \\
& z_{w 21}^{\prime}=z_{B C 2}^{\prime}+\left(b_{2} / 2\right) \sin \left(\theta_{i}^{\prime}\right) \\
& x_{w 22}^{\prime}=x_{B C 2}^{\prime}-\left(b_{2} / 2\right) \cos \left(\theta_{1}^{\prime}\right) \\
& z_{w 22}^{\prime}=z_{B C 2}^{\prime} \quad\left(b_{2} / 2\right) \sin \left(\theta_{i}^{\prime}\right)
\end{aligned}
$$

e) the initch is then located by

$$
\begin{aligned}
& x_{h}^{\prime}=x_{C G 1}^{\prime}+R_{h 1} \cos \left(\theta_{o h 1}+\theta_{1}^{\prime}\right) \\
& z_{h}^{\prime}=z_{C G 1}^{\prime}+F_{h 1} \sin \left(\theta_{o n} 1+\theta_{1}^{\prime}\right)
\end{aligned}
$$

For the simulation of tracked vehicles there is included, as suspension elements 4 and 5, the front and rear spridlers, respectively. In simulating a tracked vehicle, front spridler/obstacle interference is checked after step c) above. If interference is found, the vehicle is moved away from the obstacle along the approach slope until 11 no interferace is found. Thus the front spridler is located b)

$$
\begin{aligned}
& x_{3}^{\prime}=x_{C G 1}^{\prime}+r_{B C 4} \cos \left(\theta_{B C 4}+0 ;\right) \\
& z_{3}^{\prime}=z_{C G 1}^{\prime}+r_{B C 4} \sin \left(\theta_{B C 4}+0_{i}^{\prime}\right)
\end{aligned}
$$

These two coordinates are passed to subrnutine WHEEL 3 to calculate how far above or below the front spridler hub profile the point $\left(x_{s}^{\prime}, z_{s}^{\prime}\right)$ is located. If the result of WHEEL 3 is negative the spridler is below its hub profile which indicates interference. The vehicle is moved backwards on the obstacle approach slope to the point where nub profile element 3 intersects nub profile element $i$ of the front spridler. The slope of hub profile element 3 is glven by

$$
\left(z_{04}^{\prime}-z_{02}^{\prime}\right) /\left(x_{04}^{\prime}-x_{02}^{\prime}\right)=s_{2} .
$$

The slope of the front spridler hub profile element is glven by $s^{\prime}=\tan _{3}^{\prime}$. The coordinates of the voint to whish the front sprader center must be moved in order to just touch the obstacle is given by the solution of the following two equations

$$
\begin{aligned}
& \left(z-z_{3}^{\prime}\right) /\left(x-x_{3}^{\prime}\right)=s_{1} \\
& \left(z-z_{n 42}^{\prime}\right) /\left(x-x_{n 42}^{\prime}\right)=s_{2}
\end{aligned}
$$

The distance the vehicle has to be moved back to just clear the obstacle is

$$
B=\left[\left(x_{3}^{\prime}-x\right)^{2}+\left(z_{3}^{\prime}-z\right)^{2}\right]^{1 / 2} .
$$

The new value of the initial coordinates of the first wheel

```
R-2058, vCLUME Ii
```

are replaced by ( (x'wll -Rcos\mp@subsup{0}{S}{\prime}, ='wll - Rsin}\mp@subsup{0}{S}{\prime})

```

The calculations from \(b\)) on are then repeated.
f) once all the values describing the vehicle's initial position have been calculated, the traller (if there is one) is located. Given the location of the hitch
(\(x_{h}^{\prime}, z_{h}^{\prime}\)) and the length, \(r_{B C} 3\), of the radius vector from the hitch to the trailer suspension support point, the subroutine WHEEL2 locates the trailer suspensi support point \(\left(x_{B C 3}^{\prime}, 2_{B C 3}\right)\) on the hub profile ot the trailer wheels. For single wheel trailer suspension, the wheel center is set to the suspension support point
```

\mp@subsup{x}{w13}{\prime}=\mp@subsup{x}{BC3}{\prime}
2'_13 = 2'BC3

```

For trailer with bogie suspension, the wheels are located half a bogie arm before and behind the support point by
\[
\begin{aligned}
& x_{w 13}^{\prime}=x_{B C}^{\prime}+\left(b_{3} / 2\right) \cos \left(\theta_{2}^{\prime}\right) \\
& z_{w 13}^{\prime}=z_{B C 3}^{\prime}+\left(b_{3} / 2\right) \sin \left(\theta_{2}^{\prime}\right)
\end{aligned}
\]
\[
\begin{aligned}
& x_{w 2 j}^{\prime}=x_{B C 3}^{\prime}-\left(b_{j} / 2\right) \cos \left(\theta_{2}^{\prime}\right) \\
& z_{w 23}^{\prime}=x_{\mathrm{BC}}^{\prime} \text {. } \\
& \text { where } \theta_{2}^{\prime}=\theta_{1}^{\prime} .
\end{aligned}
\]
g) The trailer \(C G\) is located by
\[
\begin{aligned}
& x_{C G 2}^{\prime}=x_{h}^{\prime}+R_{h 2} \cos \left(\theta_{o h 2}+\theta_{2}^{\prime}\right) \\
& z_{C G 2}^{\prime}=z_{h}^{\prime}+R_{h 2} \sin \left(\theta_{\text {h } 2}+\theta_{2}^{\prime}\right)
\end{aligned}
\]
n) and the angle under the wheels is set to the approach slope
\[
x_{i j}=\theta_{s}^{\prime} \quad \text { for wheel } j \text { of suspension element i. }
\]

Page
F. Vehicle Movement Luop

This portion of the progiam calculates the clearance or interference between the bottom frame of the vehicle/trailer and the obstacie; calculates the forces between the wheels and the surface o the approach slope/obstacle/denarture slope required to maintain ine vehicle at the given position; and then moves the venicle to a new position on the approach slope/obstacle/departure slope such that th distance of the \(C G\) at the new position from the \(C G\) at the previous position is equal to STEP. The program then returns to the clearance/interference calculations.

The movement luop 13 organized around three major subroutines こLEAR, FORCES, and MOVEB. An exit is made frcm the loop when the fro wheel clears the departure slope
1. Subroutine CLEAR

The relationship between the bottom frame of the vehicle and/ trailer and the obstacle prcfile can be illustrated by Figure II.F.I Here the location of the obstacle profile breakpoints are given by (\(x_{01}^{\prime}, z_{o j}^{\prime}\)) while that of the vehicle frame breakpoints are given by (\(x_{v k n, ~}^{\prime} z_{v k n}^{\prime}\)). The minimum and maximum clearance/interference between frame and surface will be found directly under a vehicle frame breakpoint or directly above an obstacle breakpoint. InIs is a consequence of approximatin
(.) both the frame profile and the obstacle profile by straight line

FIGURE |l.f.1 -- Relation of Botton Profile of Vehicle to Obstacle Profile
segments.

The subrcutine first calculates the (xivi, \(z_{v k i}^{\prime}\)) Ear the rurrent position and attitude by
\[
\begin{aligned}
& x_{v i}^{\prime}=x_{h}^{\prime}+r_{c k i} \cos \left(\theta_{k}^{\prime}+\alpha_{c k i}\right) \\
& z_{v i}^{\prime}=z_{h}^{\prime}+r_{c k i} \sin \left(\theta_{k}^{\prime}+\alpha_{c k i}\right)
\end{aligned}
\]
where \(k=1,2\) is the venicle unit number and \(i=1, \ldots, N\) designates the poants on the frame profile of unit \(k\). The routine then simply cycles through the obstacle breakpoints to determine if any part of the vehicle is above each point and calculates the clearance by linearly interpolating betideen the appropriate venicle breakpoints. Slmilarly, for each frame proflle breakpoint, the obstacle flank under the point is found and the clearance calculated. The miniwun clearance/maximum interference is then found for the current position of the vehicle and an index is set pointing to that point which gave
```

R-2058, VOLUME II
Obstacle Module

```
rise to the manimum clearance/maximum interference.

The determination of the orerall minimum clearance or maximum interference for all positions of the vehicle across the obstacle is done with the code directly following the call to CLEAR in the main program.
2. Subroutine FORCES

This subroutine is used to estimate the tractive forces needed to overcome obstacles. This is done by evaluating the tangential tractive forces at the wheel/ground interface required to maintain thi vahicle at the current nosition on the obstacle. Subroutine FORCES makes use of the equation solving subroutine EQSOL and subroutines NFORCE and CALFUN. The tractive force evaluation is performed for any combination of single wheel suspensions and bogie suspensions supported on both wheels or on one wheel.

To simplify and speed-up calculations eight assumptions were made:
1. Tires arid suspensions are rieid.
2. Bogie beams can rotate about the pivnt, but do not deflect.
3. Bogie beams take only normal forces, the tangential forces and torque are transmitted to the frame by parallel bars (A scheratic version of such a uogie suspension is shown in Figure II.F.2).
4. The bogie pivot is in the widdle of the line connecting the wheel centers.
5. Wheel radius is the same for all wheels on a bogie suspensiot
6. Each wheei can be powered, towed or braked as specified by the input data.
7. No provisiun is made to power some and brake cther wheels at the same time.
8. Coefficients of power or brake forces can be specified by thi ratios (POWERR, BRAKER) in the input data to allow for different soil conditions under each wheel.

FIGURE II.F. 2 -- Schematic of Bogie Suspension

Based on the above, it is assumed that normal rorces to the bogie beam are equal for both wheels of the same bogie support. The resulting system with any two suspension supports on the main unit and another on the trailer is statically deterainant. The bogie asseably transmits force to the frame only at the bogie pivat point.

This routıne uses the vehicle fixed-ground parallel coordinates \(x^{F}, z^{F}\). Linear dimensions are measured from the hitch point parallel to the ground fixed coordinates \(X^{F}\) and \(z^{F}\) directions. The hitch point is the origin of the \(x^{F}, z^{F}\) coordinate systems, where the \(x^{F}\) axis is always horizontal and the \(z^{F}\) axis is vertical. Dimensioris forward of the hitch are positive. Dimensions in the \({ }_{2}\) F-direction atove the hitch are positive, below the hitch are negative. In the remainder of the description of Subroutine FORCES the superscript \(F\) will be omitted.

Based on previously made assumptions, the bogie can be treated as a single statically determined support point. In this case even the maln unit with two bogie supports is staticaily determined. The sum of the forces (ground reactions, hitch forces and weight) must be zero in the \(x\) and 2 directions, and the moments produced by those forces about any given point also have to be equal to zero. For convenience the point about which the moments are summed is the hitch. The hitch is a common point for both units (main and trailer). For clarity, forc s are always shifted to the wheel center and rotated to be parallel to the \(x-2\) coordinates. Forces at the hitch point are also resolved in the \(x\) and \(z\) direction (the hitch does not transmit a moment).

As input to this routine the main program and subroutine MOVEB supply the position of all wheels, bogie centers, bogie beam angles, bogie beam lengths, wheel radil, surface slope angses under the wheels, cefiter of gravity locations and weights. Also entered are initial estimates for
```

XN(1)= overail coefficient of tractive force across all
wheels,
XN(2)= normal force unds the first wheel of the first
suspension support,( F}\mp@subsup{\textrm{F}}{\textrm{N}11}{}
XN(3)= normal force under the first wheel of the 3econd
suspension support,(F21)
XN(4)= normal force under the first wheel of the third
suspension support (if it exists),( (FN31)
XN(5)= horizontal force on the hitch of the trailer
(FHITCHx
XN(6)= vertical force on the hitch of the trailer (F

```
```

N.B.: Tne last three terms are included only in the case of a vehicle
with d trailer.
Subroutire FORCES uses these values as initial values in an
iteration, controlled by EQSOL, which will yield new values for XN(1)
through XN(6) that result in the vehicle resting on the obstacle in a
force and momenl equilibrium state. These iterations depend on
calculations performed by two subroutines, NFORCE and CALFUN, which
essentially evaluate unbalanced forces and moments caused by
non-equilibrium values of XN. The separation of the calculation into
two subroutines is a matter of frogramming convenience. The
description of the equations below does not distingulsh in which
subroutines the calculations are made.

```
a) Coefficient of Tractive Force

For wheel j of suspension support i:
\[
C_{T F i j}=X N(1) * \text { POWERR }_{i j} * I P_{i j} \quad \text { for } X N(1) \geq 0
\]
or
\[
C_{T F_{i j}}=X N(1) \quad \text { BRAKER }_{i j} * I B_{i j} \quad \text { for } X N(1)<0
\]
where
```

CTFij = coefficient of tractive force
POWERR }\mp@subsup{i}{j}{}=\mathrm{ Coefficients for distribution of tractive force
among axles. The ratios of these coefficients
in pairs define the force distributions.
BRAKERij = Coefficients for distribution of braking force
among axies. The ratios of these coefflcients in
pairs define the braking force distribution.
IP}\mp@subsup{P}{ij}{}=1, if wheel can be powere
= 0, otherwise
IB}\mp@subsup{i}{ij}{}=1\mathrm{ , if wheel can be braked
= 0, otherwise.

```

Note: At any position on the obstacle, a combination of some wheels powered while others are braked is not modeled.
b) Force Relations for Single thee: Support

Given normal force, tractive force, rolling force, wheel rollif radius and slope under wheel, the forces and the moment at the wheel center indicated in Fig.II.B. 20 are calculated as follows:

TIGURE 11.r.3 -- Forses on a single wheel
\[
\begin{aligned}
& F_{X i}=F_{H i j} *\left(C_{T R i j} \cos \left(\alpha_{i j}\right)-\sin \left(\alpha_{i j}\right)\right) \\
& F_{Z i}=F_{N i j} *\left(\cos \left(\alpha_{i j}\right)+C_{T R i j} * \sin \left(\alpha_{i j}\right)\right) \\
& M_{i}=C_{T F i j} * F_{N i j}{ }^{\prime} r_{i j}
\end{aligned}
\]
where \(j=1\) and \(i\) designates the suspension support
\[
\begin{aligned}
& { }^{\text {CTRIJ }} \text { - Coefficient of rolling and tractive forces defined } \\
& \text { as: } \quad C_{T R 1 J}=C_{T F i j}-C_{R R 1 j} \\
& F_{\text {TRi }} \text { - Sum of rolling resistance and tractive force } \\
& F_{T R 1}=F_{N 1 J} C_{T R 1 J} \\
& C_{\text {RRI }} \text { - Coefficient of rolling resistance } \\
& a_{1 j} \text { - Slope angle under wheel } \\
& F_{\text {HiJ }} \text { - Force under wheel normal to slope } \\
& F_{x I} \text { - Force at wheel center in } x \text {-direction }
\end{aligned}
\]
\(5_{21}\) - Force at wheel center in \(z-d i r e c t i o n\)
\(M_{i}\) - Moment reaction reduced to wheel center. The moment reaction is due to the tractive force shift. The rollin Corce is shifted to the wheel center without a moment component.
\(r_{i j}\) - Wheel rolling radius
Note: For a single wheel, the above quantities are given for \(j=1\). The corresponding quantities for \(j: 2\) are not used.
c) Force Relations for Bogie Support

As described below in section II.F.3, subrourine MOVEB, the vehicle may be located elther with both wneejs of a nogre assembly on the eround or wati orily one of tae palr on the ground when the bogie angular motion limit is reached. The force relations are described separately for these two cases.
(1) Both wheels of the bogie support on the eround:

Assuming that the normal force, tractive force coefficient, rolling resistance coefficient and all needed geometry are known, the normal and tie tangential forces acting on the bogie beam at wheel center are described as follows (see Fig.II.F.4):

FIGURE \(11 . F .4\)-- Forces on dogie Sispension when Borin
'Sheel: Contact :ne Surface

The angle (interface friction angle) that the resultant force vector under the wheel makes with the normal to the under-wheel-slope is:
\[
v_{i j}=\arctan \left(C_{T F i j}-C_{R R i j}\right)
\]

The magnitude of the force vector at the center of the front wheel on the bogie is:
\[
F_{i 1}=F_{N i 1} / \cos \left(\gamma_{11}\right)
\]

The normal forct to the bogie beam is:
\[
F_{N B:}=F_{11} \cdot \cos \left(\delta_{11}\right)
\]
where:
\[
\begin{aligned}
& \delta_{1 j}=Y_{1 j}+B_{1}^{\prime}-\sigma_{j} \\
& B_{1=}^{\prime} \text { angle of bogie beam with horizontal } \\
& \alpha_{11}=\text { under-wheel-slope. }
\end{aligned}
\]

The tangential force on the bogle beam due to the first wheel is:
\[
F_{T B i 1}=F_{i 1} \cdot \sin \left({ }^{8}{ }_{i 1}\right)
\]

The equations for the normal force and the tangential force \(t\) the hogie beam due to the second wheel are calculated next, based on the previously made assumptions that the normal force to the bogie beam is equal for both wheels.

Force \(F_{i 2}\) at the second wheel center is:
\[
F_{i 2}=F_{N B i} / \cos \left({ }^{8}{ }_{i 2}\right) .
\]

The tangential force for the second wheel is:
\[
F_{T B i 2}=F_{i 2} \sin \left(\delta_{i 2}\right) .
\]

The evaluated norma: and tangeritial forces and moment on ine bogie beam are shifted to the bogie pivot center and rotated to the vehicle fixed-ground parallel coordinates.

Forces at the pivot center are:
\[
\begin{aligned}
& F_{T B i}=F_{T B i 1}+F_{T B i 2} \\
& F_{X i}=-2 F_{N B i} \cdot \sin \left(B_{i}^{\prime}\right)+F_{T B i} \cos \left(\beta_{i}^{\prime}\right) \\
& F_{Z i}=2 F_{N B i} \cos \left(B_{i}^{\prime}\right)+F_{T B i} \sin \left(B_{i}^{\prime}\right) .
\end{aligned}
\]

Moment at pivot center is:
\[
\mu_{1}=C_{T F 11}{ }^{*} F_{N 11}{ }^{*} r_{11}+C_{T F 12} * F_{N 12} * r_{12}
\]
where
\(r_{i j}=r o l l i n g\) radius of wheel \(f\) on suspension support 1.
\(F_{x 1}, F_{21}=\) forces at bogie pivot center
\(M_{1}=\) moment reaction reduced to bogie pivot center
Note: The same rolling radius is used for all wheels on a
(2) Only one wheel of the bogie support on the ground:

Forces at the wheel center are evaluated as before for two wheel bogie support. The wheel in contact is designated by \(j\). In the program .is is indicated by the variables SFiAG and NW. The rinal corce and moment equations reduced to the pivot center are:
\[
\begin{aligned}
& \left.\left.F_{X i}=-F_{N B i} \cdot \sin A_{i}^{\prime}\right)+F_{T B i j} \cos \theta_{i}^{\prime}\right) \\
& F_{2 i}=F_{N B i} \cos \left(\theta_{i}^{\prime}\right)+F_{T B i j} \sin \left(\theta_{i}^{\prime}\right) \\
& M_{i}=C_{T F i j} \cdot F_{N i j} \quad r_{i j} \pm F N B i * b_{i} / 2
\end{aligned}
\]
where:
+ if front wheel of bogie assembly is on the ground \((j=1)\)
- if roar wheel uf togle assemusy is on the grouna (\(:=2\))
\(b_{1}=\) bogle arm length

Tractive rorce, rolling resistance force and reaction mements are calculated as follows:
\[
\begin{array}{ll}
F_{T i j}=F_{N i j} * C_{T F i j} & \text { Tractive forse } \\
F_{R i j}=F_{N i j} * C_{R R i j} & \text { Rolling resistance force } \\
M_{i j}=F_{I 1 j} * r_{i j} & \text { Reaction moment, due only to the } \\
& \text { tractive force }
\end{array}
\]
where:
\(F_{\text {Nij }}=\) Normal force under the wheel
The above quantities are used for information only, they are not needed by the rest of the program.
d) Force and Moment Summation for Entire Vehicle
\[
\begin{aligned}
& \text { Sum of the forces in } x \text {-direction for main unit } \\
& F_{M x}=F_{x 1}+F_{x 2}+F_{M C G X}-F_{h x} \\
& \text { Sum of the forces in z-direction for main unat } \\
& F_{M z}=F_{z 1}+F_{z 2}+F_{M C G Z}-F_{h z} \\
& \text { Sum of the moments around hitch point for main unit } \\
& M_{M}=\left(M_{1}+F_{x 1} 2_{1}+F_{2} \mid x_{1}\right)+\left(M_{2}+F_{x 2} 2_{2}+F_{22} \text { " } x_{2}\right) \\
& \text { - } F_{M C G X}{ }^{*} Z_{C G M}+F_{M C G Z} * X C G M
\end{aligned}
\]
where:
\[
\begin{aligned}
& \text { (subscripts: M-for maln unat, T- for irailer) } \\
& \text { F MCGA, }^{\prime} \text { FMCGz }=\text { Forces at center of gravity in x-airection } \\
& \text { and } z \text {-direction respectively (} F_{M C G X}=0 \text {) } \\
& F_{h y} F_{h z}=\text { Force at trailer hitch point (negative } \\
& \text { sign for main unit, for single unit, } \\
& \text { both are equal to zero) } \\
& { }^{x} \text { CGM },{ }^{2} \text { CGM }=x \text { and } z \text { location of center of gravity with } \\
& \text { reference to the hitch point (vehicle fixed- } \\
& \text { ground parallel coordinates) }
\end{aligned}
\]

The additional three equations for the main unit with a trailer are:
Sum of the forces in \(x\)-direction, for trailer only
\[
\mathbf{F}_{\mathbf{T x}}=\mathrm{F}_{\mathrm{x} 3}+\mathrm{F}_{\mathrm{TCGX}}+\mathrm{F}_{\mathrm{hx}}
\]

Sum of the forces in z-direction, for trailer only
\[
F_{T z}=F_{z 3}+F_{T C G Z}+F_{h z}
\]
jum of the moment around hitch point, for trailer only
\[
H_{T}=M_{i}-F_{x 3}=z_{3}+F_{23} \times x_{3}-F_{T C G X}=z_{C G T}+F_{T C G Z} \times x_{C G T}
\]

\title{
where \(F_{\text {TCGX }}, F_{\text {TCGz }}\) are the forces at the center of gravity of the traller in the \(x\) and \(z\) directions respectively.
}

These six unbalanced forces and moments \(F_{M x}, F_{M_{2}}, M_{M}\), \(F_{T X}, F_{T z}\) and \(M_{T}\) are all driven to zero by adjustments to \(X N(1)\), \(F_{N 11}: F_{N 21}, F_{N 31}, F_{h x}, F_{h 2}\) (the \(X N\) array) using the iterative procedure of subroutine EQSOL described in Powell (1970).
3. Subroutine MOVEB

This subroutine advances the vehicle to a new position on the
 nitch, trailer, the vehisle pitch angle and the angle under the wheels, all at the new position and attitude.

MOVEB makes use of the equation solving routine EQSOL, also used by FORCES, to calculate the position of the prime mover (the vehicle) such that all the wheels are on their hub profiles (unless they are elevated above the hub profile by restrictions on the angul movement of the bogie arm with respect to the frame) in such a way that the new position of the CG is a distance of STEP away from the prior position. The value of STEP was calculated and set in subrcutine OBGEOM. The independent variables of these equations are \({ }^{\prime} C G,{ }^{\prime} C G\) and of for single wheeled vehicle suspension elements and for those positions which yield all bogie ari positions at their limits. If the suspension elements are bogies an
their equilibrium position is between their angular limits, then \(c\) or two Additional independent variables are \(B_{1}\) indoor \(B_{2}\), the angle the bogle arm makes with respect to the vehicle x-axis.

Initial estimates for these three, four, or five quantities supplied to EQSOL; the equilibrium values of these variables are returned by EQSOL such that
\(\left.\left[\left(x_{C G}^{\prime}\right)+x_{P C G}^{\prime}\right)^{2}+\left(z_{C G}^{\prime} 1+z_{P C G}^{\prime}\right)^{2}\right]^{1 / 2}=\) STEP
and the vertical distance of each wheel to its hub profile is ers all within an overall tolerance of about one inch or less.

With a bogie suspension tiement. ire posisioie states of support exist:
(1) on the front wheel at its upper (toward the vehicle)

(2) on both wheels, or

(3) on the rear wheel at its upper limit.

\[
N W(i)=2
\]

FIGURE II.F.5 -- Possible States of Support of Bogie Suspension Element
(4) In addition, for tracked vehicles, support by a spridl. could be substituted for an entire suspension element.

FIGURE II.F. 6 -- Spridler Interference for Tracked Vehicle

If the rear spridler is supporting the vehicle, then \(N W(2)\) : (In case (4), the "wheels" of the tracked vehicle that are used to model the track are much larger than pictured. The small wheels ar shown for illustrative purposes only.)

Upon entry to MOVEB, the program assumes case (2) for all suspensions which are modeled with a bogie. \(\left(r_{B C i},{ }^{0}{ }_{B C i}\right.\) and \(\beta_{i}\) are passed to EQSOL to locate the supports.) This may result in up to five (NEQL \(=5\)) independent variables and equations used to locate the vehicle. Upon return frow EQSOL, the following values represent the location and attitude of the vehiaje \(X_{C G}^{\prime}\), \(z_{\text {CG1, }}^{\prime}\) of and \(B_{1}\) and/or \(B_{2}\). These returned values of
\(P_{1}\) and/or \(B_{2}\) are checked to be wathin their limats: di \(E_{\text {: }}\)
\(\leq B_{1}, 1=1\) and/or 2. If no violations to these inequalities occur, the position and attitude of the prime mover is considered final and the routine proceeds to calculate the position of the traller, if there 15 one.

If, for example, \(\beta_{i} \geq B_{u i}\) or \(\beta_{i} \leq \beta_{d i}\), a new entry is made to EQSOL, then the bogie of suspension \(i\) is replaced by a single wheel support with \(r_{B C i},{ }^{\theta} B C i,{ }^{B}{ }_{i}\) replaced by \(R_{L i} 1\), \(T_{\text {Li1 }}, B_{u i}\) or \(R_{L i 2}, T_{L i 2},{ }^{B}\) di depending on which limit is exceeded. The number of independent location variables and equations is now reduced by one.

This procedure is repeated until no bogre angles exceed their limits or all bogies have been, temporarily, replaced by single wheel supports.

In casc a tracked vehicle is being modeled, the location of both spridlers is now calculated. If either one is below their hub profile, EQSOL is called again with the front support replaced by one located at \(r_{B C 4},{ }^{\theta} \mathrm{BCH}\) and/or the back support replaced by one at
\({ }^{r_{B C 5}},{ }^{0}{ }^{B C 5}\). Degrees \(0:\) freedom way be reduced if, as shown in Figure II.F.6, the vehicle is being supported by apridler rather than a bogie.

Once the vehicle location and attitude are returned frow EQSOL all wheel and suspension support positions are calculated. This
calculation, and the same ones performed during the equation solvin done by EQSOL, are performed by a subroutine called ELEVAT. Given some set of \(x_{C G 1}^{\prime}, z_{C G 1}^{\prime}, \theta_{1}^{\prime}, B_{1}, B_{2}, ~ r l a g s\) indicating on what suspension elements the vehicle is being supported, and the length and direction of radius vestors from the \(C G\) to those vehicle suppor points, ELEVAT calculates \(x_{W: j}^{\prime}, z_{W i j}^{\prime}, x_{B C i}^{\prime}, z_{B C i}\) and ELEV(i), the \(v\). distance between wheel cellier 1 and its hub profile for all suspens elements on the prime mover.

When the above calculations and adjustments result in a position and attitude of the prime mover which does not violate any constraints and which has advanced the vehicle CG a distance of STE: across the obstarle, all the surface angles under the wheel in conti with the ground are calculated. This is done by a subroutine caller WHEEL1. The nitch location is then ealculated.

If a single wheel trailer is present, subroutine WHEEL2 is \(u\) : to locate the trailer wheel on its hub profile maintaining the le:igl of the radius vector, \(r_{B C 3}\), from the hitch to the trailer wheel center. The pitch angle of the trailer and the location of its CG di then calculated and a RETURN is made from MOVEB.

If a trailer is being modeled and it is fitted with a bogie suspension the traller is first positioned on the obstacle with the front wheel ac'its upper most position (\(B_{3}=B_{u}\)) using subroutine WHEEL2 with \(R, 31\) and \(T_{L 31}\). If the second whesl is

R-2058, VOLUME II
```

