TTCHNICAL LIBRARY
PEFERENCE COPY

Reproduced From
Best Available Copy
U.S. ARMY TANK-AUTOMOTIVE RESEARCH AND DEVELOPMENT COMMAND Warren, Michigan 48090

Technical Report 12503

NATO REFERENCE MOBILITY MODEL, EDITION I USERS GUIDE

VOLUME II
OBSTACLE MODULE

DA Project 1L162601AH91

Prepared by
Stevens Institute of Technology Davidson Laboratory
Castle Point Station Hoboken, NJ 07030

Contract DAAK30-77-C-0027

$$
\text { ОСТ } 1979
$$

for

US Army Tank-Automotive Research \& Development Command Warren, ilichigan 48090

ABSTRACT

Instructions in the organization and use of the computer programs which implement the Initial NATO Reference Mobility Model (INRMM) are presented.

Volume II is devoted to the INRMM Obstacle-Crossing Module. A brief description of the mathematical equations and computing algorithms which predict the speed of a vehicle over a variety of terrain, the input data required, and the outputs generated is included. Some aid to the interpretation of various output variables is given.

KEY WORDS

Mobility
Mobility Modeling
Computerized Simulation
Vehicle Performance
Terrain
Obstacle Crossing

TABLE OF CONTENTS

Abstract. i
List of Figures iv
List of Tables - v
List of Appendices v
I. INTRODUCTION AND OVERVIEW
A. Background 1
B. Modeling Off-Road Vehicle Mobility 5
C. Overall Structure of the INRMM 8
D. Model Inputs and Preprocessors 12

1. Terrain 12
2. Vehicle 13
3. Driver. 15
4. Scenario. 15
E. Stand-Alone Simulation Modules 17
5. Obstacle-crossing Module -- OBS78B. 17
6. Ride Dynamics Module -- VEHDYN. 18
a. Driver model and tolerance criteria 20
7. Main Computational Modules -- NRMM. 21
a. Areal Terrain Unit Module 22
b. Road Module 28
F. Acknowledgements 30
II. ALGORITHMS AND EQUATIONS
A. Introduction 33
B. Coordinate Systems 40
8. Vehicle Input Data Coordinates. 40
9. Vehicle Coordinates 41
10. Ground Fixed Coordinate System. 41
11. Vehicle Fixed-Ground Parallel Coordinate System 42
C. $0 B S 78$ B Vehicle Preprocessor. 42
D. Subroutine OBGEOM. 50
E. Initial Values and Position. 52
F. Vehicle Movement Loop. 59
12. Subroutine CLEAR 59
13. Subroutine FORCES 61
a. Coefficient of Tractive Forces 65
b. Force Relations for Single Wheel Support. 65
c. Force Relations for Bogie Support 67
(I) Both wheels of the bogie support
on the ground. 67
(2) Only one wheel of the bogie support on the ground. 70
d. Force and Moment Summation for Entire Vehicle 71
14. Subroutine MOVEB 72
lll. INPUTS AND OUTPUTS
A. Vehicle Data 79
B. Terrain Data 84
C. Scenario/Control Data. 86
D. Output 88
15. Control/Execution Report. 88
16. Basic Output. 88
17. Detailed Output 89
IV. REFERENCES 94
I.A.1 Prospective Users of Vehicle Performance Prediction Me thodology 3
I.C.I GeneralStructure of the Initial NATO Reference Mobility Model 9
I.E.I General Flow of INRMM Areal Module 23
11.A. 1 Structure of the Obstacle Module 34
II.A. 2 Obstacle Geometry. 35
11.A. 3 Hub Profiles Across Mounds 37
11.A. 4 Hub Profiles Across Ditches 37
II.A. 5 Vehicle Parameters 39
11.B. 1 Vehicle Input Data Coordinates 40
II.B. 2 Vehicle Coordinates. 41
11.B. 3 Ground Fixed Coordinates 42
11.B. 4 Relation of Three Coordinate Systems 43
II.C.I Hitch and Trailer CG Location 44
II.C. 2 Vehicle Suspension Support Point Location. 45
$11 . C .3$ Wheel Center Locations at Bogie Limits 45
$11 . C .4$ Trailer CG and Suspension Support Location 46
II.C. 5 Trailer Bogie Wheel Locations at Bogie Limits. 47
11.C. 6 Specification of Vehicle Bottom Profile Break Points 48
II.D. 1 Obstacle and Hub Profile Break Point Indices 50
II.D. 2 Obstacle and Hub Profile Flank Indices 51
II.F.I Relation of Bottom Profile of Vehicle to Obstacle Profile. 60
II.F. 2 Schematic of Bogie Suspension 62
II.F. 3 Forces on a Single Wheel 66
II.F. 4 Forces on a Bogie Suspension When Both Wheels Contact the Surface. 68
II.F. 5 Possible States of Support of Bogie Suspension Element 73/74
II.F. 6 Spridler Interference for Tracked Vehicles 74
lll.A.I Vehicle Input Data Coordinate System 83R-2058, Volume 11Obstacle Module
LIST OF TABLES
I.C.1 Terrain, Vehicle, Driver Attributes Characterized in INRMM Data Base 11
Ill.A.I Vehicle Input File Format -- OBS78B 81
lll.B.I Terrain File Format -- OBS78B 85
III.D.I Detailed Output Headers -- OBS78B 92
LIST OF APPENDICES
APPENDIX A -- Listing of Program OBS78B
APPENDIX B -- Vehicle Input Files for Program OBS78B
M60 Al Tank B-2
M 151 Jeep B-3
APPENDIX C -- Sample Terrain Input File for Program OBS78B
APPENDIX D -- Sample Output From Program OBS78B
M60 Al Tank D-2
M 151 Jeep D-4

I INTRODUCTION AND OVERVIEW*

The
NATO Reference Mobility Model (NRMM) is a collection of equations and algorithms designed to simulate the cross-country movement of vehicles. It was developed from several predecessor models, principally AMC-74 (Jurkat, Nuttall and Haley (1975)). This report, in several volumes, provides some background and motivation for most aspects of the Model, and presents documentation for the coded version now available through the U. S. Army Tank-Automotive Research and Development Command (TARADCOM).

A. Background

Rational design and selection of military ground vehicles requires objective evaluation of an ever-increasing number of vehicle system options. Technology, threat, operational requirements, and cost constraints change with time. Current postures must be reexamined, new options evaluated, and new trade-offs and decisions made. In the single area of combat vehicles, for example, changes in one or another influencing factor might require trade-offs that run the gamut from opting for an air or ground system, through choosing wheels, tracks or air cushions, to designating a new tire.

The former Mobility Systems Laboratory of the then U. S. Army Tank-Automotive Command (TACOM) and the U. S. Army Engineer Waterways Experiment Station (WES) are the Army agencies responsible for

[^0]conducting ground mobility research. In 1971, a unified U. S. ground mobility program, under the direction of the then Army Materiel Command (AMC), was implemented that specifically geared the capabilities of both laboratories to achieve common goals.

As a first step in the unified program, a detailed review was made of existing vehicle mobility technology and of the problems and requirements of the various engineering practitioners associated with the military vehicle life cycle. One basic requirement was identified as common to all practitioners surveyed: the need for an objective analytical procedure for quantitatively assessing the performance of a vehicle in a specified operational environment. This is the need that is addressed to a substantial extent by the INRMM and its predecessors.

In theory, a single methodology can serve some of the needs of all major practitioners, provided it relates vehicle performance to basic characteristics of the vehicle-driver-terrain system at appropriate levels of detail.

Three principal categories of potential users of the methodology were identified: the vehicle development community, the vehicle procurement community, and the vehicle user community (Figure I.A.1). The greatest level of detail is needed by the design and development engineer (vehicle design and development community) who is interested in subtle engineering details--for example, wheel geometry, sprung masses, spring rates, track widths, etc.--and their
VEHICLE DESIGN AND
DEVELOPMENT COMMUNITY

VEHICLE PROCUREMENT
COMMUNITY

VEHICLE USER COMMUNITY

PROSPECTIVE USERS OF VEHICLE PERFORMANCE PREDICTION METHODOLOGY

FIGURE I-A-1
interactions with soil strength, tree stems of various sizes and spacings, approach angles in ditches and streams, etc. At the other end of the spectrum is the strategic planner (user community), who is interested in such highly aggregated characteristics as the average cross-country speed of a given vehicle throughout a specified region--the net result of many interactions of the engineering details with features of the total operational environment. Between these two extremes, is the person responsible for selection of the vehicles who must evaluate the effect of changes of major subsystems or choose from
concepts of early design stages. To be responsive to the needs of all three user communities, the methodology must be flexible enough to provide compatible results at many levels and in an appropriate variety of formats.

Interest in a single, unified methodology applicable to the needs of these three principal users led to the creation of a cross-country vehicle computer simulation combining the best available knowledge and models of the day. Much of this knowledge was collected in Rula and Nuttall (1971). The first realization of the simulation was a series of computer programs known as the AMC-71 Mobility Model, called AMC-71 for short (US ATAC(1973)). This model first became operational in 1971; it was published in 1973. It was conceived as the first generation of a family whose descendants, under the evolutionary pressures of subsequent research and validation testing results, application experiences, and growing user requirements, would be characterized by greater accuracy and applicability. A relatively current status report may be found in Nuttall, Rula and Dugoff (1974).

The first descendant, known as AMC-74, is the basis for the INRMM. It is documented in Jurkat, Nuttall and Haley (1975). The following is a description of this model.

B. Modeling Off-Road Vehicle Mobility

In undertaking mobility modeling, the first question to be answered was the seemingly easy one: What is mobility? The answer had been elusive for many years. Semantic reasons can be traced to the beginnings of mobility research, but there was also a pervasive reluctance to accept the simple fact that even intuitive notions about a vehicle's mobility depend greatly on the conditions under which it is operating. By the mid-1960s, however, a consensus had emerged that the maximum feasible speed-made-good* by a vehicle between two points in a given terrain was a suitable measure of its intrinsic mobility in that situation.

This definition not only identified the engineering measure of mobility, but also its dependence on both terrain and mission. When, at a suitably high resolution, the terrain involved presents the identical set of impediments to vehicle travel throughout its extent, mobility in that terrain (ignoring edge effects) is the vehicle's maximum straight-line speed as limited only by those impediments. But when, as is typically the case, the terrain is not so homogeneous, the problem immediately becomes more complex. Maximum speed-made-good then becomes an interactive function of terrain variations, end points specified, and the path selected. (Note that the last two constitute at least part of a detailed mission statement.) As a way to achieve a useful simulation in this complicated situation the INRMM deliberately

[^1]simplifies the real areal terrain into a mosaic of terrain units within each of which the terrain characteristics are considered sufficiently uniform to permit use of the simple, maximum straight-line speed of the vehicle to define its mobility in, along, or across that terrain unit. A terrain unit or segment specified for a road or trail is, similarly, considered to have uniform characteristics throughout its extent.

Maximum speed predictions are made for each terrain unit without concern for whether or not distances within the unit are adequate to permit the vehicle to reach the predicted maximum. This vehicle and terrain-specific speed prediction is the basic output of the model. The model, in addition, generates data that may be used to predict operational vibration levels, mission fuel consumption, etc., and can provide diagnostic information as to the factors limiting speed performance in the terrain unit.

The speed and other performance predictions for all terrain units in an area can be incorporated into maps that specify feasible levels of performance that a given vehicle might achieve at all points in the area. At this point, the output is reasonably general and is essentially independent of mission and operational scenario influences. The basic data constituting the maps must usually be further processed to meet the needs of specific users. These needs vary from relatively simple statistics or indices reflecting overall vehicle compatibility with the terrain, to extensive analyses involving detailed or generalized missions. None of these so called
C. Overall Structure of the INRMM

In formulating AMC-71, it was recognized that its ultimate usefulness to decision makers in the vehicle development, procurement, and user communities would depend upon its realism and credibility. (See Nuttall and Dugoff (1973).) These perceived requirements led to several more concrete objectives related to the overall structure of the model. It was determined that the model should be designed to:

1. Allow validation by parts and as a whole.
2. Make a clear distinction between engineering predictions and any whose outcome depends significantly upon human judgment, with the latter kept visible and accessible to the model user.
3. Be updated readily in response to new vehicle and vehicle-terrain technology.
4. Use measured subsystem performance data in place of analytical predictions when and as available and desired.

These objectives, plus the primary goal of supporting decision making relating to vehicle performance at the several levels, clearly dictated a highly modular structure that could both provide and accept data at the subsystem level, as well as make predictions for the vehicle as a whole. The resulting gross structure of the model is illustrated in Figure I.C.1.

At the heart of the model are three independent computational modules, each comprised of analytical relations derived from laboratory and field research, suitably coupled in the particular type of operation. These are:

FIGURE I.C.I - GENERAL ORGANIZATION OF THE INITIAL NATO REFERENCE MOBILITY MODEL

1. The Areal Module, which computes the maximum feasible speed for a single vehicle in a single areal terrain unit (patch).
2. The Linear Feature Module, which computes the minimum feasible time for a single vehicle, aided or unaided, to cross a uniform segment of a significant linear terrain
feature such as a stream, ditch, or embankment (not currently available).
3. The Road Module, which computes the maximum feasible speed of a single vehicle traveling along a uniform segment of a road or trail.

These Modules and the Terrain and Vehicle Preprocessors are collected in a computer program called NRMM and are described in Volume I.

These three Modules may be used separately or together. Alternately, INRMM has the ability to simulate travel from terrain unit to terrain unit in the sequence given by the terrain input file. In this mode, known as the traverse mode, sufficient output data can be provided so that the user may calculate acceleration and deceleration times and distances between and across terrain unit boundaries, and thereby determine actual travel time and speed-made-good over a chosen route.

All three modules draw from a common data base that describes quantitatively the vehicle, the driver, and the terrain to be examined in the simulation. The general content of the data base is shown in Table I.C.1.

TABLE I.C. 1
Terrain, Vehicle, Driver Attributes Characterized in INRMM Data Base

Terrain
Surface Composition
Type
Strength
Surface Geometry
Slope
Altitude
Discrete Obstacles
Roughness
Road Curvature
Road Width
Road Superelevation
Vegetation
Stem Size
Stem Spacing
Linear Geometry
Stream cross section
Water velocity
Water depth

Vehicle
Geometric characteristics

Inertial characteristics

Mechanical
characteristics

Driver
Reaction Times
Recognition distance
Acceleration and impact tolerances

Minimum acceptable speeds
D. Model Inputs and Preprocessors

1. Terrain

For the purposes of the model, each terrain unit is described at any given time by values for a series of 22 mathematically independent terrain factors for an areal unit (including lake and marsh factors), 10 for the cross section of a linear feature to be negotiated, and 9 to quantify a road segment. General-purpose terrain data also include separate values for several terrain factor values that vary during the year. For example, at present such general data for areal terrain include four values for soil strength (dry, average, wet, and wet-wet seasons) and four seasonal values for recognition distances in vegetated areas. Similar variations in effective ground roughness, resulting from seasonal changes in soil moisture (including freezing) and in the cultivation of farm land, can be envisioned for the future. Further details on the terrain factors used are given in Rula and Nuttall (1975).

As discussed earlier, the basic approach to representing a complex terrain is to subdivide it into areal patches, linear feature segments, or road segments, each of which can be considered to be uniform within its bounds. Besides supplying actual values for the terrain factors, this concept may be implemented by dividing the range of each individual terrain factor value into a number of class intervals, based upon considerations of vehicle response sensitivity and practical measurement and mapping resolution problems. A patch or
a segment is then defined by the condition that the class interval designator for each factor involved is the same throughout. A new patch or segment is defined whenever one or more factors fall into a new class interval.

Before being used in the three computational Modules, the basic terrain data are passed through a Terrain Data Preprocessor, called TPP in the Computer Program NRMM. This preprocessor does three things:

1. Converts as necessary all data from the units in which they are stored to inches, pounds, seconds and radians, which are used throughout the subsequent performance calculations.
2. Selects prestored soil strengths and visibility distances according to run specifications, which are supplied as part of the scenario data (see below).
3. Calculates from the terrain measurements in the basic terrain data a small number of mathematically dependent terrain variables used repeatedly in the computational modules.
4. Vehicle

The vehicle is specified in the vehicle data base in terms of its basic geometric, inertial, and mechanical characteristics. The complete vehicle characterization as used by the performance computation modules includes measures of dynamic response to ground roughness and obstacle impact, and the clearance and traction requirements of the vehicle while it is negotiating a parametric series of discrete obstacles.

The model structure permits use at these points of appropriate data derived either from experiments or from supporting stand-alone simulations used as preprocessors. One supporting two-dimensional ride and obstacle crossing Dynamics Module for obtaining requisite dynamics responses(currently called VEHDYN and described in Volume III) and a second supporting Module for computing obstacle crossing traction requirements and interferences (currently called OBS78B and described in this Volume) are available as elements of the INRMM. Both derive some required information from the basic vehicle data base, and both, when used, constitute stand-alone vehicle data preprocessors.

There is also a Vehicle Data Preprocessor called VPP (integral to NRMM) which, like the Terrain Data Preprocessor, has three functions:

1. Conversion of vehicle input data to uniform inches, pounds, seconds, and radians.
2. Calculation, from the input data, of controlling soil performance parameters and other simpler dependent vehicle variables subsequently used by the computational modules, but usually not readily measured on a vehicle or available in its engineering specifications.
3. Computation of the basic steady-state traction versus speed characteristics of the vehicle power train, from engine and power train characteristics.

As in the case of dynamic responses and obstacle capabilities, the last item, the steady-state tractive force-speed relation, may be input directly from proving ground data, when available and desired.
3. Driver

The driver attributes used in the model characterize the driver in terms of his limiting tolerance to shock and vibration and his ability to perceive and react to visual stimuli affecting his behaviour as a vehicle controller. While these attributes are identified in Figure I.C. 1 and Table I.C. 1 as part of the data base INRMM provides for their specific identification and user control so that the effects of various levels of driver motivation, associated with combat or tactical missions, for example, can be considered.
4. Scenario

Several optional features are available to the user of the INRMM (weather, presumed driver motivation, operational variations in tire inflation pressure) which allow the user to match the model predictions to features or assumptions of the full operational scenario for which predictions are required. Model instructions which select and control these options are referred to as scenario inputs.

The scenario options include the specification of:

1. Season, which, when seasonal differences in soil strength constitute a part of the terrain data, allows selection of the soil strength according to the variations in soil moisture with seasonal rainfall, and
2. Weather, which affects soil slipperiness and driving visibility, (including dry snow over frozen ground and associated conditions).
3. Several levels of operational influences on driver tolerances to ride vibrations and shock, and on driver strategy in
negotiating vegetation and using brakes.
4. Reasonable play of tire pressure variations to suit the mode of operation--on-road, cross-country, and in sand.
E. Stand-Alone Simulation Modules

As indicated above, the Model is implemented by a series of independent Modules. The Terrain and Vehicle Preprocessors, already described, form two of these. Two further major stand-alone simulation Modules will now be outlined.

1. Obstacle-crossing Module-OBS78B

This Module determines interferences and traction requirements when vehicles are crossing the kind of minor ditches and mounds characterized as part of the areal terrain; it is described fully in this Volume. It is used as a stand-alone Preprocessor Module to the Areal Module of INRMM.

The Obstacle-crossing Module simulates the inclination and position, interferences, and traction requirements of a two-dimensional (vertical center-line plane) vehicle crossing a single obstacle in a trapezoidal shape as a mound or a ditch. The module determines a series of static equilibrium positions of the vehicle as it progresses across the obstacle profile. Extent of interference is determined by comparison of the obstacle profile and the displaced vehicle bottom profile. Traction demand at each position is determined by the forces on driven running gear elements, tangential to the obstacle surface, required to maintain the vehicle's static position. Pitch compliance of suspension elements is not accounted for but frame articulation (as at pitch joints, trailer hitches, etc) is permitted.