Ibove lts nub profile, Li ls concluded that this : s the proper
pusition for the trailer, its bogle center, pitch angle, and CG
location are calculated and MOVEB exits.

```

If the second wheel is below its hub profile, the trailer is positioned on the obstacle with the rear wheel of the bogie at its upper most position \(\left(B_{3}=B_{d j}\right.\)) using subroutine WHEEL2 with \(R_{L 32}\) and \(T_{L 32}\). If the first wheel is now above the nub profile, it \(1 s\) concluded that this is the proper position for the trailer, its bogle center, pitch angle, and \(C G\) position are calculated, and MOVEB exits.

If the first wheel is below its hub oroflle, i: is soncluded t.hat the preper position of che trailer is such tinat both wheels of the bogie dre in contact with the ground. A search for B3 in the interval [\(B_{d 3}\), \(\quad\) is conducted untll both wheels centers are on their hub pr within \(1 / 10\) of an inch. It is concluded that this is the prope Ltude of the bogie whereupon the location of bogie center is calculated and thus the pitch angle and CG locati the traller are determined. MOVEB then exits.
A. Vehicle Data

The data required to describe a vehicle for the Obstacie Module, \(0 B S 78 B\), is listed below together with the file formats required.

Most of the descriptions are self-explanatory. One should nc that the equilibrium load and center of gravity location (lines i2, should be those of the empty vehicle. The weight and location of tr payload are entered separately (line 14,15). The payloar weight mas zero.

The data used to describe a tracked vehicle requires special attention. In OBS78B, the track is replaced by eight wheels, two bc pairs on each side, as discussed in section II.A.1. In order to obt the kind of path of motion expected at the \(C G\), these wheels are qui large. In fact, the effective radius is the distance between the th support points if the vehicle has a girderized track and half this distance if the track is flexible. These wheels are placed on two bogie suspensions whose horizontal locations, bogie arm width and limits of angular motion are those specified in the input data file (lines 8-11). We have found that if the suspensions are too far apa the resulting enormous wheels can contact the obstacle far fore and aft of the vehicle resulting in false clearance information. In particular, the contact of the sprocket or idler (spridler) is not
moluled in thas case. If the suspensions are too close,the venicle mution is not properly modeled. For the M60Al, placing these suspension supports over the second and next to last road wheels with the bogie arm width equal to the road whel spacing seems to give reasonable results. To model the relative freedom of vertical motion If the first and last road wheels, the limats of angular motion are dirferent in the clocxwise and counter clockwise directions. For the M6OAI, we dlow the outer wheels about iour times tre motion toward tne Dody of the venicle allowed for the inner wheels.

The input file description forms Table III.A. : The variable names are those in the prograr.. The coordinate system for the input data is shown schematically in Fig III.A.l. An explenation of all the coordinate systems used in the Obstacle Modle may be found in Section II.B, above. Sample vehicle input data files for wheeled and tracked vehacles are contained in Appendix \(B\).

TABLE III.A. 1
Yenicle Input File format-OBS78B
\begin{tabular}{ll}
Line & Variable \\
No. & Name
\end{tabular}

1 TITLE1
TITLE2
TITLE 3

2
\[
J=1,2
\]
\[
I=1, N S U S P
\]

BWIDIH(I) \(I=1\), NSUS \(P\)

10
balmu(1) \(I=I\), NSUSP
\(J=1,2\)
\(I=1\), NSUS

3

\section*{元}

FORMAT Description

A5 This line contains alphanumeric A5 vehicle ldentification. The first

A5 \(\quad 15\) characters are printed in the program output.

I2 Number of wilits
I2
12
12

F7. 2
F7. 2

1012

1012

1012
S-independent single wheel
1-bogie
Power indicator for wheel \(J\) of support I: 0-unpowered 1-powered

Brake indicator for wheel \(J\) of support I: 0-unbraked 1-braked

10F7.2 Effective (loaded) radius of wheels at suppert I, i.e. the distance from the wheel centers to the contact point (including track thickness for a tracked vehicle)

10r7. 2 Horizontal coordinate of suspens:on support point I with respect to hitch (in.)

10F7.2 Bogie swing arm width at support I (0. If no bogie) (in.)

10F7. 2 Limit of angular movement in counter clockwise direction of bogie arm at suppor: I : deg.)

TABLE III.A. 1 (Continued)
\begin{tabular}{|c|c|}
\hline Line
No. & Variable Name \\
\hline \multirow[t]{2}{*}{11} & BALMD (I) \\
\hline & \(I=1, N S U S P\) \\
\hline \multirow[t]{2}{*}{12} & EQUILF(I) \\
\hline & \(I=1\), NSUSP \\
\hline
\end{tabular}

13

14

Variable
\(I=1\), NSUSP

CG2 1

CGZ2

DEE 1

ZEE 1

DEE2
2EE2

DELTW 1
DELTW2

KPTSC 1
NPTSC2
xCLC1(I), YCLC1:I)
\(I=1\), NPTSC 1

FORMAT Description
10F7.2 Limit of angular muvement in clockwise direction of bogie arm at support (This angle is negative if the front wheel is below the rear wheel at the extreme position) (deg.)
©OF7.2 Equilibrium load on support I when vehicle is empty and at rest (If support I is a bogie, this is the sum of the loads on the two wheels of the bogie pair) (lb.)

F7. 2 Vertical position from ground of center of gravity of unloaded first unit (in.)
F7. 2 Vertical position from ground of center of gravity of unloaded second unit (in.)

F7.2 Horizontal coorcinate of the first unit payload C゙G with respect to hitch (in.)
F7. 2 Vertical distance to the \(C G\) of the payload of the first unit from the ground at rest (in.)
F7. 2 Horizontal coordinate of the trailer payload CG with resfect to hitch (in.)
F7. 2 Vertical distance to the CG of payload of the second unit from the ground at rest (in.)

F7. 2 Weight of the payload of the first unit (lb.)
F7.2 Weight of the payload of the second unit (lb.)

12 Number of breakpoints used to describe the bottom profile of the first unit
12 Number of breakpoints used to describe the bottom profile of the second unit

10F7.2 Pairs of \(X\) and \(Z\) coordinates of breakpoints of the bcttom profile of the first unit at equilibrium with no payload. Five pairs are entered per line, as many lines as needed (in.)

TABLE iII.A. 1
Vehicle Input File Format-OBS78B

Line Variable No. Name

1

2

3

4

5

6

7 EFFRAD(I) \(I=1\), NSUSP

ELL(I)
\(I=1\), NSUSP

9
BWIDTH(I)
\(I=1\), NSUSP
BALMU(I)
\(I=1\), NSUSP

FORMAT Description

A5 This line contains alphanumeric A5 vehicle identification. The first A5 \(\quad 15\) characters are printed in the program output.

Number of units
Total number of suspension supports Cor entire venicle Venicle type: 0-tracked

1 or greater- wheeled
Track type: 0- rigid
1- flexible
F7. 2 Height of hitch above the ground when empty vehicle is at rest (in.)
F7.2 Vertical force on hitch of trailer at. rest (tongue keight) (lb.)

1012 Sispension type at support I: 0 -independent single wheel 1-bogie

Power indicator for wheel \(J\) of support I: 0-unpowered 1-powered

Brake indicator for wheel \(J\) of support I: 0-unbraked 1-braked

10F7.2 Effective (loaded) radius of wheels at support I, i.e. the distance from the wheel centers to the contact point (including track thickiess for a tracked venicle)

10F7.2 Horizontal coordinate of suspens!on support point in with respect to hitch (in.)

10F7.2 Bogie swing arm width at support I (0. If no bogie) (in.)

10F7. 2 Limit of angular movement in counter clockwise dirtction of bogie arm at support I ideg.)

TAB'E III.A. 1 (Continued)

Line
No.
Variable Name

FORMAT Description

NOTE: IF A ONE UNIT VEHICLE IS BEING DESCRIBED, THE FOLLOWING LINE (18) IS SKIPPED.

18 XCLC2(I). YCLC2(I) \(I=1\), NPTSC2
10F7. 2 Pairs of \(X\) and \(Z\) coordinates of the breakpoints of the bottom profile of the second unit at equilibrium with no payload, five pairs per line with as many lines as needed (in.)

NOTE: THE FOLLOWING LINES (19 and 20) ARE INCLUDED ONLY FOR TRACKED VEHICLES.

19
SFLAG(I),
\(I P(I, J), I B(I, J)\)
\(I=4, J\)

20
\begin{tabular}{|c|c|c|}
\hline ELL(4) & F7.2 & Horizontal coordinate of center of front spridler with respect to hitch (in.) \\
\hline 7S (4) & F7. 2 & Vertical distance iror grouni to center of front spridler (in.) \\
\hline EFFRAJ(4) & F7. 2 & Effective radius (distance from wheel center to contact point including track thickness of front spridler (ir) \\
\hline ELL (5) & F7. 2 & Horizontal coordinate of center of rear spridler witn respect to hitch (in.) \\
\hline 2S(5) & F7. 2 & Vertical distance from ground to center of rear spridler (in.) \\
\hline EFFRAD (5) & F7. 2 & Effective radius of rear spridler (in.) \\
\hline
\end{tabular}

FIGURE III.A.I -- Vehicle Input Date - Cuordinate System

Although OBS78B is currently to be used as a preprocessor, the program is designed to allow extension to in line use i, the Areal Module or possible expansion to linear feature size obstacles. For these reasons, the topographic slope is included as a terrain input, although for present purposes, it should be entered as zero. In additior, data which describes the terrain vehicle interface is included as described in section III.C below.

At the present time, the obstacle modeled is a symmetric trapezoid and hence \(1 s\) definea by three numbers, the ovstacle aporoach anais, reght and width (see figure II.A.2). The user nai tap eftum of entering a single odstacle or a sequence of obstacles. The first line of the terrain file identifies the option selected. It is planned to extend the number of options. The value of the option identifier has been chosen to be consistent with those in data files existing at WES and TARADCOM. A sample terrain input file is contained in the Appendices.

TABLE III.B. 1
Terrain File Format-OBS78B
\begin{tabular}{|c|c|c|}
\hline Line No. & Variable FORMAT Name & Descripticn \\
\hline 1 & LSIG I2 & Signal of data entry mode \\
\hline 2 & GRADE F7.2 & Topographic slope (\%) \\
\hline NOTE: & The only values currently If LSIG=2, a singie odstac that the data cortains a If LSIG=2, the following & ```
allowed are LSIG=2 and LSIG=3.
le is expected while LSIG=3 indicates
sequence of obstacies.
line is skipped.
``` \\
\hline 3 & \begin{tabular}{ll} 
NANG & I2 \\
NOHG: & I2 \\
NWDTH & I2
\end{tabular} & \begin{tabular}{l}
Number of cbstacle Engles \\
Number of obstacle heights \\
Number of obstacle widths \\
These three values are written in the \\
output rile Sur use oy the Areal \\
module. nasp8B does not need thein.
\end{tabular} \\
\hline 4 & \begin{tabular}{ll} 
OBH & F10.2 \\
OBAA & F10.2 \\
OBW & F10.2
\end{tabular} & \[
\begin{aligned}
& \text { Oostavle neigrt (in.) } \\
& \text { Obstacle approach angle } \\
& \text { Obstacle widt! }
\end{aligned}
\] \\
\hline NOTE: & If LSIG=3, the file shoul for each obstacle to be t line of the file should c terminates if OBH \(>99999\) & d contain a line in tne above furmat raversed. In this case, the last ontain all 9's. (The program .99) \\
\hline
\end{tabular}
```

?-ċujz, \becauseDLUME II

```
Page

For tne nonce, variables to describe terrainfvehicle : nteraction and those containing control information for the computer system are read from unit LUN4 (l.e. the program concains FORTRAN "READ (LUN4,f) \(X\) " statements, with \(f\) the FORMAT label and \(X\) the variables). When the program is run interactively, the variables are entered from the terminal.

The first entry is DETAI. (FORMAT-I2), the output detarl level indicetor. it present the following output levels are implemented.
0) Oniy the minimum clearance, maximum force and average force ior eath obstacle are reported.

1 An additional output file is opened for detailed output. At detail level 1 or greater, the vehicle and terrain input dita are echoed to this detailed output file.

9 In addition to the above, the rinal computations in the movement and clearance subroutines are reported.

10
At this level intermediate results are reported from the subroutines as well as at the transition points selected for lower levels. This is the level normally required to debug the program. A complete report of each step is available. Care must be used as traversal of a single obstacle can produce more than 100 pages

R-2058, VOLUME II
of output at this level.
11 All level 10 output is also written at level 11 as well as a report on every call to the iterative non--linear equation solver. About \(60 \%\) more output is produced than at level 10 .

The final two lines are the vehicle/terrain interaction data. First is a line containing the limiting coefticient of friction for each assembly (FORMAT 2F7.2). In this edition of the Otstacle Module, this data is not used. The last line contains the rolling resistance coefficient for each assembly (FORMAT 3F7.2).

As this section is designed for interactive users, each of the EEAD statements is preceded by a prompt.

K-20うう, VOLUME II
Ubscacle Module
D. output

The output of OBS78B consists of three files, one of which is optional. These contain control/execution information, the oasic model output and detailed model output respectively. Each is described below.
1. Control/Executior. Report

Several lines of cutout are generated for the guidance of the interactive users. These lines appear at the terminal or in a log file in the sse af a batch run. The first few prompt the user to provide the scearrıcicortrol iniorination described in the previous section. Next the first identification line of the vehicle data file is output. As each obstacle in the terrain file is completes, this is reported so that the interactive. user knows how far the program has progressed. In addition, warning and error messages may be written. In particular, in certain cases an informational message is given about the error from the EQSCL subroutine although this error is relatively small and the results are satisfactory.

\section*{2. Basic Output}

The final results of OBS78B are the minimum clearance (or maximum interference) between the vehicle and the obstacle during the override, the maximum propulsive force required during the override and the average propulsive force to override the obstacle. For ease in
using this data as part of the velicle data file for NRMM (see Volume I, Section III.B) the first six lines of the output file will contain the number of height values, angle values and width values from the terrain input file (section III.B), when appropriate with identifiers. Then a header is printed followed by the output and the corresponding terrain input in the format required for the vehicle data file for NRMM.

\section*{3. Detailed Output}

As described before, the user of the Oh3tacle Module may shoose to obrain an outpur ille cuntaining some of the results of the computations performed in modeling the override of the obstacle. The intent is to allow:
1. Verification that the input data is properly formatted and correctly read (level 1 )
2. Examination of the clearance history to identify any points on the venicle which appear to be probiems (level 4)
3. Examination of the flow of computation to understand the geometry and force results and relate them to reality (level 8)
4. Generation of sufficient data to permit program verification and debugging (levels 10 and 11).

Care must be taken in selection of the output level for this program and that for the Operational Modules, NRMM, since the higher levels cause very large amounts of data to be written. We would expect levels 8 through 11 to be selected only for a single obstacle, not for runs with a multi-obstacle terrain file. An output level
fooviding a iorce history is pianned and several levels are unassigned to provide for expansion. Most of the output records written to the detailed ourput file contain an idertification. These identifiers are listed in Table III.D. 1 togetner with the subroutine from which the record is written and the output levels at which the record would appear. In the table, these identifiers are grouped by the originating subroutine and further arranged in order of placement in the program (which corresponds reasonably well to the order of appearance in the output).

Since the detailed output is antended primarily for the experiencea analyst/programmer to use in uncovering ancmalies, it woula noraaliy be used with a copy of the frogram and it is felt that the headers used as pointers to the appropriate place should suffice as labeling. The =learance data which is produced in level 4 output, howeser, is, hopefully, of potential use to vehicle designers and design evaluators.

This output (labeled MAINC) at each step is a line of five numbers, viz. the variables ILOC, CLRNC, CLRMIN, IDX and IDC. The first, ILOC, is the index of the step. The second is the minimum clearance or maximum interference (in inches) at tiat step. CLRMIN is the minimum clearance or maximum interference found at all steps from the initial position to the current position. ihe last two numbers, IDX and IDC are indices which contain, encrypted, the location (on vehicle or obstacle) at which CLRNC and CLRMIN respectively are obtained. As explained in section II.F.1, at each step of the obstacle
traversal, clearances are checked at the otstacie breakpoints, the vehicle clearance array breakpoints and the vehicle hitch. The mınimum is the reported clearance, CLRNC. If this occurs at the Nth cbstacle breakpoint, the value reported in IDX is \(N\). If the minimum occurs at the Nth breakpoint of ifre first unit'z clnarafice array the value of IDX is \(10,000 N\). For a minimum at the Nth breakpoint of the second unit's clearance array, the value of IDX is 100 N . If, finally, the minimum is found at the hitch point (which is cnecked separately), the value of IDX is \(1, i 11\).

TABLE III.D. 1

Detalled Output Headers - OBS78B

Header

Descriptive Text
TERR 1
NEW OBSTACLE MEACKOFF
MINIT1
MINIT2
MAINC
MAINI
MAIN2
MAIN3
MAIN4
MAIN5 MAIN7

SBGI
----
K, I
----
STEP SIZE
CLEARO
CLEAR 1
CLEAR2
CLEAR 3
04
V 1
V2
V3
H
H2
H3
T1
T2
T3
MIN
SSQ
XN
\(X P H\)
X
2
\(\operatorname{CGX}(I), \operatorname{CGZ}(I)\)
ALPHA
CGFX(I)
CGF2(I)

Originating
Level
Subprogram
0BS78B
OBS78B
OBS78B UBS78B OBS78B 0BS78B OBS78E 0BS78B 0BS78B OBS78B OBS78B OBS78B OBS78B

ORGEOM OBGE欠N OBGEOM OBGEOM OBGEOM OBGEOM

CLEAR
CLEAR
CLEAR
CLEAR
CLEAR
CLEAR
CLEAR CLEAR CLEAR CLEAR CLEAR CLEAR CLEAR
CLEAR
CLEAR
FORCES
FURCES
FORCES FORCES FORCES FORCES FORCES FORCES
FORCES

1 or greater
l or greater l or greater
10,11
8-11
8-11
4, 8-11
10, 1 ?
10,11
8-11
8-11
8-11
1 or greater
i0, i:
i0, 11
9-11
10,11
9-11
1 or greater
10,11
10,11
10,11
10,11
10, 11
10, 11
10,11
10, 11
10,11
10, 11
10,11
10,11
10,11
10,11
9-11
10,i1
10,11
10,11
10,11
1C, 11
10,11
10,11
10,11
10,11

Comments

Echo of
vehicle input
Terrain input echo
Terrain input echo

Clearance history

R-2058, VOLUME II
obstacle Moaule

TABLE III.D. 1 (Continued)
\begin{tabular}{|c|c|c|c|}
\hline Header & Originating Subprogram & Level & Comments \\
\hline FHX, FHZ & FORCES & 10,11 & \\
\hline SFLAG & FORCES & 10,11 & \\
\hline NW & FORCES & 10,11 & \\
\hline RR & FORCES & 10,11 & \\
\hline BETAP & FORCES & 10,11 & \\
\hline SWITH & FORCES & 10,11 & \\
\hline BN & FORCES & 10,11 & \\
\hline BT & FORCES & 10, i1 & \\
\hline CRR & FJRCES & 10,11 & \\
\hline CTF & FORCES & 10,11 & \\
\hline FN & FORCES & 10,11 & \\
\hline RF & FORCES & 10,11 & \\
\hline TF & FORCES & 10,11 & \\
\hline FX & FORLES & 10,11 & \\
\hline F2 & FORCES & 10,11 & \\
\hline PX & FORCES & 10,11 & \\
\hline P2 & FORCES & 10, 1i & \\
\hline PM & FORCES & 10,11 & \\
\hline mover & MOVEB & 10,11 & \\
\hline MOVE3 & MOVEB & 10,11 & \\
\hline MOVES 4 & MOVEB & 10,11 & \\
\hline MOVES 5 & MOVEB & 10,11 & \\
\hline MOVE 11 & MOVEB & 10,11 & \\
\hline MOVE 12 & MOVEB & 10,11 & \\
\hline MOVE21 & MOVEB & 10,11 & \\
\hline MOVE22 & MOVEB & 10,11 & \\
\hline MOVEA 3 & MOVEB & 10,11 & \\
\hline moveal & MOVES & 10,11 & \\
\hline MOVEA5 & MOVEB & 10,11 & \\
\hline moveasa & MOVEB & 10,11 & \\
\hline MOVEASB & moveb & 10,11 & \\
\hline moveab & MOVEB & 10,11 & \\
\hline ELEVAT 1 & Elevat & 10,11 & \\
\hline elevat2 & ELEVAT & 10,11 & \\
\hline elevat3 & elevat & 10,11 & \\
\hline elevat 4 & Elevat & 10,11 & \\
\hline WHEELSO & WHEEL2 & 11 & \\
\hline WHEELS 1 & WHEEL2 & 11 & \\
\hline WHEELS 2 & WHEEL2 & 11 & \\
\hline WHEEL3/1 & WHEEL 3 & 11 & \\
\hline WHEEL3.'2 & WHEEL3 & 11 & \\
\hline WHEEL3/3 & WHEEL 3 & 11 & \\
\hline \%EQSO: & EQSOL & 11 & \\
\hline
\end{tabular}
() estacle Module

\section*{IV REFERENCES}

Amerscan Association of State Highway officials (AASHO), A Policy on Geometric Design of Rural Highways, 1965, The Anerican Association of SEate Hignway Officials, washington, D. C., pp 152 to 159.

Jurkat, M. P., Nuttall, C. J., and Haley, P. W., "The AMC '74 Mobility Motel", Technical Report No. 11921 (iL-149), May 9975 , \(\mathrm{L} . \mathrm{S}\). Army Tank-lutomotive Command, Warren, Mich.

Lessem, A. S., "Dynamics of Wheeled Venicles: A Mathematical Model for the Traversal of Rigid Obstacles by a Pneumatic Tire", Technical Report M-68-1, U. S. Army Waterways Experiment Station, CE, Vicksburg, Miss., May 1968.

Nuttall, C. J., Jr., and Dugoff, H.J., "A Hierarchial Structure of Models for the Analysis of Land Mobility Systems", presented at Twelfth Annual U. S. Army Operations Research Symposium, Durham, N. C., Oct 1973.

Nuttail, C. J., Jr., Rula, A. A., ana Dugoff, H. j., "Computer Model fo: Compronensive EJaluathen of Cross-Country Yehi ilo Mooility". Eařnmoving licustry Conference, SAE Faper No. 740425 , presented at Society of Automotive Engineers, Apr 1974.

Powell, M. J. D., "A FORTRAN Subroutine for Solving Nonlinear Algebraic Equations", Numerical Methods for Nonlinear Algebraic Equations, (Editor: P. Rabincwith), Gordon \& Breach, 1970.

Pradko, F., Lee, R. A., and Kaluza, V., "Theory of Human Vibration Response", Paper 66-WA-BHF-15, presented at ASME Meeting, Nov 1966.

Rula, A. A., and Nuttall, C. J., Jr., "An Analysis of Ground Mobility Models (ANAMOB)", Technical Report M-71-4, Jul 1971, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.

Rula, A. A. and Nuttall, C. J., Jr., "Terrain Modeling to Support Mobility Evaluation", Proceedings of Fifth International Conference, The International Society for rerrain-Vehicle Systems, Inc., Letroit, Mich., Vol 4, Jun 1975.

Smith, G., "Commercial Vehicles Performance and Fuel Economy", Sciety of Automotive Engineers, Special Publication 355, 1970.

Taborek, J. J., Mechanics of Vehicles, Penton Publications, Cieveland, Ohio, 1957.
U. S. ATAC, "The AMC-71 Mobility Model", Technical Report No. 11783 (LL 143), Vols. I and Il, Jul 1973, U. S. Army Tank-Automotive Command, Warren, Mich.
```

<-2U゙Sb. VCLUPE d!
Ll\TING Lr P\&OGKAM uES7\&E
PkGGPAM CES78G
\iota
VEHILLF-COSTACLE INTERFEREACE MOCEL ICCDING UNOPTIMIZEDI
LETEKMINES INTERFEFENCLJCLEARDNCE BETWEEN 2-DIMENSIUNAL
VEHICLE fRCFILE AND CBSTACLE FROFILE CF IHAPEZDIC SHAPE.
UETEKMIINES TRACTION FCRCE FEGUIREC TC SURMUUNT. ACCOUNTS
FOK AKT!CULAT!ON IN PITCH ILANE, EGGIES ALLOWED
L LN ALL SLSFENSIUNS. EASIC AAALYSIS PRCCEEURE: SOLUTION OF
EOUATICNS CF STATIC EQUILIERIUM FCR SEGUENTIAL PLACE-
C MENTS UF VEHICLE CN OBSTACEE TO YIELC TANGENTIAL FORCES
C ANC FCSITICN OF VEHICLE CLIARANCE CONTOUA WBTH RESPECT
G IO UESTACLE.
C LOUT=CETAIL IS OUTPUT. CETAIL LEVEL INCBCATCR
C UETIAIL = CMLY UTGOUT ELLE WILL EE WRITTEN
C UETAIL.GE. I UT8OBG FILE WILL EE WRITTEN
C DETAIL = 4 CLEARANCF HISTCRY WKITTEN
6 UETAIL = \& MAJUR SUBSEGTICN HESU:TS
C UETAIL = 9 SuBFCuTINE TRACE
C MFTALL = 10 ALL VARIAGLES
C

```
```

PKOGRAN UBS78B (INFUT=15A,OUTPUT=15E,TAPE5=INPUT,T,APEG=OUTPUT,

* TAPEI=15\&,TAPE2d=15Z.IAFE2I=150,TAPE22=1501
COMMCN ALPHA(5,こ),
* BNLMC(3). BALMIJ{3%,
* GETA(3), BETAP(3), BN\&3), GRAKER:5,21,BT:3,21,BHIDTH(31,
* COSA(3,21,COSU131,CCSG13,2),CGFX121,CGF212i.
- CGX\&2),CG2\&2).CGHY\21,CFRI3.21,CTF(3.21.
* EFFKAO(5), ELL(5).
+ HHX,FHZ.FN(3.2),
* HA(5.9).HB(5,9),HC(5.9),HD(5.9),HE\&5.84,HF55.94.,
* HFLI5,91,HK(5,181,h285,10t.
- GAMMA(3.2),
* IH(5.2)..IP!5.2t,IHISA2).
- LOUT ILUNG.
* NSUSF,NUN!TS,NW(S),AW<(5),
* UA191,OFLI9%,UXIIGI,C\&1101.

```

```

* KBCl,RBC2,RR!S,2I.
* SCALE(6).SFLAGI5d,SIMAI3.2),SINE(3I,STEP.
+ THETB1.THETBZ.
* X\5),XP8CI51,XPW\5,2d*
* 2:56.2PBC\&5).2PRCF(5.21.,ZPW(5.21

```
\(i\)
\(i\)
    UIMEASION
- CAW1\&151.CAH<\&15r.CFM11151,CRW21151.
- EOUILFISI, EFTRACISt.
+ fMUl3).
- POW(3.2).
r－cuうす。 VILUNE I！


＋XLLC11151，XLLC2115），XA16），XPCG121，XPRFI2Zd。

－LPCG（2）．LSi5）
\(i\)
WUBLE PKECISICN VEFGAT
LiNTEGER SFLAG，DETAIL
KEWINC 1
REWINO 26
KEWINC 21
NEWINO＜2
CALL CCNNECI SLINPUT 1
CALL CENIVELS OLOUTPUR 1
ᄂ INITIGLIIAIION OF I／C UNIT）
C rrugram summaky data
LUNL \(=22\)
\(\because\) TERKAIN CBStacle data
LUNく＝21
－VEHLCLE UATA
LUN \(3=\) こと
C CEITHOL INFIST FILE
LUN4 \(=5\)
\(\checkmark\) EXECLTION FEPURT FILE LUNS＝6
し DBACYGSTICS
LUNG \(=1\)
C
\(\mathrm{PI}=3.1415 y 205\)
PIM2＝PI \＆
PIC2＝P！／く。
\(K 1=4\)
\(K A F=i .5\)
C
WRITEILUNS．IUI
10
FCRMATICOH PKINT DUJRUL LEVEL READILUN4．A1I DETAIL
11 FURMATIL21
WRITEILUN5．15）
KEAD（LUN4，40201 FMU131，FMU（21，FMUS3）
WHTTEILUNS，161
KEADILUN4，4y261 RTOB（1），RTCH（2），RTCW（3）
1）FORMAT（כ4H FRICTICN CCEFFICIENTS BY ASSEMBLYI
10 FORMATIG3H ROLLIAG FESISIAACE CCEFFCIENTS BY ASSEMBLYI LOUT＝DETAIL
C keao in vericle data
C
KEAUILUN3．4もU日，TITLIA．TITLEZTITLE3 WKITEILUAS．4日日Q TITAE1，TITLE2，TITLE3
4080 FGRMAT（3A5）
4010 FOKMATIIWI2）
402 L FORMAT（1 WF7．2）
```

KEADILUN3.4JIOI NUNdTSONSUSP,NVEH1,NFL
KEAC(LUN3,\bullet|<L) HEFFIL,FTCFFZ
hEAD (LUN3.66ld) ISFLAGII), l=1,NSUSP:
HEAU\LUN3,40131 1/LF\&!,J!,J=1,<1,L=L,NSUSP1
HEAO(LUN3.4ulK) (|IEGd.J),J=1.2B.I=1.NSUSPI
KEADILUN3.4d2JI IEFFFAOII*,I=1,NSUSP:
READ:LUNs.4d2i゙) (ELLUA).I=1,NSUSPI
RFAL{LUNs.46%201 (Bm\&CTH(ID.J=1,NSUSP)
HEACILUN3,4とぐ) (OALPUII!,I=1,NSUSP!
KEAC(LUN3,4d?\&1 IOALNDI|I, i= l,NSUSP)
QEAO(LUN3.40<3! IEQLILF(II,I=1,ASUSP)
MEAD (LUN3.4L2d) CGZ1,CG12
CGLI=CGL1-REFHT1
GGL6=CUZ 2-REFHT1
READ(LIJN3.4才2ठ) CEE1.2cEL.LEE2,ZEE2
LEEI=LEEI-KEFHTl
LEE<=LEE2-REFNTI
PEADILUN 3.4*2%I. CELTM1.CELTW2
READILUN3.4*\~) APTSCL,NPTSCL

```

```

LD GR I=1.NPTSCI
YCLC2\LI=YCLC<IID-REEHTI
CONTINUE
IFINVEHI.NE.aI GCTC \$1S

```

```

KFAO|LUNS,4D2J\ IELL+{H,LS(Il,EFFRAC\IH,I=4,5)
2S(4)=2S(41-KEFHT1
LS(5)=2S(5)-REFFHT1
CONTINLE
U3S7t VEMICLE PRCPRCCESSCR
IFINUNITS．GE．CI GCTC 122
MTCHFLEv．
ECUILFI3I＝8．
CUMYイZ1玉と。
$C G F X(<)=$.$E 。$
LGF2121＝4．
C6X（2）＝0．
C621 21 ＝
1《も GUFZI＝－EUULLFIII－EGUILFIZ：

```

```

CGF12＝－EQUILFI 3：－HTCHF2
$66 \times 2=8$ ．
IFINSUSA．GE．J）CGXJ＝－EOUILFI3IOELLI 3I／CGEZ2
CGFくIII＝CGFII－CELTM1

```


```

CGFX（1）＝3．
CGMY111＝0．

```
m-<ibo. VLlune I!
L!SI!NG L't PFORKAM UESTOE
```



```
C FOLLDNIIVG [ISTANCES AAC AAGLES WRT CG
ACG=ATN2|しGL,1\,CGX(1)|
THFTLHI&D=ACL*PI
l
C SE! aNrle CF VECTOR FRCM CG TC HITCH EETWEEN - PI aND PI
    IFITHETJFIII.GE.FIF THETAHIJI=ACG-P!
    UU 1 <2 I=1.2
    xy=ELL(!)-CGX(1)
    ZB=-nEFHT1*EFFRAC(II-CGZ11)
    huC(I)=SOKT(xE&xE+ZE*ZB)
    IHETIU(I)-ATN<1ZE,XE&
    NWLIM(I,It=кOC1!)
    TmLIM(I.,II=THETAdS!|
        NwLIN:I, <|=w.
        TWLIM(!.<)=y.
        IF(SFLAG(I).EQ.J) GCTC 122
        OHLML(I)= GALMU(IIOPIdA8|.
        BALMC(P) = GALMUIISOP1618C.
        Al=xE+.5*日WIOTH(|) CCS:EALMUSID)
        Ll=2E+.5*BWIDTH\It*SBNAEALMU|!b*
```



```
        L2=LE-.5*B*IUTH(1)&S.dN(EALMC(I))
        InLIM(I., d=ATN2\ 21. X1)
        ThLIM(1,<)=ATN2(22.x2)
        RWLIMII,1)=SORT\:1**&"21*211
        OWLIP(I,2)=SORT: x<**2* L2* L2I
    126 CONTINUE
        IF&NVEHI.NE. J\ GCTC & 24
        nO 123!a4.5
        EFTHAD(|)=EFFRAD(S!
        XU=ELLIII-CGX(1)
        2U=\S(1)-CG211)
        hBCIII=SOKT(xE*xEOZEQZB)
        THET 1S:I|=ATNZIZE.XEA
    1<3 CLNTINUE
    144 IFINUNITS.EQ.II GCTC 125
L
C ALL PPAILER OIST. AAC ANGLES WRT MITCF
C
```

```
CGFII&IaCGF2 2-DELTH2
```

CGFII\&IaCGF2 2-DELTH2
CGX(21=1CGF22*CGX2-CMTW20CEE2J/CGFLG31

```
    CGX(21=1CGF22*CGX2-CMTW20CEE2J/CGFLG31
```



```
    CGFX(2)=d.
```

 CGFX(2)=d.
 CGMY12:=0.
 CGMY12:=0.
 HHTCR1<1=SONT1CGX(2)20 20CGZ(2)0.021
 HHTCR1<1=SONT1CGX(2)20 20CGZ(2)0.021
 THETBHI2i=ATN2\CGZ&24.CGX(2)I
 THETBHI2i=ATN2\CGZ&24.CGX(2)I
 XHE=ELL(3)
 XHE=ELL(3)
 2H8=-REFHT10EFFRACI3*
 2H8=-REFHT10EFFRACI3*
 KBC& JI=SGRT&XHB*AMA* &FBOZHBI
 KBC& JI=SGRT&XHB*AMA* &FBOZHBI
 THETAUISI=ATN2\2FB.X48:
    ```
    THETAUISI=ATN2\2FB.X48:
```

PAGE A-5

```
F-?35*, VCLUME I!
LISTING DF HFこGKAM LEST8E
```

PAGE A-6

RWLIN（3．1）R R G（3）
ThLIM（3，1） 1 THETAU（3）
KWLIM（3，2）＝ 0 。
TMLIMIj，2）＝ 0 。
IFISFLAG（3）．EQ．JI GCIC 125

$\triangle A L M C(3)=B A L M D(3) \circ P 1 / 18 k$ ．

$21=2+8+50$ SWIOTH（3）＊SIN（8ALMU（3）I
NWLIM（s，1）＝SOKT（x1＊x1＊Z1＊21）
ThLIMIS，dI＝ATAC（21，xll

L2＝2HB－．5＊8WIOTH（3）＊SINIAALMC（3）

THLIMI3． $21=A T N 2122, \times 21$
CUNT INUE
DO 13d $\mathrm{I}=1 . \mathrm{NSUSP}$
EFTRAUS II＝EFFKAD：（）
［FINVEHI－EQ．d．ANC．I－AE．31 EFTRACII\＆
IFINVEH\＆．EO．E－ANC．AFE．EGOU．ANC．D．NE』3I
－EFTRAD（1）＝ELL！！1－ELL（2）
DU $12 \mathrm{~J} \mathrm{~J}=1.2$
POWENR（1，$\dot{\text { P }}=1.0$

KK（i，Jd＝EFFKAC（I）
CKK（I．J）＝KTOMIII
DCW（I．」）＝FMU11）
134 CONTINLE
\triangle PKFCL＝0．
IF（NVEHI．EO．C）GFRFCEXEFTRAC（1）－EFFRACA1）
OC $\triangle 55$ I $=1$. NPTSCl
YCLC1IL）＝YLLCI（I）－OFGFGL
IFIAESIYCLCIIIIIAABSAKCLCIIJA：EGEO．I GOTO 133
Laml（I）＝ATN2（YCLCI（It，XCLCIIII）
IF（ARSICAWI（II）．LE．．BI）CAMI\＆IIEC． r，OTU 135
153（Anlil）＝0．

LFIN（NXISrLE．I）CCTC 145
T） $1461=1, N P T S C 2$
PFIAESIYCLC2IIII＊ABS6ACLCZ（I）I．EQ．d．1 GOTO 138
CAhく（I）＝ATN2（YCLC2LItoxCLC2（IIt
IFIAESICAM2IIII ．LE．© Il CAW2IIIE日．
GCTU 140
CAW2111＝c．
CRH26LI＝SURTIXCLC21180020YCLC2111002：
130
148
6
－enu cf vehicle rkeprocessca
\llcorner
C FCHO LNPUT
6
145 IFILCJT．E゙O．dI 6010125
WKITEILUNO，SJUもI TITLEL．TITLE2，TITLE3，NVEMA．NFL FORMATIIHI．37H THE FULCMING IS LIST OF THE INPUT．

```
    * ilh vakiaeles /lor ihe vehicle IS ,3A5/lih first unIT.
```



```
    * 27h flexible ikack iadicatcr :, l2|I
```



```
    * ICGXII),CGZ(!!,CCFXII),CGFZ|I),FHTCH(!),THET&HIII,I=1,NUNITSI
151 FLKMAT16H OVPPF,OF12.3/0X.OF12.3/0A.6F12.31
        WEITEILUNG,5dE2) NUN&TS,REFHT1.HTCHFL
biuc FCRMAT&ILHThIS IS A - bCOZSH UNIT VEHICLE MITHTAE HITCH.
    * FO.Z.24H INCHES ABCVE IFE GROUNE/IX,IGFHITCH LOAO IS ofIO.3:
        WRLTEILUNO.SAOLI NSWSP
JJOW FCKMATII7H THE VEFICLE FAS .I2. ilH SUSPENSION SUPPORTS .I2I
        WhITE(LUNO.SDAS)
5J』5 FCRMATI47h FOLLOWINE IS A LIST CF SUSPENSION SUPPORT DATA.IA
        UU 1 bu I=1.NSUSP
        NFITEILUNG,50EGI SFLAGIII, EFFRA[III,EFTRADII).ELL&I).
    * ECUILFIII,GALMUIII, EALMCIII,BWICTHALI,FMU\\!.
    - nTOWIIt,RBC: II,THET&E:II
        Wk!TE\LUNO,5|lSI.IIFGI,JI.IE\I,JJ,RWLIMII.JI.TWLIMCI.JJ,
    * HKII,JJ,CKRII.JI,PCh@I,JJ.J=1.2I
```



```
bido FOKMAT(:3.&2FlB.S)
lod CONTINUE
        IFINVEHI.NE. O\ CCTC 103
```



```
lo3 CONTINUE
        WKITESLUNO.DUd7I r.G2L,CEED.ZEEI,CELTWI
SOU7 FURMATI3THUFOK UNIT L: VERT CIST HITCN TO CG = FE7.3/
    * 13x.29HHCRLL OLST HIECH TO PAYLCAO= ,F7.3/
    * 13x,2#H VERT DIST HIBCH TO PAYLCAO= .fJ.3/
    * 13x,10H PAYLOAE= ,F3d3I
        WRITSILUNO.5dIUI RAF
SUIE FOKMATI 35H THE KEBLUEC ATTENUATIGN FACTOR IS .F5.2.1I
        WKITEILUNG.53III NPTSCI
5ul1 FURMATIIOH THEKE AREGI3.22H POIATS ON IHE VEHICLE
    * 18H CLEAKANCE COATOUR. II
        DC 165 I=1.NPTSCI
        WKITEILUNG,50121 I,XELCL(b),I,YCLC1&1).CAWI(1),CRW1&1)
```



```
    * <FIU.3I
105 LONTINUE
        IFINLNITS.EO.1& CCTC 175
        WAITEILUNG,5dI31 CG22,OEE2,ZEE2,CELTM?
5dl3 FCKMATII8HJFOK UAIT I& CGZE ,F7:3/
    - LjX,29HHORIL CIST HITCF IC FAYLCACE .F7.3/
    - 13X.29H VERT OSST HITCM TC PAYLCAD= ,FJ.3\
```



```
        WAITEILUNH.5CIHI AFTSC2
SG14 FCAMAIIIZH THERE AREP13,23F PCIATS ON THE INO UNIT
    - IOH CLEARANCE CUATOLR.II
        00 i 76 1=1.NPTSC<
```



```
        FCRMATI7H XCLC2I,12.3BI=,F8.2,2X,6HYCLC2I,12,3HI=.
```

```
        * F8.a.<Fl&.31
    17% CONTINUE
L
C THIS PKOGK&M OUES NOT FAVE CLASS INTERVAL LBSTACLES
C
l kEAO liv tekkAIA cata
C
    175 CUNTINUE
        NOBS T= d
        KEAD(LUN2.40lE) LSIC
        MEAOILUN2,4UCO) CRALE
        SLUPE=ATAN/GRAOE/IDR.J
        CSLOPE=COS(SLCPEI
        SSLOPE=SIN(SLOPE)
        IFILCUT.GE. 1) WRITEDLUNG,50IBI LSIG,GRACE.SLOPE,
        * LSLUFE,SSLOPE
    5ul& FGRMGI(6HATEKR1.12.4E2w.3)
        IFILSIG.EO.1IGU TC 2ME
        IFILSIG.EG.2IGO TO 1&5
        !FILSIG.EO.3IGC TC I&&
        WRITEILUNI.5017I
    SOI7 FORMATIIYH TEERAIN fILE EMRCR!
        GALL EXIT
    ig# REACILUN&,4dゅEI AAAGgiNCMGT,NWCTF
    4&4も FORMAT(3)(8x+12))
C
L UBSTACIE LCOP
C
    1d5 KEAOILUN2.405dJ GPR,G8AA.Obw
    40JE FOKMATIJFID.2)
        IFIOEH.LE.Y9997.591 CALL EXIT
        KMC=CJAA ค1//180.
        IFIARSISLOPEI*ABS(LBA--LBAAI*PL/I&V..LI.PID2) GOTO dyS
        WRITEILUNI.19II CEH,GOAA,CEM,GRACE
    IHI FORMATISUH OBSTACLE ANGLE-GRADE COMBINATIUN EXCEEDS VERTICAG.
        * /4Fl&.jJ
        GOTO 185
    LHS IFII8&.OOBAA .LT. O.*ORHZ-ABS\COHV
        IF&LCUT.GE. 1' MRITE&LUNG,4X3O: CBH,CBAA,OBN
    4dyn FUGMAT:LSHINEN OBSTACIE,4FIE.2I
        GO 1C 218
i
C REAU OR CALCULATE CBSTALLE PRCFILE EREAKPOINTS
C
2.0 READILUN2.4010: APYSEF
    NTOTALEL
    PFINPTSPK.EO.991 CALE EXIT
        READILUN2.4L201 (XFREIII,YPRFIII,I=1,NPTSPRI
        WRITEILUNI,4E351 LSI6
    4435 FORMATI42H WRONG CATA MCOE FUR CBSTACLE CESCRIPTION IIBI
        CALL EXIT
C
C calculate cbStacle and hue paofile
L
```

```
K-2654, VCLUNE 1!
L!JTING TF FFUGKAM UES7ot
```

PAGE A-9

こ
C STARTGVG PCINTS FGR EG. SCIVEF
6
XN1」
x A 40 =
$41=$ NSUSP +1
DC $<15 \quad 1=2, N 1$
$I M 1=1-1$
《」 \quad XNII)=EOUILFIIMIIGICILTWI*CELTW2I/FLOAJINSUSPI
XN X^{2} : $=0$ 。
XNIOI $=$ HTCHFZ
C
L IN!IIALI2E STORAGE
し
NW(3) $=0$
NW: \& $1=6$
NW (5) 5
OC < $10 \quad 1=1.5$
$216 \quad$ Naく 11 =
CLRM IN=10U. .
FCLMAX=も.
$F C C=\varnothing$ 。
c
E ralculate initial position
C
ᄂ FIKST SUSPENSICN
C
G = -HE(1,1)/MFL(1.1.1t
S=MO(1.1)/HFL(1.11
XPW(1.1) $\times 4 \times(1$, く)-. 1*
LPW(1.1)=HZ(1,2)-.1.05
NWII: $=0$
(FISFLAG(1h.EQ..1) GCIC 220
i
\checkmark FIRST SUSPENSION BCGIEE CEAIER
C
$218 \quad \times P B C 111=X P W 11.11$
2PBC811= 2PW1.10
GOTO 236
C
C FIKST SUSPENSICN BOGIE
c
$\dot{20}$ XPW(1.く1=XPW(1,11-BM10TH(110C
2Pnd d. $21=2 P W(101)-B M 10 T H 11 / 05$
KTEMPSXPW(1,i)-XFW(1,2H
LTEMOE 2PW(1,1)-2FW1 1/21
BETA(I) =ATNZ (ZTEMP XZEMPI

LPBC(1) =.5*(2PW(d.11sLPWU1,21)
c
C LOCATE FIRST UAIT CG FACM FIRST SUSPEASION
102

R-< © 58 , VGLUME I!
PAGE A-10
LISTING UF PROGKAM UESTgE

こ

IFITHETA(I).LE.. B1II IFETA1 1I=0.

i
C CHECK IF TRACKED
し
IFINVEHI.NE. OF GCTC 2.25
c
L CHECK FMONI SPRUCKET/ICLEF INTERFERENGE

- XPS. $\angle P S, 2 P K O F(4,1+1$

IFIE.GE.-. 11 UOTC 235
C
C INTERFEREIVCE - BACKUFF FIRST WIEEL - ASSUME MOUND
c
$51=5 / C$

HI=SGRTIRISOI
$X P W(1,1)=X P W: 1-1)-R I A C$
$2 P W 11.11=2 P W 11,11-R 14 S$
IFILCIT.GE.LUI WRITESLUNG.236) XPS_ZPSbE,IHI4.11,S2.S2.