The Obstacle-crossing Module produces a table of minimum clearances (or maximum interferences) and average and maximum force required to cross a representative sample of obstacles defined by combinations of obstacle dimensions varied over the ranges appropriate for features included in the areal terrain description. This simulation is done only once for each vehicle. Included in the INRMM Areal Module is a three-dimensional linear interpolation routine which, for any given set of obstacle parameters, approximates from the derived table the corresponding vehicle clearance (or interference) and associated traction requrements. Obviously, the more entries there are in the table, the more precise will be the determination.
2. Ride Dynamics Module- VEHDYN

The Areal Module examines as possible vehicle speed limits in a given terrain situation two limits which are functions of vehicle dynamic perceptions: speed as limited by the driver's tolerance to his vibrational environment when the vehicle is operating over continuously rough ground, and speed as limited by the driver's tolerance to impact received while the vehicle is crossing discrete obstacles. It is assumed that the driver will adjust his speed to ensure that his tolerance levels will not be exceeded.

The Ride Dynamics Module of INRMM, called VEHDYN and described in Volume III, computes accelerations and motions at the driver's station (and other locations, if desired) while the vehicle is operating at a given speed over a specific terrain profile. The
profile may be continuously, randomly rough, may consist solely of a single discrete obstacle, uniformly spaced obstacles of a specific height or may be anything in between. From the computed motions, associated with driver modeling and specified tolerance criteria, simple relations are developed for a given vehicle between relevant terrain measurements and maximum tolerable speed. The terrain measurement to which ride speed is related is the root mean square (rms) elevation of the ground profile (with terrain slopes and long-wavelength components removed). The terrain descriptors for obstacles are obstacle height and obstacle spacing.

The terrain parameters involved, rms elevation and obstacle height and spacing, are factors quantified in each patch description, and rms elevation is specified for each road segment. Preprocessing of the vehicle data in the ride dynamics module provides an expedient means of predicting dynamics-based speed in the patch and road segment modules via a simple, rapid table-lookup process.

The currently implemented Ride Dynamics Module is a digital simulation that treats vehicle motions in the vertical center-line plane only (two dimensions). It is a generalized model that will handle any rigid-frame vehicle on tracks and/or tires, with any suspension. Tires are modeled using a segmented wheel representation, (see Lessem (1968)) and a variation of this representation is used to introduce first-order coupling of the road wheels on a tracked vehicle by its tracks.
a) Driver model and tolerance criteria.

It has been shown empirically that, in the continuous roughness situation, driver tolerance is a function of the vibrational power being absorbed by the body. (See Pradko, Lee and Kaluza (1966).) The same work showed that the tolerance limit for representative young American males is approximately 6 watts of continuously absorbed power, and the research resulted in a relatively simple model for power absorption by the body. The body power absorption model, based upon shaping filters applied to the decomposed acceleration spectrum at the driver's station, is an integral part of the INRMM two-dimensional dynamics simulation.

In the past, only the 6 watt criterion was used to determine a given vehicle's speed as limited by rms roughness. More recent measurements in the field have shown that with sufficient motivation young military drivers will tolerate more than 6 watts for periods of many minutes. Accordingly, INRMM will accept as vehicle data a series of ride speed versus rms elevation relations, each corresponding to a different absorbed power level, and will use these to select ride-speed limits according to the operationally related level called for by the scenario. The Ride Dynamics Module will, of course, produce the required additional data, but some increased running time is involved.

The criterion limiting the speed of a vehicle crossing a single discrete obstacle, or a series of closely, regularly spaced obstacles,
is a peak acceleration at the driver's seat of $2.5-\mathrm{g}$ passing a $30-\mathrm{Hz}$. filter. Data relating the $2.5-\mathrm{g}$ speed limit to obstacle height and spacing can be developed in the ride dynamics module by inputting appropriate obstacle profiles.

INRMM requires two obstacle impact relations: the first, speed versus obstacle height for a single obstacle (spacing very great); and the second, speed versus regular obstacle spacing for that single obstacle height (from the single obstacle relation) which limits vehicle speed to a maximum of 15 mph . For obstacles spaced at greater than two vehicle lengths, the single-obstacle speed versus obstacle height relation is used. For closer spacings, the least speed allowable by either relation is selected.
3. Main Computational Modules - NRMM

The highly iterative computations required to predict vehicle performance in each of the many terrain units needed to describe even limited geographic areas are carried out in the three main computational modules. Each of these involve only direct arithmetic algorithms which are rapidly processed in modern computers. In INRMM, even the integrations required to compute acceleration and deceleration between obstacles within an areal patch are expressed in closed, algebraic form.

Terrain input data include a flag, which signifies to the model whether the data describes an areal patch, a linear feature segment,
or a road segment. This flag calls up the appropriate computational Module.
a) Areal Terrain Unit Module

This Module calculates the maximum average speed a vehicle could achieve and maintain while crossing an areal terrain unit. The speed is limited by one or a combination of the following factors:

1. Traction available to overcome the combined resistances of soil, slope, obstacles, and vegetation.
2. Driver discomfort in negotiating rough terrain (ride comfort) and his tolerance to vegetation and obstacle impacts.
3. Driver reluctance to proceed faster than the speed at which the vehicle could decelerate to a stop within the, possibly limited, visibility distance prevailing in the areal unit (braking-visibility limit).
4. Maneuvering to avoid trees and/or obstacles.
5. Acceleration and deceleration between obstacles if they are to be overriden.
6. Damage to tires.

Figure I.E. 1 shows a general flow chart of how the calculations of the Areal Module are organized.

After determination of some vehicle and terrain - dependent factors used repetitively in the patch computation (1),* the Module is entered with the relation between vehicle steady-state speed and theoretical tractive force and with the minimum soil strength that the vehicle requires to maintain headway on level, weak soils. These data

[^2]
are provided by the vehicle data preprocessor. Soil and slope resistances (2) and braking force limits (4) are computed, and the basic tractive force-speed relation is modified to account for soil-limited traction, soil and slope resistances, and resulting tire or track slip. Forces required to override prevailing tree stems are calculated for eight cases (3): first, overriding only the smallest stems, then overriding the next largest class of stems as well, etc., until in the eighth case all stems are being overridden.

Stem override resistances are combined with the modified tractive force-speed relation to predict nine speeds as limited by basic resistances (5). (The ninth speed corresponds to avoiding all tree stems.)

Maximum braking force and recognition distance are combined to compute a visibility-limited speed (6). Resistance and visibility-limited speeds are compared to the speed limited by tire loading and inflation (7), if applicable, and to the speed limit imposed by driver tolerance to vehicle motions resulting from ground roughness (8). The least of these speeds for each tree override-and-avoid option becomes the maximum speed possible between obstacles by that option, except for degradation due to maneuvering (9).

Obstacle avoidance and/or the tree avoidance implied by limited stem override requires the vehicle to maneuver (or may be impossible).

Using speed reduction factors (derived in 1) associated with avoiding all obstacles (if possible) and avoiding the appropriate classes of tree stems, a series of nine possible speeds (possibly including zero, or NOGO) is computed (10).

A similar set of nine speed predictions is made for the vehicle maneuvering to avoid tree stems only (10). These are further modified by several obstacle crossing considerations.

Possible NOGO interference between the vehicle and the obstacle is checked (12). If obstacle crossing proves to be NOGO, all associated vegetation override and avoid options are also NOGO. If there are no critical interferences, the increase in traction required to negotiate the obstacle is determined (12).

Next, obstacle approach speed and the speed at which the vehicle will depart the obstacle, as a result of the momentarily added resistance encountered, are computed (13). Obstacle approach speed is taken as the lesser of the speed between obstacles, reduced for maneuver required by each stem override and avoid option, and the speed limited by the driver to control his crossing impact (11). Speeds off the obstacle are computed on the basis solely of the soil-and slope-modified tractive force-speed relation (22), i.e. before the tractive force speed relation is modified to account for vegetation override forces, the traction increment required for obstacle negotiation, or any kinetic energy available as a result of the associated obstacle approach speed (13).

Final average speed in the patch for each of the nine tree stem override and avoid options, while the vehicle is overriding patch obstacles, is computed from the speed profile resulting, in general, from considering the vehicle to accelerate from the assigned speed off the obstacle to the allowable speed between obstacles (or to a lesser speed if obstacle spacing is insufficient), to brake to the allowable obstacle approach speed, and to cross the obstacle per se at the computed crossing speed.

Following a final check to ensure that traction and kinetic energy are sufficient for single-tree overrides required (and possible resetting of speeds for some options to NOGO) a single maximum in-patch speed (for the direction of travel being considered relative to the in-unit slope) is selected from among the nine available values associated with obstacle avoidance and the nine for the obstacle override cases. If all 18 options are NOGO, the patch is NOGO for the direction of travel. If several speeds are given, selection is made by one of two logics according to scenario input instructions.

In the past the driver was assumed to be both omniscient and somewhat mad. Accordingly, the maximum speed possible by any of the 18 strategies was selected as the final speed prediction for the terrain unit (and slope direction). Field tests have shown, however, that a driver does not often behave in this ideal manner when driving among trees. Rather, he will take heroic measures to reach some reasonable minimum speed, but will not continue such efforts when those measures involve knocking down trees that he judges it imprudent to attack,
even though by doing so he could go still faster. In INRMM, either assignment of maximum speed may be made: the absolute maximum which addresses the vehicle's ultimate potential, or a lesser value which in effect more precisely models actual driver behavior.

If the scenario data specify a traverse prediction, the in-unit speed and other predictions are complete at this point, and the model stores those results specified by the user and goes on to consider the next terrain $u n i t$ (or next vehicle, condition, etc). When a full areal prediction is called for, the entire computation is repeated three times: once for the vehicle operating up the in-unit slope, once across the slope, and once down the slope. Desired data are stored from each such run prior to the next, and at the conclusion of the third run, the three speeds are averaged. Averaging is done on the assumption that one-third of the distance* will be travelled in each direction, resulting in an omidirectional mean.

[^3]b) Road Module

The Road Module calculates the maximum average speed a vehicle can be expected to attain traveling along a nominally uniform stretch of road, termed a road unit. Travel on super highways, primary and secondary roads, and trails is distinguished by specifying a road type and a surface condition factor. From these characteristics, values of tractive and rolling resistance coefficients for wheeled and tracked vehicles on hard surfaced roads are determined by a table look-up. For trails, surface condition is specified in terms of cone index (CI) or rating cone index (RCI). Traction, motion resistance, and slip are computed using the soil submodel of the Areal Module, with scenario weather factors used in the same way as in making offroad predictions.

The relations used for computing vehicle performance on smooth, hard pavements are taken from the literature (Smith (1970) and Taborek (1957)).

The structure of the Road Module, while much simpler, parallels that of the Areal Module. Separate speeds are computed as limited by available traction and countervailing resistances (rolling, aerodynamic, grade, and curvature), by ride dynamics (absorbed power), by visibility and braking, by tire load, inflation and construction, and by road curvature per se (a feature not directly considered in the Areal Module). The least of these five speeds is assigned as the maximum for the road unit (for the assumed direction relative to the
specified grade).

The basic curvature speed limits are derived from American Association of State Highway Officials (AASHO) experience data for the four classes of roads (AASHO (1975)) under dry conditions and are not vehicle dependent. These are appropriately reduced for reduced traction conditions, and vehicle dependent checks are made for tipping or sliding while the vehicle is in the curve.

At the end of a computation, data required by the user are stored. If the model is run in the traverse mode, the model returns to compute values for the next unit; if in the areal mode, it automatically computes performance for both the up-grade and down-grade situations and at the conclusion computes the bidirectional (harmonic) average speed. Scenario options are similar to those for the Areal Module.
F. Acknowledgments

As with any comprehensive compendium covering knowledge in a particular subject area, the results are due to the combined effort of all workers in the discipline. The authors, in this case, are somewhat akin to the scribes of ancient days, recording and organizing the wisdom and folly of those around them.

There are those, however, whose contributions stand out as related to the creation of the Mobility Model itself. The authors wish to acknowledge these people explicitly.

Clifford J. Nuttall, Jr., currently with the Mobility Systems Division, Geotechnical Laboratory at the U. S. Army Engineer Waterways Experiment Station (WES) provided the inspiration for many of the submodels, guided the evolution of the content of the entire model, and provided the wisdom and judgement which hopefully kept the various portions in proportion with each other. Additional experience in use of this and predecessor models came from many studies conducted by Donald Randolph at WES. During the model development period, general direction and supervision at WES came from W. G. Schockley, A. A. Rula, E. S. Rush and J. L. Smith.

Peter Haley, from the Tank Automotive Concepts Laboratory, USA TARADCOM and, also the manager of the NATO Reference Mobility Model, in addition to providing overall guidance and judgment

Abstract

did much of the seemingly endless detailed design and testing of the algorithms and code. He was aided in the coding by Thomas Washburn. Direct supervision of the model development at TARADCOM came from Zoltan J. Janosi, who also now serves as Chairman of the Technical Management Committee of the NATO Reference Mobility Model. General supervision during the project was provided by J. G. Parks, O. Renius, and Lt. Col. T. H. Huber. Dr. E. N. Petrick, Chief Scientist of USA TARADCOM, the moving force of the NATO RSI effort in the U. S. Army vehicle community, provided overall guidance and support for this activity. He has been aided in this by Edward Lowe, NATO Standardization and Metrication Officer at TARADCOM.

Newell Murphy, of the Mobility Systems Division, WES provided the driving force behind the current version of the Ride Dynamics Module, supervising its conception, creation, and testing as well as guiding the field work supporting it. Richard Ahlvin of WES and Jeff Wilson of Mississippi State University bore primary responsibility for the production of the sequence of computer programs which have implemented this Module.

The authors also wish to acknowledge the contributions of their colleagues at Stevens Institute of Technology. Jan Nazalewicz was responsible for much of the Obstacle Module. Supervision and guidance during the project came from I. Robert Ehrlich and Irmin O. Kamm.

The arduous task of entering and formatting the text of this report was performed by M. Raihan Ali and Gabriel Totino. Graphics and charts were prepared by Mary Ann McGuire and Christopher McLaughlin. The authors benefited from a careful review of the first draft by Peter Haley. Finally each of the authors notes than any errors are the fault of the other author.

II ALGORITHMS AND EQUATIONS

A. Introduction

The Obstacle Module, OBS78B, is a stand alone program which simulates the placement of the vehicle at a sequence of positions across the obstacle and for each position calculates

1. the tractive forces under the running gear to maintain that position,
and
2. the clearances/interferences between the frame of the vehicle and the obstacle at that position, and then
3. selects the maximum interference, CLRMIN, (or minimum clearance if there is no interference) and the maximum tractive effort, FOOMAX, and calculates the average tractive effort, FOO , across the various positions.

Figure II.A. 1 gives an overall view of the structure of the Obstacle Module.

The obstacles are restricted to the "standard" trapezoidal shape used throughout the INRMM. The effect of the predominant slope may be included in OBS78B, but there are currently no provisions for incorporating the predominant slope in combination with obstacle crossing in the Operational Modules. Thus, for the Obstacle Module the terrain input may be characterized as illustrated in Figure II.A. 2.

There is a restriction in OBS78B that the combination of slope and obstacle approach angle may not exceed the vertical for any obstacle flank on which the vehicle may rest.

FIGURE 11.A.2 - Obstacle Geometry

The vehicle is restricted to two units, a prime mover, supported by suspension assemblies at two points, and a trailer, supported by a suspension assembly at one point with a hitch rigidly attached to the prime mover about which the trailer may pivot. The suspension assemblies are rigid (no springs or dampers) and may be single wheeled or "bogied", which for the purposes of OBS78B means two wheels attached to a rigid member which pivots about its center at the suspension support point. This motion is restricted by, possibly different, pitch up and down limits with respect to the frame of the vehicle. Any mix of single wheeled or bogie suspensions may exist on the prime mover-trailer combination. The wheels are also assumed rigid but need not have the same radii for all suspension assemblies.

However, both wheels on a bogie have the same radius.

Tracked vehicles may be simulated by a double bogie wheeled vehicle where the wheel radius is the road wheel radius plus the thickness of the track. The bogie centers may be located anywhere the user wishes; reasonable results have been obtained by using the location of the second and second-from-last roadwheel centers. The width of the bogie, defined as the distance between the centers of the two wheels on the bogie, is also at the discretion of the user; reasonable results have been obtained by choosing the distance between two road wheels. When the bogie center and width have been chosen, the bogie angular limits should then be set to reflect the actual road wheel displaced as if the track were present at its normal tension. This will result in a large pitch up angular limit for the front bogie and a smaller pitch down angular limit. The rear bogie will have the reverse angular limits.

When the vehicle data has been read by the program, some initial calculations are done. These are described more fully below. The program then reads the obstacle shape and calculates hub profiles. These profiles are intended to simulate the path taken by the wheel conters across the obstacle, assuming a rigid wheel and uninterrupted contact. The program will use one of these two possible hub profiles across a mound:

Figure 11.A.3 - Hub Profiles Across Mounds
or one of these four possible hub profiles across a ditch:

FIgURE II.A. 4 - Hub Profiles Across Ditches
It may be observed that the vertical variation of the hub profile may be attenuated when compared to that of the obstacle profile; this effect may occur both for the net change in elevation and/or the rate of that change. This attenuation increases as the radius of the wheel increases with respect to the obstacle dimensions.

Tracked vehicles, in effect, attenuate obstacles as if they were equipped with very large wheels. The exact equivalent wheel diameter which attenuates an obstacle as does the tracked suspension
element is not readily calculated, and for any one vehicle may not be constant for all obstacles. In the Obstacle Module, two different wheel sizes are used to simulate tracked vehicles:

1. for a flexible track the radius of the wheel used to calculate the hub profile is set at one-half the distance between suspension element support points, and
2. for a non-flexible (girderized) track the radius of the wheel used to calculate the hub profile is set at the full distance between suspension element support points.

Figure II.A. 5 shows the vehicle parameters used in the module and indicates the vehicle configurations which can be simulated. Tracked vehicles pulling trailers are not simulated.

All horizontal dimensions are positive to the right of the hitch and negative to the left. All vertical dimensions are measured with respect to the ground when the vehicle is empty and at rest on level, hard ground. Vehicle motion is assumed from left to right.
N.B.: Either or both of the suspension elements of the prime mover may be single wheel or bogie supports. The hitch may be located before the second axle to possibly simulate a fifth wheel.

The wheels of a suspension element may be powered, braked, both or neither. Suspension types may be mixed in any combination but both wheels of a bogie suspension are assumed to have the same radius and ability to be powered and braked. During execution of the program, however, at any position on the obstacle either all braked wheels are braked or all powered wheels are powered.

FIGURE 11.A. 5 -- Vehicle Parameters
B. Coordinate Systems

Four separate coordinate systems are used in OBS78B, vehicle input data coordinates, vehicle coordinates, ground fixed coordinates and vehicle/ground coordinates. Each system is specified below.

1. Vehicle Input Data Coordinates

This coordinate system (Figure II.B.1) is centered at a point on the ground directly under the hitch when the vehicle is resting on a hard, flat surface and facing toward the right of the observer.

FIGURE II.B.I -- Vehicle Input Data Coordinates

All vehicle input data is given with respect to this coordinate system. It is used only for the convenience of the investigator; all data is immediately transferred to the Vehicle Coordinates.

2. Vehicle Coordinates

This coordinate system is centered at the hitch and moves with the prime mover. See Figure II.B. 2.

FIGURE 11.B.2 -- Vehicle Coordinates

The x-axis is horizontal and fixed to the vehicle when the vehicle is at rest on hard, flat ground. Thus the Vehicle Coordinates are initially parallel to the Input Data Coordinates translated vertically a distance of the height of the hitch for an empty vehicle. The pitch angle of the vehicle, θ_{1}, is in effect the angle the vehicle x-axis makes with the Ground Fixed Coordinate System.
3. Ground Fixed Coordinate System

This coordinate system remains fixed to the ground and is centered at the first obstacle profile break point. Its coordinates are designated with primed quantities. The z'-axis is positive up, along the negative gravity vector, and the x '-axis is positive to the
right. See Figure II.B.3.