<30 FORMAT(9H MGACKOFF. 35AB.3.13.6F1K.3)
IFISFLAGII.EO.1 GCIO 228
GOTU 21a
c
\subset SECONL SUSFENSICN
6
<35 NWI2IFd
IFISFLAG121.EQ.1: GCIO 260
C
\angle SECUAO SUSPENSIUN SINGLE WMEEL
C
XPW $2,10=X P B C(2)$
2PW(4,1)=2PBC(2)
GOTO 25*
c
C SELUND SUSFENSION ROGIE
C
240 XPW(2,11=XPGC121*.SOUNSDTHC21OCOS(THETA111)

XPW(2.21=XPBC121-.50EMICTH\& 21 CCSITHETASIII
LPW(2.2J=2PBC(21-.5 OBWICTH(2)OS LNETHETAC \& H
XTEMP=XPW:2, $11-X F W 62,21$
LTEMF=2PWR2.11-2FW42*2
BETAS2I=ATN2ILTEPP.AXEMPI

```
n-2v50. vClumE Id
L!JIING UF PFuG{AM UES7&E
G LUCmIE HIILH
C
```



```
    IFINLNITS.EO.1) CUTC 28し
C SEC(NAT UNIT - LUCATE wrEELdEGGIE CENTER
l
    THETA\2I=THETA\1,
    <SO=RHC: 31**2
    CALL WHEEL2 IEFFKAD,aA,FC,FE,FF,HX,HZ,1,IHI3,11.
    * 3.LCLT,LUNG,UX,OZ,ALETAI3,1),RB(I3*,KSO,XPH.
    - XPOC(3).LPH.LPBC(3))
    NH131=U
    IFISFLAG(3).EO.1) GCTO 200
C
\iota THIKL SUSPENSION SINGLENHIEL
C
    XPW(?, 1)=XP8C131
    <PW(د.1)=2PBC\3)
    GUTU 274
6
C THImL SUSFENSICN BOGLE
C
    Lot }\quad\mathrm{ CPW(3.1)=XPGC(3)*.50ON1OTH(3)*CCS(THETA121)
    ZPM(3.1) = LPBCI 31 t.5*&mICTH\31 OSIANTHETAI 2t1.
    XPW13.2)=XP8C(3)-.5*8mLCTH63)*CCS{THETA&21&
    ZPWIS.2I=LPRC(3)-.5*8WIOTH(3I*SIN(YHETAI2):
    XTEMP=XPW& 5.1)-XFW:3.21
    LTEMF=<PW(3,11-2FW(3,2)
    \triangleETA!3|=ATN2(ZTEPP,AIEMP)
    <7% XPCGI2)=XPH&RHTCH(2IECOS\TRETOH(2)+THETAS2:1
    ZPCGI&I=2PH&RHTCHI 2.dESLNITHETOH\2I+THETA\2:O
    #C < 90 l=1.NSUSP
    ALPHAIA,HIETHETAI; I
    IFISFLAG\1).EO.0\ CCTO 298
    ALPHAII,2I=THETAIII
    continue
    ILOC=O
    IF(LCUT.GE.B) WRITEIEUNG. 291) XFH. ZPH%&XPCES 11,
    * 2PCG(!l,THETAIII,IzIOAUAITSA
291 ECRM&T:7H MINITI,BFIU.31
    !FILCUT.GE.S) WRITE&EUNE,296\ (XPGCIIBOZPBCSII,NMII%,
```



```
    296 FORMATITH MINIT2.2F18.3.13.6F18.3/247X+2F18.3.13.6F1G.3/11)
C
C VEhIClE mOVEMENT LOOP
C
C lalculate clearance
C
    sHo ILOC=ILOCOI
        CALL CLEAR I CAWI,CAM, CRWI,T,RW2,ICX,LOUT.
        * LUNO,CLKNC,NPTSCI,ASISCZ,NLAITS,CX.,OZ.OTHET A.XPH,ZPHY
```

PAGE A-11

1FICLKNL．GE．LLKMIN）CCTC 3IE
10XLLR＝1LX
L．OC～IC＝I LOC
CLKMIN＝CLKNG
310 IFI（LOUT．EO．4）．CF．ILCUT，GE．JII hKITEILUNG，IIII ILOC，CLRNG，
－CLRMIN．ICX，ICXCLR
311 rOKMATIOH MAINC，15．2F1d．3．2II0）
L CALCLLATE FURCES UACER WHEGLS
$し$
CGX（1）$=\mathrm{XPCG}(1)-X \mathrm{FH}$
CGZ（1）＝2PCG（1）－2FH
IF（NLNITS．EQ．1）GCTC 32E
CGX（ $21=X P C G(2)-x F H$
CG11 21＝2PCG（2）－Z FH

－CGX（く）．CG212）
326 FCKMATIOH MAINI．4FIRed）
IF（SFLAGII）．EQ．i）BETAP（11＝EETA（1）OTHETAI 1）
IF（SFLAG（2）．EQ．1）EETAP（2）＝EETA（2）＊TトETAS1）

00 34d $1=1, j$
$X(I)=X P B C(I)-X P H$
Z：II＝ 1 PBC\＆ 1 －LPH

330 FORMATIOH MAIN2，4FIRd3）
346 CCNTINUE
CALL FORCES IXN，PAXC，ATCTAL，SSC，XPM，ZPHI
$し$
C LAPTLPE UUTPUT
C
FSUM＝0．
DC $358 \quad I=1$, NSUSP
$00355 \mathrm{j}=\mathrm{s}, 2$
FSUMaFSUN＋FNII，JdeらTGIB．J：
IFILCUT．GE．8I WRITESENAG．351：ILCC，FSUN．
－FNII，JI，CTFII．JI
355 CONTINLE
358 CONTINUE
351 FURMAT1or MA1N3，13．7F12．32．
IFIFSUM．LE．FUOMAXI CETC 340
LOCATF＝！LOC
FUOMAX＝F SUM
1FIFSUM．LT．0．1 FSUMamAF oFSUM
$F O O=F O U+F S U M$

6
\subset AOVANCE VEFICLE
CALL MOVEB ICSLCFE，AIGL，NVEHI，REC．
＊REFHTI，KHTCH，RWLIM，SSLOPE，SSOM，THETA，THETAD．THETOH，TMLIM，
－XPCG，XPH．2PCG，ZPRI
IFISSOM．GT．10B．）GOTO 983
IFILCUT．GE．81 WKITEIEUN6．366）XPF．ZPH．\＆XPCSIII．ZPCGIII．

```
n-<\dot{yy, VLLUME II}
LISIING (JF P&OGh&M UES78&
    * Tr_Ta(|I,b=1,NUNdTSI
    300 ELRMAT(OM MAIN4,8FIU.3)
        1FILCUT.LT.al GCTC ミg&
        UC joJ 1=1.oNSUSP
        WKITEILUNO,3711 J,SFLAGIdJ,NWAII,XPEC(I),2PBCII),BETAIII,
    * {XPW(I,JJ.LPW(b,J).ALPFA&I.JI.JF(b,JJ.J=1,21
        FORMATIOH MAIN5.3!3.3FIP.3.2(3F10.3.13)1
        CONTINUE
        IF(XDN(1.1).LE.HX(1.&&)) GCTO 30E
G eNC uf vehicle muvément lcgf
C
        FCC=FOO/FLCAI(ILCC)
        IFILLUT.GT.JI WRITE\LUNG.&1II LCCATC,CLRMIN,
    + !CXCLR,LCLATF,FCCNAX,FCC
    Y11 FUKMATGOH MAIN7.D5,FiK.3.118/6X.15,2F14.32
l
C WKITE AML' 7¢ AREAL MOCULE INPUT FILE
    |FILSIU.EQ.1) GOTO 589
    IF{LJ!G.EO.2IG! TC Sil
    IF(Ni.EV.I\ GUTO $95
    WRIT:! CUML.9075) NCFG%,NANG,NWCTH
```



```
    4*1 Kl=1
        WRITE(LUN1.9071)
+87! FUKMATI/IX,OHCLRWIN,HX,GHFLUMAX,4X,3HFOO,7X,6HHOVALS.
    - 4x.brAVALS.5x.5HWVAlSS
        AR!IEILUNL,YD721
9.72 EUKMATILX,6HINCHES,4X,6HPCUNLS, &X,6HPOUNOS, 6X,6HINCHES,
    4X,7rRADIANS, 3X,GRIAGHESI
yy5 CONTINUE
    IF(LSIU.EW.IIGO TU 584
    URH=&BS(CBH)
941
    WRITEILUNI,9U73I CLFMIN,FOCHAX,FOD,ORHDRAC.UBM
```



```
    {F(SSO.GT.i6U.) WRITEELUN1.Y&2)
yo< FURMAT\lht.0日X,3gh EQSOL CANNOT SOLVE FORCE & MOMENT EOS.J
    GO TO 9&3
989 IFIK1.EO.11GO TO 984
    Kl=1
    WKITEILUND.90771
5&77 FURMETI/ 1X,6HCLRHIN, $X,6HFCCMAX,4X,3HFOO\
    WKITEILUNL,96781
yuig FORMATIIX,6HINCHES,4Y,6HPCUNDS, &X,GHPIUNCSI
984 WHITEILUNI,Y日791 CLFM&N,FOCNAX,FCC
y87y FURMATIIX,FC.2,1X,FS.1.,1X,F9.11
yO3 INOBST=NUUST+1
    WRITEILUNS,985\ NCEST
485 FURMATIIX,19H EPIC CF CBSTACLE .13%
    1F!LSb6.EQ.11 GCTC 2⿴囗
    !FILSIG.EO.2) CALL EXIT
    IFILSLG.EO&3IGC TC 185
```

PAGEA-13
c

```
N-c<5d. VCLJMF II
                                    PAGEE A-14
LISTING UF PFC,GRAM OESTOE
C EAN CF CuSIACLE LOOP
r
    ENO
C
C
    SLBKCUTINE GRGEOM (EMdCTF,EFFRAC,ELL,HAFHB,HC,FD,ME,HF,HFL,
    * HX,HZ,LUUT,LUNG,NSUSF,NUNITS,NVEF1,OA,OEAA,OUH,OBW,OFL,
    *. UX,O2,SFLAG,SLCPE,STEPI
    IITTEGER SFLAG
    U!MENSION BW!CTH(3).,EFFRAD(5),ELL{51,HA\50,il,HB\S.91,
```



```
    * JAS91.OFLI91,CX\10'FELI1UN.SFLAG(3)
C
C
    UGSTACLE ANO huE GREAK POINTS BEFORE MAIN SLOPE
L
    OANG =11dB.-OBAA1*s.14159205/180.
    CANGZ = LOSIOANG/2.1
    SANG2=SINIOANG/2.1
    TANG<= SANG</CANG2
    CANGI=COS\OANGI
    SANGOSINIOANGI
    TANG=SANG/CANG
    WA=OEN+2."OBH/TANG
    RUNL=ELL|10-ELL(ASUSQ|
    IF(SFLAGI\I.EQ.1) RU&L=FUNL+EWICTHI1&/2.
    IFISFLAGINSUSPI.EQ. 1t RUNL = RUNL'EWIOTH(NSUSPI/2.
    IFILCUT.GE.ILI WFITEULUAG,1211 CANG,OEH,OBM.
        - SANG,CANG,TANG,HA,SLEFE,RUNL
    l<b FORMAJISH OBG1,gFId.A&
            IF&UANG.LT.O.1 GCTO .13&E
C
C MGUNC
l SET cestacle pgints
C
OX|1I=\triangleRUNL-EFFRACI A&NANĠ-1.
IF(HVEHI.EQ.W) OX(&)FOX(1) -ELL(1)-ELL(&)
02111=|.
Ox(2)=0.
02121=0.
0x(3)=8.
02131=0.
OX(4):UBH/TANL
O<\41=OUH
OX(5)=0\times(4)
O2(5)=OEH
OX(6)=WA-CX(4)
O2161=08H
OX(7)=UX(6)
O2(7) =OBH
OX(8)=!14
02(8)=0.
UX(9)=WA
02\9)=0.
```

n－2ibる，VJLUNE 11
LISTING jF rFOGKAM UESTYE

ひくはひこも。
L sei fub phufile figats
nu $1<\theta \in k=1,5$

IFIK．EN．J．ANC．NUNITS．EG．II GCTC 1Zも日
$K K=E F F R A C: K)$
HX（K，1）：CX（1）
$H 2: K .11=R K$
HX（K．5）$=$ CX（5）
$42(K .51=C B H+F K$
$H x(K, 6)=0 \times(6)$
$42(K, 6)=C B H+F K$
$H X(K \cdot 10)=C X(1 J)$
H2（K．1U）$=$ \＆K
$H L(K, 4)=C L(4)+R K$ © CANE
IF\｛H2（K，4）．LT．RK）GCIC 21 \＆
HX（K．4）$=0 \times(4)-K K$－SAA
HX $(K, 3)=C X(3)-R K$ TTAAE 2
$H(1 K, 3)=k K$
$H X(K, 2)=H X(K, 3)$
$H Z(K, 2)=R K$
HX（K， 7 ）$=C X(7)+P K * S A N C$
HZ（k，7）＝CZ（7）＋RK •CAAE
$H X(K, 8)=0 X(8)$－RK•TANG2
HZ（K，8）＝RK
$H X(K, \mathcal{H})=H X(K, 8)$
H2：K．91＝fK
GOTO $12 y 0$

HZ（K 41 ＝ AK
$H X(K, 3.1=\mu X(K, 4)$
$H 2(K, 3)=H Z(K, 4)$
$H X(K, 2)=H X(K, 3)$
$H Z(K, 2)=H Z(K, 3)$

H（1K．7）＝RK
HX（K，8）$=H X(K, 7)$
H2（K，B）＝KK
$H X(K, 9)=A X(K, 8)$
HZ（K．9）＝RK
CONTINUE
GUTO 1800
C
13dy $0 \times 11=-R U N L-1$ ．

$0 \times(2)=4$ ．

```
N-CDSO, VJLUNE I!
LIST&NG OF PFJGF.AM Ü甘S7ob
UZ(2)=0.
Ux(;)=0.
UZ(;)=t.
Ux(& 1:UOH/TANG
Uく|&)=じH
Ux(b)=UX(4)
CL(5)=0甘M
J人(6)=1.\lambda-UGH/TANG
O<(6):=OUH
0\times(7)=OX(0)
UZ(7)=O&H
Ox(B)=#A
OZ(8)=0.
Ux(9)=WA
OL(9)=U.
UX(1む)=WA+RUNL+l.
UZ(1x)=0.
C
C
SET FUB PROFILE
UU 1780 K=1,5
IFIK.GT.NSUSP.ANC.NVEH1.NE.SI CCTC 170日
IFIK.EO.3.AND.NUNITS.EG.1I GOTO 178:d
KK=EFFKAC&K)
HX(K.1)=OX(1)
H(:K,1)=RK
HX&K.2H=|.
HZ(K,Z)=KK
HX(K,9):ZWA
H2(K,9)=KK
HX(X,18)=0X(1d)
HZIK,1dI =RK
HX(K.3)=CX(3)-RK*SANG
HX(K.d)=CX(8)&RK*SAAO
IF(HX(K,3).LT.HX(K,&1) GCTC 140E
C
C CASE 1 - WHEEL TOUCHES CESTACLE PCINTS 3 AND 8
    HX(K,3)=.5010X(3)+CX081)
    HX(K,4h=HX(K,3)
    HK(K,S)=HX(K,3)
    HX(K,6)=HX(K,3)
    HX(K,7) =HX(K,j)
    HX(K,8):= HX(K,3)
    HZ(K,3)= SGRT{KK*FK-4HX(K,3)-HX(K,2d)**2)
    HZ(K,4)=H2(K,3)
    HZ(K,5)=HZ(K,3)
    HZ(K,6)=HZ(K,3)
    HZ(K,7)=HZ(K,3)
    HZ(K,8)=HZ(K,3)
    GOTO 178 U
1404 H2(K,3)=O2(3)+HK*CANG
    IF(H2(K.3) &GT.CBF*RKA GCTO 150&
```

n-<us४, VClUNE II
LISTING UF PH|GKAM U\#S7BE

```
PAGE A-17
GCMSE C - MTEEL TUULHES DCIAT 3 ANC BOTTOM

    \(\rightarrow 2(K, 3)=K K+0\) OR
    \(H X(K,-1=H X(K, 3)\)

    \(H X(K, 5)=H X(K, j)\)
    H2(K,5) \(=\mathrm{H}(\mathrm{K}, \mathrm{K}, 3)\)

    H2(K,y) \(=H 2(K, 3)\)
    HX\{K, \(11=H X: K, \Delta 1\)
    \(H(K, 7)=H(K, 0)\)
    \(11 \times(k, 0)=H x(k, d)\)
    HL(K.6: - - L(K. 8 )
    COTO 17シ8
    120it HL(K.8) \(=H<(K, 3)\)
    HX(K,ヶ) =CX(4) - KKATAAOく
    HX(K,7) \(=0 \times(7)+K K\) TANG 2
    IFiHx(K.4).LT.HX(K,7t) GCTC loye
C
1. © HSt ? - WHEEL TiJUHES sGTH SLUPES EEfCKE BOTTOM
\(i\)

    \(H X\{K, 51=H X\{K, 4\}\)
    \(4 \times(K, 6)=H \times(K, 4)\)
    \(H X(K, 7)=H X(K, 4)\)

    \(H Z(K, 5)=H 2(K, 4)\)
    H( \(\mathrm{H}(\mathrm{K}, 6)=H Z(K, 4)\)
    HZ(K,7) \(=\) H2(K, 4h
    COTO 17も0
C LAJE 4 - WHEEL TOUCFES SLCEES ANO dOETOM
\(c\)

            \(H \times(K, 6)=H X(K, 7 h\)
            \(H 2(K, 4 d=K K+O B H\)
            HZ(K.5) \(=H Z(K, 4)\)
            \(H 2(K, 6)=H 2(K, 4)\)
            HZ(K, 7) =HZ(K, 4)
    17ข日 CONTINUE


    14dt FUFMAT//8(1X.16F1d.2 21)
C
C TRANSFOKM PROFILES FGR SLOPE
6
    DO \(20841=1.10\)
        кP=SCRT10X(I)**2*CL11)** 21

        OXII)=FP•COS(PHI\&SLCQE)
        UZII \(\ell=R P\) OSIN(PHI \& SLCGE)
        DO <Udט \(K=1,5\)
    IFIK.GT.NSUSP.ANC.NVIFI.NE.AI GCTO 2910
```

N-< \$50. VCLUME \& I LISJING UF PMUOhAM ULゝ7ロ0

```

PAGE A－18

IFIK．EE．3．ANC．NUNITSdEG．1I GLJC 2日Ed
\(n P=56 K T(n x\{K, 1)=*<+11 K, 1 子 \Delta * 21\)

IF（ABS（PHI）．LE．－R」）RHI＝甘．
HX（K，I）＝RPQCLS（PhI＋SbCFSI
\(H Z\{K . I)=R P * S I N(P H I+S E C P E)\)
LiNU CONTINUE


กJ 2世18 \(\quad 1=1.9\)

Du 215 is \(k=1.5\)
IFIK．GT．NSUSP．ANC．AVEHI．AE．EI GCTO 2L＇í
IFIK．ED．3．ANC．NUNITS．EG．II GCTC 2150
RK＝EFFRAC：K）
！FiUANG．LT．d．J LCTC 21dK
\(\begin{array}{ll}C \\ C & \text { MOUNC }\end{array}\)
C
DU CLiby \(\quad I=1.9\)


－（H2：K，1＋1）－H2：K，1＋1－\＆2 ）
gu10 2800
\(\zeta\)
し ELEMENT CF AFC

－H2（K，ll）نOTC 2と38

－（H2（K，I＋1）－OZ（I＋1）I－6HZ（K，I）－02（I））
ANLLE＝ACOS ISPROC／IKKERKII
HFL（K，I）\(=R K\) •ANGLE
2.464 CCNTINUE

GUTO 2154
6
6 DITCF
čat CUNTINUE
DU \(210 \mathrm{E}=1.9\)
1F（81．EQ．21．OR－11．EGd8ID GOTO 2134

GOTO 6148
6 ELEMENT LF ARC
C

－H2（K．IIIA GOTO 2116


ANGLE EACOS ISPRCO／SRK日RKII．
HFLIN．II＝RK © ANGLE



```

L!SI!M.G LF PhOGKAN UR,D7JE
<ast Cuntivuc
cl5j cuntinue

```


```

 . iNH FK.SPRUC . 21<x,F12.31%
 -

\therefore uefiniticN cF dBStaceg elements
C ua - angle betmeen element ano forizuntal
6
jA(d)=SLUPE
OA\<l=j.
OA(3)=SLCPE+CANG
Ualヶ)=と.
?A(S):=SLUPE
OA(0)=0.
CA(7) SLCPE-CANG
OM|d)=6.
CAl\# =SLCPE
i
L DEFINATICN UF HUE ELEMENTS EY OLAORATIC
DU 23A8 K=1.5
:F{K.GT.NSUSP.ANC.NVERI.NE.A\ GCTO 23d0
!F{K.EC.3.ANC.NUAITS.ES.1) GOTO 2384
NK=EFFRAC(K)

```

```

 IF\MFLIK;1l.EGON.I GCTO 222&
 IFOOFLIIN.EO.J.I GOJE 2250
 l
l ELEMENT IS LINE SEGFENT
6
HA(K,l.)=2.
m\forall(K,I)=E.
HCIK,II=8.

```

```

HE(K,I)= - (HX\K,I*.1)- HX(K,II)
HF(X,I)= - (HO\K,II - HXIK,II HE\&K,IS MLSK,III
rovo 228%
C ELEMENT IS PCINT
L
2<20 mA(K.ll=E.
mB(Kod) su.
HCIK,II=0.
HD(K,I)=\#.
HE(K.I)=U.
MF(K,1)=U.
guTU 220E
C ELEMEivT IS ARC
<254 HAIK,II=1.
H\&(K,1)={.
HC(K.1)=1.

```
```

र-2ど5d, vClUME :I
LISTING LF PFOGRAM UESTBE
HO(K.l)= - 2.* OX(L)
HF(K.!1= - 2. Lill!)

```

```

 C2dE CONIINLE
 23Ju GONTINUE
    ```



```

 * (HF(K,1),L=1,y1,k=1,S)
 <)dく FUKMAT(yFl|.3)
 C
C
STSFF|u゙くん。
UO 24J\& K=1,NSUSF
DU <48y I=1.9
IFIHFL(K.L).EG.K.I GETC 24UG
IFISIEP.LE.HFLIK.DLD GOTC 24JE
SIEP=HFL(K.I)
240\& CCNTINUE
SIEP = AMAXIC.4yeSTEP.del
IFILCUT.GE.1I WRITEIEUAG.255UI STEF
2כ5E rORMATILGH STEP SILE\& ,F10.3/*
kETUFN
END
L
SUBKCUTINE CLEAK ICAML.CAW2,CRW1,CRW2.IOX.
* LOUT,LUNO,MINCLR,APTSCI.APTSC2,NUNSTS,OX_UZ.THETA.
- xH.2H
DIMEASION CAWII151, CAN2(151, CLO4261, CLVI12010CLV\&A201.

```


```

 NEAL MINCLR
 c
c lCCATE vehicle pCints
C
VPAI =THETA11O
VPAZ =THETAS2I
UO 1/d \=1,NPTSC1
XPVIIIIEXHOCRWISIOOCSSIVPAIOCAN1IIHt

```

```

 11d COMTINUE
 IFILCUT.GE.&GIWRITEIEUNG.11H\ IXPVICSI.I=1.NPTSCII
 IFILCUT.GE.I I'WhITE{&UNO.1III IZPVIIIt.I=IONPTSCII
 FURMATITM CLEARG.OL3FSO.3)
 IFINLNITS.LE.I: EOTC 138
 DU 120 1=1.NPTSC2
 XPV2 |I:EXHOCRW2III*CCSIVPA2+CAN2IIII
 LPVCIIH=2H+CNW2IIH*SIASVPAZ-CAW2IIHI
 120
 cont INUE
 IFILCUT.GE.IUIWEIIEILUNG.ISII (XPYZIIH.IEI NNPTSC2I
 IFILCUT.LE.10IWKITE\EUNG.111I ILPV2(11.1=1,NPTSC2)
 6
PAGE A-20

```
6-2v50. VULUME I!
LISTING UF PRJGKAM UGS7&E
```

```
G GalCllati Elfarincé aecive lestalle pCints
```

G GalCllati Elfarincé aecive lestalle pCints
1>e nc<<d IU=1.10
1>e nc<<d IU=1.10
LLU! IUI=1ビd0.
LLU! IUI=1ビd0.
x=0x(iC)
x=0x(iC)
L=U21101
L=U21101
test if vemdr.le is abcve oestacle point
test if vemdr.le is abcve oestacle point
IFIXFYI|1).LT.XI GCTC 280
IF(XF.LE.X) GUTU loL
IFININITS.LE.II CGTC 2JE
IFIXFV2INPTSLくi.CE.A) GCTC 2*v
l TAAILEK abOVE POINT
l
IF(xFV<Ill.GE.x) GCTE l5y

```

```

LLO(IU)=VPL-L
!F(LLUT.GE.IUIWKITE\LUNG.141) IO.X.gZ.VPL.CLOSIO\&
FUKMAT(7H CLEARI.L3.4Fl2.3)
GuTO 2%:O
15% [01] \&70 iv=2.NPTSC2

```


```

{xPY<||v-i)-xPV$IVID
CLOL lOI=VPZ-2
IF(LCUT.GË.1u)WRITEIALNG.IEIV IC,X.OL_VPZ,CLO&IO&
161 FURMATI7F GLEAK2.130+Fig.3)
 GOTU 206
 178 CUNTINLE
 WRITEILUNIV1761 10.*.2
 170 FURMaTlor Ö́KRI.13.2F10.31
 CALL EXIT
C
C VEHILLE ABCVE POINT
C
 180 DC 1SO lV=L.NPTSC&
 IFIXFVI(IVI.GF.XI GCTC 194
```

```
 - IXPVIIIV-II-XPVIIIVIS
 CLO(10)=VP&-l
 IFILC'JT.CE.IUI
 * WRITE&LUNO,B8OI LLOA,LOBVOVPZ.CICIIOI
 180
 FOKMAT17H CLEAR3.13.dF10.3.13.<F1.8.3)
 GOTO 2とQ
 19* CONT INUE
 VPZ=2H*1ZPV1(APTSC1)-2H:*(X-XF)/(XPVI(NPTSC1&-XH&
 CLOC 1O)= YPL-L
 IFILCUT.GE.IOJWRITE\&UNG.196) IC,X,Z,VPZ,CLO\IOS
 196 FCKNATISH O4,13.4518.Z!
 2d% CONTINUF
C
C
CAlGULATE CLEARARCE GELOM VEHICLE POINTS
```
```
r-2ub&, VCLUME II
LISTING (IF PGOGRAN OBS78G
C
 nO 24% PV=1,NPTSCL
 LLV1:IV)=15dと.
 x =xp\I|IV&
 L=2PvI(IV)
 LF(X.GE.LXI1)) GCTC 22%
 UPZ=CZ(1)+1字Z(2)-CZ(1)1*(x-ix(1)1/(0x(2)-0x(1)!
 CLVI(IV)= L-OPL
 IFILCUT.CE.IVIWKITE\EUNO.210) {V,X.2.OPL.CLV&IIVI
 FGRMAT(3HV1,13,4F1E &BI
 GuTO 24E
 22v DC<30 10=2.1iv
 IFIX.GE.CX(IO)| GGT& 25%
```

```
 CLVI(IV)=2-OPZ
 IFILCUT.GE.IOI
 * mKTYE(LUNG,226) IV, P-Z,ICa(PZ,CIVIILVI
 FUKMATISH V2,13, ¿F1R,3,13, EF14.31
 GOTO 24L
 3o CLNTINUE
 LPL=CL(9)+1UZ(18)-U&&92)*(X-CX(9)1/(CX118)=0x(91)
 CLVI(IV)=2-CPZ
 IFILCUT,CE.luJ#KITE{EUNO,230) IV AX,L,OPL,CLVI\IVI
 FOKHAT(3HV3.13.4FIE.3)
 CONTINUE
 CalClLATE CLEARAACE DELCm FITCH
 CLH=200U.
 IF(X+.GE.OXII)1 GGTC 2b&
```

```
 CLH= 2H-UPZ
 IFILCUT.GE.IWDWRITEIEUNG.256I XF,ZH.OPZ.CLH
 FORMATISH HI.4FIB.3.1
 GuTU 28:
 20日 OU 27% L心=2,10
 IFIXt.GE.CX(ICH) GO10 278
```

```
 CLH= LH-OPL
 !FILCUT.GE.JUIWRITESAUNO.266I XH,ZH,IO.OPZ,CLH
 206 FORMAT\3H ML, 2FI&.3.E&.2F1&.31
 GUTO 280
 27% GUNTINUE
```

```
 CLH=2H-UPZ
 IFILCUT,GE.IUIMRITESEUNG., 2761 XH,LH,OPZ,CLH
 FORMATISH H3.4FIB.3J
 calcllate clearance gelcm trailger points
 IFINGNITS.LE.JI GCTC . 325
 DU 328 IV=1.NPTSC2
 Clvillvi=2590.
 x=xp\2| | v%
```
```
N"cr50. VELUNE II
LljTING LF PFUGNAM LESTaE
L=Lいv2|!い
IFIx.UE.Ex(1)) &CTC 3&E
```

```
CLV2|IV)=Z-CPZ
IFILCJT.GE.1JIWRITEIEUNO.291) IV,X_Z.OPL,CLV2IIVI
FOKMEI\دH 「1,I3.4F1&ajl
GCTU 320
ju sid lL=&.1d
IF(x.GE.CXIIUAO GCTC 3lk
```

```
CLV2:IVI=l-CPZ
 IFILCUT.GE.lUl
* voITE!LUNo.3uol IV,X.L.IC.CPZ.CLV2IIVI
 FOKMATIJH T&,I3,<FIE.3,I3,<FIG.3)
 GOTO 92*
 g& CGNTINUE
```

```
 CLVく(IV)=2-OPL
 !F{LCUI.GE.1JIWRITE{IUNO.3lG) [V,X,Z.UPZ.CLV2(IVI
 ROKM&T(3HT3.13,4F18.3)
 CONIINLE
 MIN!PUN CLEAKANCE
 MiNCLH=CiO11:
 1DX=1
 OC 32J 1C=2.10
 IFICLUIICH.OE.MIACLFA GGTO 334
 MINLLR=LLU(IUI
 IOX=10
 cont inve
 UU 34d IV=l,NPTSCl
 IF(CLVI(亡V).GE.MJNCLG| GOTC 34*
 MINCLR=CLVI|IVI
 IOX=1000deIV
 s43 CUNEINUE
 IF&CL:I.GE.MINCLRI GCIO 35:
 MINCLR=CLH
 IOX=1111
 350 IFINUNITS.LE.II COTC 379
 DC 36U IV=1,NPTSC2
 IFICLVZIIVI.GE.MINCEAB GCTC 360
 MINCLR=CLV2(IV)
 IDX=100%IV
 360 CUNTINUE
 37d IF&LCUT.GE.YI WRITEALUNG.371I MIACLR
 371 FOMMITI4M MIN,FIB.3.d1OI
 KETURN
 ENO
i
```
PAGEA-23
c
SUBKCIJTIAE FLRCES (XA.MAXC, NTOTAL,SSG.XPH,ZPH:


```
n-< U58. VCLUNE II
 uF faggRam cestafe
C
 LCMMCN ALPHA15,2),
 * yalmCI3), BALMU(3),
 * SETAISH. OETAP(3), BN(1), ERAKER(S,2).8T43,2t.BNIDTMI31,
 - CUSi(3,2),COSB{3),C(SG(3.2),CGFX(2),CGF2121.
```

```
- EFFRAD(5),ELLI51.
- FHX,FHL,FNI3,21.
* Hal5.9),HB15,y1,HC(5d91,HO15.91,HES5,9t,HF1.5091,
* HFL:5.91,HXIb,l&I,H205.1<!.
* GAMMA13.<l.
- IB(5.21./P(5.0.4.IM(5021.
- lCUT.lUNO.
* NSUSF,NUN!TS,NM&51, Am2151,
- uA(91,CFL(9),CX(16),02(14).
* PM&31,PULERR(5,21,Fx43),FXPCG\31,P213t,P2PCGI31.
* kBC1.RBC<.RKI3.21.
* SCALE(G),SFLMGI5A,SIAA(3,2I,SINE{3d,STEP.
* THETEI.THETEZ.
- X(5),XPGC(5),XPW{5.< (b
```

```
C
<
 INTEGER SFLAG
 SXTEHNAL CAL FUN
 JSTEPz.DdUl
 UMAX=1&も.
 ACL=1.
 MAXFLN=5 DU
 KAC1AN=57.29277y51
 OC & &U I=1.NSUSP
 SINGIIIESLNIGETAFIIJI
 CUSBIII= COSIBETAPIIIt
 DO 10U J=1.2
 SINAII.JI=SINIALFHAIB.JDI
 CUSA(I,J)=COSIALFHAIIOJII
 IF(NH2(J).NE.8.ANC.AK\J).EEG.U) XNSIIE.*I
1dd CONTINUE
 IFINLNLTS .EO. \I NEE=3
 IFINUNITS .EO. 2: AEG=6
 N=|
 SALPHA=O.
 OC 15A I=d.NSUSP
 IFINBIII.EO.2IGCTC 130
 N=N+1
 SALPHAMSALPHAOSINAI I&IA-CRR\I.1%
 IFISFLAGIII.EG=U.CR.OMWIBI.EG.1I GCTO }15
lod N=N+I
 SALP4A=SALPHA+S (AA(1d2)-CRP(1,2)
 CONTINUE
 IFIN.EQ.BI GOTO 184
 SCALEI|I=1.
 XN|| I=SALPITA/FLCATINO
```
```
n-2v>8. VLLUPE dd
-ISTING JF rRUGKGM CBSTOE
```
```
 GUTO 1%
```
    GUTO 1% 
IBg WKITEILUNG.DOLI
IBg WKITEILUNG.DOLI
ibi FOKMAT:SIH FCRCES: ERRCE IN NC. CF WHEELS)
ibi FOKMAT:SIH FCRCES: ERRCE IN NC. CF WHEELS)
    CALL EXIT
    CALL EXIT
lyG CUNTINUF
lyG CUNTINUF
    nu < 2d L=\angle.NEC
    nu < 2d L=\angle.NEC
    IF(-.U\.LT.XN(L),ANC&XNIL).LT...OII XN:LI=.UI
    IF(-.U\.LT.XN(L),ANC&XNIL).LT...OII XN:LI=.UI
    IFIXA(L).EQ.J.1 SCALEIL\=1.
    IFIXA(L).EQ.J.1 SCALEIL\=1.
    |F(XN|L).NE.L.J SCALE&LI=1L.**IFIX&ALOGIO&ABS&XN|LIII!
    |F(XN|L).NE.L.J SCALE&LI=1L.**IFIX&ALOGIO&ABS&XN|LIII!
    XN(LIEXN(LJ/SCALE\LI
    XN(LIEXN(LJ/SCALE\LI
2`y CONTINUE
2`y CONTINUE
    IPkINT=LOUT-1U
    IPkINT=LOUT-1U
    CALL EGSCL INEG,XNmFOAJIAV,CSTEF,CMAX,ACC,MAXFUN,
    CALL EGSCL INEG,XNmFOAJIAV,CSTEF,CMAX,ACC,MAXFUN,
        * m,MAXC,LUNG,IFRINT,CMLFUNJ
        * m,MAXC,LUNG,IFRINT,CMLFUNJ
    NTOTAL=NTOTAL+MAXC
    NTOTAL=NTOTAL+MAXC
    UC 3c'0 L=1.NEQ
    UC 3c'0 L=1.NEQ
SJJ XN(L)=XN(LI*SCALESLI
SJJ XN(L)=XN(LI*SCALESLI
    SSO=&.
    SSO=&.
    DO 4 d0 K=1,NEO
    DO 4 d0 K=1,NEO
*UA SSO=SSO+F(K)*F(K)
*UA SSO=SSO+F(K)*F(K)
    IFISSU.GT.IOU.I ERITS《LUNS,OU日I XN,F,SSO
    IFISSU.GT.IOU.I ERITS《LUNS,OU日I XN,F,SSO
    IFILCUT.LT. 1DI HETURA
    IFILCUT.LT. 1DI HETURA
    DC 5&S 1=1.NSUSP
```
 DC 5&S 1=1.NSUSP
```


```
 DC 5&\ J=1,2
```
    DC 5&\ J=1,2
    YF&I,JI=FN\I.JJCCTF(&.J!
    YF&I,JI=FN\I.JJCCTF(&.J!
    KF(l,d)=-FN(I,J)*CKR&d.d)
    KF(l,d)=-FN(I,J)*CKR&d.d)
    TFKF=TF\l,JO+RF(I,J)
    TFKF=TF\l,JO+RF(I,J)
    FX(I.J)=-FN(I,J)OSIMA(I,J)+TFRF*COSA(IVJ)
    FX(I.J)=-FN(I,J)OSIMA(I,J)+TFRF*COSA(IVJ)
    +2!I,J)= FN(I, JJ CCSA&I,d) TFFRFSSNA(I,Jd
    +2!I,J)= FN(I, JJ CCSA&I,d) TFFRFSSNA(I,Jd
    ALPHCII,JI=ALHHAII,JIERADIAN
    ALPHCII,JI=ALHHAII,JIERADIAN
5ig CONTINUE
```
5ig CONTINUE
```


```
 - 6(2X.F12.38.0/.6H SSG:,2X,F12.3:
```
    - 6(2X.F12.38.0/.6H SSG:,2X,F12.3:
    WRITEILUNO.9dut S5G.WAXCONTCTAL
    WRITEILUNO.9dut S5G.WAXCONTCTAL
    IFISSQ.GT.IG|.I mRIIEILUNO.9101 XN.F
    IFISSQ.GT.IG|.I mRIIEILUNO.9101 XN.F
    WRITE{LUN6.92&1 XFH.2FH
    WRITE{LUN6.92&1 XFH.2FH
    WKITEILUNC.9301 CXU10.I=1.NSUSPI
    WKITEILUNC.9301 CXU10.I=1.NSUSPI
    WKITFILUNO.9401 (241t.I=1.ASUSP)
    WKITFILUNO.9401 (241t.I=1.ASUSP)
    WRITEILUNO.95dJ IICESABH,CCZIIIB,IEI,2I
    WRITEILUNO.95dJ IICESABH,CCZIIIB,IEI,2I
    mKITEILUNE.96J! (CALGHOII,d),d=1,<t.fI=1,NSUSPI
    mKITEILUNE.96J! (CALGHOII,d),d=1,<t.fI=1,NSUSPI
    WRITEILUNO.97GI IICGEXIII,CGFZ8.1BI.IEl.く*
    WRITEILUNO.97GI IICGEXIII,CGFZ8.1BI.IEl.く*
    WKITEILUNO,98JI FhX,fhZ
    WKITEILUNO,98JI FhX,fhZ
    WRLTE{LUNG.yYd) (SFLAGIII,IEI,NSUSPI
    WRLTE{LUNG.yYd) (SFLAGIII,IEI,NSUSPI
    WKITE{LUNO,10|AI GNGOIA.I=1,NSUSPI
```
 WKITE{LUNO,10|AI GNGOIA.I=1,NSUSPI
```


```
 DO 78d I=1.NSUSP
```
    DO 78d I=1.NSUSP
    IF(SFLAGII).EC.1) GEJO 800
    IF(SFLAGII).EC.1) GEJO 800
7%.d CONTINUE
7%.d CONTINUE
    guro esa
    guro esa
80U WRLTEILUNG.1U2GI 1BETAC(II,I=1/ASUSPI
80U WRLTEILUNG.1U2GI 1BETAC(II,I=1/ASUSPI
    WKITEI LUN6.1025I <8W10TH&II,I=1,NSUSPG
    WKITEI LUN6.1025I <8W10TH&II,I=1,NSUSPG
    प्रRITEILUNO,IdSO| (BAGII,I=I,NSUSPI
    प्रRITEILUNO,IdSO| (BAGII,I=I,NSUSPI
    WRITEILUNG,1g4OI YIEIIIOJI.J.I.2A,I=I.NSUSDI
```
 WRITEILUNG,1g4OI YIEIIIOJI.J.I.2A,I=I.NSUSDI
```
PAGE A-25
```
u-<d5d, vulUME II
 PAGE A=20
LISIING GF PHUGiNAM lieS78E
 - S(2X,FL<.31)
 YE| FLRMATIOH XPH
4)
940
45d
70d
474
yod
yyd
104%
1J1v
 !川く\sigma
 1825
 1U3*
 1W4
 1U5?
 1.6d
 107%
 108%
 1040
 1130
 1210
 1120
 1150
 1142
```
```
 NKLTE(LUNO,1dSO) |(CRRId.J),J=1,<l* d=1,NSUSP)
```

```
 WNITE(LUNO,10761 (|FA(I,J),J=1,21,I=1,NSUSP)
 WKITEILUNG,1\Delta8&1 (IREII,JI,J=1, <l.I=1,NSUSPI
 wKITE(LUNG.1090) ({TF+I,J),J=1,2%,I=1,NSUSPI
 wKITEILUNO,1ldE) ((FBUl,J),J=1,2JOI=1,NSUSPI
 NKITE(LINO,111101 (|FACI,Jt,J=1,<d,I=1,NSUSP:
 NRLTE(LUNG,112&) (FXCII,I=1,NSUSP:
 WKITE(LUNG,113C) (PLCd), 1=1,NSUSP)
 WRITEILUNO,1i4d) (PACII,I=1,NSUSP)
 FORMATIGH SSO ,F12,0d.4Y.7F CALFUN,2X,14,4X,8H TCALFUN,2X,IBd
 FTRMAT16HXN ,OI 2XSFL2.31/OHFF,
 FORMAT&bH}
 FURM&T(6H2 , 121<X,F1g.21:
 FUQMATIL4H CGX(II,CGN&L),8(2X,F1O.2):
 FLRMATIOM ALPHA,IDI<X.FIL.CDI
 FIJRMAT(17H CGFX(11,CGF2!I) ,13(2X,Fl0.1)\
 FORMATI3دH FHX,FHL FORCES AT TRAJLER HITCH ,212X,FIG.211
 FURMGTIOH,FLAG, IU.\\X.ILE&I
 COKMATIOH NW .18I2X.L1OII
 FgRMATIOFKR |lu\<X.FIv.<i)
 FORMAT:OF EETAP,1N& <A,FID.21)
 FOKMMT17H BWICTH,10(X'K.F1G.2))
 FUKMAT&GH GN , 1612X.FIW.2II
 FORMATIOH ET ,iti<x,Fid.jli
 FORMATIOHCRR ,181 [x,F2日e21)
 FGPMAT\GH CTF .IOI2x_FIU.<II
 FCRMATIGHFN ,141<x+F14.211
 FURMATIOHRF .IU|<X&Fak. 2II
 FURMATIEHTF . 10(2X,FIL.2:1
 FURMATIGHFX .lUl&xfF10.2JI
 FOMMATIOHFL .le1&XbF10.2iI
 FLNMaTIGHPX .dG\ <X,F10.2l)
 FOKMAT16HPZ . 106 2X*F10.211
 FGKMATIOHPM , 181&X,FldeldI
 KETURN
 END
```
C
C
6
    SU甘fCUTIAE NFCRCE \(1 \times X_{0} \times X T, \times 2 M_{0} \times 2 M T-22,22 T 1$
C
C
```    CLMMCN ALPHAC5.2t, - GALMCI3).BALMU(3),```

```* LUSA(3.<),COSB(3A.CCSGI3.2),CGFX(2),CGF2121,```

```* EFFRAD(51.ELL(5). - FHX,FHZ,FN(3.21.```

```* HFL15,91.HX15.101,H285.101.```
```k-<L5y, vGLUME II```
* GAMMAl3.<1.
* 18(5.2).IP(5.<),IrdJ.<<).
* LUUT .luNO.
* NSUSF,NUNITS,Nm(っ1.AE2(5).
* UACY1,UFLI>1,CX:101.626121,
* MM(3:.PULEKR(5.21.PX63).PXFCG(3).PR(3).PZPCG(3).
* nBC!,RB',<,NR(د.<).
* SCALEIO),SFLAG(b),SINA(3.2),SINE(3),STEP.
* THE:el.THETB2.
* X(1,),XPBC(5),XPL(5,24
* =(5).2PHC(5), 2PRCF(5.2).2Ph(5.2)
```C C C     IHJEGEK SHLAG     DINEASION ANGLEI シ, <1.CCSANG13. \(21, F O R C E 13.2 .1, S\) INANG1 3. 21     \(X_{A}=-F_{H}+\) CGFXX1:     \(L L=-F H Z+C G F Z 111\)      UU 5 L \(1=1\). NSUSP     SET TU LERO     \(B N(I)=D\).     3TII价=と。     甘T1 1.2: = と.     FCKCE(1,i) \(=d\).     - JKCEII, © \(1=0\).     IF SINGLE WHEEL ASSEMBLY GCTC 1 L      IF 甘CGIE ASSEMBLY IS SUFPCRTED CN EOTH WHEELS GOTO \(2 g\)     IFIISFLAGIII.EQ. 1 H.AADOANWIII.EO. BAI (;OTO 20     IF BGGIE ASSEMBLY IS SUFPOSTED CN CNE WHEEL ONLY GOTO 30     !FISFLAGIII.EO.1.ANC.INWIII.EQ. I-OR.NMUII.EQ.21) GOTO 3 日     WK(TE:LUNS.5) I,SFLAE(B)NWII)     FURMATIム \(2 H\) ERKOR IN MHEEL SUPPORT SPEC. I, SFLAG,NH= .         - sl<X.131)     SINGLE WHEEL ASSEMBLY \(C\)     \(18 \quad J=1\)         CTFII.21天0.         CIR=CTFII, J)-CRR(L.U\&         IFIFA(L.J才-LE. U.I CTABR.           PM(I)=FNII, JI \&RRCI, WABCTFII, JI         GOTO 40 C GUGIE HSSEMGLY SUFPCFTEC CA ECTH MHEELS     © U UU \(<5 \mathrm{~J}=1.2\) \(c\)     ANCLE OF THE VECTOR ATTAChEE AT HHEEL CEMTER         ANGLE(I, JI=GAMPA(I, Jt*EETAFII)-ALPHA(b。J)          COSANG(I.d)=CCS(ANGLEII, JA)         continue         \(J=1\)   ```
N-こ858. VOLUME 11
lf pfugnam ces78e
L!>TING lF PFUGnam CeS78E
¿ NCKMAL FGRCE CN EOE II GEMMIEQ. FCK IOTH WHEELSS
GN\&!I=FORCEII,JI*CCS\AG(I.J)
C TANGENTIAL FORCE ON ICGIE EEAM
GT(I,J)=FCRCE(I,J)*SINANG(I.J)
L NCRMAL FOKCE TC THE GAOUNO LNDEF WHEEL J=2
J=\
FORCEII,J)=BN(II/COSANGII,J)
FNII.JI=FCRCEII,JI*CESGII.JI
< TANGENTIAL FURCE UNCER WHEEL J=2
GT(I.J)=FLKCE(I,udeSamaNGII.J)
C FUKCES ACTING CA FIVGT
EN2=EN(I)*2.
C TCTAL TANGENTIAL FCIFCE
HTT=OT(I,1d+BTLI',2)
C COMPCNENTS UF THE PIVCT FORCE
PX(I)=-BN2*SINBII! PETY*COSB(I)
PZII)=BN2.COSE(IA*BTT:SINB(I)
i MCNEAT AT PIVOT
``````
GUTO 60
L
GCGIE ASSEMBLY SUFPCHTEC CN UNE WrEEL ONLY \& ON OBST.I
J=NW(1)
OW=.50日WiOTH(j)
IFIJ.EO.| K=2
IFIJ.EO.2) K=1
FNII,JI=FNII,1]
FN(1.K)=\&.
CTF(I,K)=|.
IF(J.EQ.\I \forallW=-Bn
ANGLE(I,J)=GAMMAII_JH+BETAF(I)-ALPHA(I,JI
>INANG(I.J)=S[A(ANGLE\I.J))
CUSAAGII.JIECCS\ANGLE|X,V\:
FORCE:L,JJ=FN: b,J)/CESGII,J)
IFIFN(I,J).LE.B.J FCRCE(I,J)=FN(i,J)
L NCRMAL FOKCE ON ELGIE EEAMIEG. FCR BOTH WHEELS\&
BN(II=FORCEIG,J)*CCSANG(I,J)
C TANGENTIAL FURCE CA ICGIE EEAM
ET(I,J)=FOKCE(I,J!=SINANG(I,J)
``````
PI!II= BN(II*COSB(It*RTIJ.JIESINE\&II
``````
CONT INUE
CONT INUE
SIGN CONVENTION FCR UENGIH CF THE MOMENTS ARMS
* ERCM HITCH TO THE RIGHT SIOE, IN UP DIRECTIUN
* FOR MDMENTS CC.*
nO \& 20 I=2.2
XX=XX+FX(L)
Z2=22+PZ\11
``````
CONTINUE
IFINSUSP :EQ. 21 GOTA 200
C
FCRCE SUMMATION FOR TRAILER
```
XXTEPX(3) $+F H X \subset C G F X(24$
n－2こちo．VCLUNE dL
L！STlNu uF DruGoam ues78e

LCT＝FL 1 ）OFHL＋CGFZ12

－CGMr（2）
マETURN
くvと
㐅メ厂二と。
21T $=$ と。
$x \angle M T=\nu$ 。
RETURN
END
$し$
C
SLURLUTINE CALFUNGA，KA，FI
INTEGEK SFLAG
6
$し$
COMMLN ALPHA（5，2）．
－YALMC（3）．BALMU13），

－CUSA13．21．COSB131，C（SG13．2），CGFX（i）．，CGF212i，
－CGX（2）．CGL（2）．CGMY（え1．CHRI3．2）．CTF．13．21，
－EFFRADISI，ELL（5）．
－FHX．EH2，FN（3，21．

－hFL（5．91．hX（5．10：．h245．16）．
－GAMMal3．2），

＋LUUT．LUNG．
－NSGSF．NUNITS．NH（5），AW2i5I．
－DAS91，UFL（9）．0X110．0．E21101．
－DM（3）．DOWERK（5，21，PX（0），PXFCG13），PZ（3），PLPCG13），
－nBC1，RBC2，KK13，2）．
－SCALÉ（6）．SFLAG（5）．SIAA63．21，SINE131．STEP。
＋tHETEl．tHETBZ．
－X（5），XPBC（5），XPW（5． 14.
＋245），2PEC」5），2PK（Fi5．2t，2PM（5．2t
$\stackrel{6}{6}$
DIMEASIUN XNE 6），F（6）
CTFR＝XN：\＆I SCALEC11
FN（1．1）$=$ XN（2）${ }^{\text {SCALESI }}$
FN $2.11=$ XN（ 31 ©SCALE（3）
FN（3．1）$=X N(4)$＊SCALE（＊）
FHX＝XN（5）IOSCALE（5）
$F H Z=X N(6)$ ©SCALE（ 6 ）
DO $d d y \quad l=1$ ，$;$
EN（I，2）$=1$ ．
UU i \＆$J=1.2$

IF（CTFK．LT．U．）CTFII－NI＝CTFREBRAKER（I，J）EFLOAT（IEXI，JJI
GAMMA（I，J）BATAN（CTF（I，J）－CFR（I．J）I
COSG（I，J）＝COS（GAMMAIJ，よd）
16．CUNTINUE
CALL NFOKCE（XX，XAT，XZF，X2FT，2L．22T）

PAGE A－3d
LISTING JJF frugiad ogStoe
$F(1)=x x$
$F(2)=\angle 2$
$F(3)=X L M$
$F\{4)=X X T$
$F(5)=L Z T$
$F(6)=X \angle M T$
KETURN
END
SUBRCUTIA！MLVEG ICSLDPE，NEGL，

- NVEH：，R甘C，KEFFTI，KHTCF，FWLIM，SSLOPE，SSOM，THEJA，THETAU，THET UH，
- TWLIM．XPLG。XPH，ZFCG』ZFHI

C
\checkmark
－oalmelij，talmuijb，

－EFFKAO（5），ELL（5）．
－ 1 HX，FH？，Fil3．2：，
－HA15，91，HO15，On，HC15，91，hC：5，91，HE：5，91，HF：5，91．
－HFL（5．9），HX（5．1dt，H＜45．itur．
－U．AMMAS．21．
＋！3（5，2），IP（5，24，IH（5，2）．
＋LGUT ILUNG．
－NSUSF．NUNITS．NW（51．AW2151．
－Ua（9）．OFL（9）．UX110．，CZ（1））．
－PM（3），POWERR（5，21，PX3），PXFCG（3），PZ（31，PLPCG3）．
－KUCi．RBC2．RR83．21．
－SCALE（6）．SFLAG（51，SIAA（3，2），SINE（3），STEP．
－rheTel．theTB2．

- X（5），XPBCI51，XPW45．2才．
- 2830，2P甘C：51．2PRCF15821，2Ph15．21
c
INTECER SFLAG
i
DIMEASICN AJIAVIO．ODAELEVASI．
－KbC（5），RHICHI2），RHLIM（3．2i，THETA（2t．THETAK（5）．

EXTERNAL ELEVAT
DO i $2 \quad 1=1.5$
1．NW2（II＝NMII）
USTEFE．UJəl
DMAX＝1．DU．
$A C C=.1$－STEP
MA XFUN＝50d
PXPCG111＝XPCG（1）
P $\angle P C G 11=2 P C G(1)$
PTHETAETHETAC11
NEQL＝3
NAGA：$N=0$
NW（1）：$=10$
NW（2） 2
－2 2JJd．VLLUNE！I

THETEL＝THETAC（i）
JHETHく＝THETAd（2）
$n \forall C 1=R \forall C 111$
ト．OC $2=\mathrm{FBC} 121$
IFISFLAG（1）．EO．OI UCTC 20
NEGL $=4$
XLIヶ J＝BETAl｜l
（こ．）IF（SFLAG（2）．EG．d）GCKC jd
NEGL＝NEQL＋ 1
$X L(1 ; F C L)=B E T A 121$
3i XLII：＝PXPCG（1）－STEP＊CSLOPE
XL $121=P 2 P C G(1)+S T E F O S S L C P E$
XL 3 I＝PTHETA
！FILCUT．GE．iv）WRITESLUN6．401 NECL，

FUnMAT（Gh MUVEL，［4，14F8．id．
LOUT＝LUUT +1
CALL ELEVAT（NEQL•XI．ELEV：
LOUT＝LCUT－ 1
！PRIAT＝LOUT－1 i
LALL EOSOL INEQL，OXL，ELEV，AJINV，LSTEP．
－UMAX，ACC，MAXFUN，WヵMAYC，UUNO，IPRINT，ELEYAT：
LCUT＝LLUT＋ 1
CALL ELEVAT iNEQL．ALかELEVA
LCUT＝LUUT－1
SSOM＝J．
DU 5 R L＝1． IJEOL

XPCG（1）＝XL11）
$\angle P G G(1)=X L 121$
THETA（1）＝XL（3）
IF（LCUT．GE．1U）WRITEはLUNG．E1）XFCG（1），ZPCGII．THETAS 11．

bl
FORMATIOH MOVE2，JF10．3．13．4F13．3．I31
IF\＆SSOM．GT．10．）GRITE（LUAS．001 SSCM，MAXC
60 FORMATIZ3H SSOM CVEFLIMIT：SSOME，EIS．J．
－OH．MAXC＝，（O）
IFINEOL．EO．3）GOTO 340
c
C UNE SUSPENSILN ON UNIT 1 IS A ACCIE
C