FIGURE II.B.3-- Ground Fixed Coordinates
4. Vehicle Fixed-rround Parallel Coordinate System

This coordinate system is centered at the hitch and moves with the vehicle; however it remains parallel to the Ground Fixed Coordinate System. Initially it coincides with the Vehicle Coordinates when the vehicle is at rest on hard, flat ground. Its coordinates are designated by a superscript F.

The relationship between the three program coordinate systems is illustrated in Figure II.B. 4.
C. OBS78B Vehicle Preprocessor

After the vehicle data is read, several derived vehicle descriptors are calculated. These descriptors are given in terms of the vehicle coordinates.

FIGURE II.B.4 -- Relation of Three Coordinate Systems

Since the vehicle load distribution is given for an empty vehicle, a combined vehicle-load $C G$ is calculated (superscript e means empty vehicle).

The empty vehicle weight at the vehicle CG:

$$
\mathrm{Fe}_{\mathrm{C} 1}^{\mathrm{e}}=-\mathrm{F}_{\mathrm{q} 1}-\mathrm{F}_{\mathrm{q} 2}
$$

The x-coordinate of the empty vehicle $C G:$

$$
\mathrm{x}_{\mathrm{C}}^{\mathrm{e}} 1=-\left(\mathrm{F}_{\mathrm{q} 1} I_{1}+\mathrm{F}_{\mathrm{q}_{2} 1_{2}}\right) / \mathrm{F}_{\mathrm{C} 1}
$$

The empty trailer weight at the trailer CG:

$$
\mathrm{F}_{\mathrm{C}} \mathrm{e} 2=-\mathrm{F}_{\mathrm{q} 3}-\mathrm{F}_{\mathrm{h} 0}
$$

The x-coordinate of the empty trailer $C G:$

$$
x_{\mathrm{CG} 2}^{\mathrm{e}}=-\mathrm{F}_{\mathrm{q} 3^{1} 3^{\prime}} \mathrm{F}_{\mathrm{CG} 2}
$$

The loaded weights at the combined $C G$:

$$
\begin{aligned}
& F_{C G 1}=F E_{G 1}-\Delta W_{1} \\
& F_{C G 2}=F E_{G 2}-\Delta W_{2}
\end{aligned}
$$

The coordinates of the combined vehicle/load CG:

$$
\begin{aligned}
& x_{C G i}=\left(F_{C G i} x \varepsilon_{G i}-\Delta W_{i} d_{i}\right) / F_{C G i} \\
& z_{C G i}=\left(F_{G i} z_{C G i}-\Delta W_{i} e_{i}\right) / F_{C G i}
\end{aligned}
$$

where il for the vehicle, 2 for the trailer.
From now on these coordinates of the loaded vehicle will be called the vehicle and trailer CG coordinates.

The radius vector from the $C G$ to the hitch in polar coordinates:

$$
\begin{aligned}
& R_{\mathrm{hi}}=\left[x_{\mathcal{C} i}+z_{G G i}\right]^{1 / 2} \\
& \theta_{\mathrm{ohi}}=\arctan \left(z_{C G i} / x_{C G i}\right) \pm \pi
\end{aligned}
$$

where $i=1$ for the vehicle, 2 for the trailer.

FIGURE II.C.1-- Hitch and Trailer CG Location
N.B.: Radius vector is from vehicle $C G$ to hitch and from hitch to trailer CG.
$\theta_{\text {oh }}$ is adjusted to lie in the interval $[-\pi, \pi]$.

The polar coordinates of the vehicle suspension support points:

$$
r_{B C i}=\left[\left(1_{i}-x_{C G 1}\right)^{2}+\left(r_{i}-h-z_{C G i}\right)^{2}\right]^{1 / 2}, \quad i=1,2
$$

$\theta_{B C i}=\arctan \left[\left(r_{i}-h-z_{C G 1}\right) /\left(1_{i}-x_{C G 1}\right)\right], i=1,2$

FIGURE |I.C. 2 -- Vehicle Suspension Support Point Locations

The following are calculated for each suspension element which is represented by a bogie:

The polar coordinates of the wheel centers when they are at their limit position closest to the vehicle:

FIGURE 11.C. 3 -- Wheel Center Locations at Bogie Limits
(x_{B}, z_{B}) are the coordinates of the suspension support center with respect to the first unit $C G$.

$$
\begin{aligned}
& R_{\text {Li } 1}=\left[\left(x_{B}+\left(b_{i} / 2\right) \cos \beta_{u i}-x_{C G 1}\right)^{2}+\left(z_{B}+\left(b_{i} / 2\right) \sin \beta_{u i}-z_{C G i}\right)^{2}\right] 1 / 2 \\
& R_{\text {Li 2 }}=\left[\left(x_{B}-\left(b_{i} / 2\right) \cos \beta_{d i}-x_{C G 1}\right)^{2}+\left(z_{B}-\left(b_{i} / 2\right) \sin \beta_{d i}-z_{C G 1}\right)^{2}\right] 1 / 2 \\
& T_{\text {Li } 1}=\arctan \left[\left(z_{B}+\left(b_{i} / 2\right) \sin \beta_{u i}-z_{C G 1}\right) /\left(x_{B}+\left(b_{i} / 2\right) \cos \beta_{u i}-x_{C G 1}\right)\right] \\
& T_{\text {Li 2 }}=\arctan \left[\left(z_{B}-\left(b_{i} / 2\right) \sin \beta_{d i}-z_{C G 2}\right) /\left(x_{B}-\left(b_{i} / 2\right) \cos \beta_{d i}-x_{C G 2}\right)\right]
\end{aligned}
$$

For the trailer, these polar coordinates are given with respect to the hitch:

FIGURE II.C. 4 -- Trailer CG and Suspension Support Location

$$
\begin{aligned}
& r_{h 2}=\left[x_{C G 2}^{2}+z_{C G 2}^{2}\right]^{1 / 2} \\
& \theta_{\text {Oh }}=\arctan \left(z_{C G 2} / x_{C G 2}\right) \\
& r_{B C 3}=\left[1_{3}{ }^{2}+\left(r_{3}-h\right)^{2}\right]^{1 / 2} \\
& \theta_{\text {BC 3 }}=\arctan \left[\left(r_{3}-h\right) / 1_{3}\right]
\end{aligned}
$$

FIGURE II.C. 5 -- Trailer Bogie Wheel Locations at Bogie Limits
($x_{h B}, z_{h B}$) are the coordinates of the trailer suspension support point in vehicle coordinates.

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{L} 31}=\left[\left(\mathrm{x}_{\mathrm{hB}}+\left(\mathrm{b}_{3} / 2\right) \cos \beta_{\mathrm{u} 3}\right)^{2}+\left(\mathrm{z}_{\mathrm{hB}}+\left(\mathrm{b}_{3} / 2\right) \sin \beta_{\mathrm{u} 3}\right)^{2}\right] 1 / 2 \\
& \mathrm{~T}_{\mathrm{L} 31}=\arctan \left[\left(\mathrm{z}_{\mathrm{hB}}+\left(\mathrm{b}_{3} / 2\right) \sin \beta_{\mathrm{u} 3}\right) /\left(\mathrm{x}_{\mathrm{hB}}+\left(\mathrm{b}_{3} / 2\right) \cos \beta_{\mathrm{u} 3}\right)\right] \\
& \mathrm{R}_{\mathrm{L} 32}=\left[\left(\mathrm{x}_{\mathrm{hB}}-\left(\mathrm{b}_{3} / 2\right) \cos \beta_{\mathrm{d} 3}\right)^{2}+\left(\mathrm{z}_{\mathrm{hB}}-\left(\mathrm{b}_{3} / 2\right) \sin \beta_{\mathrm{d} 3}\right)^{2}\right]^{1 / 2} \\
& \mathrm{~T}_{\mathrm{L} 32}=\arctan \left[\left(\mathrm{z}_{\mathrm{hB}}-\left(\mathrm{b}_{3} / 2\right) \sin \beta_{\mathrm{d} 3}\right) /\left(\mathrm{x}_{\mathrm{hB}}-\left(\mathrm{b}_{3} / 2\right) \cos \beta_{\mathrm{d} 3}\right)\right]
\end{aligned}
$$

The effective radius of the wheels to be used in the hub profile calculations is set to

$$
\begin{array}{ll}
r_{t i}=r_{i} & \text { for wheeled vehicle unit } \\
r_{t i}=1 / 2\left(l_{1}-l_{2}\right) & \text { for tracked unit with flexible }
\end{array}
$$

track

$$
\begin{gathered}
r_{t i}=r_{t i}-r_{i} \quad \text { for tracked unit with girderized } \\
\text { track. }
\end{gathered}
$$

Since the use of $r_{t i}$ may have the effect of raising the entire vehicle far above the ground level, the result may be that no interference between vehicle bottom and the ground will be recorded when, in fact, it would actually occur. To avoid this difficulty, the difference between the hub profile effective radius and the normal radius

BPRFDL $=r_{t i}-r_{i}$
is used to lower the vehicle bottom profile.

The vehicle bottom profile itself is specified in the input data as the location of breakpoints given in the vehicle input coordinates. These breakpoints are then shifted to the vehicle coordinates. The preprocessor calculates the length and direction of the radius vector to each of these breakpoints. The radius vector originates at the hitch joint for both the prime mover and the trailer.

FIGURE IH.C. 6 -- Specification of Vehicle Bottom Profile Breakpoints

In Figure II.C.6, the bottom profile points are marked with heavy dots and calculated as follows:

$$
\begin{gathered}
r_{c k i}=\left[x_{c k i}^{2}+\left(y_{c k i}-B P R F D L\right)^{2}\right]^{1 / 2} \\
\alpha_{c k i}=\arctan \left[\left(y_{c k i}-B P R F D L\right) / x_{c k i}\right] \\
\text { where } k=1 \text { denotes the prime mover } \\
k=2 \text { denotes the trailer }
\end{gathered}
$$

and
for $\quad i=1, \ldots, N_{c k}$
where $N_{c k}$ is the number of bottom profile breakpoints on unit k. The hitch may, but need not be, included as a bottom profile breakpoint.

This completes the calculations of the OBS78B vehicle preprocessor. The predominant slope, θ ', is read and then the program enters the obstacle loop. The set of three descriptors for each obstacle is read; these are OBH, OBAA, and OBW as defined in section III.B. The program then transfers to subroutine OBGEOM where the hub profiles and the step size are calculated.

Before transfer to OBGEOM, a check is made to determine if the sum of the predominant slope and the obstacle approach slope exceeds the vertical. If it does, an error message is printed, calculations for the obstacle are skipped and the next obstacle is read.
D. Subroutine OBGEOM

This subroutine introduces the obstacle and hub profile index scheme used throughout the program. For an obstacle/wheel combination such that all hub profile flanks are present it is illustrated in Figure II.D. 1.

FIGURE II.D.I -- Obstacle and Hub Profile Breakpoint Indices

Observe that all obstacle breakpoints except 1 and 10 have two indices. This is to accomodate the hub profile breakpoint numbering which may result in two profile elements for each obstacle breakpoint. The obstacle and hub profile flanks are given the number of their left end breakpoint index as shown in Figure II.D.2. For obstacle/wheel combinations that give rise to hub profiles of fewer elements, some hub profile breakpoints may have up to six indices.

The ground fixed coordinate system always has its origin at the obstacle breakpoint 2.

FIGURE II.D. 2 -- Obstacle and Hub Profile Flank Indices

The approach and departure flanks, numbered 1 and 9 respectively, are set so that their slope is the predominant slope, θ_{S}^{\prime}, and their length is sufficient to accomodate all suspension elements simultaneously plus 1 inch. The vehicle is started on the approach slope. 1 inches from initial contact with a mound or with its front wheel contact point . 1 inches from hub profile element number 2 for a ditch.

Subroutine OBGEOM first calculates the x^{\prime}, z^{\prime}-coordinates of the obstacle and hub profile breakpoints for zero predominant slope. It then rotates the location of these points about obstacle breakpoint 2 (the $x^{\prime} z^{\prime}$ origin) through angle θ '. The length of each of the obstacle and hub profile elements is calculated. In addition, for each obstacle element, the angle with respect to the x^{\prime}-axis is also given. For the hub profile elements, the coefficients of the general quadratic

$$
A_{i j} x^{2}+B_{i j} x z+C_{i j} z^{2}+D_{i j} x+E_{i j} z+F_{i j}=0
$$

are calculated. Here the subscript j refers to the hub profile element number and i refers to the suspension element whose wheels generate it. Since hub profile elements are always either points, lines, or arcs, $B_{i j}=0$ and $A_{i j}=C_{i j}=1$ for arcs whereas $A_{i j}=B_{i j}=$ $C_{i j}=0$ for lines and points.

Finally, OBGEOM calculates STEP, the distance the first unit CG will be moved from position to position across the obstacle. For this version of the Obstacle Module, STEP is constant for a vehicle/obstacle combination and is set to 49% of the shortest hub profile element length or 1 inch, whichever is greater.

E. Initial Values and Position

When the vehicle and obstacle have been completely defined, the initial position of the vehicle on the approach slope is calculated. Also, initial values for the solutions of the force balance equations are set. These variables (the solution variables for the force balance equations) are defined as

$$
\begin{aligned}
& \operatorname{XN}(1)=\text { overall traction coefficient } \\
& \text { XN(2) }=\text { normal force on first suspension element } \\
& \text { XN(3) }=\text { normal force on second suspension element } \\
& \text { XN(4) }=\text { normal force on third suspension element } \\
& \text { XN(5) }=\text { horizontal hitch force applied to vehicle } \\
& \text { XN }(6)=\text { vertical hitch force applied to vehicle }
\end{aligned}
$$

For initialization, $X N(1)=$ RTOW(1), the resistance over weight coefficient of the first suspension element (an input number); XN(2), XN(3), and XN(4) are set to the normal load on those suspension elements when the vehicle is at rest on level ground; $X N(5)=F_{h x^{\prime}}=$ 0 , and $X N(6)=F_{\text {hz'o }}$ the initial hitch load when the trailer is at
rest on level ground.

To position the vehicle, the following calculations are performed:
a) the first wheel is positioned $1 / 10$ inches before its second hub profile breakpoint

$$
\begin{aligned}
& x_{\mathrm{w} 11}^{\prime}=\mathrm{x}_{\mathrm{h} 12}^{\prime}-.1 \cos \left(\theta_{\mathrm{S}}^{\prime}\right) \\
& \mathrm{z}_{\mathrm{w} 11}^{\prime}=\mathrm{z}_{\mathrm{h}}^{\prime} 12-.1 \sin \left(\theta_{\mathrm{S}}^{\prime}\right)
\end{aligned}
$$

b) for a single wheel first suspension element the bogie center is set equal to the first wheel center

$$
\begin{aligned}
& x_{B C 1}^{\prime}=x_{\mathrm{W} 11}^{\prime} \\
& z_{B C 1}^{\prime}=z_{\mathrm{W} 11}^{\prime}
\end{aligned}
$$

for a bogie first suspension element, the second wheel is located one bogie width behind the first and the bogie center is set between the two wheels

$$
\begin{aligned}
& x_{\mathrm{w} 12}^{\prime}=\mathrm{x}_{\mathrm{w} 11}^{\prime}-\mathrm{b}_{1} \cos \left(\theta_{\mathrm{s}}^{\prime}\right) \\
& \mathrm{z}_{\mathrm{w} 12}^{\prime}=\mathrm{z}_{\mathrm{w} 11}^{\prime}-\mathrm{b}_{1} \sin \left(\theta_{\mathrm{s}}^{\prime}\right) \\
& \mathrm{x}_{\mathrm{BC} 1}^{\prime}=\left(\mathrm{x}_{\mathrm{w} 11}^{\prime}+\mathrm{x}_{\mathrm{w} 12}^{\prime}\right) / 2 \\
& \mathrm{z}_{\mathrm{BC} 1}^{\prime}=\left(\mathrm{z}_{\mathrm{w} 11}^{\prime}+\mathrm{x}_{\mathrm{w} 12}^{\prime}\right) / 2
\end{aligned}
$$

$$
\beta_{1}=\arctan \left(\left(z_{\mathrm{w} 11}^{\prime}-z_{\mathrm{w}}^{\prime} 12\right) /\left(\mathrm{x}_{\mathrm{w} 11}^{\prime}-\mathrm{x}_{\mathrm{w} 12}^{\prime}\right)\right)
$$

c) the vehicle pitch angle is set parallel to the approach slope angle

$$
\theta_{1}^{\prime}=\arctan \left(D_{11} /-E_{11}\right)
$$

the vehicle CG location is determined

$$
\begin{aligned}
& x_{C G 1}^{\prime}=x_{B C 1}^{\prime}-r_{B C 1} \cos \left(\theta_{B C 1}+\theta_{1}^{\prime}\right) \\
& z_{C G 1}^{\prime}=z_{B C 1}^{\prime}-r_{B C 1} \sin \left(\theta_{B C 1}+\theta_{1}^{\prime}\right)
\end{aligned}
$$

and the location of the second suspension bogie center is calculated

$$
\begin{aligned}
& x_{B C 2}^{\prime}=x_{C G 1}^{\prime}+r_{B C 2} \cos \left(\theta_{B C 2}+\theta_{1}^{\prime}\right) \\
& z_{B C 2}^{\prime}=z_{C G 1}^{\prime}+r_{B C 2} \sin \left(\theta_{B C 2}+\theta_{1}^{\prime}\right)
\end{aligned}
$$

d) for a single wheel second suspension, the location of the wheel center is set equal to the location of the bogie center

$$
\begin{aligned}
& x_{\mathrm{w} 21}^{\prime}=x_{\mathrm{BC} 2}^{\prime} \\
& z_{\mathrm{w} 21}^{\prime}=\mathrm{z}_{\mathrm{BC} 2}^{\prime}
\end{aligned}
$$

for a bogie second suspension element, the bogie angle is assumed equal to the pitch angle of the vehicle and the two wheel centers are located by

$$
\begin{aligned}
& \mathrm{x}_{\mathrm{W} 21}^{\prime}=\mathrm{x}_{\mathrm{BC} 2}^{\prime}+\left(\mathrm{b}_{2} / 2\right) \cos \left(\theta_{1}^{\prime}\right) \\
& \mathrm{z}_{\mathrm{W} 21}^{\prime}=\mathrm{z}_{\mathrm{BC} 2}^{\prime}+\left(\mathrm{b}_{2} / 2\right) \sin \left(\theta_{1}^{\prime}\right) \\
& \mathrm{x}_{\mathrm{W} 22}^{\prime}=\mathrm{x}_{\mathrm{BC} 2}^{\prime}-\left(\mathrm{b}_{2} / 2\right) \cos \left(\theta_{1}^{\prime}\right) \\
& \mathrm{z}_{\mathrm{W} 22}^{\prime}=\mathrm{z}_{\mathrm{BC} 2}^{\prime}-\left(\mathrm{b}_{2} / 2\right) \sin \left(\theta_{1}^{\prime}\right)
\end{aligned}
$$

e) the hitch is then located by

$$
\begin{aligned}
& x_{h}^{\prime}=x_{C G 1}^{\prime}+R_{h 1} \cos \left(\theta_{o h 1}+\theta_{1}^{\prime}\right) \\
& z_{h}^{\prime}=z_{C G 1}^{\prime}+R_{h 1} \sin \left(\theta_{o h 1}+\theta_{1}^{\prime}\right)
\end{aligned}
$$

For the simulation of tracked vehicles there is included, as suspension elements 4 and 5 , the front and rear spridlers, respectively. In simulating a tracked vehicle, front spridler/obstacle interference is checked after step c) above. If interference is found, the vehicle is moved away from the obstacle along the approach slope until no interference is found. Thus the front spridler is located by

$$
\begin{aligned}
& x_{S}^{\prime}=x_{C G 1}^{\prime}+r_{B C 4} \cos \left(\theta_{B C 4}+\theta_{1}^{\prime}\right) \\
& z_{S}^{\prime}=z_{C G 1}^{\prime}+r_{B C 4} \sin \left(\theta_{B C 4}+\theta_{1}^{\prime}\right)
\end{aligned}
$$

These two coordinates are passed to subroutine WHEEL3 to calculate how far above or below the front spridler hub profile the point $\left(x_{S}^{\prime}, z_{S}^{\prime}\right)$ is located.

If the result of WHEEL3 is negative the spridler is below its hub profile which indicates interference. The vehicle is moved backwards on the obstacle approach slope to the point where hub profile element 3 intersects hub profile element 1 of the front spridler. The slope of hub profile element 3 is given by

$$
\left(z_{04}^{\prime}-z_{02}^{\prime}\right) /\left(x_{04}^{\prime}-x_{02}^{\prime}\right)=s_{2}
$$

The slope of the front spridler hub profile element 1 is given by $s_{1}=\tan \theta_{s}^{\prime}$. The coordinates of the point to which the front spridler center must be moved in order to just touch the obstacle is given by the solution of the following two equations

$$
\begin{aligned}
& \left(z-z_{s}^{\prime}\right) /\left(x-x_{s}^{\prime}\right)=s_{1} \\
& \left(z-z_{h 42}^{\prime}\right) /\left(x-x_{h 42}^{\prime}\right)=s_{2}
\end{aligned}
$$

The distance the vehicle has to be moved back to just clear the obstacle is

$$
R=\left[\left(x_{s}^{\prime}-x\right)^{2}+\left(z_{s}^{\prime}-z\right)^{2}\right]^{1 / 2}
$$

The new value of the initial coordinates of the first wheel

```
are replaced by (x'w11 -Rcos的, z'w11 - Rsin}\mp@subsup{0}{S}{\prime})
```

The calculations from b) on are then repeated.
f) once all the values describing the vehicle's initial position have been calculated, the trailer (if there is one) is located. Given the location of the hitch ($x_{h}^{\prime}, z_{h}^{\prime}$) and the length, $r_{B C}$, of the radius vector from the hitch to the trailer suspension support point, the subroutine WHEEL2 locates the trailer suspension support point $\left(x_{B C 3}^{\prime}, z_{B C 3}^{\prime}\right)$ on the hub profile of the trailer wheels. For single wheel trailer suspension, the wheel center is set to the suspension support point

$$
\begin{aligned}
& x_{\mathrm{w} 13}^{\prime}=x_{\mathrm{BC}}^{\prime} \\
& z_{\mathrm{w} 13}^{\prime}=z_{B C 3}^{\prime}
\end{aligned}
$$

For trailer with bogie suspension, the wheels are located half a bogie arm before and behind the support point by

$$
\begin{aligned}
& x_{\mathrm{w} 13}^{\prime}=x_{B C}^{\prime}+\left(b_{3} / 2\right) \cos \left(\theta_{2}^{\prime}\right) \\
& z_{\mathrm{w} 13}^{\prime}=z_{B C}^{\prime}+\left(b_{3} / 2\right) \sin \left(\theta_{2}^{\prime}\right)
\end{aligned}
$$

$$
\begin{aligned}
& x_{\mathrm{w} 23}^{\prime}=x_{B C 3}^{\prime}-\left(b_{3} / 2\right) \cos \left(\theta_{2}^{\prime}\right) \\
& z_{\mathrm{w} 23}^{\prime}=x_{B C 3}^{\prime}-\left(b_{3} / 2\right) \sin \left(\theta_{2}^{\prime}\right) \\
& \text { where } \theta_{2}^{\prime}=\theta_{1}^{\prime} .
\end{aligned}
$$

g) The trailer CG is located by

$$
\begin{aligned}
& x_{C G 2}^{\prime}=x_{h}^{\prime}+R_{h 2} \cos \left(\theta_{o h 2}+\theta_{2}^{\prime}\right) \\
& z_{C G 2}^{\prime}=z_{h}^{\prime}+R_{h 2} \sin \left(\theta_{\text {oh 2 }}+\theta_{2}^{\prime}\right)
\end{aligned}
$$

h) and the angle under the wheels is set to the approach slope

$$
\alpha_{i j}=\theta_{S}^{\prime} \quad \text { for wheel } j \text { of suspension element } i
$$

F. Vehicle Movement Loop

This portion of the program calculates the clearance or interference between the bottom frame of the vehicle/trailer and the obstacle; calculates the forces between the wheels and the surface of the approach slope/obstacle/departure slope required to maintain the vehicle at the given position; and then moves the vehicle to a new position on the approach slope/obstacle/departure slope such that the distance of the CG at the new position from the CG at the previous position is equal to STEP. The program then returns to the clearance/interference calculations.

The movement loop is organized around three major subroutines CLEAR, FORCES, and MOVEB. An exit is made from the loop when the front wheel clears the departure slope.

1. Subroutine CLEAR

The relationship between the bottom frame of the vehicle and/or trailer and the obstacle profile can be illustrated by Figure II.F.1. Here the location of the obstacle profile breakpoints are given by ($x_{o i}^{\prime}, z_{o i}^{\prime}$) while that of the vehicle frame breakpoints are given by ($x_{v k n}^{\prime}, z_{v k n}^{\prime}$). The minimum and maximum clearance/interference between frame and surface will be found directly under a vehicle frame breakpoint or directly above an obstacle breakpoint. This is a consequence of approximating both the frame profile and the obstacle profile by straight line

FIGURE II.F.1 -- Relation of Bottom Profile of Vehicle to Obstacle Profile
segments.

The subroutine first calculates the ($x_{v k i}^{\prime}, z_{v k i}^{\prime}$)
for the current position and attitude by

$$
\begin{aligned}
& x_{v i}^{\prime}=x_{h}^{\prime}+r_{c k i} \cos \left(\theta_{k}^{\prime}+\alpha_{c k i}\right) \\
& z_{v i}^{\prime}=z_{h}^{\prime}+r_{c k i} \sin \left(\theta_{k}^{\prime}+\alpha_{c k i}\right)
\end{aligned}
$$

where $k=1,2$ is the vehicle unit number and $i=1, \ldots, N$ designates the points on the frame profile of unit k. The routine then simply cycles through the obstacle breakpoints to determine if any part of the vehicle is above each point and calculates the clearance by linearly interpolating between the appropriate vehicle breakpoints. Similarly, for each frame profile breakpoints, the obstacle flank under the point is found and the clearance calculated. The minimum clearance/maximum interference is then found for the current position of the vehicle and an index is set pointing to that point which gave
rise to the minimum clearance/maximum interference.

The determination of the overall minimum clearance or maximum interference for all positions of the vehicle across the obstacle is done with the code directly following the call to CLEAR in the main program.

2. Subroutine FORCES

This subroutine is used to estimate the tractive forces needed to overcome obstacles. This is done by evaluating the tangential tractive forces at the wheel/ground interface required to maintain the vehicle at the current position on the obstacle. Subroutine FORCES makes use of the equation solving subroutine EQSOL and subroutines NFORCE and CALFUN. The tractive force evaluation is performed for any combination of single wheel suspensions and bogie suspensions supported on both wheels or on one wheel.

To simplify and speed-up calculations eight assumptions were made:

1. Tires and suspensions are rigid.
2. Bogie beams can rotate about the pivot, but do not deflect.
3. Bogie beams take only normal forces, the tangential forces and torque are transmitted to the frame by parallel bars (A schematic version of such a bogie suspension is shown in Figure II.F.2).
4. The bogie pivot is in the middle of the line connecting the wheel centers.
5. Wheel radius is the same for all wheels on a bogie suspension
6. Each wheel can be powered, towed or braked as specified by the input data.
7. No provision is made to power some and brake other wheels at the same time.
8. Coefficients of power or brake forces can be specified by the ratios (POWERR, BRAKER) in the input data to allow for different soil conditions under each wheel.

FIGURE II.F. 2 -- Schematic of Bogie Suspension

Based on the above, it is assumed that normal forces to the bogie beam are equal for both wheels of the same bogie support. The resulting system with any two suspension supports on the main unit and another on the trailer is statically determinant. The bogie assembly transmits force to the frame only at the bogie pivot point.

This routine uses the vehicle fixed-ground parallel coordinates ${ }_{x} \mathrm{~F}, z^{F}$. Linear dimensions are measured from the hitch point parallel to the ground fixed coordinates x^{F} and z^{F} directions. The hitch point is the origin of the x, z^{F} coordinate systems, where the x^{F} axis is always horizontal and the z^{F} axis is vertical. Dimensions forward of the hitch are positive. Dimensions in the z^{F}-direction above the hitch are positive, below the hitch are negative. In the remainder of the description of Subroutine FORCES the superscript F will be omitted.

Based on previously made assumptions, the bogie can be treated as a single statically determined support point. In this case even the main unit with two bogie supports is statically determined. The sum of the forces (ground reactions, hitch forces and weight) must be zero in the x and z directions, and the moments produced by those forces about any given point also have to be equal to zero. For convenience the point about which the moments are summed is the hitch. The hitch is a common point for both units (main and trailer). For clarity, forces are always shifted to the wheel center and rotated to be parallel to the $x-z$ coordinates. Forces at the hitch point are also resolved in the x and z direction (the hitch does not transmit a moment).

As input to this routine the main program and subroutine MOVEB supply the position of all wheels, bogie centers, bogie beam angles, bogie beam lengths, wheel radii, surface slope angles under the wheels, center of gravity locations and weights. Also entered are initial estimates for

$$
\begin{aligned}
\mathrm{XN}(1)= & \text { overall coefficient of tractive force across all } \\
& \text { wheels, } \\
\mathrm{XN}(2)= & \text { normal force under the first wheel of the first } \\
& \text { suspension support, }\left(\mathrm{F}_{\mathrm{N} 11}\right) \\
\mathrm{XN}(3)= & \text { normal force under the first wheel of the second } \\
& \text { suspension support, }\left(\mathrm{F}_{21}\right) \\
\mathrm{XN}(4)= & \text { normal force under the first wheel of the third } \\
& \text { suspension support (if it exists), }\left(\mathrm{F}_{\mathrm{N} 31}\right) \\
\mathrm{XN}(5)= & \text { horizontal force on the hitch of the trailer } \\
& \text { (FHITCHX) and } \\
\mathrm{XN}(6)= & \text { vertical force on the hitch of the trailer }\left(F_{\mathrm{HITCHz}}\right) .
\end{aligned}
$$

N.B.: The last three terms are included only in the case of a vehicle with a trailer.

Subroutine FORCES uses these values as initial values in an iteration, controlled by EQSOL, which will yield new values for XN(1) through $\mathrm{XN}(6)$ that result in the vehicle resting on the obstacle in a force and moment equilibrium state. These iterations depend on calculations performed by two subroutines, NFORCE and CALFUN, which essentially evaluate unbalanced forces and moments caused by non-equilibrium values of $X N$. The separation of the calculation into two subroutines is a matter of programming convenience. The description of the equations below does not distinguish in which subroutines the calculations are made.
a) Coefficient of Tractive Force

For wheel j of suspension support i :

$$
C_{T F i j}=X N(1) * \operatorname{POWERR}_{i j} * I P_{i j} \quad \text { for } X N(1) \geq 0
$$

or

$$
\mathrm{C}_{\mathrm{TFi} j}=\mathrm{XN}(1) * \operatorname{BRAKER}_{i j} * I B_{i j} \quad \text { for } \mathrm{XN}(1)<0
$$

where

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{TFij}}= \text { coefficient of tractive force } \\
& \text { POWERR }_{i j}= \text { Coefficients for distribution of tractive force } \\
& \text { among axles. The ratios of these coefficients } \\
& \text { in pairs define the force distributions. } \\
& \text { BRAKER }_{i j}= \text { Coefficients for distribution of braking force } \\
& \text { among axles. The ratios of these coefficients in } \\
& \text { pairs define the braking force distribution. } \\
& \begin{aligned}
I P_{i j}= & 1,
\end{aligned} \\
&=0, \text { if wheel can be powered } \\
& I B_{i j}= 1,
\end{aligned}
$$

Note: At any position on the obstacle, a combination of some wheels powered while others are braked is not modeled.
b) Force Relations for Single Wheel Support

Given normal force, tractive force, rolling force, wheel rolling radius and slope under wheel, the forces and the moment at the wheel center indicated in Fig.II.B. 20 are calculated as follows:

FIGURE II.F.3 -- Forces on a Single Wheel

$$
\begin{aligned}
& F_{x i}=F_{N i j} *\left(C_{T R i j} *_{\cos }\left(\alpha_{i j}\right)-\sin \left(\alpha_{i j}\right)\right) \\
& F_{z i}=F_{N i j} *\left(\cos \left(\alpha_{i j}\right)+C_{T R i j} * \sin \left(\alpha_{i j}\right)\right) \\
& M_{i}=C_{T F i j} * F_{N i j} * r_{i j}
\end{aligned}
$$

where $j=1$ and i designates the suspension support

$$
\begin{aligned}
& C_{\text {TRio }} \text { - Coefficient of rolling and tractive forces defined } \\
& \text { as: } \quad C_{\text {TRio }}=C_{T F i j}-C_{R R i j} \\
& \mathrm{~F}_{\mathrm{TRi}} \text { - Sum of rolling resistance and tractive force } \\
& \mathrm{F}_{\mathrm{TRi}}=\mathrm{F}_{\mathrm{Ni} j}{ }^{*} \mathrm{C}_{\mathrm{TRi} j} \\
& C_{\text {RRij }} \text { Coefficient of rolling resistance } \\
& \alpha_{i j}-\text { Slope angle under wheel } \\
& F_{\text {Nj }} \text { - Force under wheel normal to slope } \\
& \mathrm{F}_{\mathrm{xi}} \text { - Force at wheel center in } \mathrm{x} \text {-direction }
\end{aligned}
$$

F_{zi} - Force at wheel center in z-direction
M_{i} - Moment reaction reduced to wheel center. The moment reaction is due to the tractive force shift. The rolling force is shifted to the wheel center without a moment component.
$r_{i j}$ - Wheel rolling radius
Note: For a single wheel, the above quantities are given for $j=1$. The corresponding quantities for $j=2$ are not used.
c) Force Relations for Bogie Support

As described below in section II.F.3, subroutine MOVEB, the vehicle may be located either with both wheels of a bogie assembly on the ground or with only one of the pair on the ground when the bogie angular motion limit is reached. The force relations are described separately for these two cases.
(1) Both wheels of the bogie support on the ground:

Assuming that the normal force, tractive force coefficient, rolling resistance coefficient and all needed geometry are known, the normal and the tangential forces acting on the bogie beam at wheel center are described as follows (see Fig.II.F.4):

FIGURE 11.F. 4 -- Forces on Bogie Suspension When Both Wheels Contact the Surface

The angle (interface friction angle) that the resultant force vector under the wheel makes with the normal to the under-wheel-slope is:

$$
\gamma_{i j}=\arctan \left(C_{T F i j}-C_{R R i j}\right) .
$$

The magnitude of the force vector at the center of the front wheel on the bogie is:

$$
F_{i 1}=F_{N i 1} / \cos \left(\gamma_{i 1}\right)
$$

The normal force to the bogie beam is:

$$
\mathrm{F}_{\mathrm{NBi}}=\mathrm{F}_{\mathrm{i} 1}{ }^{*} \cos \left(\delta_{i 1}\right)
$$

where:

$$
\begin{aligned}
& \delta_{i j}=\gamma_{i j}+\beta_{i}^{\prime}-\alpha i j \\
& \beta_{i}^{\prime}=\text { angle of bogie beam with horizontal } \\
& \alpha_{i j}=\text { under-wheel-slope. }
\end{aligned}
$$

The tangential force on the bogie beam due to the first wheel is:

$$
\mathrm{F}_{\mathrm{TBi} 1}=\mathrm{F}_{\mathrm{i} 1} * \sin \left({ }^{\delta}{ }_{\mathrm{i} 1}\right) .
$$

The equations for the normal force and the tangential force to the bogie beam due to the second wheel are calculated next, based on the previously made assumptions that the normal force to the bogie beam is equal for both wheels.

Force $\mathrm{F}_{\mathrm{i} 2}$ at the second wheel center is:

$$
F_{i 2}=F_{N B i} / \cos \left(\delta_{i 2}\right) .
$$

The tangential force for the second wheel is:

$$
\mathrm{F}_{\mathrm{TBi} 2}=\mathrm{F}_{\mathrm{i} 2}{ }^{*} \sin \left(\delta_{i 2}\right)
$$

The evaluated normal and tangential forces and moment on the bogie beam are shifted to the bogie pivot center and rotated to the vehicle fixed-ground parallel coordinates.

Forces at the pivot center are:

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{TBi}}=\mathrm{F}_{\mathrm{TBi} 1}+\mathrm{F}_{\mathrm{TBi} 2} \\
& \mathrm{~F}_{\mathrm{xi}}=-2 \mathrm{~F}_{\mathrm{NBi}} * \sin \left(\beta_{i}^{\prime}\right)+\mathrm{F}_{\mathrm{TBi}} * \cos \left(\beta_{i}^{\prime}\right) \\
& \mathrm{F}_{\mathrm{zi}}=2 \mathrm{~F}_{\mathrm{NBi}} * \cos \left(\beta_{i}^{\prime}\right)+\mathrm{F}_{\mathrm{TBi}} * \sin \left(\beta_{i}^{\prime}\right) .
\end{aligned}
$$

Moment at pivot center is:

$$
M_{i}=C_{T F i 1}{ }^{* F_{N i} 1}{ }^{* r_{i} 1}+\mathrm{C}_{\mathrm{TF} i 2} * \mathrm{~F}_{\mathrm{Ni} 2}{ }^{* \mathrm{r}_{\mathrm{i} 2}}
$$

where

$$
\begin{aligned}
& r_{i j}=\text { rolling radius of wheel } j \text { on suspension support } i . \\
& F_{x i}, F_{z i}=\text { forces at bogie pivot center } \\
& M_{i} \quad=\text { moment reaction reduced to bogie pivot center }
\end{aligned}
$$

Note: The same rolling radius is used for all wheels on a
(2) Only one wheel of the bogie support on the ground:

Forces at the wheel center are evaluated as before for two wheel bogie support. The wheel in contact is designated by j. In the program this is indicated by the variables SFLAG and NW. The final force and moment equations reduced to the pivot center are:

$$
\begin{aligned}
& F_{x i}=-F_{N B i} * \sin \left(\beta_{i}^{\prime}\right)+F_{T B i j} * \cos \left(\beta_{i}^{\prime}\right) \\
& F_{z i}=F_{N B i} * \cos \left(\beta_{i}^{\prime}\right)+F_{T B i j} * \sin \left(\beta_{i}^{\prime}\right) \\
& M_{i}=C_{T F i j} * F_{N i j} *_{i j} \pm F N B i * b_{i} / 2
\end{aligned}
$$

where:

+ if front wheel of bogie assembly is on the ground ($j=1$)
- if rear wheel of bogie assembly is on the ground ($j=2$)
$b_{i}=$ bogie arm length

Tractive force, rolling resistance force and reaction moments are calculated as follows:

$$
\begin{array}{ll}
F_{T i j}=F_{N i j} * C_{T F i j} & \text { Tractive force } \\
F_{R i j}=F_{N i j} * C_{R R i j} & \text { Rolling resistance force } \\
M_{i j}=F_{T i j} * r_{i j} & \text { Reaction moment, due only to the } \\
& \text { tractive force }
\end{array}
$$

where:

$$
F_{N i j}=\text { Normal force under the wheel }
$$

The above quantities are used for information only, they are not needed by the rest of the program.
d) Force and Moment Summation for Entire Vehicle

Sum of the forces in x-direction for main unit

$$
F_{M x}=F_{x 1}+F_{x 2}+F_{M C G x}-F_{h x}
$$

Sum of the forces in z-direction for main unit

$$
F_{M z}=F_{z 1}+F_{z 2}+F_{M C G z}-F_{h z}
$$

Sum of the moments around hitch point for main unit

$$
\begin{aligned}
M_{M}= & \left(M_{1}+F_{x 1} *^{*} z_{1}+F_{z_{1}} *_{x_{1}}\right)+\left(M_{2}+F_{x 2}{ }^{*} z_{2}+F_{z 2} *_{2}\right) \\
& -F_{M C G x}{ }^{*} z_{C G M}+F_{M C G z}{ }^{*} x_{C G M}
\end{aligned}
$$

where:

$$
\begin{aligned}
& \text { (subscripts: M-for main unit, } T \text { - for trailer) } \\
& F_{M C G X}, F_{M C G z}=\text { Forces at center of gravity in x-direction } \\
& \text { and } z \text {-direction respectively (} \mathrm{F}_{\mathrm{MCG}}=0 \text {) } \\
& F_{h x}, F_{h z}=\text { Force at trailer hitch point (negative } \\
& \text { sign for main unit, for single unit, } \\
& \text { both are equal to zero) } \\
& x_{\text {CGM }}, z_{C G M}=x \text { and } z \text { location of center of gravity with } \\
& \text { reference to the hitch point (vehicle fixed- } \\
& \text { ground parallel coordinates) }
\end{aligned}
$$

The additional three equations for the main unit with a trailer are:
Sum of the forces in x-direction, for trailer only

$$
\mathrm{F}_{\mathrm{Tx}}=\mathrm{F}_{\mathrm{x} 3}+\mathrm{F}_{\mathrm{TCGX}}+\mathrm{F}_{\mathrm{hx}}
$$

Sum of the forces in z-direction, for trailer only

$$
\mathrm{F}_{\mathrm{Tz}}=\mathrm{F}_{\mathrm{z} 3}+\mathrm{F}_{\mathrm{TCGz}}+\mathrm{F}_{\mathrm{hz}}
$$

Sum of the moment around hitch point, for trailer only

$$
M_{T}=M_{i}-F_{x 3}{ }^{*} z_{3}+F_{z 3}{ }^{*} x_{3}-F_{T C G x}{ }^{*} z_{C G T}+F_{T C G z}{ }^{*} \mathrm{x}_{\mathrm{CGT}}
$$

where $F_{T C G X}$, $F_{T C G z}$ are the forces at the center of gravity of the trailer in the x and z directions respectively.