```
        IFISFLAG(1).EO.1.AACAAN(1).EEAY: GOTO }7
        BETA(2)=XL(4)
        GOTO &J
        GETA(1)=XL\GI
        IF(LCUT.GE.1U) WRITEILUNO.71: EETA&LI&XPW&1.21.ZPY(1.2I.
    + IH(1.2)
    FORMAT (6H MUVE3, 3F1ESA.13)
        IFISFLAG(2).EO.O.CR.AM(2).NE.OI GCTO 85
        BETA!2I=XLISI
```



```
        * IH(2.2)
        FORMAT lOH H.JVE4. 3F1Qa@, I3I
81 FOKMAT COH RUVE4．3FABAB． 131
```

```
4-2353. VCLUNE 1/
LISIING GF fRUGOAM CES70d
L
C CHECK FIKST SUSPENSIGN ECCIE GUT LF LIMIT
C If sarule axle cí blGde ca both mheels leave
L InETBi AND KOLl
C
    a) IF\SFLAGI|.EG.d.CR.AW(l).NE.N) GOTO l98
    IF:GETA!,'.GE.BALMU(1)I NW(1)=1
    IF(BETM11'.LE.BALMD(1d). NW(i)=2
    IFISELAG(L).EGad.CR.ASFLAGII).EG.L.ANC.
        * NWlll.EO.d!l GCTC 1S.d
            !FISFLAG(1).EG.d.ANCANm(I).EG.d) GOTO 150
6
G FLKST SLSPENSILN BOGLE CA FEAF WhELL CNLY
`
    THET3&=TMLIM(1.2)
    OBC1=RWLIM&1.2)
    BETA(1)=甘ALMO(1)
    GuTO 173
L
6 FbRSY SUSPENSICN ELGLE CN EFUNT WHEEĹ CNLY
6
    Lつd THETEJ=TWLLM1L.1।
    KOCL=KNLIM!1.& 
    HETA(L)= GALMU(1)
    178 IFINENL.EU.51 XL/&1=NLL51
    NEOL =NEOL-I
    M GA IN=I
C
C CHELK SECONU SUSPEIHSIOA ECGIE LUT CF LJMIT
C IF SINGLE AXLF CK BUGIE CA BCTH wheELS LEAVE
C THETEL ANU RUC2
C
    193 IF(SFLAG(2).EG.A.OH.AN(2).NE.D) LUTC 284
    |FIBE!m(2).GE.GALMU121)NW(2)=1
    IFIBFTAI2I.I.E.BALMO(21) NW(2)=2
    IFISFLAGG.I.EO.O.OR.HSFLAGI2I.EG.DOAND.
        - NWI21.EO.0!1 GCTC 2&O
        IFISFLAG(Z).FO.1.ANC +AWI2F.EO.1O GCTO 250
L
C SELOND SUSHENSION GOGIE CA REAR WHEEL ONLY
l
    THETC2=TmLIM\<.2)
    HBCZ EKWL BM:<.2'
    BETA12I= BALMC\<l
    GuTO < 70
c
L JECONU SUSPENSION BCGIE CA FACNT WHEEL ONLY
C
250 THETB2=TWLIMI2.10
    NOC2=xWLJM\2.1:
    BETA/2I=BALMU(2)
<13 NECL =NECL-1
    NAGAIN=1
```

```
k-205s. VULUME &I
LiSTING uF゙ ragGNAM - SS7ठE
C
    <dE IFINA!gAliv.EU.ZI CuTL JJE
    ivAGAIIN=0
    GUTU &*
C
C
L UNIT I POS IT IUNEL CN WREELS - LHECK FCK
~ SPKLCNET/ICLEK INTEKFERENGS IF TRACKEC
C
    gid IFINVEHINNE.JI GCTC SUd
C
C TkACaEu vericle
6
C M&*थ\bullet& IULER ANC SPKOCKET SYFFORT LHECK HERE \bullet*****
C
```



```
    CALL WHEELS IF,HA0,HCoHE,HF,HX,IH&&-IIN&,LOUT,LUNE.
            - XSF,2SF.,2PKGFI4,12O
```



```
    S11 FiRMATI7H MUVES4.3F18.3.15,F10.31
    IFIE.GE.-. 1O GCTC & & 
C
L FRCNT SPFOCKET/ICLEK INTEGEERENCE
\smile
    THETB\=TRETAG(&)
    k BCl =ROC(%)
    IFISFLAGI1I.EG.U.CR.ANIII.AE.UA GOTO }32
    IF(NEOL.EO.5\ XL (4)=AL\5\
    NESL =NEQL-1
    920 NAGAIN=1
    Null|=3
l
    4JS &SK= APCGI\IOKECIDIOCCSITHETAUSSJOTMETMMII
    LSK=2PCGU10*KBC(5)OSANUTFETAN(SIOTHETAS1OI
```



```
        - XSF.2SF.LPROFIS.10:
```



```
    &il FCRMAT(7M MOVES5.3FIdo3.d5.F1H.31
    IFIE.GE.-.II GETC 5&A
i
L KEAK SPROCKET/IOLEQ BATERFEPENCE
C
    TMETE2=TMETABISO
    RBC2 =ROC(5)
    IFISFLAGI2O.EO...CR.AWI2J.NE.UI COTO 420
    NEGL *NECL-1
    42% NAGAIN=1
    1/W1<|-3
C
    S\O IFINAGAIN.EO.US GCTC OOE
        NAGASN=d
        G710 30
C
```

 PAGE A-33
    ```
n-<uつタ. VCLUME II
LISTING UF PRUGKam CaS7ad
L ANGLE UNCE& wMEELS
i
    ODd IFINNIAI.EQ.<I GCTO & B
```



```
        - XPW(1.1),2Pw(1.1)
        IFILCUT.GE.1JI WKLTEALUAG.GdO\ XFW&1.IH,LPW(L.1),
        * IH(1,1),ALPHA:1,1)
    Odo FUKMGTI7H MOVE11.SF14.3.14,F1d.31
    O&O IF{Nn:1I.EQ.1.CR.SFLAGIII.EG.dI GOTO o2v
        CALL WHEELI (NLPHAIL.21,HA,HC,HE,IF\1,21,1.OX,NL,
        - xPWil,<l.LPWil.2t1
        IF(LCUT.C,E.1U) WRITEILUNO.616) xFW(1.21.2Pw(1.2).
        - !H!&.2!,ALPHAI!,<d
    O10 FLKMATI7H MOVE:12.2F1A.3.14,F1d.3)
    O己も IF(NH(2I.EQ.2) GCIE O3Z
        LALL WHEELI IALPHACZ.1),FA,HC,HE,IHI2.1d.2.OX,OL,
        - XPW(2.1),2PW(2.1)1
        IF(LCUT.LE.1.1) WRITEGUNO.O201 XPW&<.1).2PW&2.1),
        - !H&<.11,ALPHA\2.1\
    626 FORMAT17F MOVE&1.2Fi&.3.16.F10.3)
0,d IFINWI<l.EQ.1.CK.SFLACIZI.EQ.|I GUTO 64U
    CALL WHEELI (ALPHAI 2.2B,HA,HO.HE,IH(2.2),2.UX,OZ.
        * KPW(2.21.<PW12.2#)
```



```
        - lH(<.2).ALPHAl<.j)
    Oso FUNMAYI:G MOVELG,CFIU,3,I&,Flg.ji
    664 CUNTINU.
C
lolate hITCH
```



```
    \anglePH= LPCGIIR+KHTCHIIIISIMITRETUHIIDOTHETACIII
    IFINLNITS.EC.I' RETGRA
C
C SECONO UNIT
    IFISFLAGI3|.EC.1/ GCEC 67%
SINGLE mXLE TRAILER
    MSG=FWL1M13,11002
    LALL WHEEL2 IEFFRAD,HA,FD,HE,HF,MX,NZ,IHE2,I1,IHI3,11,
    * 3.LULT.LUNO,OX,CZ,ALGHAIS,II,RWLBM&3,II,RSO,XPH.
    - xP目3.11.LPH.2PW43.101
    XPBC 131: XPW(3,11
    2HBC(3)=2PW(3.1)
    A=ATN2{ 2PHC{ 31-2FH,XGBC\3I-XPHI
    THETA121EA-TWLIM\3.1%
    XPCG(ZIEXPH*RHTCH12)PCGSITHEIGHIZHORHETA(2):
    LPCG12)=2PHAKMTCH(2IASSAITHETUM(2):THETA&2IO
    |F(LCUT.LE.Id) WhITESAUNG,656& XPH, LPH,XPWE3,11,2PW\3,11.
    * ALPH113.10.XPGC134.10&C13),A.THETAK21,XPCG&&1.IPCG:21
650
    FURMATI7H MIJVEA3O1LF1d.31
        RETURN
```

PAGE A-34


```
LISTING JF raUGKaM CoS7yE
```



```
\iota
    07d n>0=RWL!M!s,ll**こ
    LALL WHEEL2 (EFFRAC.HA,HC,HE,HF,HK,HL,IHI2.11,IHI 3.1J.
        * S,LULT.LUNO,CX,CL,ALPEAI3,IN,RWLSM(3,I),RSO,XPH.
        * XPW13.11,2PH.2PWI3.1JI
        m=ATALILPW(3,1t-IPH,APW(3,11-XPH)
        r=A-1mLiM(3,1)
        xPw(9.<)=XPw(3,1)-EmbCTh(3),.OS(OALMU(3)+T1
```



```
        LALL WHEEL3 IELE,HA,MD,HE,FF,HX,IH&3,2H,3,LUUT,LUNO.
        - xPn(3.<),LPW(3,2),<FPCF(3,21)
        IF:ELE.LE.d.I GCTC OYG
C trailen bugde cN folnt wheEl CNLy
    Nw(3)=1
        OETA(3)= पALMU(3)
        XPEC(3)=XP*(3.11-.5*8MLOTH(3)*CC5&EALMU:3) &T)
        LPEC(3)=2PW(3,18-.5*EW!CTHI3)*SIN(EALMU(3)ATI
        THETA\己I=T
        XPCG(<) = XPH*KHTCF(?) OCCS(THETUH(Z) &T)
        LPCC(2) = \anglePH+RHTCH(2)ES!MTFRETUH(2)VT)
```



```
    S00 FURMATI7H MOVEAG,IIFAU.J..1?!
        KETUKN
C
L TKALLEK PCGIE NCT LN FFCNT WHEEL CNLY - IEST IF ON REAR WHEEL ONLY
C
    Bつも KSG=FWL\M(3.21002
```



```
        * 3.LOLT,LLNG,CX,C2,ALPHAIB,CI,RLLIMS3,2B,RSO,XPH,
        - ANm1s,2),2PH+<PW(3.23)
        AEAIN2ILPHE 3,21-2FH,X+W13,21-XPF!
        T=A-||_1M(3.<|
```



```
        CALL WHEEL3 IELE,HA,HD,FE, FF,HK,IHI3,LI, 3,LUUT,LUNG,
        - XPW(3.1), LPW(3.1),&FPCF(3),11)
        !FIELE.LE.d.I GCTC 7&N
C
C THALLEN BUGIE CN REAK mHEEL OMLY
C
    Nal al=c
    GETA(3)= BALMD(3)
```



```
    LPBC(3)= LPW(3,<)*&50日WIDTH\3)OSIN\ EALNC\3IOTO
    THETAl2IET
    APCGI2IEXPHORHTCHI< IPCCSITPETUHI2IAT:
    \anglePCGIZI=\anglePH*RHTCHI<IPSINITHETUMI2I FTI
```



```
n-2Jつb. VLLUN=11
LISTING UF RHUGRAM LESTaE
    710 FURMAT17r MUVEAつ.11F&0.3.2131
    METUFN
< IRA!LEF EUCIE CN BGTH nHEELS - SEARCH CN BOGIE ANGLE
\zeta UNILL OOTH WHEELد ARE CN FUE FKOFILE TC WITHIN TOLERANCE
i
    72. IF(AESIELEI.LE..II CCTC gde
        HCL=.5*On\CTh(o)
        BETA13:= GALMDI3'
        IF(LCUT.UE..l\ 由NilTEOLJNO.721\ ELE.BC2.BETA(3)
    7<1 FUKMGT(8F MJVEASA,3FIと&31
    7<5 DELTE=ATN21-ELE& EO21
        DETA(3)= BETA(3)+CELTA
        *2=ELL(د)-甘U2*CCS(EETA(3)\
```



```
        2r<SG=x<* X 2* L2* L2
        HH<= SORT(RH2SC)
        THET 2=ATN2:22.x21
        IFITHET2.GT.z.1 THET2=THET<<-6.28S185s
        CALL WHEEL? IEFFRAO,HA,HD,FE,HF,HX,HZ,IHI<,1H,IHC 3,21,
        * I,LULT,LUNO,CX,CZ,ALPHAl3,LI,RHZ,RHCSO.XPH.
        * xPW(3.<\,2PH,2PW(3.211
```



```
        lF(A.GT.ن゙.1 N=A-6.こ331d53
        THETA(2I=A-THET2
```



```
        2PW(3.1)= LPW(3.<)+8mIDTH(3)OSIN{THETA&2)*BETA& S)I
        CALL NHEEL3 IELE,HA,HC,FE,HF,HX,IHI3,1&,3,LOUT,LUN6,
```



```
        IFILCUT.GE.111 WRITE&LUAO.7511 CELTB, GETA431.X2.22,RH2SO.
```



```
    751 FUKMAT(8H MUVEA5E,7f\N-3/8X,7F1K.3)
        IFIARS{ELEI.GT..1H GETG 725
C
C BOTH WHEELS CR. HIJB PROFILE TC WITHIN .I JNCH
L
    BOU CALL NHEELL (ALPHAS3.IO,HA,HL,HE,IM&3.dI.3.OX,OL.
        * XPW(3.1).2PW(3.1))
            NW(3)=4
            XPHC13)=.5*(xPW(3.1)0%Ph(3.2))
            LPBC(3)=.5*(2Pw(3,1)&2PW13.21)
            XPCG1<1=XPH&RHTCH(2):CCSITHETUH(2)थTHETAI 2O:
```



```
            XTEMFEXPW13.1I-XFW13.2I
            LTEMF=2PG13.1)-2FW(302!
            BETA(BI=ATNZILTEPP,XTEPFI
            IFILCUT.GE.1U) WRITEGLUNG,J1II XPCG(<|.IPCGI2I.THETAIZI.
            - APBC(3),2PBC(3),(XPW3,J),2PW(3,J).ALPHA(3,J).,
            * J=1.21.xPM,IPH.Am(3)
B11 FUKMATITH MOYEA6,5FLR.3/<| IF1H.31,2F10.3.131
        HETUFN
            END
```

PAGE A-36
C

```
m-2,250. Vilure al
L!STlivG uF prugtar ChSTdy
jUHKCJT!NE ELEVATANEGL,XL,CLEVI
    CUMMEN MLPHAIJ,21,
* oalmCl3), balmulsi.
```



```
* CuSA(3,<),CuSB(3),CCSG13,2),CGFX(<t,CGF2121.
```



```
* cFFPGOI5),ELL(5).
* FHX,FiHl,FN(S.<l.
- HA(5,7:.HD(5,90,HC\5.9),HC\5.91,HE(5,91,HF(509),
```



```
* iginmmalioco.
* Ia(5.2).IP(5.21.1H45.2I.
* lUUT.lUNC.
* ivsUSF,NUNITS,Nin(5joAm<lS!.
* Ji(y).0lFL(9).CX(1E!.EZ(`|).
+ HM(3),P(JWERR(5,2),PA43J,FXFCG13r,PZ(J), PZPCG3).
* FBCl,RBC2.RK(3.2).
* SCALEIOI.SFLAU\5',SIAN\3.2),SINE(3).STEP,
* THETEI.THETEZ.
+ X(51, XPOC(5),XPW(5,2d*
* 2:51.2PHC&5).2PRCF(5.21.2Ph(5.2:
b
livTEGEK SFLAG
    OIMEASIUN RLISI,gELEVSSI,XLLIS:
l
L XLIII= X-PCSITICN CF CC CF UNIT I
G XL\2I= L-PCSITION UF CC OF UNIT I
C XLI3I= P!TCH ANGLE UF LNIJ I WKT GKOUNC COCROINAIES
l
C ALI&I= PITCH ANGLE CF FCRMAKC MOST HOCIE
    ASSEMBLY ON UNIJ I WRT VEFICLE CCCRCLNATES
XLI51= PITCH ANGLE CF SECCAC EGGIE
    ASSEMBLY UN UNIT I MRT VEFICLE CCCRCINATES
ELEVIII= UISTANCE OF CG FREM LAST EQUILIERIUM
    PCSITICN MINUS STEP
ELEVI2I= ELEVATICN CF FIRST hrEEL WRT
    ITS HUB PRCFILE
ELEV(3): ELEVATION OF SECCAC WHEEL WRT
    I TS HUB PROFILE
ELEV(G)= ELEVATION OF THBFG WHEEL IWHEN PRESENT: MRT
    ITS mUB PRCFILE
C ELEVISI= EGEVATION UF FGUREF WHEEL IMFEN PRESENT: WRT
    IIS HUB PROFILE
    UL 1%LE1.NEOL
1d XLL&GEXL|LJ
    ASOE STEPOSTEP-1XLL(<<)-PLPCC(1)I**2
    FLEV\1|=XLL\1)-P\PCG41I-SOKT(AES\XSO1)
```

PAGE A-37

N－2358．VCLUME 1／
LISTING LF PRJGKAM UES7\＆日

```
            THET=XLL(3)
            C=COS\THETJ! + THET&
            YP8C\1)=XLL\ 1)*RBC1*C
            S=S|M(THET9l + THET)
            \anglePBC(1)=XLLI<I+RECl*S
            L=COS( THETBZ +THEVI
            XPGC(2)=XLL(1)+KBC2*C
            S=S\AITHETBZ + THET;
            LPBC(2)=XLL(2)*REC2*S
            IF(LCUT.LE.I\) WRITECLUNO.<\) C.OS,XPEC!1/.
            * 2PBC(1),XPBC(2),2PBC&2d,1xLLII|,I=1,NECLI
    <1 FUKMATI甘M ELEVATl.1.1EAD.31
                            IFISFLAG(1).EO.1.AACSAH(1+.EO.O\ COTO 3%
\iota
C FIRST AJSEMBLY LS UN SIAGLE WHEEL
C
        IFPSFIAG(:|.ERdI.ANC.NW1,1).NE.3: GOTO 23
                CMLL WHEEL3 (ELEVI2) d&A,HD,FE,HF,HX, JH{1, llol,LOUT,LUNG.
            * XPBC(1),2HOC(1),2FRCE\1,1J1
                XPW(1,1)=XPBC11)
                <PW(1.1)= LHEC11)
                GCTU 5c
    <3 IFINMIN.EO.<1 GCTC &%
            XPWI1,11=XPEG:11
            LPW1&,1|=2PBCili
```



```
            * LLNO,XPW(l,1),LPMil,il, 2PPCFIl,idt
            GETA(1F=甘ALMU(1)
```



```
            ZPBC|II=2PN(1.1I-.S*BMSCJH(1):SINIQALMN(IIATHET)
            GOIO 50
    27 XPW(1.2) =xP&C(1)
            LPY(1,21=\anglePBC11)
            CALL WHEEL3 (ELEVI2H,HA,HD,HE,HF,HX,IH&1.20,1.LOUT,
            * LUNO.XPW11.2I,2PW&,2%,2PAOF\1,2H
            DETA&1J= GALMO:11
```



```
            GOTO 5d
C
C FIKST ASSEMOLY IS BCCIIE
C
30 KHI=.508WlOTH(L)
    C=COS& XLL(4)+THET)
    XPWI1,1)=XPBC&1: RW1&C
    S=SIN(XLL(4) +THET)
    CPWI1.1IEZPBC\1I &RWIOS
    CALL WHEELS IELEVIZIGHA,HD,HE,HF,HX,BHI IOSI, L,LOUT,LUAK,
        * XPW(1.11,2PW(1,1),2PROF(1.11)
            XPW11.21=XPBC(1)-RM 1PC
            LPW(1.6) =2PBC(1)-7%1*S
            CALL WHEELS (ELEVS3I,GA,HD,FE,HG,HX,IH\I, 2d,I,LOUT,LUNG,
        * XPW(1.21.2PW(1.2d.dPRCF(1.20)
            IFILCUT.GE.11I WRITEOCUAO.G1I COSOUXPWU1.J.JV
```


be PFISFLAG(く).EQ.1.ANC』Ah(2).EG.d) GOTC 78
\checkmark
S SELONC mSSEMBLY IS ON SIAGLE WHEEL
\because
IFISFLAG(21.ES.E.ENCINWX2).NE. 31 GOTO 53

- $\quad x H B C(21,2 P B C 121, Z P R(f(2,1))$
XPW (2,11 =XPGC(2)
LPW12.1)=2PBC(2)
ULTO 6 ©
3 IFINWくI.EN.21 GCTC 57
XHW(2.1) =XPBC(<)
2PW(2.11=2PBC(2)
CALL WHEEL 3 (ELEVINEGL), HA,HC,HE,HF,HX,IH(2,1d,2,LOUT.

BETA(く) = GALMU(2)

2PBC $121=2$ PW(2.1)-.5*Bm SCTH(2)-SIN(BALMU(2) OTHET:
GOTO 60
$57 \quad X+W(2.21=X P B C(2)$
2HW(2.2) = 2PBC(2)
CALL WHEELS (ELEYIAEGL),HA,HD,HE日HF,HXI(Hía,21,2, iOUT.

-ETAI2 $=$ GALMD! 21

61
FUKMAT (BH ELEVATS,5FI日.3)
HCTUEN
i
C SECONL aSSEMBLY dOGIE
C
$70 \quad N H I=N E O L-1$
RG2=.50BnIOTH121
$C=C O S I X L L I N E C L I$-ITETI
XFG(2, $11=X P G C(2)+R W 2$ © C
SESINIXLL(TJEULI THETI

NEOLPIENEGL-1

$x^{2} \times 12.21=x P \Delta L(2)-A W 2+C$
2PW12,21=2PBC12:-RW2日S
CALL WHEEL3 IELEVINEOLI,HA,FD,HE,HF』HX,IHイ2,21,2,LOUT,LUNG.
- XPWI2.21. LPW(2.21,2FACFi2.21)

IFILCUT.GE.III WRITEALUNG.81I C.S.tXPWI2.dI.