These six unbalanced forces and moments $F_{M x}, F_{M z}, M_{M}$, $\mathrm{F}_{\mathrm{Tx}}, \mathrm{F}_{\mathrm{Tz}}$ and M_{T} are all driven to zero by adjustments to $\mathrm{XN}(1)$, $F_{N 11}, F_{N 21}, F_{N 31}, F_{h x}, F_{h z}$ (the XN array) using the iterative procedure of subroutine EQSOL described in Powell (1970).
3. Subroutine MOVEB

This subroutine advances the vehicle to a new position on the obstacle profile and calculates the coordinates of the wheels, CG's, hitch, trailer, the vehicle pitch angle and the angle under the wheels, all at the new position and attitude.

MOVEB makes use of the equation solving routine EQSOL, also used by FORCES, to calculate the position of the prime mover (the vehicle) such that all the wheels are on their hub profiles (unless they are elevated above the hub profile by restrictions on the angular movement of the bogie arm with respect to the frame) in such a way that the new position of the $C G$ is a distance of STEP away from the prior position. The value of STEP was calculated and set in subrcutine OBGEOM. The independent variables of these equations are $x_{C G}^{\prime}, z_{C G}^{\prime}$ and θ_{j} for single wheeled vehicle suspension elements and for those positions which yield all bogie arm positions at their limits. If the suspension elements are bogies and
their equilibrium position is between their angular limits, then one or two additional independent variables are β_{1} and/or β_{2}, the angle the bogie arm makes with respect to the vehicle x-axis.

Initial estimates for these three, four, or five quantities are supplied to EQSOL; the equilibrium values of these variables are returned by EQSOL such that

$$
\left[\left(x_{\mathrm{CG} 1}^{\prime}+x_{\operatorname{PCG} 1}^{\prime}\right)^{2}+\left(z_{\mathrm{CG} 1}^{\prime}+z_{\mathrm{PCG} 1}^{\prime}\right)^{2}\right] 1 / 2=\mathrm{STEP}
$$

and the vertical distance of each wheel to its hub profile is zero, all within an overall tolerance of about one inch or less.

With a bogie suspension element, three possible states of support exist:
(1) on the front wheel at its upper (toward the vehicle) limit

(2) on both wheels, or

(3) on the rear wheel at its upper limit.

$$
N W(i)=2
$$

FIGURE II.F.5 -- Possible States of Support of Bogie Suspension Element
(4) In addition, for tracked vehicles, support by a spider could be substituted for an entire suspension element.

FIGURE II.F.6 -- Spridler Interference for Tracked Vehicles

If the rear spider is supporting the vehicle, then $N W(2)=3$. (In case (4), the "wheels" of the tracked vehicle that are used to model the track are much larger than pictured. The small wheels are shown for illustrative purposes only.)

Upon entry to MOVEB, the program assumes case (2) for all suspensions which are modeled with a bogie. ($r_{\mathrm{BCi}}, \theta_{\mathrm{BCi}}$ and β_{i} are passed to EQSOL to locate the supports.) This may result in up to five (NEQL $=5$) independent variables and equations used to locate the vehicle. Upon return from EQSOL, the following values represent the location and attitude of the vehicle $\mathrm{x}_{\mathrm{CG}}^{\mathrm{C}}$,
$z_{C G 1}^{\prime}, \theta_{1}^{\prime}$ and β_{1} and/or β_{2}. These returned values of
β_{1} and/or β_{2} are checked to be within their limits: $\beta_{\text {di }} \leq \beta_{i}$ $\leq \beta u i, i=1$ and/or 2. If no violations to these inequalities occur; the position and attitude of the prime mover is considered final and the routine proceeds to calculate the position of the trailer, if there is one.

If, for example, $\beta_{i} \geq \beta_{\text {ui }}$ or $\beta_{i} \leq \beta_{d i}$, a new entry is made to EQSOL, then the bogie of suspension i is replaced by a single wheel support with $r_{B C i}, \theta_{B C i}, \beta_{i}$ replaced by $R_{L i 1}$,
 exceeded. The number of independent location variables and equations is now reduced by one.

This procedure is repeated until no bogie angles exceed their limits or all bogies have been, temporarily, replaced by single wheel supports.

In case a tracked vehicle is being modeled, the location of both spridlers is now calculated. If either one is below their hub profile, EQSOL is called again with the front support replaced by one located at $r_{B C 4},{ }^{\theta}{ }_{B C 4}$ and/or the back support replaced by one at $r_{B C 5},{ }^{\theta_{B C 5}}$. Degrees of freedom may be reduced if, as shown in Figure II.F.6, the vehicle is being supported by a spridler rather than a bogie.

Once the vehicle location and attitude are returned from EQSOL all wheel and suspension support positions are calculated. This
calculation, and the same ones performed during the equation solving done by EQSOL, are performed by a subroutine called ELEVAT. Given some set of $x_{C G 1}^{\prime}, z_{C G 1}^{\prime}, \theta_{1}^{\prime}, \beta_{1}, \beta_{2}, f l a g s$ indicating on what suspension elements the vehicle is being supported, and the length and direction of radius vectors from the CG to those vehicle support points, ELEVAT calculates $x_{\text {Wij }}^{\prime}, z_{\text {Wij }}^{\prime}, x_{B}^{\prime} C i, z_{B}^{\prime} C i$ and $\operatorname{ELEV}(i)$, the vertica: distance between wheel center i and its hub profile for all suspension elements on the prime mover.

When the above calculations and adjustments result in a position and attitude of the prime mover which does not violate any constraints and which has advanced the vehicle CG a distance of STEP across the obstacle, all the surface angles under the wheel in contact with the ground are calculated. This is done by a subroutine called WHEEL1. The hitch location is then calculated.

If a single wheel trailer is present, subroutine WHEEL2 is used to locate the trailer wheel on its hub profile maintaining the length of the radius vector, $r_{B C 3}$, from the hitch to the trailer wheel center. The pitch angle of the trailer and the location of its CG are then calculated and a RETURN is made from MOVEB.

If a trailer is being modeled and it is fitted with a bogie suspension the trailer is first positioned on the obstacle with the front wheel at its upper most position ($\beta_{3}=\beta_{u}$) using subroutine WHEEL2 with $\mathrm{R}_{\mathrm{L} 31}$ and $\mathrm{T}_{\mathrm{L} 31}$. If the second wheel is
above its hub profile, it is concluded that this is the proper position for the trailer, its bogie center, pitch angle, and CG location are calculated and MOVEB exits.

If the second wheel is below its hub profile, the trailer is positioned on the obstacle with the rear wheel of the bogie at its upper most position ($\beta_{3}=\beta_{d 3}$) using subroutine WHEEL2 with $\mathrm{R}_{\mathrm{L} 32}$ and $\mathrm{T}_{\mathrm{L} 32}$. If the first wheel is now above the hub profile, it is concluded that this is the proper position for the trailer, its bogie center, pitch angle, and $C G$ position are calculated, and MOVEB exits.

If the first wheel is below its hub profile, it is concluded that the proper position of the trailer is such that both wheels of the bogie are in contact with the ground. A search for β_{3} in the interval $\left[\beta_{d 3}, \beta_{\text {u3 }}\right]$ is conducted until both wheels centers are on their hub profile to within $1 / 10$ of an inch. It is concluded that this is the proper attitude of the bogie whereupon the location of the bogie center is calculated and thus the pitch angle and CG location of the trailer are determined. MOVEB then exits.

III INPUTS AND OUTPUTS

A. Vehicle Data

The data required to describe a vehicle for the Obstacle Module, OBS78B, is listed below together with the file formats required.

Most of the descriptions are self-explanatory. One should note that the equilibrium load and center of gravity location (lines 12,13) should be those of the empty vehicle. The weight and location of the payload are entered separately (line 14,15). The payload weight may be zero.

The data used to describe a tracked vehicle requires special attention. In OBS78B, the track is replaced by eight wheels, two bogie pairs on each side, as discussed in section II.A.1. In order to obtain the kind of path of motion expected at the CG, these wheels are quite large. In fact, the effective radius is the distance between the two support points if the vehicle has a girderized track and half this distance if the track is flexible. These wheels are placed on two bogie suspensions whose horizontal locations, bogie arm width and limits of angular motion are those specified in the input data file (lines 8-11). We have found that if the suspensions are too far apart the resulting enormous wheels can contact the obstacle far fore andor aft of the vehicle resulting in false clearance information. In particular, the contact of the sprocket or idler (spridler) is not
modeled in this case. If the suspensions are too close, the vehicle motion is not properly modeled. For the M60A1, placing these suspension supports over the second and next to last road wheels with the bogie arm width equal to the road wheel spacing seems to give reasonable results. To model the relative freedom of vertical motion of the first and last road wheels, the limits of angular motion are different in the clockwise and counter clockwise directions. For the M60A1, we allow the outer wheels about four times the motion toward the body of the vehicle allowed for the inner wheels.

The input file description forms Table III.A.1. The variable names are those in the program. The coordinate system for the input data is shown schematically in Fig III.A.1. An explanation of all the coordinate systems used in the Obstacle Module may be found in Section II.B, above. Sample vehicle input data files for wheeled and tracked vehicles are contained in Appendix B.

TABLE III.A. 1
Vehicle Input File Format-0BS78B

Line No.

10

Variable
Name

FORMAT Description

A5 This line contains alphanumeric

ELL(I) $I=1, N S U S P$

BWIDTH(I) $I=1$, NSUSP

A5
A5

I2
I2
I2
I2

REFHT 1
HTCHFZ

SFLAG (I) $\mathrm{I}=1$, NSUSP

IP (I, J)
$\mathrm{J}=1,2$
$\mathrm{I}=1$, NSUSP
IB (I, J)
$J=1,2$
$I=1$, NSUSP
FFRAD(I)
$I=1$, NSUSP

BALMU(I) $I=1$, NSUSP

F7. 2 Height of hitch above the ground when empty vehicle is at rest (in.)
F7. 2 Vertical force on hitch of trailer at rest (tongue weight) (lb.)

1012 Suspension type at support I: 0 -independent single wheel 1-bogie

1012 Power indicator for wheel J of support I: 0-unpowered 1-powered

1012 Brake indicator for wheel J of support I: 0-unbraked 1-braked

10F7.2 Effective (loaded) radius of wheels at support I, i.e. the distance from the wheel centers to the contact point (including track thickness for a tracked vehicle)

10F7.2 Horizontal coordinate of suspension support point I with respect to hitch (in.)

10F7.2 Bogie swing arm width at support I (0. If no bogie) (in.)

10F7.2 Limit of angular movement in counter clockwise direction of bogie arm at support I (deg.)

TABLE III.A. 1 (Continued)

Line No.

11

Variable Name

BALMD(I)
$$
I=1, \operatorname{NSUSP}
$$

EQUILF(I)

$$
I=1 \text {, NSUSP }
$$

CGZ2

DEE1

ZEE 1

DEE2
ZEE2

DELTW 1
DELTW2

NPTSC $1 \quad$ I2
NPTSC2 I2

XCLC1(I), YCLC 1 (I) $\mathrm{I}=1$, NPTSC 1

FORMAT Description

> 10F7.2 Limit of angular movement in clockwise direction of bogie arm at support I (This angle is negative if the front wheel is below the rear wheel at the extreme position) (deg.)

10F7.2 Equilibrium load on support I when vehicle is empty and at rest (If support I is a bogie, this is the sum of the loads on the two wheels of the bogie pair) (lb.)

F7.2 Vertical position from ground of center of gravity of unloaded first unit (in.)
F7. 2 Vertical position from ground of center of gravity of unloaded second unit (in.)

F7.2 Horizontal coordinate of the first unit payload CG with respect to hitch (in.)
F7. 2 Vertical distance to the CG of the payload of the first unit from the ground at rest (in.)
F7.2 Horizontal coordinate of the trailer payload CG with respect to hitch (in.)
F7. 2 Vertical distance to the CG of payload of the second unit from the ground at rest (in.)

F7.2 Weight of the payload of the first unit (lb.)
F7. 2 Weight of the payload of the second unit (lb.)

Number of breakpoints used to describe the bottom profile of the first unit Number of breakpoints used to describe the bottom profile of the second unit

10F7.2 Pairs of X and Z coordinates of breakpoints of the bottom profile of the first unit at equilibrium with no payload. Five pairs are entered per line, as many lines as needed (in.)

TABLE III.A. 1 (Continued)

| Line \quad Variable | FORMAT Description |
| :--- | :--- | :--- | :--- |
| No. | Name |
| NOTE: | IF A ONE UNIT VEHICLE IS BEING DESCRIBED, THE FOLLOWING LINE |
| | (18) IS SKIPPED. |

18 XCLC2(I), YCLC2(I) $\mathrm{I}=1$, NPTSC 2

10F7.2 Pairs of X and Z coordinates of the breakpoints of the bottom profile of the second unit at equilibrium with no payload,five pairs per line with as many lines as needed (in.)

NOTE: THE FOLLOWING LINES (19 and 20) ARE INCLUDED ONLY FOR TRACKED VEHICLES.

$\begin{aligned} & \text { SFLAG }(I), \\ & \operatorname{IP}(I), I B(I) \\ & I=4,5 \end{aligned}$	6 I 2	Suspension type, power and brake indicator (see lines $4,5,6$) for front and rear spridler ($I=4,5$ respectively)
ELL (4)	F7. 2	Horizontal coordinate of center of front spridler with respect to hitch (in.)
ZS(4)	F7. 2	Vertical distance from ground to center of front spridler (in.)
EFFRAD(4)	F7. 2	Effective radius (distance from wheel center to contact point including track thickness of front spridler (in)
ELL (5)	F7. 2	Horizontal coordinate of center of rear spridler with respect to hitch (in.)
ZS(5)	F7. 2	Vertical distance from ground to center of rear spridler (in.)
EFFRAD (5)	F7. 2	Effective radius of rear spridler (in.)

FIGURE III.A.I -- Vehicle Input Data - Coordinate System

Although OBS78B is currently to be used as a preprocessor, the program is designed to allow extension to in line use in the Areal Module or possible expansion to linear feature size obstacles. For these reasons, the topographic slope is included as a terrain input, although for present purposes, it should be entered as zero. In addition, data which describes the terrain vehicle interface is included as described in section III.C below.

At the present time, the obstacle modeled is a symmetric trapezoid and hence is defined by three numbers, the obstacle approach angle, height and width (see figure II.A.2). The user has the option of entering a single obstacle or a sequence of obstacles. The first line of the terrain file identifies the option selected. It is planned to extend the number of options. The value of the option identifier has been chosen to be consistent with those in data files existing at WES and TARADCOM. A sample terrain input file is contained in the Apperıdices.

TABLE III.B. 1
Terrain File Format-OBS78B

Line No.	Variable FORMAT Name	Description
1	LSIG I2	Signal of data entry mode
2	GRADE F7.2	Topographic slope (\%)
NOTE:	The only values currently If LSIG=2,a single obstac that the data contains a If LSIG=2, the following	allowed are LSIG $=2$ and $L S I G=3$. le is expected while LSIG=3 indicates sequence of obstacles. line is skipped.
3	NANG I2 NOHGT I2 NWDTH I2	Number of obstacle angles Number of obstacle heights Number of obstacle widths These three values are written in the output file for use by the Areal module. OBS78B does not need them.
4	OBH F10.2 OBAA F10.2 OBW F10.2	Obstacle height (in.) Obstacle approach angle Obstacle width (in.)
NOTE:	If $L S I G=3$, the file shoul for each obstacle to be t line of the file should con terminates if $\mathrm{OBH} \geq 99999$	d contain a line in the above format raversed. In this case, the last ontain all g's. (The program .99)

C. Scenario/Control Data

For the nonce, variables to describe terrain/vehicle interaction and those containing control information for the computer system are read from unit LUN4 (i.e. the program contains FORTRAN "READ (LUN4,f) X " statements, with f the FORMAT label and X the variables). When the program is run interactively, the variables are entered from the terminal.

The first entry is DETAIL (FORMAT-I2), the output detail level indicator. At present the following output levels are implemented.
$0 \quad$ Only the minimum clearance, maximum force and average force for each obstacle are reported.

1 An additional output file is opened for detailed output. At detail level 1 or greater, the vehicle and terrain input data are echoed to this detailed output file.

4
In addition to the level 1 data, the clearance history is reported (i.e. the minimum clearance or maximum interference at each step in the traverse and its location on the vehicle or obstacle).

In addition to the level 4 data, intermediate calculations at the end of each major subsection (e.g. clearance computation, force balance, movement) are reported from the main program.

In addition to the above, the final computations in the movement and clearance subroutines are reported.

At this level intermediate results are reported from the subroutines as well as at the transition points selected for lower levels. This is the level normally required to debug the program. A complete report of each step is available. Care must be used as traversal of a single obstacle can produce more than 100 pages

> of output at this level.
> All level 10 output is also written at level 11 as well as a report on every call to the iterative non-linear equation solver. About 60% more output is produced than at level 10 .

The final two lines are the vehicle/terrain interaction data. First is a line containing the limiting coefficient of friction for each assembly (FORMAT 3F7.2). In this edition of the Obstacle Module, this data is not used. The last line contains the rolling resistance coefficient for each assembly (FORMAT 3F7.2).

As this section is designed for interactive users, each of the READ statements is preceded by a prompt.
D. Output

The output of $0 B S 78 B$ consists of three files, one of which is optional. These contain control/execution information, the basic model output and detailed model output respectively. Each is described below.

1. Control/Execution Report

Several lines of output are generated for the guidance of the interactive users. These lines appear at the terminal or in a log file in the case of a batch run. The first few prompt the user to provide the scenario/control information described in the previous section. Next the first identification line of the vehicle data file is output. As each obstacle in the terrain file is completed, this is reported so that the interactive user knows how far the program has progressed. In addition, warning and error messages may be written. In particular, in certain cases an informational message is given about the error from the EQSOL subroutine although this error is relatively small and the results are satisfactory.
2. Basic Output

The final results of $0 B S 78 B$ are the minimum clearance (or maximum interference) between the vehicle and the obstacle during the override, the maximum propulsive force required during the override and the average propulsive force to override the obstacle. For ease in
using this data as part of the vehicle data file for NRMM (see Volume I, Section III.B) the first six lines of the output file will contain the number of height values, angle values and width values from the terrain input file (section III.B), when appropriate with identifiers. Then a header is printed followed by the output and the corresponding terrain input in the format required for the vehicle data file for NRMM.
3. Detailed Output

As described before, the user of the Obstacle Module may choose to obtain an output file containing some of the results of the computations performed in modeling the override of the obstacle. The intent is to allow:

1. Verification that the input data is properly formatted and correctly read (level 1)
2. Examination of the clearance history to identify any points on the vehicle which appear to be problems (level 4)
3. Examination of the flow of computation to understand the geometry and force results and relate them to reality (level 8)
4. Generation of sufficient data to permit program verification and debugging (levels 10 and 11).

Care must be taken in selection of the output level for this program and that for the Operational Modules, NRMM, since the higher levels cause very large amounts of data to be written. We would expect levels 8 through 11 to be selected only for a single obstacle, not for runs with a multi-obstacle terrain file. An output level
providing a force history is planned and several levels are unassigned to provide for expansion. Most of the output records written to the detailed output file contain an identification. These identifiers are listed in Table III.D. 1 together with the subroutine from which the record is written and the output levels at which the record would appear. In the table, these identifiers are grouped by the originating subroutine and further arranged in order of placement in the program (which corresponds reasonably well to the order of appearance in the output).

Since the detailed output is intended primarily for the experienced analyst/programmer to use in uncovering anomalies, it would normally be used with a copy of the program and it is felt that the headers used as pointers to the appropriate place should suffice as labeling. The clearance data which is produced in level 4 output, however, is, hopefully, of potential use to vehicle designers and design evaluators.

This output (labeled MAINC) at each step is a line of five numbers, viz. the variables ILOC, CLRNC, CLRMIN, IDX and IDC. The first, ILOC, is the index of the step. The second is the minimum clearance or maximum interference (in inches) at that step. CLRMIN is the minimum clearance or maximum interference found at all steps from the initial position to the current position. The last two numbers, IDX and IDC are indices which contain, encrypted, the location (on vehicle or obstacle) at which CLRNC and CLRMIN respectively are obtained. As explained in section II.F.1, at each step of the obstacle
traversal, clearances are checked at the obstacle breakpoints, the vehicle clearance array breakpoints and the vehicle hitch. The minimum is the reported clearance, CLRNC. If this occurs at the Nth obstacle breakpoint, the value reported in IDX is N. If the minimum occurs at the Nth breakpoint of the first unit's clearance array, the value of IDX is $10,000 \mathrm{~N}$. For a minimum at the Nth breakpoint of the second unit's clearance array, the value of IDX is 100N. If, finally, the minimum is found at the hitch point (which is checked separately), the value of IDX is $1,111$.

TABLE III.D. 1
Detailed Output Headers - OBS78B

Header

Descriptive	OBS78B
Text	
TERR1	OBS78B
NEW OBSTACLE	OBS78B
MBACKOFF	OBS78B
MINIT1	OBS78B
MINIT2	OBS78B
MAINC	OBS78B
MAIN1	OBS78B
MAIN2	OBS78B
MAIN3	OBS78B
MAIN4	OBS78B
MAIN5	OBS78B
MAIN7	OBS78B

OBGI	OBGEOM
$-\cdots--$	OBGEOM
$\overline{K, I}$	OBGEOM
$---\overline{S T E P}$	OBGEOM
SIZE	OBGEOM

CLEARO
CLEAR1
CLEAR2
CLEAR3
04
V 1
V2
V3
H1
H2
H3
T 1
T2
T3
MIN
SSQ
XN
XPH
X
Z
CGX(I), CGZ(I)
ALPHA
CGFX(I)
CGFZ (I)

Originating Subprogram

OBS78B
OBS78B
OBS78B
OBS78
0BS78B
0BS78B
0BS78B
OBS78B
OBS78B
OBS78
OBS78B
OBGEOM
OBGEOM
OBGEOM
OBGEOM
OBGEOM
CLEAR
FORCES
FORCES
FORCES
FORCES
FORCES
FORCES
FORCES
FORCES
FORCES

Level

1 or greater
1 or greater 1 or greater 10,11
8-11
8-11
4,8-11 Clearance history

Comments

Echo of vehicle input
Terrain input echo
Terrain input echo

10,11
10,11
8-11
8-11
8-11
1 or greater
10,11
10,11
9-11
10, 11
9-11
1 or greater
10,11
10,11
10,11
10, 11
10,11
10,11
10,11
10, 11
10, 11
10,11
10,11
10, 11
10,11
10,11
9-11
10,11
10,11
10,11
10,11
10,11
10,11
10,11
10,11
10,11

TABLE III.D. 1 (Continued)

Header	Originating Subprogram	Level	Comments
FHX, FHZ	FORCES	10,11	
SFLAG	FORCES	10,11	
NW	FORCES	10,11	
RR	FORCES	10,11	
BETAP	FORCES	10,11	
BWITH	FORCES	10,11	
BN	FORCES	10,11	
BT	FORCES	10,11	
CRR	FORCES	10,11	
CTF	FORCES	10,11	
FN	FORCES	10,11	
RF	FORCES	10,11	
TF	FORCES	10,11	
FX	FORCES	10,11	
FZ	FORCES	10,11	
PX	FORCES	10,11	
PZ	FORCES	10,11	
PM	FORCES	10,11	
MOVE2	MOVEB	10,11	
MOVE3	MOVEB	10,11	
MOVES 4	MOVEB	10,11	
MOVES5	MOVEB	10,11	
MOVE11	MOVEB	10,11	
MOVE 12	MOVEB	10,11	
MOVE21	MOVEB	10,11	
MOVE22	MOVEB	10, 11	
MOVEA 3	MOVEB	10,11	
MOVEA 4	MOVEB	10,11	
MOVEA5	MOVEB	10,11	
MOVEA5A	MOVEB	10,11	
moveasb	moveb	10,11	
MOVEA6	MOVEB	10,11	
ELEVAT 1	ELEVAT	10, 11	
ELEVAT2	Elevat	10,11	
ELEVAT3	ELEVAT	10,11	
ELEVAT4	Elevat	10,11	
WHEELSO	WHEEL2	11	
WHEELS 1	WHEEL2	11	
WHEELS 2	WHEEL2	11	
WHEEL3/1	WHEEL3	11	
WHEEL3/2	WHEEL3	11	
WHEEL3/3	WHEEL3	11	
\%EQSOL:	EQSOL	11	

American Association of State Highway Officials (AASHO), A Policy on Geometric Design of Rural Highways, 1965, The American Ass̄ociation of State Highway officials, washington, D. C., pp 152 to 159.

Jurkat, M. P., Nuttall, C. J., and Haley, P. W., "The AMC 74 Mobility Model", Technical Report No. 11921 (LL-149), May 1975, U. S. Army Tank-Automotive Command, Warren, Mich.

Lessem, A. S., "Dynamics of Wheeled Vehicles: A Mathematical Model for the Traversal of Rigid Obstacles by a Pneumatic Tire", Technical Report M-68-1, U. S. Army Waterways Experiment Station, CE, Vicksburg, Miss., May 1968.

Nuttall, C. J., Jr., and Dugoff, H. J., "A Hierarchial Structure of Models for the Analysis of Land Mobility Systems", presented at Twelfth Annual U. S. Army Operations Research Symposium, Durham, N. C., Oct 1973.

Nuttall, C. J., Jr., Rula, A. A., and Dugoff, H. J., "Computer Model for Comprehensive Evaluation of Cross-Country Vehicle Mobility", Earthmoving Industry Conference, SAE Paper No. 740426, presented at Society of Automotive Engineers, Apr 1974.

Powell, M. J. D., "A FORTRAN Subroutine for Solving Nonlinear Algebraic Equations", Numerical Methods for Nonlinear Algebraic Equations, (Editor: P. Rabinowitz), Gordon \& Breach, 1970.

Pradko, F., Lee, R. A., and Kaluza, V., "Theory of Human Vibration Response", Paper 66-WA-BHF-15, presented at ASME Meeting, Nov 1966.

Rula, A. A., and Nuttall, C. J., Jr., "An Analysis of Ground Mobility Models (ANAMOB)", Technical Report M-71-4, Jul 1971, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.

Rula, A. A. and Nuttall, C. J., Jr., "Terrain Modeling to Support Mobility Evaluation", Proceedings of Fifth International Conference, The International Society for Terrain-Vehicle Systems, Inc., Detroit, Mich., Vol 4, Jun 1975.

Smith, G., "Commercial Vehicles Performance and Fuel Economy", Society of Automotive Engineers, Special Publication 355, 1970.

Taborek, J. J., Mechanics of Vehicles, Penton Publications, Cleveland, Ohio, 1957.
U. S. ATAC, "The AMC-71 Mobility Model", Technical Report No. 11789 (LL 143), Vols. I and II, Jul 1973, U. S. Army Tank-Automotive Command, Warren, Mich.
C DETEKMINES INTERFERENCEJCLEARANCE BETWEEN 2-DIMENSIONAL
C VEHICLE PRCFILE AND QBSTAGEE FROFILE CF IKAPEZOIC SHAPE.
L UETERMINES TRACTLON FCRCE FEGUIREC TG SURMOUNT. ACCOUNTS
C FOK AKTICULATION IN PITCH RLANE, BOGIES ALLOWED
CUN ALL SUSFENSIONS, BASIC ANALYSIS PRCCECUREN SOLUTION.OF
¿ EQUATICNS CF STATIC EQUILIERIUM FCR SEQUENTIAL PLACE-
C MENTS GF VEHICLE CN OBSTACEE TO YIELC TAAGENTIAL FORCES
C ANC FESITICN OF VEHICLE CLEARANCE CONTOUR WITH RESPECT
C TO OESTACLE.
C
C LOUT= DETAIL IS OUTPUT DETAIL LEVEL INCICATCR
C DETAIL = ONLY OT8OUT GLLE WILL EE WRITTEN
C DETAIL .GE. 1 O78DBG FILE WILL EE WRITTEN
C DETAIL = 4 CLEARANCE FISTGRY WRITTEN
C̈ UETATL = \& MAJOR SUBSEGTICN RESULTS
C DETALL = 9 SUBROUTINE IRACE
CETAIL = 10 ALL VARIABLES
C

```
```

 PKOGRAN UBS78B (INFUT \(=150\), OUTPUT \(=15 \angle\), TAPE5=INPUT, TAPEG=OUTPUT
    ```
    PKOGRAN UBS78B (INFUT \(=150\), OUTPUT \(=15 \angle\), TAPE5=INPUT, TAPEG=OUTPUT
\(*\) TAPE1 \(=15 \otimes\), TAPE \(20=152\), TAPE2 \(1=150\). TAPE \(22=1501\)
\(*\) TAPE1 \(=15 \otimes\), TAPE \(20=152\), TAPE2 \(1=150\). TAPE \(22=1501\)
        COMMCN ALPHA(5,2).
        COMMCN ALPHA(5,2).
- BALMCI 31 . BALMUX3).
- BALMCI 31 . BALMUX3).
+ BETA(3), BETAP(3), BN:31, ERAKER:5,21, BT \(3,21, B W I D T H(3)\).
+ BETA(3), BETAP(3), BN:31, ERAKER:5,21, BT \(3,21, B W I D T H(3)\).
+ COSA13,21,COSB13*,CCSG13.21,CGFX12),CGFZ121,
+ COSA13,21,COSB13*,CCSG13.21,CGFX12),CGFZ121,
* CGX!2), CGZ! 2), CGMY(2A,CFR(3,21.CTF(3,2).
* CGX!2), CGZ! 2), CGMY(2A,CFR(3,21.CTF(3,2).
* EFFKAO(5), ELL(5).
* EFFKAO(5), ELL(5).
+ FHX,FHZ. FN(3.2).
```

+ FHX,FHZ. FN(3.2).

```


```

* HFL 5,9$), \mathrm{HX}(5,10), \mathrm{h} \geq 5,101$.

```
* HFL 5,9\(), \mathrm{HX}(5,10), \mathrm{h} \geq 5,101\).
+ GAMMA(3,2).
+ GAMMA(3,2).
+ IB(5.2):IP(5,2t,IH(5.21.
+ IB(5.2):IP(5,2t,IH(5.21.
* LOUT, LUNG.
* LOUT, LUNG.
* NSUSF,NLNITS,NW(5t, Mís(5),
* NSUSF,NLNITS,NW(5t, Mís(5),
+ OA (91,OFL(9).UX(10).C2110).
+ OA (91,OFL(9).UX(10).C2110).
\(+\quad\) PM(3), POWERR(5, \(21, P \times 31, P X P C G 131, P Z \ 31, P Z P C G 131\).
\(+\quad\) PM(3), POWERR(5, \(21, P \times 31, P X P C G 131, P Z \ 31, P Z P C G 131\).
+ RBC1,RBC2,RR:3,21.
+ RBC1,RBC2,RR:3,21.
+ SCALE(6).SFLAG(5),SIAA(3,2),SINE(3),STEP.
+ SCALE(6).SFLAG(5),SIAA(3,2),SINE(3),STEP.
+ THETBi. THETBZ.
+ THETBi. THETBZ.
* X(5), XPBC(5), XPW 15,2 t \(_{*}\)
* X(5), XPBC(5), XPW 15,2 t \(_{*}\)
* Z:5), ZPBC: 5), ZPRCF(5.2).2PW(5.2)
* Z:5), ZPBC: 5), ZPRCF(5.2).2PW(5.2)
    UIMEASIOA
    UIMEASIOA
+ CAW1:15),CAWC:15),CFW1(15),CRW2115).
+ CAW1:15),CAWC:15),CFW1(15),CRW2115).
+ EOUILF(5), EFTRAC(5).
+ EOUILF(5), EFTRAC(5).
+ FMU(3).
+ FMU(3).
+ POW(3.2).
```

+ POW(3.2).

```
+ RBCI 51, RHTCHI21,RTCHI31,RWLIMI3,21.
+ THETA121, THETAQ(5), THETEH(2), TWLIMY3,21\%

\(+\quad\) YCLCL(15), YCLC2(15), XPRF(20).
+ LPCG(2).2S(5)
C
C
WUUBLE PRECISICN VEFGAT
INTEGER SFLAG, DETAIL
KEWIND 1
REWIND 20
KEWIND 21
REWIND \(\angle 2\)
CALL CCNNECI 5LINPUT
CALL CCNNEC§ GLOUTPUT
C INITIALIZATION OF I/C UNITS
C PRUGRAM SUNMARY DATA
LUNL \(=22\)
C terrain obstacle data
\(\operatorname{LUN} \angle=21\)
C VEHLCLE DATA
LUN3 \(=2\) \&
C CCNTROL INPUT FILE
LUN4 \(=5\)
C EXEClTION FEPURT FILE
LUN5 \(=6\)
C DIAGNGSTLCS
LUNG \(=1\)
C
\[
\begin{aligned}
& P I=3.14154265 \\
& P I M 2=P I \neq 2 . \\
& P I C 2=P I / 2 . \\
& K I=0 \\
& K A F=6.5
\end{aligned}
\]

C
1ט FCRMATIZDH PKINT OUTRUT: LEVEL
READ(LUN4.11) DETAIL
11 FORMAT(12)
WRITE(LUN5.151
KEAD (LUN4, 4*20) FMU(1), FMU(2), FMU\&3)
WRTTE LUN5,16)
KEAD(LUN4, 40320) RTCh(1),RTCh(2),RTCW(3)
15 FOKMATI34H FRICTICN CCEFFICIENTS BY ASSEMBLY
16 FORMAT(43H ROLLING FESLSTANCE CCEFFCIENTS BY ASSEMBLY)
LOUT =DETAIL
C kEAO IN VErICle dATA
C
KEAU ILUN3.4000) TITLGi, TITLE \(2 n\) TITLE 3
WKITE(LUN5,4D日す) TITLEI,TITLE2,TITLE3
40 F 40 FGRMAT(305)
4010 FOKMAT(1DI2)
4E2\% FOKMAT (1\&F7.2)
```

 KEADILUN3.40101 NUNITS,NSUSP,NVEH1,NFL
 KEAC(LUN3,4020) EEFFT1,HTCHFZ
 KEAD (LUN3,4610) (SFLAGII,,I=1,NSUSP)
 KEAD(LUN3,4010) |{IF&I,Jt,J=1,< I,I=1,NSUSP)
 KEAD (LUN3,4E18) ((IEEG,J),J=1,2H,I=1,NSUSP:
 KEADILUN3,402D) (EFFFAD(I, I=1,NSUSP)
 READ:LUNA,4020) (ELLOI).I=1,NSUSP)
 REACTLUN3,4020, (BWIOTHII),I=1,NSUSP:
 REAC(LUN3.4620) (BALTULIH.I=1,NSUSP:
 READ (LUN3,402&) (EALNO(I), I=1,NSUSP)
 READ(LUN3.4020: EEQLILFIII,I=1,NSUSP:
 READ (LUN3.4*i20) CGZ1.CGL2
 CGLI=CGZ1-REFHT1
 CGZL=CGZ2-REFHT1
 READ(LUN3,4020) CEE1,ZEEL,CEE2,ZEE2
 ZEEL=ZEEI-REFHT1
 ZEE<=ZEE2-REFHTI
 READILUN3.4020), CELTW1,DELTW2
 READ(LUN3,40101. NPTSC1,NPTSC2
 KEAD(LUN3,40CE) (XCLCIMI),YCLCI(It,I=1,NPTSC1)
 DO 8R I=1,NPTSC1
 YCLCI(II)=YCLCI(I)-REFFHTI
 IF(NLNITS.EQ.1JGC TC 10R
 HEAD(LUN3,4020) (XCIC2(I),YCLC2(I),I=1,NPTSC21
 DU }85\textrm{I}=1,NPTSC
 YCLCC2(I)=YCLCZ(I)-REFHT1
 CONTINUE
 IFINVEH1.NE.01 GCTC 115
 READ{LUN 3,4010) (SFLAG(I),IPII,11,IE{L4,1),I=4,5)
 READ(LUN3,4020) (ELL&IH,2S(I),EFFRAC(IN.,I=4,5)
 ZS(4)=2S(4)-REFHT1
 ZS(5)=ZS(5)-REFHT1
 CONTINLE
 C
C
C
OBS7ध VEHICLE PREPRCCESSCR
IFINUNITS.GE.<) GCTC 12\&
HTCHFL=6.
EGUILF\31=0.
CGMY(2)=6.
CGFX(<.)=0.
CGFZ(2)=6.
CGX(2)=0.
CGZ(2) =k:
120 CGFZI=-EQULLF(1)-EGUILF(2)
CGX1=-(EQUILF(1)*ELL\&1) +EOUILF(2)*ELL(2):CGFZ1
CGFZ2=-EQUILF(3)-HTCHFZ
CG\times2=0.
IF(NSUSP.GE. 3) CGK2=-EQUILF(31*ELL(3)/CGFZZ
CGFL(1)=CGFZ1-DELTW1
CGX(1)=(CGFZ1*CGX1-CELTW1*[EE1)/CGFZ|1)
LGZ(1)={CGFZ1*CGZ1-CELTW1*ZEE1)/CGFZ(1)
CGFX(1)=0.
CGNY(1)=0.

RHTCF(1)=SQRT(LGX(1) *2+CG211) **2)
c
C FOLLOWING [ISTANCES ANC ANGLES WRT CG
C
$A C G=A T N 2(C G Z 11, C G X(E))$
THETDHd $1=A C G+P I$
C
C SET ANGLE CF VECTOR FRCM CG TC HITCH EETWEEN-PI AND PI
IFATHETUH(1).GE.FII. THET\&HIII=ACG-PI
DU $122 \mathrm{I}=1,2$
XB=ELLITI-CGX11)
$Z B=-K F F H T 1+E F F R A C I I)-C G Z(1)$
KuC(I) =SORT (XE@XE+ZB\#ZB)
THETAO(I)=ATNL(ZE, XE*
PWLIN(I, 1)=RBC(I)
THLIN(I,11=THETABLII
KWLIM:I, 21=
TWLIN(I. $21=0$.
IFISFLAG(I).EQ.V) GCTO 122
BALMU(I) = BALMU(I)*PIAd80.
BALMC(T)=BALMUIIt*PI 184 .
$\times 1=\times E+.5 * B W I D T H(I) * C C S: E A L N U: I)$
$L 1=2 \mathrm{E}+.5 * \mathrm{BWIOTH}(\mathrm{It}+\mathrm{S}$ GN(EAL MU(I):
$\times 2=\times 8-.5 * B W$ IOTHAI) CCES(EALNC(I))
$\angle 2=Z B-.5 \hbar B W I O T H(I) A S N(E A L N C(I))$
InLIM(I.1 $=$ =ATN2 $21, \times 11$
ThLIM (I, 2) =ATN2 (ZA, X2)
RWLIM(T, 1) =SORT $(\times 1 * \times 1+21 * 21)$
PWLIN(I, 2) $=$ SQRT: $\times 2 * \times 2+22 * 221$
122 CONT INUE
[FINVEHI.NE, NJ GCTC i24
DO $123 \mathrm{I}=4.5$
EFTRAD\I)=EFFRAD(I).
$X B=E L L(I)-C G X 11)$
$Z B=Z S(1)-C G Z(1)$
$K B C(I)=S O R T(\times E \times X E+Z E Z B)$
THET A : $1=A T N 2: Z E, X E A$
$1 \angle 3$ CUNT INUE
$1<4 \quad$ IFINLNITS.EQ.i) GCTC 125
6
C All Trailer dist. Anc angles wrt hitct
C