81
FORMATIBH ELEVAT4.0\&FAC:3/2(3F10.3,131)
RE TURM
END

```
M-\angleS58. VCLUME IT
    SUBRCUTINE WHEEL\ \AAGLE,HA,HL,FE,IHUB,K,OX,OL,XW,LWI
L
C
    OIMENSIUN HA(5.%1,FC65,91.,hE15.91,0X11E1.0Z1180
G SJOKOUTINE TO FINL ANGLE LACEA WHEEL AT Xh,ZW.
¿ TF SLSHENSIJN K ON HUB fRCFILE ELEMENT LHUE
    |FIHAIK,IHUBI.EG.dAI GOTO 1&L
\iota
L HIJU figufgle ELEMENT A LbNE
\iota
    ANGLE=ATN2IHOIK,IHUEA.-HEIK,IHUEI.I
    IFImES(ANGLE).LE...d\\ ANGLE=in.
    KETURIN
6
C HUB FPOFILE ELEMENT AN ARG
    lad A=ATALI<W-OZ(IHUPI,XM-CXIIFUEd!
        IF|AES(A).LE..JA!A=|.
        ANGLE=A-1.5747903
        GETUFN
        ENO
C
l
        SLBKCUTINE WHEELZ IEGFRAD,FA,HD,HE&HFgHX,
        * HZ,IHUB,IH2,K,LCLK, LUNG,EX,OZ,PSLP2,R12,RL2SO,XP1,XP2,2P1,2R<1
        UIMENSION EFFRAC(5),GA(5.Y).HC&5.91,HE&5,91,HF\5.91,HX
        * (5.18).H2(5.10),CX&10).C2118)
C
C subroutine ro bijcate secong mheel given cne
C WHEEL AT XP1.LPI
C
    OC lEO l=d.lHUB
```



```
    IF(LCUT.EO.111 WRITEOLUNG.96) I.CSG.H12SO,HX&K,I),HZ(K.II
    96 FURMATIGH WHEELSB,LE&&FIK.3I
    IFIUSO .LE. K\2SGI GGTO 110
    IJO CONTINUE
C SECONO AXLE CN HLB FRCFILE ELEMEAT IHUB
L
    IH2=1HUB
    GOTU 115
    110 |H2=1-1
    |F(1H2.LT.1) IH2=1
    115 U=SUKTIOSOI
    IFIHAIK,IH<I .EG. 1.L GCTO 16L
\iota
C ELEMENT (K.IHz) IS & LBAE
C
```

```
    y=-HC(k, inz)/RE(k,brė)
    T=-HF(K,IH<)/HE(K,It2)
    A=S**2+1.
    0=S*(T-2P1)-xPl
    v=(T-2P1) #*2+XP1**2-N1сSE
    BOA= C/A
    LOA=C/A
    IFI-8OA.GE. J.I XI=&BOA+SCRTIELA-EUA-COAI
    IF:-ROA .LT. O.I XI=-BOA-SGRT(RCAPROA-COAI
    XL =C CA/X1
    LI=S* XI +T
    L2=S*\times2+T
    |F:X| .GT. XP|| XF2=x2
    IF(X< -GT. XP& XP2=X1
    IF|XI .GT. XP1 .CR. I2 .GT. Xr1) GCTC 156
    |H<P| = |HZ +|
    IF(XA.LT.HX(K,LH<A.CP.X&.GT.HX&K,IH2PLII XPC=X2
    IF(XC,LT.HX(K,IH2),CH.X&,GT.HX(K,Ir2P1)) XPP2=XI
    TF{X1.LT.HXIK,LH2I.CF.X2.LT,HXIK,IH2H& GOTO 15&
    IF(XI.GT.HX(K,JH2P1).CF.K2.GT.HX(K.,IH2PI)) GOTO }15
    IFIL\ .GF. L2I XF2=XI
    IF{2; .GT. L1) XF2=xZ
    15: <P2=S**P2+T
    OjLF &=ATN2:HOIK,IH2I,-HEIK,IH21)
    !F(AES(PSLP2) .LE. - -1) PSLPZ=&.
    |FILCUT.EQ.11II WFITE&LUNO,15OI IHZ,C,S,T,A,B,C,BOA,COA,
    - K1,X<, L1,L2,XP2,2P2,FSLF2
    150 FCRMAT(8H0WHEELS1.I引_3F1甘.3/8F1k.SI
        NETUAN
C
C CLEMENT (K,IHZI IS AM AFC
C
```



```
    - -h2(K.IH2&I**2A
        A=2.*ASIN(.5":HCRC/EEFRAD:KJ!
        B=ATN2(H2\K,IH2)-C2(1F2),HX(K,IF2!-OX\IH2)\
        IF\AES(B).LE. .all 甘=|.
        IFIU .LE. -1.5707963&67) 6=8+0.2831853&7
        AHGH=B
        ALOH=B-A
        OO 180 1=1.0
        AMIC=.5*(AHGH+ALCH)
        HXM=(X(IH2)+EFFRACIKHOCCS(AM1O)
```



```
        KM2=(HXM-XP1)*e2*(H2N-2P1)**&
        IFIRM2 -LE. KL2SGI GCTO 17E
        AHGH=AMIO
        GOTO 18U
170 IFIRM2.EO. RI2SGH GEIC 190
    ALOW=AMID
    1dd LONTINUE
    190 XP2=HXM
    CP2=F2M
    KKANG=ATN212P2-O21I+2%.XP2-OX11H2II
（FIAESIRKANG）－LE．．A11 RK ENG＝日．
HSLP \(2=\) KK ANG－1．5727963267
1ヶb LONTINUE
IFILCUT．EU．111 WRITEILUNG．IYGI IHZ，C．CHORD．A\＆B．
＋XPZ．2PL．PSLPZ
145 FOKMATIBHOWHEELSく。bシャTF1』．31
RETURN
ENO
\(l\)
\(\vdots\)
SUBRCUTINE WHEEL 3 I ELEV，HA，FC，HE，HF，HX，IH，K，LOUT．
－LUNO，XP，LP，LPROFI
DIMEASION HA（5．9），H［65，9），RE（5，91，HF（5．98，HX（5，10）
C SLBRCUTINE TO FLNC ELEVATIGN CF WHEEL CENTER L AT XF．LP．\＃FT HUE PROFILE
6
\(002 \mathrm{k} \quad 1=1.18\)
IFIHX（K，II．GT．XP）GCTC 3d
\(6 J\)
CONTINUE
l \(\mathrm{H}=9\)
GOTO 4d
30
I \(H=I-1\)
1F（Ih．LT．1）1H：
6
¿ FIND POINT ON PROFILE
40 IFIHAIK．JHI．EG．I．I CGTO 6\＃
C
－prcfile element aline
\(c\)
\(S=-H C(K, I H) / H E(K, I H)\)
T＝－HFIK，IHI／HEIK，IH！
\(2 P R O F=S * X P+T\)
IFILCUT．GE．II）WRITEOLUNG，56I IH．S．，T，LPROF
bo FORMATI9H WHEEL3／1．IS．3FIU．3） GOTO 8＊
\(C\)
C PROFILE ELEMENT AN ARC
\(l\)
\(O L \quad H=.5\) OHE \(\left(K_{1} I H\right)\)
\(C=K P \oplus X P \leftrightarrow H D(K, I H I \in X P \&\) MF\＆\(K, L H I\)
\(D=80 E-C\)
IF（－R．GE．d．）21＝－B＋SGRT（D）
IFI－E．LT．D．」 2J＝－8＋SGRT SOI
22＝C／L1
1F（21．GE．2く）2PRCF＝22
1F\＆2l．LT．L21 LPRCF＝22
IFILCUT．GE．111 WRITEILUNG．71）IH，B，C．D．L1．
－22．2FROF
71
\(C\)
© ELEVATIUN
1-CUJO. VGLJPE II
LDI!AG, UF PGUGKAM OBSTVE
    SU甘KCUTINE MINV(A,N,C,L,M)
    UIMEASIUN AIII.L11).NII)
    MATRIX INVERSICN HITH FIVOTING
    SEAKCF FCG LAFGEST ELEMENT
    \(U=1 . k\)
        \(N K=-A\)
        OT \& J K=1.N
        \(\operatorname{HA}=\mathrm{NKRH}\)
        L(K) =K
        - \(H(K)=K\)
        \(K K=A K+K\)
        \(B I G A=A!K K^{\circ}\)
        DU \(2 \& J=K, N\)
        \(1 L=N *(J-1)\)
        no \(2 \boldsymbol{n} \quad I=K, N\)
        \(!J=!2+!\)
    1. IF
    \(15 \quad\) BIGA=A(IJ)
        \(L(K)=I\)
        \(M(A)=J\)
        CUNTINUE
            IATERCHANGE RCHS
        \(J=\{|K|\)
        1F(J-K) 3J.35.25
        \(K I=K-N\)
        no 3L \(\quad l=1 . N\)
        K \(\boldsymbol{I}=\mathrm{KI} I+N\)
        MOLO \(=-\) (KI)
        \(J^{\top}=K!-K+J\)
        A(K) \(=A(J 1)\)
        Al JI)=HOLD
            IATERCHANGE CCLUPAS
        \(I=M(K)\)
        \(\boldsymbol{f}(\boldsymbol{f}(-K) 45.45,33\)
        \(J\) J=N* (I-1)
        UU 4 e J=1.N
```

N-CA58, VULUME IS
JK=NK+J
J!=JF+J
HULU=-A(JK)
A(JK)=A(JJ)
A(Jl)=HULD
oivide culumn ef minus pivot ivalue cf pivol element
is containec IN EjGAl
TF(BIGA) 4ठ.40.40
D=も.\&
KETURN
UO לS I=1.N
!F(ï-K) bd.55.5Z
IK=NK+I
A(\perpK)=A(IK)/(-BICAt
CONTINUE
REUUCE MATR\&X
UU oS I=1.N
IK=NK+1
H(!LD=A\IK)
l J=1 -N
OU 65 J=1,N
IJ=1J+N
IF(!-K) O甘.65.64
|F(J-K) 62,65.62
KJ=! J-1+K
A(IJ)=HOLD*A(KJ)!Alddd
CUNTINUF
DIVIDE ROW BY FIVET
KJ=K-N
0O 75 J=1.N
KJ=KJ+N
IF(J-K) 70.75.70
A(KJIEA/KJI/BIGA
CONTINUE
PKODUCT DF PIVCTS
U=C\bullet@IGA
REPLALE PIVCT GY RECIPRICAL
A(KKI=1.G/BIGA
CONIINUE
FINAL ROW ANC COLUNN INTERCHANGE
L
$K=N$
K={K-1)

```
```

n-く-50. VulJ*E Ij
PAGE A-45
LISF!NG IF PhJGRAM GES7a8
|F|K| 15u.1つD.1く5
1U5
I=L(K)
lF (!-K) 1<d.12d.1\&8
i,d JG=N*(N-1)
JK=NO(!-1)
IC 11d J=1.N
Jk= JG+J
HOLD=A(JK)
J!=Jk+J
A(JK)=-A\J!)
11| \dot{M\l!=HULO}
|こうJ=M|K|
IFIJ-K! 1dd.1dd.125
125
Nl=k-N
Un l.| "=\&.N
KI=KI+N
HULD=A|K「I
J|=KI-K+J
A(KI)=-\&(JI)
3u m(Ji)= HOLC
GU TC 1u*
150 RETUFN
END
FUNCTIUN ATNZIX,Yt
ATN己= \.
IF{X.NE.U..OR.Y.NE-R.J ATNZ=ATAN2(X,Y)
RETURIN
ENC

```

```

 SUBRCLTINE EGSCL
    ```

```

 SUBKCUTINE EGSCL - FRGF M.J.C. FCWELL -A FDRTRAN SUBROUT INE
 FOR SCLVIAE NGNLIAEAM ALGEBRAIC COUATIONS
 IN NUMERICAL METHDCS FCR NONLINEAR ALGEBRAIC EZUNTIDNS
 ED: PHILIP RABINCMITZ. PUE& GOKDON E BREACh. }197
 SUBKCUTINE EOSOL {A,X,F,AJINV,OSTEP,CMAX,ACC,MAXFUN.
 1 H,NAXC,LUNG,IPRIAT,C&&FUNS
 OIMEASICA X(N),FIN),A\BAVIN,NIFWII18I-LI181,ME1B1
 EXTERNAL CALFUA
 SET VAKIUUS PAKAMETERS
 MAXC=0
 -mAXC' CCUNTS THE NGMBEP OF CALLS CF CALFUN
 NT=N &
 NTESTENT
 'NT' ANC 'NTEST' CALSE AA ERGCR GETURN IF FIXI DOES
 NOT CECREASE
 DTEST=&LOAT(N+N)-G.S
 -0TEST' LS USED TC AaEATALA llneak lncependence
    ```
N-<J5B. VLLUPE ID
    LISJ!NG OF FFUGKAM UBS7yE
        NTX=NGiv
        NHEINX+N
        NW=NF*N
        Mm=Nh+N
        NUC=N**I*
        NO=N[C+N
    THESE PMKAMETEDS SEFARATE ITE WCAKING SPACE
    l
        MKKAY M
        FMbiv=A.
        uS|ALLY 'FMIN'IS THE LEAST C&LLUULATEE valuE OF F\XI.
        ANC THE UEST x Ib IA MiAX+II IC b{NX+Nt
        UU=|.
        HSUALLY SO IS THE SGUARE CF THE CURMENT STEP LENGTH
        USS=LSTEHOOSTEP
        DN=UMAX*CMAX
        7MM=4.*CM
        IS=5
    'IS' GUNTKILS A 'GC TC' STATEMENT FOLLUNING A CALL OF
    l CGLFUN
        T!NC=1.
        'TBNL' IS USED IN THE CNITENICN TC INCREASE THE STEP
        LENGTH
        STAKY A NEW PAGE FCE PPINTING
        IF||FN{NTI|.1.35
        m&ITEILUPN,, %I
        FLRMATILH1\
        CmLl THE SUgKCUITAE \aviviv
    MAXG=M\triangleXC*1
    CALL CALFUN {N,X,F)
    TEST FOH CCNVERGEACE
    FSO=w.
    UU 2 b=1.N
        FSC=FSOOF(11OF{1)
        CUNTINUE
        !F (FSO-ACCI3.5.4
        C WROVIOE PEINTING CF EINAL SCLUTION IF REQUESTED
    LUNTINUE
    AF:SPRLNTIS.500
    WRIIFILUNO,7IMAXC
    FURMIT (///BNS EGSCLS/
    OX.SGMTHE FINAL SDLUSION CILCULATEC BY EOSOL
        2 BHRECUIRED,15.2IF CANES CF GALFUN.ANC ISN
        WRITEILUNG,8) II&XIIN,FIII,IEI\ominusNI
```



```
    WQITEILUPID,91 FSG
    FOKMAT 1/OX, LIMTHE SUN CF SGUARES IS.EIT.EI
    METURN
    TEST FOR EMRON RETURA BELAUSE FINV OCES NOT OECREASE:
    60 PC &&N.1d.11.d\.11%.IS
    IF\FSU-FMINIIS,2&OC&
    1F8UC-USSI12.12.11
    NTESTANTEST-1
        IFINTESTI13.14.11
        WHITEILUNO.IGINT
```

n-<u)0. VULUME1!
PAGE A-47
LISTING LF PFCGGGM ,EST:E
!O -LRMGTI///GH tEGSOL:\&5X,SIFENKOR RETURN FROM EQSUL BECAUSE, 15.
1 G7hCallo of Calfly faIlec TG imfhCVE The hesicuals)
11 UL 19 l=igN
NX\&=^X+1
NFI=NF+!
X(|) =~(NX|)
F(I) =W{NF|!
LDNT INUE
-SG= FMIN
GO TL 3
S
i3
! !
I SX. 3GHEKNLM RETUFA FPOM EGSCL BELAUSE FIXI..
2 jyHFASLEL゙ TU DEEREASG USING A NEW JmCOBIANS
ri) TC 17
VTEST=NT
IESS WHFIHER THEKE FAVE OEEN MAXFUN CIALS OF
CALFLN
IF(MAXFUN-MAXC)210.Ld.22
mkITEGLUIIG . 23IMAXC
FONMATI////GH% EGSCL:\&
1 JX,SIHEKKUR RETUFN FACM EGSCL \&ECAUSE
< IOHTHERE ITAVE JEEN ,15.\SHCALLS OF LALFUNI
|FIFSg-FM!N)3.\&7.17
MLVIUE OHI:ITING IF KEGLESTEC
!% ! !PKlPMI<4,<4.<25
WQITE\LUPNO.201 FAXC
FUKMAT\///|H\& ESSCL:S
1 SX,OHAT THE,IS. LSHTF CALL CF CAEFUN WE HAVEI
NKITE(LJNO,\&)(L,XILI,FIII,I=I,N)
ARITE:LUNG,9IFSG
1,0 TC1<7.< 0.<Y.\&7.S20.IS
stgae the qesult cf the initial call cf cmqun
FM!N=FSU
DU S\& !=1.N
NX!=Ax•!
AFL=AF\&1
m\&NX!J=X\IJ
w(NF|)=F\!1
CCNTINUE
CALCLLATE A NEW JACCBIAR AFFROXIMATBON
ICat
15=3
IC=1C*1
R\&\&CIEX\& LCIODSTEF
GU PC 1
x=1C
|C s\& I=1.N
NFI= NFOI
\#\K\EIFIID~WUNFIDO/CSTEP
K=K* A
14 CUNTINUE
NA\&C=NX-IC

```
```

k-<uSo. VulumE II
L!SIING UF PFUGODM URS7oE
X(IC)=W(NX\&C)
|FIIC-N) 33.35.35
G LALCULATE THE bNVERSE OF THE JACLGIAN ANG SÉI THE
C UIKECTIUN MATEIX
34
\smile
C
k=0
UC 30 !=1.N
OU 37 J=1.N
K=k*1
NLK:=ND+K
AJiNW(I.J)=w(K)
n(NCK)=\.
CCATINUE
NOCI =NDC I!
NOCKI=1NDCI+K
w(NOCKI)=1.
W(NDCl)=1.FFLCATIN-10
CONIINUE
GALL MINV:AJINV.A,DA.L,NH
STANT ITERATICN EY FREOICI ING THE CESCENT ANU
NEWTCN MLNLMA
OSEv.
DN=6.
SP=d.
OL 3% 1=1.N
x||=0.
F: bl=0.
K2!
OC45 J=1.N
NFJ=NFOJ
x(d)=x(|)-W\K|OW\AF.d
F(l)=F(I|-AJINVIL.J)\&M(NFJ)
K=K\bulletA
continue
OS=OSOX(110XII:
UN=UA*F(b)OF(1)
SP=SPOXIIIAF(II
CONTINUE
TEST WHETHEK N NEARBY STATIONARY POINT IS
PAEOICTEC
IFIFMINOFMIN-OMMOOS 141.41.42
C IF SC THEN RETIJRA CF REVISE JACCEIAN
42 GOTC(43.43.44%.15
4* WNSTE:LUNG,6S\
45 FURMATI///8HA EGSCL IA
I SX, 3 SHEGRUK RETUFA FALREESLLL BECAUSE A.
2 G\&HNEAKBY STATICAART PLINT OF FIXI IS PREOICTEOL
CO TC 17
*) NTEST=%
nO40 l=1.N
AXI=AX+I
MIII BWINXI:
CONTINUE
GU TC 32
TEST WHETHEM TC AFPLY THE FULL NEWTOA CUREEGTION

```
PAGE A-46
```

n-?J50. VLLUME 11
G'jIlNG LF PFOGKMM U'cJ7gE
\bullet1 IS=2
'F1JN-0C147,47.40
-1 UL=^mAXIIUN.LSSI
LS=0.25-0N
TINL=1.
1FIDN-DدS)4..50.39
4* IS=4
ic re du
lalcllate the lengtr cf the steepest descent step
K=v
つYしL!=\.
OU 51 I=1.N
On=0.
JU 52 J=1.iv
n=k+l
フm=Un+m(K)*x(」)
h? CONTIIJUE
UMULT=CMULT+L゙d*C』
bl CUNTINUE
-MLLT=OS IOMULT
OS =OS*OMJLT*JMULT
C TEST WHETHEN TC USE THE STEEPEST CESCENT OIRECTIUN
|r|US-しO\5\.54.54
C. TESI WHETMER THE IPITIAL VILUE GF CD HAS BEEN SET
S.4 ir|OCIOE.50.126

```

```

 js=OS/|UMULJ*OMULI\
 UC TC 41
 SET THE MULTIPLIEH LF THE STEEPEST DESCENT QIRECTIJN
 ANMULT=U.
 DMULIEJMULTOSCKTICO/CS!
 ru TC YO
 6 INTEfPOLATE getmeEn tre stgepest descent ano the

- NCmICN UIKECYICNS
53 SP=SFOUMLLT
ANMULT=(CO-OSI/I\SP-OSIOSGR?:ISP-CCI**2* CN-UOS
1 - (0U-051\&1
UMULT=DMULTOII.-ANMLETI
C CALCLUATE THE ChAMLE IN mAAC ITS ANGLE HITH THE
C PIRSI OIKECTICN
UN:G.
SP=%.
DO 57 IE1.N
FIII=OMULT*XII:OANMLETOFIII
UN=UN+F(II*F(I)
NCI=ADOI
SPESFOFIIOOWIRUSI
57 CONTINUE
DS=4.250UN
C TEST KHETHER AN EXIGA STEP IS NEEDEO FUR
C IAOEPENDENCE
IFIWINDC II)-DTESTA58.54.59
IFISPOSP-OSIOO.58.56
TAKE THE EATKA SJEP AME UPCATE IHE DIKECTION MATKIX

```
```

 r-2J50, VOLURE 1!
 LISTING LF PFOGGAM UEST&E
 5v IS=6
 Ov DC OL I=1.N
 NXI=NX+1
 NCI=ADRI
 NLCI =NOC ! !
 x(I)=W(NXI)+DSTEF*W(AC.b)
 (NOC1)=m(NCCI+1+1.
 t1 CINNTINUE
 W(NO)=1.
 UC O2 1=1.N
 K=NO+1
 SP=N(K)
 0063 J=2.N
 KN=K+N
 N(K) =W(KN)
 K=KN
 C3 EJNTINUE
 *(K)=SP
 O< LONTINUE
 GUTC
 C EXPKFSS THE NEW [IKECTICN IN TEKMS OF THOSE OF THE
c. UIRECTIUN MATMIX,ANG UPCATE THE CCUNTS IN WINCC+II
CiC.
SP=%。
K=NO
Du O4 I= I.N
\(1)=0%
Dッチ\&.
DO65 J=1.N
K=k+1
Oh=Oh+F(J)OW(K)
CONT!NUE
LOTO (60.001.1S
60 NCCI =NLCPI
wINOClIaw(NDCII+1.
SP=SP+UW*OW
IF (SP-OS)04.04.07
IS=1
AKE!
\1I|=0W
6U TC 64
X(l)=DW
NOCI=NDC\&1
M(NDCI)Em(NDCI*1)*1.
GUNTINUE
A(NOIE1.
KELKCER THE DIKECTBLMS SO THAT KK IS FIRST
IF (KX-117%.1U.11
KS=NCCOKKON
NO }12\mathrm{ l= I.N
k=kS \&l
SPEn(K)
0O 73 J=<.KK
KN=K-N

```
```

 v(n)=n\KNZ
 K=nc*
 7. CONTINUE
 W(K)=SP
 GUNTINUE
 generate the nen crthCuCNal uIregiton matkix
 U心 74 l=i.N
 Nwl=NW*l
 m(Nall =i!
 CONT livUE
 SP=x(1)=x(1)
 K=NO
 nu 75 I=2.N
 DS=SERT(SH*(SHOXJI|*M(1)J)
 7w=SP/OS
 nS=x(1)/0S
 SP=\F+X1 11*x(1)
 UJ 7E J=1,iv
 k=k+1
 NwJ= Aw+J
 Kiv=K+N
 m(NoJ)=m(NmJ)+X(I-I |&||K)
 m(K) =1)m*W(KN)-DS*h(N&J)
 CONI IVUE
 CONTINUE
 うO=!./SこんT(Uy)
 UO }77\mathrm{ &:1.N
 k=k+1
 W(K)=SP*F(b)
 CONTIVUE
 CalGllate the next wgcter x,anc precict the risht
 HANC S!DES
 FNP=$.
 K=6
 OU 7: I=1.N
 NXI=AX+1
 NF&=AF*d
 NW|=AN+I
 X\ll=W(NX||FF|!|
 W(NWI) =W(NF!)
 UU 7& JEION
 K=K+1
    ```

```

 7y CONTINUE
 FNP=FND+W(NWI)**<
 7% CONTINUE
 CALL CALFUN USBAG THE NEW VECTCR OF VARIABLES
 GO TC
 UPDATE THE STEP SIZE
 OMULIE&.Y*FM&A*A.D*FAF4FSO
 IF ICMULTI8<.8&.8!
 JO=ANAXIICSS.OA2SOOOI
 IINC=1.
 IF IFSQ-FMINIA2,20.2#
    ```
k－え̇とう VOLUME 11
PAGE A－52
LISTING UF PGOGRAM UES78E

C Jír the test tu cecige whether tc increase the step
01 SPaH
SP＝d．
\(S S=1\) ．
गu of \(I=1, N\)


SS＝SS＋1F（II－WINWI）10＊2
8：CONTINUE
PJ＝1．HMULT／ISP\＆SGFISSF＊SP＋CMULT：SSII
SP＝AMINII4．，TINC，PJI
TINC＝PJ／SP
JU＝AMIMIIOM．SPCLCI
GU TC 3
lf f（x）impreves stcre the ném value of \(x\)
（FIFSD－FMTN）83．5む．5\＆
07
\(\forall 3\) FMIN：ESO
UC 8\％I＝1．N
\(S P=x(1)\)
．\(N\) A！\(=A X+1\)
NFI \(=A F \cdot 1\)
NWI \(=A_{W-I}\)
HISITWINXJ！
W（NXI）＝SP
\(S P=F(1)\)
F（I）＝W（NFI）
W\＆AFII＝SP
W（NWll \(=\)－W（NWI）
－CONTINUE
！F（1S－1）2甘．2J．5d
6 Calcllate the changes ba fand in \(x\)
＜O MO 89 I＝1．N
\(N \times 1=A x+1\)
NFI＝AFe！
X（I） \(\mathrm{EX(I)}-\mathrm{A}(\mathrm{AXb})\)
F（I）＝F（I）－W（AFI）
by CUNT INUE
C UPCATE THE APPHCXIMBIICAS TC J AAC TC AJINV
\(K=0\)
DO YR 1＝1．N
Mnb＝M以 1
NHIaAW＋I
W（MWIIEX（L）
WCNWIIEFくII
\(0091 \mathrm{~J}=1 . N\)
W\｛Mm！！＝W（MWI）－AJIAV（1－dIOF（Jd
\(\alpha=k+1\)
W（NAII：W（NWI）－W（K）©XIJI
91 CONTINUE
9．CONTINUE
SPab．
SS＝d．
DU yic \(1=1 . N\)
us＝0．
```

r-</Job, VCLUPE II
LIدTING UF P\&OGKAM C己STat
OL i3 J=1,V
」う=0S+AJINV(J,!!*x:J」
43 CUNIINUE
SP=SFOOS*F(1)
SS=S S+X(!)*X(I)
F(I)=OS
,Z CUNTINUE
IMULT=1.
!F (ABS\SPI-\&゙.LDSSIS4.F55.45
LMULT=d.8
PJ=UMULT/SS
HA=OMULT/!CMLLT*SP+11.-CMULTI*SS:
k=v
UU 96 I=1.N
NWI=AW+I
4W!= NW+1
SP=PJOW(NWII
SS=PAOH|Mn!|
DL y 7 J=1.N
k=k+1
w(K)=W(K)+SPax(J)
AJINV\&I,J)=AJINV(I..0*SS*F(J)
ContInuE
CONTIINUE
GW TC jy
EHC

```
n-くisa, Vulure!!
VEHICLE INPUT File FGR pfegfam les7ge - modal tank