```
CGFZ1<)=CGFZ 2-DELTW2
    CGX121=1CGFZ2*CGX2-CELTW2*[EE2)/CGFZ(2)
    CGZ(2)=(CGFZ2*CGZ2-CELTW2*2EE2)/CGFZ{2)
    CGFX(2)=0.
    CGMY(2)=0.
    KHTCH(2)=SOKT(CGX(2)**2+CGZ12)**21
    THET3H(2)=ATN2(CGZ\2*.CGX(2))
    XHB=ELL(3)
    2HB=-REFHT1+EFFRAD(3)
    KBC:3)=5GRT: XHB* XFB+2HB*2HE)
    THETAN&)
```

```
    RWLIN(3,1)=RBC(3)
    TWLIM(3,1)=THETAB13)
    KWLIN(3,2)=0.
    TWLIN(3,2)=0.
    IF(SFLAG(3).EQ.31 GCTC 125
    BALML(3)=BALMU(35*PP1/180.
    BALMC(3)=BALMD(3)*P1/18k.
    X1=XhB+.5*BWIDTH(3)*CES(BALMU(3):
    ZL=2rB*.5*8WIDTHI3)*SIN(BALMU(3)!
    HWLIN(3,1)=SQRT(X1*X1&Z1*Z1)
    ThLIN(3,1)=ATN2(21,X1)
    X2=XHB-.5**WICTH(3)*CCS(EALMO(3)1
    Z2=ZHB-.5*BWIDTH(3).कSIAIBALND(3))
    KWLIN(3,2)=SQRT(x2**2*22*22)
    THLIN(3,2)=ATN2(Z2,*2)
    CONT INUE
    DO 13\DeltaI=1.NSUSP
    EFTRAO&II=EFFRAD:II
    IF(NVEH1.EO.D.ANC.I.NE.3) EFTRAC(1*=.5*(ELLI1)-ELL(2)\
    IF(NVEHI.EQ.E.ANC.NFN.EGND.AND.I.NE&3)
    + EFTRAD(I)=ELL(10-EL&(2)
    DO 130 J=1,2
    POWEAR(I,J)=1.0
    BRAKER(I,J)=1.|
    KK(I,JI=EFFKAD(I)
    CRR(I,J)=RTOW(II
    POW(I,J)=FMU(I)
    CONTINUE
    BPRFCL=0.
    IF(NVEHI,EQ.W) BFRFCEFEFTRAC(1)-EFFRACI1)
    DC 135 I=1.NPTSCI
    YCLC1(I)=YCLC1(1)-BFFFLCL
    IF(ABSIYCLC1(I)I +AES&XCLC141)|.EQ.0.) GOTO 133
    LAW2(I)=ATIN2(YCLCl(It,XCLC1(I))
    IF(AES(CAWI(IH) LE. ©OI) CAW1&I)=&.
    GOTU 135
    133 (AW1:I)=0.
    135 CKWIII)=SORT\XCLC1(1***2*YCLC1(I)**2)
    AFINLNITS.LE.I) GCT(C 145
    DC 140 I=1,NPTSC2
    TF(AESIYCLC2{I|I+ABSEXCLCZ(I)|.EQ.0.1 GOTO 138
    CAHLII)= ATN2(YCLC2(1),XCLC2(I):
    IF(AESICAW2II|).LE. .O1: CAW2(II=0.
    GCTO 140
    j36 CAW2(I)=ic.
    140 CRH2:L)=SQRT(XCLC2\I&**2+YCLC21I)**2)
C
` ENO cF vehicle preprocessca
C
C FCHO INPUT
C
145 IF(LEUT.EQ.0. GOTO 115
    WKITE(LUNG;5000) TITLE1,TITLE2,TITLE3,NVEH1,NFL
50%% FORMAT(1H1,37H THE fGLLCWING IS A LIST OF THE INPUT,
```

＊ilh vakiables／lgh the vehicle is ，3a5／1ih first UNIT．
－ 28 h TRACKEC／WhEELEC INCICATOK：．1i61t．＊
+27 H FLEXIBLE TRACK InDICATOR ：，I2／1
WRITEILUN6，151）CGX1，CGZ1，CGF21，CGX2，CGZ2，CGFZZ，
＋（CGXII），CGZ（I），CGFXII），CGFZXI，RHTCHIII，THETGHII），I＝1，NUNITSI
151 FGFMAT（6H OVPPF，6F12．3／6X．6F12．3／6X．6F12．3才 WPITEILUN6，5DE2）NUNITS，REFHTI，HTCHFZ
bow Formatilih This is A lCb2gh UNIT VEtLCLE WITHTHE HITCH．
－Fg． 2.24 H INCHES ABCVE THE GROUN［／ $1 \mathrm{X}, 14 \mathrm{HH}$ ITCH LOAD IS．Fi0．3： WRITEILUNG．50W4）NSUSF
 WFITF（LUNG．5605）
5005 FQRMAT 447 H FOLLOWINE $1 S$ A LIST CF SUSPENSION SUPPORT DATA，I OU 1 by $I=1$ ，NSUSP
WFITE（LUNG，50＠6）SFLAG（I），EFFRAC（I），EFTRADII），ELL』I），

＋RTOWII．，RBC：II，TtETEAII
WFITE（LUNG，5015）（If（I，J），IE（I，J），RWLIM（I，J！，TWLIM（I，J），

+ FK（I，J），CRR（I，JI，PCWゆI，J，，J＝1，21
5315 FORMAT13X，212，2X，5F．10．3／3X，212，2X，5F10．31
5006 FORMATII3．12F10．31
100 CONTINUE
IF（NVEHI．NE．D）COT（ 163

5wu9 FORMAT（32H TRACKEC VEhICLE BELNG SIMULATED／2：313，5F10．3／11
103 CONTINUE
WKITE，LUNO， 0027 CG21，DEE1，ZEE1，DELTWI
5087 FGRMATI 37HOFOK UNLT $1:$ VERT OIST HITCH TO CG $=, F 7.31$
$+13 \times .29$ HHCR LZ DLSI HITCH TO PAYLCAD $=, F 7.31$
$+13 \times 29 \mathrm{H}$ VERT DIST HIECH TO PAYLCAD $=$ ，F7．31
＋ $13 \times 10 \mathrm{H}$ PAYLOAD $=$ ，F7． $\mathrm{F}^{1} 1$
WRITEILUNG． 50101 RAF
5010 FORMAT 35 H THE KEBCUAC AITENUATIGN FACTOR IS F5．2．11
WRITEILUNG． 50111 NPTSCI
5611 FORMAT110H ThERE ARE．I3， 22 H POINTS ON THE MEHICLE
＋18H CLEAKance CONTOUR， 11
DC $165 \mathrm{I}=1$ ．NPTSC 1
WKITEILUNG，50121 I，XGLCI（L），I，YCLCI（J），CAWIIII，CRWI（I）

＋ 2 F10．31
165 CONT INUE
IFINLNITS．EQ．11 CGTC 175
WKITE（LUNG，5013）CGZ2，DEE2，ZEE2，CELTW2
5013 FOKMAT（18HDFOK UNIT \＆C CGZ＝FF7．3）
－ $13 x, 29$ HHGRIZ DIST HIICF TC FAYLCAC＝，F7．3／
－ $13 \mathrm{x}, 29 \mathrm{H}$ VERT DLS HIICH TC PAYLCAD $=$ ，F．7．3／
$+13 \times .19 \mathrm{H}$ PaYLLAD $=$ ．F763／1X．2F10．31
WRITEILUNG．5E14）NFTSC2
SB14 FCRMATIDQH THERE ARE』13，23F FGIATS ON THE ZND UNIT
＋18H CLEARANGE CONTGLR． 1
DO 176 I $=1$, NPTSC \angle

5016 FORMAT 17 H XCLC21， $12,3 \mathrm{H}=, \mathrm{F} 8.2,2 \mathrm{X}, 6 \mathrm{HYCLC} 2(, 12,3 \mathrm{HI}=$ ，

```
K-2058. VOLUNE II 
```

 * F8.<.<F14.3)
 170 CONTINUE
 C
C THIS PROGEFM DOES NOT HAVE CLASS INTERVAL UBSTACLES
C
C READ IN TERRAIN CATA
C
175 CONTINUE
NOBST=0
READ(LUN2.401C1 LSIE
KEAD(LUN2,40201 GRALE
SLOPE=ATAN(GRADE/1DE,)
CSLOPE=COS (S LOPE)
SSLOPE=SIN(SLOPE)
IF(LCUT.GE. 1) WRITEHLUN6,5018J LSIG,GRACE,SLOPE,
+ CSLOFE,SSLOPE
5@18 FORM\&T(6HOTERR1,12.4F10.3)
1F(LSIG.EQ.1)GO TC 2at
IFILSIG.EQ.2)GO TO 1.8.5
IF(LSIG.EQ.3)GC TC 18\&
WRITE(LUN1,5017)
5017 FORMAT(19H TERRAIN FILE ERRCR)
CALL EXIT
180 READ(LUN\angle,404E) NANE,NGHGT,NWOTH
4040 FORMAT(3)(8X,12))
C
l UBSTACLE LCOP
C
185 KEAD(LUN2,4B5D) OEH,GBAA,OBW
4050 FOKMAT(3F10.2)
IFIOEH.GE.99999.99) CALL EXIT
KAC=CBAA \#PI/180.
IF(AES(SLOPE)+ABS(18A.-CBAAI*PI/18E..LT.PID2) GOTO 195
WRITEILUN1,I91\ CEH,GBAA,OEW,GRACE
191 FORMAT\50H OBSTACLE ANGLE-GRADE COMBINATION EXCEEDS VERTICAL.
+ /4F10.3)
GUTO 185
1*5 IF(18x.-OBAA .LT.O.t OEH=-ABSAOBHI
IFILCUT.GE. 1:WRITEALUN6.4030:CBH,CBAA,OBN
403x FURMATILSHINEW OBSTACLE,4FIE.2I
GO TC 210
C
C REAU OR CALCULATE OBSTACEE PRCFILE EREAKPOINTS
C
2WO READILUN2.4610: NPTSFF
NTOTAL=%
TF(NPTSPR.EO.9%) CALE EXIT
READ ILUN2,4E2D) \XFRE(I|,YFRF\I\#,I=1,NPTSPR)
WRITE(LUN1,4E35) LSIG
403) FORMAT (42H WRCNG CATA MCDE FOR CBSTACLE DESCRIPTION , 18)
CALL EXIT
C
C calculate obstacle and hue profile
C

```
```

 <10 CALL CBGEUM (BWICTH,GFTRAD,ELL,HA,HE,HC,HD,HE,HF,HFL,
 + HX,HL,LOUT,LUNG,NSUSR.NUNITS,NVEHI,OA.OBAA,OBH, OBW,OFL,
 + UX,UZ.SFLAG,DLCPE,STEPJ
 C
C STARTLNG PCINTS FOR EG. SCEVEF
C
XN(1)=RTUW(1)
XN(4)=0.
N1=NSUSP+1
OO<15 I=2,N1
IMI= I-1
<15 XN(I)=EQUILFAIMI|*([GLTW1+CELTW2)/FLOAT(NSUSP:
XN(5)=6.
XN(6)=HTCHFZ
C
c InItialize storage
C
NW(3)=0
NW:4)=6
NW(5)=c
DC <10 1=1.5
216 NW2III=6
CLRM IN=100NA.
FCGMAX=\&.
FOC=Z.
C
c calculate initial position
C
C FIKST SUSPENSICN
C
C=-HE{1,1)/HFL(1,1)
S=HD(1,1)/HFL(1,1:
XPW(1,11 =HX(1,2)-.1*4
ZPW(1,1)=HZ(1,2)-.1,*S
NW(1)=\emptyset
IF(SFLAG(1).EQ.1) GCTC 22w
C
L FIRST SUSPENSION BEGIE CENTER
C
218 XPBC(1)=XPW(1,1)
ZPBC:11)= 7PW(1.1)
GOTO 23k
C
C FIKST SUSPENSICN BOGIE
C
22% XPW(1,2)=XPW(1,11-8WHOTH(1)*C
ZPW!1,2)=ZPW(1,1)-BnIDTH(1)*S
XTEMP=XPW(1,11-XFW11,2)
ZTEMF= ZPW(1,1)-2FW(1*2)
BETA(1)= ATN2(ZTENP,XTENP)
XPBC11)=.5*(XPW(1,1)*XFW(1,21)
\anglePBC(1)=.5\#(ZPW(1.,1*\&PW41,2))
C
C LOCATE FIRST UNIT CG FFCM FIRST SUSPENSION

```
R-2058, VOLUNE II
c
    <3% THETA(1)=ATN2(HO(1,14.0-HE(1,1))
    IF(THETA(1).LE...O1). IFETA(1)=0.
    XPCG(1)=XPBC(1)-RBC(1)*COS(THETAQ!1)+THETA&1)
    ZPCG(1)=ZPBC(14-RBC\1)*SIN(THETAE11)+THETA(1):
    XPBC:2)=XPCG!1):+RBC(2)*CGSITHETAE\2!+THETAI1)!
    ZPBC(2)=2PCG(1)+REC(2)*SIN(THETAE\2%+THETA\1).)
C
C CHECK If TRACKED
C
    IFINVEHI.NE. OV GCTC 235
C
C CHECK FKONT SPRUCKET/ICLEF INTERFERENCE
C
        XPS= XPCG(1)+RBC(4)*CGS\THETAP\41+THETA\1)\
        ZPS= \anglePCG:1)*RBC(4)*SIN{THETAE141+THETA&1)
        CALL WHEEL3 (E,HA,HCPHE,HF,HX,IHI4,IJ.4;LOUT,LUNG,
            + XPS,LPS,ZPROF(4,1)!
            IF(E.GE.-. 11 GOTG 235
C
C INTERFERENCE - backOfF firST WhEEL - ASSNME MOUND
C
    S1=S/C
    SE=(CZ(4)-0Z(2):/4(CX44)-0x(2):
    PISQ=(S1**2+1.)*(ZPS +HZ(4,2)+S2*{H*(4,2)-XPS))**2/:S 1-S 2)**2
    KI=SGRT(RISQ)
    XPW(1,11=XPW(1,1)-RIEC
    ZP&(1,1)=ZPW(1,11-RI*S
    IFILCUT.GE.1x' WRITEDLUNG,236, XPS,ZPS,E,IHA4,1I,SN,S2,
    * RISO.RI,XPN(1,i),ZPW#1,1%
    236 FORMATIGH MBACKDFF,3FAD.3,13,6F1E.31
    IFISFLAGIIN.EQ.I* GCTO 220
    GOTO 218
C
C SECONL SUSFENSION
L
    235 NW121=0
    IF(SFLAG(2).EQ.1) GCTO 240
C
` SECONO SUSPENSION SINGLE WHEEL
C
    XPW(2,1# =XPBC(2)
    ZPW(<,1)= 2PBC(2)
    GOTO 250
C
C SECUND SUSFENSION RGGIE
C
240 XPW(2.1)=XPGC(2)*.5*⿴WICTH(2)*COS(THETA(1):
    ZPW(2,1)=IPBC(2)*.5*EWICTH(2)*SIMITHETA(1):
    XPW(2,2)=XPBC(2)-.5*EWICTH{2)*CCS{THETA{1|)
    ZPW(2.2)=ZPBC(2)-.5*BWICTH(2)*SIN(THETAI1).1
    XTEMP=XPW:2,11-XFW!2*2:
    ZTEMF=ZPWI2,1)-ZFW\ 2,2)
    BETA(2)=ATN2(ZTEMF.*IEMP)
```

k-2v50. VOLUNE II
LISTING UF PFUGRAM OES78E
C
C LUCATE HITCH
C
<5w }\quad\mathrm{ PPH=XPCG(1:+RHTCF\1:\&COSATHETOHI1:TTHETA\1:\
ZFH= ZPCG(1)+RHTCFA1)SLATTHETOH(1)+THETA\1D)
IFINUNITS.EQ.1) GOTC 28\&
i
C SECOND UNIT - LUCATE WHEEL AEGGIE CENTER
C
THETAS21=THETA11)
RSQ=RBC: 31**2
CALL WHEEL2 (EFFKAD,HA,HC\&FE,FF,HX,HZ,1,IHI3.1:*
+ 3.LOLT,LUNG,UX,GZ,ALEHA(3,1),RBC(3),RSQ,XPH,
+ XPBC(3),ZPH,ZPBC(3))
NW(3)=b
IFISFLAG(3).EQ.1) GCTO 260
C
C THIKL SUSPENSION SINGLE WHEEL
C
XPW(2.1)=XPBC(3)
ZPW(s.1)= ZPBC.(3)
GOTU 276
C
C THIKD SUSPENSICN BOGLE
C
26氏 XPh(3.1:=XPBC(3)*.5*OWIOTH(3)*CGS(THETA\2):
ZPW(3.1)=\anglePBC(3) +.5*EWICTH(3) कS IN(THET A1 2)*
XPW(3.2)=XPBC(3)-5*EW1CTH{3)*CCS\THETA!2):
ZPh(3,2)=ZPBC(3)-5*EWIDTH(3)*SIN(THETA(2):
XTEMP=XPW:3,11-XFW: 3.21
LTEMF=2PW(3,11-LFW\3.2)
BETA:3)=ATN2(ZTENP,*IEMP)
27\# XPCG(2)=XPH+RHTCH{2)\&COS\THETOH(2)+THETA\21:
ZPCG(2)= ZPH+RHTCH(2.1*SINITHETOH42)+THETA\2):
\capO 29% 1=1,NSUSP
ALPHA(I, 1;=THETAI1)
IF(SFLAG\I).EQ.O: CCTO 290
ALPHA\I,21=THETA(1:
continue
ILOC=0
IF(LCUT.GE.8) WRITE(LUNG.291) XFH.ZPH.\XPCG:I),
* ZPCG(I!,THETA\II,I=1*NUNITS*
291 FQRMAT:7H MINTT1,BF10.3)
IF{LCUT.GE.8) WRITE\LUNE,296) (XPEC\It,ZPBC\II,NW\I),
+ (XPW(I,J),ZPW(I,N),AEPHAII,J),J=1,< \,I=1,NSUSP)
296 FORMATITH MINIT2,2F1G.3,13,6F1\&.3/24,7X,2F10.3,13,6F10.3/1)
C
C VEHICLE MOVENFNT LOOP
C
c ialculate clearance
C
3W0}\quad|LOC=ILOC+
CALL CLEAR (CAW1,CAWZ,CRW1,CRW2,ICX,LOUT,
+ LUNG,CLKNC,NPTSC1,NFISCZ,NLNITS,CX,OZ,THETA,XPH,ZPHI