```

NUNITS,ASUSP,NVEH,NFL
HITCH HEIGHT ANL LOAD
BUGIE INCICATOKS
PGWER INDICATORS
BRAKE INCICATORS
KOLLING RACIUS
HITCH TC SUPPORT CENTEK
BUGIE WICTH
BCGIE LIMIT-UP
ROGIE LIMIT-CONN
AXLE LGAC-EMPTY
VEF. CG AOOVE GROUNO
LCAD CG WRT GROUNL
LOAC
VEF BUTICM PCINTS NPTSCL.NPTSC2
XCLC1(1),YCLC1(1), I=1,NPTSC\&
SFLAGII),IP(I,IN,LB(L,11,I=6,5
41.25 L4.02 ELLIII.2S\&II,EFFRADIII.
I=4,5

```
```

K-205y. VULURE IL
PAGE B-3
APPENOIX B - VEHICLE INPLT FME FCF PKOGKAM OBS78B - Mi5I JEEP
M151AC - 4X4

```


6 it 2
\(\begin{array}{lllll}1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0\end{array}\)
\(1 \times 1\) id 0
14． 14.
113． 28.
し．e．
0．\(u_{0}\) o
J．ひ．ひ．
1540．18bR．J．
25．18．
56．3e．J．
5 L 0 ．K．
\(4 d\)
13c．17．123．1d．
47．14．20． 40 ．

NUNLTS，NSUSP，NVEHL，NFL
HITCR：HEJGHT ANC LJAD
ECGLE INDICATORS
PUWER INCLCATORS
ERAKE INDICATORS
PCLLJNG RACIUS
HITCH TO SUPPURT POINT
COGBE WIDTh
BOGIE LIMIT－UP
BOGIE LIMIT－DWN
AXLE LOAD－EMPTY
VEr．CG ABUVE GRUUNO
LOAD CE WKT GROUND
LOAO
VEF BOTTUM POINTS
88．13．15 86．12．85．13．15
13.18 .18.

\section*{afpencix C}
sample terrala infut file fer program ubsibu
h-2is8. VULUME I!
PAGEC-2
SAMPLE TEKHAIN INPJT FILE FEA RFLGRAM OESTAB
\&is
\begin{tabular}{|c|c|c|}
\hline \% \({ }^{*}\) & 03 & 13 \\
\hline 3.15 & 112.80 & 5.88 \\
\hline 15.75 & 112.50 & ל.as \\
\hline 33.46 & 112.du & \(5 \cdot 8\) \\
\hline 3.15 & 142.046 & 5.88 \\
\hline 15.75 & 142000 & 5.48 \\
\hline 39.40 & 1620.08 & 5.88 \\
\hline 3.15 & 154.80 & 5.88 \\
\hline 15.75 & 154.08 & 5.83 \\
\hline 33.40 & 154.dJ & 5.48 \\
\hline 3.45 & 164.0.9 & 5.88 \\
\hline 15.75 & 164.010 & 5.88 \\
\hline 39.40 & 104.86 & 5.88 \\
\hline 3.15 & 146.08 & 5.88 \\
\hline 15.75 & 190.86 & 5.48 \\
\hline 31.40 & 196.dy & 5.88 \\
\hline 3.15 & 240.40 & 5.88 \\
\hline 15.75 & 260.du & 5.88 \\
\hline 33.46 & 2d0.0w & 5.88 \\
\hline 2.13 & <18.48 & 5.80 \\
\hline 15. 75 & 213.0.6 & 5.88 \\
\hline 33.40 & 218.80 & 5.48 \\
\hline 3.15 & 248.00 & 5.88 \\
\hline 15.75 & 248.48 & 5.88 \\
\hline 33.46 & 448.86 & 5.88 \\
\hline 3.15 & 112.dJ & 29.88 \\
\hline 15.75 & 112.818 & 29.48 \\
\hline 33.46 & 112.00 & 29.48 \\
\hline 3.15 & 142.10 & 29.88 \\
\hline 15.75 & 142.30 & 29.80 \\
\hline 33.40 & 142.dd & 29.48 \\
\hline 3.15 & 154.dd & 29.88 \\
\hline 15.75 & 154.80 & 27. 88 \\
\hline 93.46 & 154.00 & 29.48 \\
\hline 3.15 & 164.08 & 29.88 \\
\hline 15.75 & 164.088 & 29.88 \\
\hline 33.46 & 164.48 & 29.88 \\
\hline 3.15 & 190.81 & 29.88 \\
\hline 15.72 & 190.80 & 29.88 \\
\hline 33.46 & 196.38 & 25.88 \\
\hline 2.15 & 260.80 & 29.88 \\
\hline 15.75 & 296.dp & 29.48 \\
\hline 33.46 & 2r0.ds & 29.88 \\
\hline 3.15 & 218.00 & 29.88 \\
\hline 15.75 & 218000 & 29.88 \\
\hline 33.46 & 218000 & 29. 38 \\
\hline 3.15 & 248.80 & 29.96 \\
\hline 15.75 & 248.34 & 29.48 \\
\hline 53.46 & 248.d8 & 29.38 \\
\hline 1.15 & 112.81 & 141.0.6 \\
\hline 15.75 & 112.00 & 14.1 .60 \\
\hline 33.46 & 112.20 & 14184tiol \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 3.15 & \(14<0 . d i\) & \(241.6{ }^{\text {c }}\) \\
\hline 15.75 & \(142.0{ }^{\text {d }}\) & 141.00 \\
\hline 33.40 & 142.08 & 441.60 \\
\hline 3.15 & 124003 & 441.008 \\
\hline 15.75 & 154.00 & 141.68 \\
\hline 33.40 & 154.00 & \(141 . t 8\) \\
\hline 3.15 & 104.88 & 141．64 \\
\hline 15.75 & 104.0 d & 141.46 \\
\hline 33.46 & 104．dd & 141.60 \\
\hline 2． 15 & 1960．0） & 141.64 \\
\hline 15.75 & 190．20 & 141．6U \\
\hline 31.46 & 170．0） & 141.66 \\
\hline 3.15 & cubodd & 141.00 \\
\hline 15.72 & 266.00 & 141.08 \\
\hline 33.46 & C60．4x & 141040 \\
\hline 3.15 & \(218 . d x\) & 142．60 \\
\hline 15.75 & 218．du & 141.64 \\
\hline 31.4 t & \(219.8 x\) & 141 －．．\({ }^{10}\) \\
\hline 3.15 & c48．dd & 141．68 \\
\hline 15.75 & く48．とう & 141．68 \\
\hline 33.46 & 248.00 & 141.64 \\
\hline \(99 \times .974\) & ナッ9．79 & 79×． 99 \\
\hline
\end{tabular}

\section*{AFFEACIX C}

SAMPLE CLIPUT frCM PACGRAM LBS7ab
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Aurus} \\
\hline \multicolumn{6}{|l|}{iarsu} \\
\hline \multicolumn{6}{|l|}{\(\underline{1}\)} \\
\hline \multicolumn{6}{|l|}{\(\therefore\)－CIt} \\
\hline \multicolumn{6}{|l|}{3} \\
\hline  & FCJMAX & FLC & HOVALS & AVALS & WVALS \\
\hline ！VChES & PCuNiS & pluncs & lNCtES & facians & INCHES \\
\hline 27．w & \(0 \times 40.5\) & 272．1 & 3.15 & 1.45 & 5.88 \\
\hline c4．46 & 27876.2 & 184く．0 & 15.75 & 1.95 & 5.88 \\
\hline 0.57 & dY773．8 & 5211.4 & 33.46 & 1.95 & 5.80 \\
\hline 17.23 & 0940.5 & \(3+4.3\) & 3.15 & 2.68 & 5.80 \\
\hline \(\leq 4.28\) & 24473.2 & 1684.8 & 15.75 & 2.48 & 5.88 \\
\hline 6.72 & 56134．0 & s6dt．d & 33.40 & 2.46 & 5.8 d \\
\hline 27．0） & \＄948．5 & 3458 & 3.15 & 2.09 & 5.88 \\
\hline 24．50 & \(1856 y .2\) & 1392.5 & 15.75 & 2.64 & 5.88 \\
\hline 11．4 & 32415.7 & 3616.3 & 33.40 & く－0y & 5.30 \\
\hline ：0．48 & 0450.8 & 30000 & 3.15 & 2.80 & 5.80 \\
\hline c4．38 & 17046.0 & 125402 & 15.75 & ＜．80 & 5.88 \\
\hline ＜6．43 & 18844．5 & 6707.8 & 12．40 & 2.00 & 2．08 \\
\hline 30.26 & \(0<01.7\) & 7d7．0 & 3.15 & 1．42 & 5.88 \\
\hline ＜1．27 & 18079.8 & 224 E．3 & 15.75 & 3.42 & 5.88 \\
\hline 2.01 & \(3.8<44.2\) & ＜610． 3 & 33.46 & 3.42 & 5.88 \\
\hline 14.04 & 416406 & 264.3 & 3.15 & 3.00 & 5．8d \\
\hline 31.21 & 15 144．0 & 1544.8 & 15．75 & 3.00 & 3．83 \\
\hline －1．ju & 96816．9 & 2542．5 & 33．40 & 3.62 & c．\({ }^{\text {c u }}\) \\
\hline 4と．じ2 & 3757．i & 474．3 & 3.15 & ；－Et & S．d3 \\
\hline 20．03 & 13100.0 & 782．y & 15．73 & 3.84 & 5.08 \\
\hline cueul & 11078.1 & ＜020．3 & 33.40 & 3.89 & 5.88 \\
\hline 40.04 & 1612.7 & 316.6 & 3.15 & 4.33 & 5.88 \\
\hline 39.54 & 4149.3 & 145．8 & 15.75 & 4.33 & 5.88 \\
\hline 17.71 & 5300.1 & －125．5 & 33.46 & 4.33 & 5.88 \\
\hline ；7．13 & －472．6 & 404.6 & 3.15 & 1.95 & 2\％．08 \\
\hline \(64 .<0\) & 12489.2 & －310．4 & 15.75 & 1.95 & cy． 8 d \\
\hline 0.57 & 79647.6 & 4974.6 & 33.40 & 1.95 & 29．8\％ \\
\hline 17．13 & ＋ \(272 .<\) & 585．d & 3.15 & 2.48 & 24.88 \\
\hline 44.42 & cdil2．6 & 802.5 & 45.75 & 2.45 & 29．88 \\
\hline 6.62 & 51346.5 & 4366.5 & 33.46 & 2.48 & 29.80 \\
\hline 37.13 & \(9<72.2\) & 516.7 & 3.15 & ＜．69 & 29.88 \\
\hline 24.36 & 24378．0 & －717．d & 15.75 & 2.09 & 29.88 \\
\hline 11.76 & 36857．7 & \(370 \% .5\) & 33.46 & 2.09 & 29.88 \\
\hline 10．44 & －450．8 & 527.7 & 2.15 & 2.86 & 29．88 \\
\hline 24．57 & 15926.4 & 1465.5 & 15.75 & 2.86 & 29．58 \\
\hline 2u．55 & 30844.5 & 2131．9 & 33.46 & 2．86 & 29．88 \\
\hline 27.17 & 4644．1 & －24．8 & 3.15 & 3.02 & 29.84 \\
\hline 14.79 & 18805.7 & 1064.1 & 15.75 & 3.42 & 29.88 \\
\hline 6.92 & 30640.5 & 2048．6 & 23.46 & 3.46 & 29.08 \\
\hline 10．01 & 7604.2 & －219．2 & 3.15 & 3.00 & 29.88 \\
\hline 22.81 & 31801.0 & 2601．9 & is．73 & 2060 & 29.84 \\
\hline －11．5t & 94784.1 & 3156.8 & 33.46 & 3.04 & 29.88 \\
\hline 90．71 & 9361.9 & 1898.2 & 3.15 & 3.00 & 29.81 \\
\hline 67.61 & cd861．7 & 1637.6 & 15.75 & 3.48 & 29.80 \\
\hline 1.49 & 41586.8 & 452400 & 33.40 & 3.80 & 29.18 \\
\hline 10．0\％ & 5364.9 & 174．1 & 3.15 & 4.13 & 29．86 \\
\hline & & & 154 & & \\
\hline
\end{tabular}
\(-\infty\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline 21．ut & 7279．． & －102．0 & 15.75 & 4.3 & 29.80 \\
\hline ， 5.01 & \(1<253.2\) & 759.0 & 32.46 & 4.33 & 29.88 \\
\hline 27.17 & 9＜72．i & 231.1 & 3.15 & 1.95 & 441.00 \\
\hline 24．77 & 24814．9 & 1442.4 & 15.75 & 1.95 & 141.60 \\
\hline \(0.5 \%\) & 79744．4 & 4481.1 & 33.40 & 1．95 & 141.04 \\
\hline ，7．17 & \(9<72.2\) & 236.5 & 3.15 & 2.44 & 141.60 \\
\hline く4．44 & 35968.4 & 1861.0 & 15.75 & 2.48 & 141.60 \\
\hline 0.02 & 5く815．0 & 3640.1 & 33.60 & ＜．46 & 141060 \\
\hline 37.17 &  & 241.8 & 3.15 & 2.65 & 141.60 \\
\hline 64.45 & c7ta3．5 & 1727.9 & 15.75 & 2.09 & 141.03 \\
\hline 11．54 & 34088．9 & 33～6．2 & د3．46 & 2.69 & 141.60 \\
\hline 10．73 & 3456．4 & 425.9 & 3.15 & 2.86 & 141.60 \\
\hline 64.46 & 18744.7 & 1827.2 & 15.75 & 2.80 & 141.60 \\
\hline cu． 55 & 30464．5 & 3P6i．l & 33.40 & 2.86 & 141.00 \\
\hline 36．7， & \(0<95.3\) & 471.6 & 3.15 & 3.42 & 141.00 \\
\hline cl． 76 & 1921く．く & ＜295．4 & 45.75 & 3.42 & 141.00 \\
\hline 20.60 & 34544.5 & 9493．0 & 33.60 & 3.42 & 141.08 \\
\hline 34.12 & 7326.6 & 741.4 & 3.15 & 3.68 & 141.00 \\
\hline 10.72 & 52341.8 & 2497.8 & 15.75 & 3.64 & 141.68 \\
\hline 7.38 & 36306.4 & \(4<00.5\) & 33.46 & \(3 \cdot 68\) & 141.64 \\
\hline 93．8y & 9787.3 & \(45<.9\) & 3.15 & 3.84 & 141．0t \\
\hline 12.40 & 38383.1 & \(<227.8\) & 15.75 & 3.80 & 141.00 \\
\hline －1．83 & 48520.4 & 3741.5 & 33.40 & 3.84 & 14.060 \\
\hline ，j．91 & ¢4？4．ご & 088.6 & 2.15 & 4.33 & 141.00 \\
\hline 16.96 & ：0＜0\％．4 & 755 & 15.75 & 4.30 & 141.60 \\
\hline － 3.83 & 79892.1 & 5167.6 & 33.46 & 4.35 & 101000 \\
\hline
\end{tabular}
```

*-<ubog vijlumi ll
SAMPLE GUTPUT RHCM PKLCMAM CEST\&B - VEHICLE:MIDI JEFP

| vilug 1 | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ？ | | | | | |
| t．Mivg | | | | | |
| θ | | | | | |
| NuCTr | | | | | |
| 3 | ， | | | | |
| －LRMIA | fCOMAX | fou | rCVALS | avais | WVALS |
| incrits | PCUNCS | pelacs | incres | KADIANS | INCHES |
| 0.05 | 541.0 | $31 .<$ | 3.15 | 1.95 | 5.88 |
| －3．75 | 217\％．e | 127.1 | 15.75 | 1.95 | 5.68 |
| －cl． 1.1 | く283．5 | 237.5 | 35.40 | 1.95 | 5.88 |
| 6.05 | 1815.5 | 35.6 | 3.15 | 2.48 | 5.80 |
| －3．5－ | 1861.2 | 110.7 | 15.75 | 2.48 | 5.88 |
| －12．36 | S04．9 | $10<00$ | 23.40 | 2.44 | 5.88 |
| 0.85 | 070.1 | ＜ 5.5 | 3.15 | 2.65 | 5.88 |
| －＜．91 | 090.7 | 124．9 | 15.75 | $<.09$ | 5.88 |
| －3．45 | t46． | 9 c ¢ 2 | 33.40 | 2．09 | 5.86 |
| 7.45 | 411.2 | 34.3 | 3.15 | 2.86 | 5.08 |
| 2.93 | 464.0 | 09.7 | 15.75 | 2.80 | 5.88 |
| ＜．61 | 794.3 | 90.3 | 33.40 | ＜．06 | 5.88 |
| 7．1\％ | 417.7 | 48.9 | 3.15 | 3.42 | 5.88 |
| 5.58 | 444.5 | 08.7 | 15.75 | 3.42 | 5.88 |
| 1.14 | 779.3 | 1x3．${ }^{\text {c }}$ | 33.40 | 3.42 | 5.88 |
| 7.46 | 764.7 | ； 5.5 | 3.15 | 3.01 | 5.88 |
| 1.21 | 757.6 | 135.1 | 15.75 | 3.64 | $5.3 d$ |
| －4．83 | 029.1 | 4 35.3 | 29，49 | 3．0．0 | 5.88 |
| y． 0^{0} | $00<.3$ | 16.3 | 3．19 | 3．84 | 5.88 |
| －2 ${ }^{\text {d }}$ | 1174．4 | 18 とくつ | ¢ 5.75 | 3.04 | 5.80 |
| －4．54 | $13 \mathrm{Ul} \mathrm{l}^{5}$ | 26－08 | 33.46 | 3.41 | 5.80 |
| 4.65 | 364．3 | 4.8 | 3.15 | 4.33 | 5．dd |
| 3.79 | 1150.0 | 43.5 | 15.75 | 4.33 | 5.88 |
| －．＜${ }^{\text {d }}$ | 2978.2 | 140.4 | 33.40 | 4.33 | 5.88 |
| 0.02 | 592.1 | －2．8 | 3.45 | 1.45 | 29.88 |
| －3．75 | 2163.4 | yy． 1 | 15.75 | 1.95 | 29.68 |
| －21．60 | 2329.6 | 158.9 | 33.40 | 1.95 | 29.88 |
| 0.05 | 1615．5 | 24.3 | 3.15 | 2.45 | 24．08 |
| －9．75 | $125<.4$ | 96．4 | 15.75 | 2.46 | ＜9．88 |
| －4．92 | 1110.3 | 149．1 | 33.46 | 20.4 | 29．88 |
| 0.65 | 694.1 | 24.7 | 3.15 | 2.09 | 29.60 |
| ． 57 | t58．c | －8．2 | 15.75 | 2.69 | 29．88 |
| － 56 | 637.9 | 110.9 | 33．46 | ＜．6y | 29．80 |
| 7.45 | 411.2 | 28.8 | 3.15 | 2.86 | 24.88 |
| 4.86 | 443.4 | 5 L．A | 15.75 | 2.86 | 2Y．88 |
| 4.75 | 794．3 | 103.0 | 33.46 | 2.80 | 2v．48 |
| 7.24 | 417.0 | 31.1 | 3.15 | 3.42 | $2 y .88$ |
| 5.48 | 464.5 | 57.4 | 15.75 | 1.42 | 24．de |
| 4.96 | 199．3 | Ave．0 | 33.40 | 3.42 | 29．86 |
| 0.01 | 736.0 | 24.8 | 3.15 | 3.00 | 29．88 |
| ． 78 | 761.3 | 114.2 | 15.75 | 3．0＊ | 24.88 |
| －2．82 | 846.2 | 131.1 | 33.46 | 2.64 | 29．88 |
| 6.76 | 991．4 | 14．9 | 3.15 | 3.84 | 29．48 |
| － 2.46 | 1878.4 | 145.1 | 15.75 | 3．84 | 29．88 |
| －18．20 | 1318.4 | 192.9 | 33.46 | 3.80 | 29.88 |
| 0.68 | 575.1 | 4.9 | 3.15 | 4.33 | 27．8y |

K-CJSO, VCLURE I I
SAMPLE CUTPUT FRCM PKLGFAF CASTOE - VEHICLE:MASI JEEP
PAGE D-5

| -3.01 | 2401.0 | 157.4 | 15.75 | 4.3.30 | 2y.08 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| - 23.83 | 255:.4 | <28.7 | 33.40 | $4 \cdot 3 \cdot 3$ | 29.86 |
| 6.85 | 541.3 | -0.0 | 3.15 | 4. 45 | 141.60 |
| -. 5.5 | 2428.4 | 07.4 | $!5.75$ | 1.95 | 141.60 |
| -11.44 | 2550.1 | 128.8 | 33.40 | 1.95 | 141.04 |
| 6.85 | 1443.9 | 10.1 | 3.15 | 2.48 | 141.60 |
| 2.84 | 1174.6 | 68.0 | 15.75 | 2.48 | 141.00 |
| -. 73 | 1346.9 | 145.5 | 33.46 | 2.48 | 141.60 |
| 0.65 | 74.7. 5 | 46.9 | 3.15 | 2.69 | 141.68 |
| 40.4 | 758.7 | 75.1 | 15.75 | 2.69 | 141.00 |
| 3.85 | 837.9 | 132.5 | 33.40 | 2.64 | 141.60 |
| 7.45 | 410.0 | 17.0 | 3.15 | 2.80 | 141.60 |
| 0.75 | 443.4 | 05.4 | 15.75 | C. 86 | 141.00 |
| $0: 08$ | 799.3 | 123.0 | 33.40 | 2.86 | 141.00 |
| 7.67 | 417.2 | 1 Y. 1 | 3.15 | 3.42 | 14i.08 |
| - 7.2 d | 388.4 | 65.9 | 15.75 | 3.42 | 141.008 |
| 0.85 | 7\%9.3 | 180.0 | 32.40 | 3.44 | 141.64 |
| 6.64 | 737.1 | 20.1 | 3.15 | 3.64 | 141.06 |
| 4.25 | 703.1 | 78.2 | 15.75 | 3.60 | 14.1.0d |
| 3.00 | ¢Sy. 7 | 135.9 | 33.40 | 3.00 | 141.00 |
| 7.60 | 1294.0 | 18.6 | 3.15 | 3.84 | 141.010 |
| 2.14 | 1168.7 | 8 S .3 | 15.75 | 3.84 | 141.00 |
| -. 60 | 1312.4 | 164.2 | 33.46 | 3.88 | 141.68 |
| 0.80 | 1131.4 | 36.3 | 3.15 | 4.3 .4 | 141.60 |
| -.. ${ }^{\text {a }}$ | 2397.4 | 1)403 | 15.35 | -033 | 141.60 |
| -15.46 | 2549.8 | 147.3 | 33.40 | 4.33 | 141.00 |

SECUAITY こ-ASSIFICATION OP TmIS PAGE Thmen Dera Enieeon

[^0]: Speed-made-good between two points is the straight-line distance between the points divided by total travel time, irrespective of path.

[^1]: - Numbers in parentheses sorrespond to numbers in Figure I.E.I.

[^2]: - the average speed, $V_{a v}$, is the harmonic average of the three f. speeds,i.e. $V_{a v}=3 /\left[\left(1 / V_{\text {up }}\right)+\left(1 / V_{\text {across }}\right)+\left(1 / V_{\text {down }}\right)\right]$