```
PAGE A-
```

 IFICLRNC.GE.CLRMINI GOTC 31E
 IOXCLR=1CX
 LOCATC=I LOC
 CLRMIN=CLKNC
 310 IF((LOUT.EQ.4).GF.(LCUY.GE.81) WRITE\LUNG,311) ILOC,CLRNC,
 * CLRMIN,IEX,IEXCLR
 311 FOKMATIGH MAINC, 15,2F10.3.2II0)
 C
C calculate furces under wreels
C
CGX(1)=xPCG(1)-XFH
CGZ(1)=ZPCG(1)-ZFH
IF(NLNITS.EQ.1) COTC 32\&
CGX(2)=XPCG(2)-XFH
CGZ(2)=ZPCG(2)-2 FH
320
IFILCUT.GE.10) WRITEOLUNO.326\ CGX(1).CGZI1.,
+ CGX(<),CGZ(2)
326 FEKM\&T (OH MAIN1,4F18.3)
IF(SFLAG(1).EQ.i) BETAP(1)=BETA(1)\&THETA(1)
IF(SFLAG(2).EQ.1 EETAP(2)=EETA(2)+THETA:1)
IFINSUSP.GE.3.ANC.SFLAG(3F.EQ.1) EETAPI31=BETAI3)+THETAI21
DC 340 I=1.5
X(I) =XPBCIII -XPH
Z:I)=ZPBC:W-ZPH
IF(LCUT.GE.10) WRITELLUNG,336: X(I),2\II
FORMAT(6H MAIN2,4F1C\&3)
continue
CALL FORCES (XN, MAXCANTCTAL,SSG,XPH,ZPH)
C
C captlfit output
C
FSUM=0.
DC 350 I=1,NSUSP
00 355 j=1.2
FSUM=FSUN+FN(I,J)OCTE(L,JI
IF(LCUT.GE.8) WRITE(\&UN6.351: ILCC,FSUM,
+ FN(I,J),CTF(I,J)
355 CONTINLE
350 CONTINUE
351 FURMAT(6H MAIN3,13,7F12.3).
IF(FSUM.LE.FUUMAX) GETC 360
LUCATF=TLOC
FUOMAX=FSUM
300 IFIFSUM.LT.0.1 FSUN=RIAF*FSUM
FOO= FOO+FSUM
IF\SSO.GT.100.1. GGTC 981
C
C ADVANCE VEFICLE
CALL MOVEB (CSLOFE,NGCL,NVEH1,REC,
* REFHTI,KHTCH,RWLIM,SSLGPE,SSQM,THETA,THETAO,THETOH,TWLIM,
+ XPCG,XPH,ZPCG,ZPFI
IFISSQM.GT.100.) GOTG 983
IF(LCUT.GE.8) WKITEILUNE,3E6) XFF,ZPH,AXPCG(I),ZPCG(II.

```
```

H-2058, VCLUNE II
LISTING UF PFOGKAM OBS78E

```
PAGE A-
```

 * THETA(I),l=1,NUNITS:
 366 FGRMAT(6H MAIN4,8F10.31
 IF(LCUT.LT.8) GCTC E9N
 OC 3&X I=1,NSUSP
 WRITE(LUNG,371,I,SFLAGIIH,NWAI),XPECIII,ZPBCII),BETAIII,
 + (XPW(I,J),ZPW(L,J),ALPFA, I,J),It(I,J),J=1,2)
 371 FORMATIGH MAIN5,3I3.3F1&.3,2(3F10.3,13))
 380 CONTINUE
 390 IF(XPW(1,1).LE.HX(1.1,Q)) GCTO 30R
 \iota
C end uf vehicle muvenent legf
C
FCO=FOO/FLCAT(ILCC)
IF:LCUT.GT.0) WRITEX\&UN6,811) LCCATC,CLRMIN,
+ IDXCLR,LGCATF,FGCNAX,FCC
811 FOKMATIOH MAIN7,I5,F1K.3,ILE/6X,I5,2F10.31
C
C WKITE AMC'74 AREAL MOCULE INPUT FILE
IFILSIG.EQ.I) GOTO SAg
IF(LSIG.EQ.2IGO TC SM1
IFIK1.EO.1:GOTO \$95
WRITE(LUN1:9076) NOFGT, NANG.NWCTH
9076 FGKMAT (5HNOHGT,/,5X,IZ,/,4HNANG./,5X,I2,/,5HNWDTH./,5X,I21
4 9 1
Kl=1
WRITE(LUN1.90711
Y,771 FGKMAT{/1X,0HCLRNIA,WX,6HFCOMAX,4X,3HFOO,7X,6HHOVALS,
* 4X,5HAVALS,5X,5HWVALS)
WRITE(LUN1.46721
9,72 FOFMAT(1X,6HINCHES, 4X,6HPCUNUS,4X,6HPOUNDS,4X,6HINCHES,
+ 4X,7HRADIANS, 3X, 6FIACHESI
945 CONTINUE
IF(LSIG.EW.I\GO TO S84
OBH=ABS(CBH)
981 WRITE(LUN1.9\73) CLFNIN,FOCMAX,FGO,OEH,RAG,OBW
Y073 FURMAT(\&X,F6.L,1X,FG41,1X,F9.1,4X,F6.2,4X,F6., 2, 3X,F7.21
IF(SSQ.GT.iもw.) WRITELLUN1.482)
yb% FURMATIIH+.6QX.39H EGSOL CANNOT SOLVE FORCE \& MOMENT EQS.J
GO TE 983
989 IFIK1.EO.1)GO TO 984
Kl=1
WKITE(LUN1,9077)
צ@77 FURMAT(/1X,6FCLRMIN,4X,6HFCCMAX,4X,3FFUO:
WKITE(LUNL,9078:
Y07% FORMATI1X.6HINCHES,4X.6FPCUNDS, 4X, GHFGUNOS:
984 WKITE(LUNL,YE791 CLFMIN,FOCNAX,FCC
y079 FURMAT(1X,Fo.2,1x,FS.1,1X,F9.1:
Y\&3 INOBST=NUBST+1
WRITE(LUN5,985) NCEST
485 FURMAT(2X,19H ENC CF GBSTACLE A,I3)
IFGLSIG.EQ.11 GGTC 2N\&
IF(LSIG.EQ.2) CALL EXIT
IF(LSLG.EQ.3)GC TC 185

```
\(C\)
c end cf cbstacle loop
C
END
C
C
SUBKCUTINE GEGEON IEWICTH,EFFRAD,ELL,HA,HB,HC,HD,HE,HF,HFL, + HX,HZ.LUUT, LUNG, NSUSF, NUNITS, NVEF 1, OA, DEAA, OBH, OBW,OFL,
- UX,OZ,SFLAG,SLCPE,STEPI

C
INTEGER SFLAG
DIMENSION BW!CTH(3), EFFRAD(5), ELL (5), HA(5, 9), HB (5, 9),
 + UAC91.OFL91.CX(10t.EL(10t.SFLAC(3).
c
c
obstacle and hue break points before main slope
C
OANG \(=(180 .-0 B A A)+5.14159265 / 18 \mathrm{C}\).
CANGZ=COS(OANG/2.)
SANG2=SINTOANG/2.1.
TANG \(2=S A N G \angle / C A N G 2\)
CANG=COS(OANG)
SANG =SIN(OANG)
TANG=SANG/CANG
WA =OEW+2.*OBH/TANG
KUNL=ELL(1)-ELL(NSUSB:
IFISFLAG(1).EQ.1) RUAL=FUNL+BWICTHX1:/2.
IF(SFLAG(NSUSPI.EQ.1) RUNL=RUNL'EWIDTH(NSUSP)/2.
IFILCUT.GE.12) WRITEMLUNG, 1211 CANG,OBH,OBW,
+ SANG,CANG,TANG,WA,SLEPE,RUNL
12b FORMATI5H OBG1,9F1Q.37
IF: OANG.LT.0.1 GCTO .130
C
c MGUNC
C SET CBSTACLE PGINTS
C
OX(1)=-RUNL-EFFRACI.14\#TANG<-1.
IF(NVEHI.EQ.D) OX(1) \(=0 \times(1)+E L L(1)-E L L(4)\)
\(02(1)=\varnothing\) 。
\(0 \times 121=0\).
\(02(2)=0\).
\(0 \times\{31=0\) 。
\(02(3)=0\).
\(0 \times(4)=U B H / T A N G ̈\)
\(02141=06 \mathrm{H}\)
\(0 \times(5)=0 \times(4)\)
\(02(5)=0 \mathrm{BH}\)
\(0 \times(6)=W A-C \times(4)\)
\(O Z(6)=O B H\)
\(0 \times 17)=0 \times(6)\)
\(0217)=0 \mathrm{BH}\)
\(0 \times(8)=W A\)
\(02(8)=6\).
\(0 \times(9)=W A\)
\(02(9)=\emptyset\).

UXIIQI＝WA KKIJNL＋EFFHACINSUSPI\＃TANGZ
IFINVEHI．EO．Q）CX（1\＆）＝CX（16）＋ELL（NSUSP）－ELL（5）
\(\mathrm{OZ}(12)=0\) ．
C
C SET Hub phufile fGints
\[
\text { no } 1 \angle 00 \quad k=1,5
\]

IF（K．GT．NSUSP．ANC．NVEH1．NE．W）GGTO 1260
IFIK．EO．J．ANE．NIJATS．EG． 11 GCTO 12 \＆
KK＝EFFRAC：K）
\(H \times(K, 1)=C X(1)\)
\(H Z\{K, 1)=R K\)
\(H \times(K .5)=C \times(5)\)
\(H Z(K, 5)=C B H+R K\)
\(H \times(K, 6)=O X(6)\)
\(H Z(K, 6)=C B H+R K\)
\(H \times(K .10)=C \times(10)\)
HZ（K．10）＝FK
c
\(H Z(K, 4)=C 2(4)+\) RK＊CANE
IF（H2（K，4）．LT－RK）GCIC 110 E
HX（K，4）\(=0 \times(4)-K K * S A A E\)
HX（K， 3\()=\) CX（3）－RKtTANE2
\(H Z(K, 3)=k K\)
\(H X(K, 2)=H X(K, 3)\)
\(H Z(K, 2)=R K\)
\(H X(K, 7)=C X(7)+R K * S A N C\)
HZ（K，7）＝CZ（7）＋RK＝CANE
HX（K，B）\(=0 \times(8)+R K \$ T A \cap G 2\)
\(H Z(K, 8)=R K\)
\(H X(K, 9)=H X(K, 8)\)
\(H Z: K, 9)=5 K\)
GOTO 1290
11名 \(H X(K, 4)=C X(4)-S Q R T(2, * R K * C E H-C E H * O E H)\)
\(H 2(K, 4)=R K\)
\(H X(K, 3)=H X(K, 4)\)
\(H Z(K, 3)=H Z(K, 4)\)
\(H \times(K, 2)=H X(K, 3)\)
\(H Z(K, 2)=H Z(K, 3)\)
\(H \times K, 7)=O X(6)+S G E T(K \$ * R K C E H-O E F * O B H I\)
\(H \angle(K, 7)=R K\)
\(H X(K, 8)=H X(K, 7)\)
\(H Z(K, 8)=k K\)
\(H \times(K, 9)=H X(K, 8)\)
\(H Z(K, 9)=R K\)
1206 CONTINUE
guto 1800
C
C DITCH
C set cbstacle points
C
1300 0X11）＝－RUNL－1．
UZ：il＝と。
\(0 \times(2)=6\).
```

 OZ(2)=6.
 0\times(3)=0.
 CZ(3)=6.
 0XI4 = OBH/TANG
 OZ(4)=GBH
 0x(5)=0\times(4)
 OZ(5)=OBH
 0\times(6)=WA-GBH/TANG
 OL(6)=08H
 0\times17)=0\times(6)
 OZ(7)=OBH
 0x(8)=mA
 OZ(8)=6.
 U)(9)=WA
 OZ(9)=0.
 OX(10)=WA+RUNL+1.
 OZ(1E)=0.
 C
c set rub profile
C
D0 1730 K=1,5
IFIK.GT.NSUSP.ANC.NVEHI.NE.EI GCTC 1700
IFIK.EO.3.AND.NUNLTS.EG.1) GGTO 170D
KK=EFFRAD{KI
HX(K,1)=CX(1)
HL:K,1)=RK
HX(K,2)=0.
HZ(K,2)=KK
HX(K,9)=WA
HZ{K,9)=RK
HX(K,10)=0\times(10)
HZ(K,1%)=RK
HX(K,j)=CX(3)-RK*SANG
HX(K,8)=OX(8)*RK*SANG
IF\HX|K,3).LT.HX(K,81) GCTC 1400
C
C CASE 1 - WHEEL TOUCHES CESTACLE PCINTS 3 AND 8
HX(K,3)=.5*(0X(3)+GX48)1
HX(K,4d=HX(K,3)
HX(K,5)=HX(K,3)
HX(K,6) =HX(K,3)
HX(K,7)=HX(K,3)
HX(K,8)=HX(K,3)
HZ(K,3)=SGRT(KK*FK-4HX(K,3)-HX(K,2):**2)
HZ(K,4)=HZ(K,3)
HZ(K,5)=HZ(K,3)
HZ(K,6)=HZ(K,3)
HZ(K,7)=HZ(K,3)
HZ(K,8)=HZ(K,3)
GOTO 1700
1406 HZ(K,3)=CZ(3)+RK\#CANG
IF(HZ(K,3)\>.CBF+RK GCTO 1500

```
C CHSE 2 - WFEEL TOUCHES PCINT 3 ANC BOTTOM
```

C
$H X(K, 3)=H X(K, 2)+S Q R T 6-2 . * R K * O B H-O B H * O B H)$
$H Z(K, 3)=R K+O R H$
$H X(K, 4)=H X(K, s)$
$H Z(K, 4)=H Z(K, 3)$
$H \times(K, 5)=H X(K, 3)$
$H Z(K, 5)=H Z(K, 3)$
$H X(K, 8)=H X(K, 9)-S 6 R T 9-2=4 \mathrm{FK} 4 \mathrm{CBH}-\mathrm{CBF}+\mathrm{CBH})$
HZ(K,8) $=H Z(K, 3)$
HXiK, $71=H X: K, 8)$
$H Z(K, 7)=H Z(K, 8)$
$H X(K, 6)=H X(K, \delta)$
$H Z(K, 6)=H Z(K, 8)$
GOTO 1700
15wk $H Z(K, 8)=H Z(K, 3)$
$H X(K, 4)=C X(4)-R K * T A A Q<$
$H X(K, 7)=O X(7)+R K \not \subset T A N G 2$
IF(HX(K,4).LT.HXIK,71) GCTC 160 E
C
C CASE 3 - WHEEL TOULHES BOTH SLOPES EEFCRE BOTTOM
C
$H \times 1 K, 41=10 \times 151+C \times(6)+12$.
HX:K,51=HX:K,4)
$H \times(K, 6)=H \times(K, 4)$
$H X(K, 7)=H X(K, 4)$
$H Z(K, 4)=.5 *(H Z(K, 3) * H Z(K, 6)+(H X(K, 8)-H X(K, 31) * T A N G)$
$H Z(K, 5)=H Z(K, 4)$
$H Z(K, 6)=H Z(K, 4)$
$H Z(K, 71=H Z(K, 4)$
GOTO 1700
C
C LAJE 4 - WHEEL TOUCHES SLEFES AND BOTTOM
C
160w HXIK,5)=HX(K,4)
$H \times 1 K, 61=H \times(K, 7)$
$H Z(K, 4)=K K+O B H$
$H Z(K, 5)=H Z(K, 4)$
$H Z(K, 6)=H Z(K, 4)$
HZ1K,7) $=H Z(K, 4)$
1700 CONTINUE

1404 FURMAT(/8(1X.10F10.3)1)
C
C TKANSFOR PROFILES fGR SLOPE
C

```
DO 20.0Q T=1,10
RP=SGRT(OX(1)**2*C21H**21
PHI= ATN2(OZ(I),OXII)*
GX(I)=KP&COS(PHE SLCEE)
UZ(I)=RP*SIN{PHI*SLCEE)
DO <UOE K=1.5
IFIK.GT.NSUSP.ANC.NVAF1.NE.Q) GCTO 2000
```

```
    IF(K.EG.3.AND.NUNITSAEG.11 GCTC 2000
```



```
    PHI=ATN2\HZ\K,I|,tiX&6,I:1
    IF(ABS(PHI).LE**RI) REI=0.
    HX(K,I)=RP*CCS(PHI + SLCFE:
    HZ(K.I)=RP*SIN(PHI+SECPE)
    2UUG CONTINUE
```



```
    + ({HX(K,I),I=1,I0),{+44K,I),I=1,1E),K=1,5:
    DO 2&10 I=1,9
    2010 OFL(I)=SGRT((UX(I+1)40\times4I):**2*(CZII+1)-0Z|I*)**2)
    DU 2150 K=1,5
    IFIK.GT.NSUSP.ANL.NVEH1.NE.O1 GOTO 2150
    IF\K.EQ.3.AND.NUNITS.EQ.1: GCTO 21.50
    RK=EFFRAD;K:
    IFIOANG.LT.O.1 GCTC 21.K
C
C MOUNC
C
    203& HFL(K,I)=SORT({HXXK,I+1)-HXIK,I|)**2*
    * (HZ\K,I+1)-HZ{K,It)**2)
    GOTO 2060
    ELEMENT CF ARC
C
    204& IFI|FX(K,I+I).EG.HX\K,II\.AND.IHZ\K,I*1).EQ.
    + HZ{K.I)II GOTO 2630
        SPROC={HX(K,I+I)-CX(1&1)}*(HX{K,I)-OX(I)
        * (HZIK,I+I)-OZ\I+1):*&HZ(K,I)-OZ\I|)
            ANGLE=ACOS (SPROC/(RK*RK))
            HFL(K,I)=RK*ANGLE
    2N60 CONTINUE
        GOTO 2150
C
C DITCF
C
    2100 CONTINUE
        DU 214* I=1.9
        IF(II.EQ.2).OF.(I.EG&8): GOTO 2130
```



```
        GOTO 214Q
C
C ELEMENT LF ARC
C
```



```
    + HZIK.I\IN GOTO 211B
```



```
    * (HZ(K,I+1)-GZ(It1H)*&FZ(K,I)-CZ(II)
    ANGLE=ACOS\SPRCD/ARK&RK)\
    HFL\K,I)=RK*ANGLE
    IFILCUT.GE.10) WRITE&LUNG,<145% K,I,HX\K,II,HX\K,I+11.
    * (IX(I),OX(I+I),HZ(K,IA,HZAK,I+1),OZ\IH,OZ\I+I),RK,SPROD
```

 2145 FORMATV5HK,I , 2X,213.6H HX , 2 \(2 \mathrm{ZX}, \mathrm{F} 12.31,2 \mathrm{X}, 6 \mathrm{H}\) OX ,
 \(+2!2 X, F 12.31,1.6 \mathrm{HHZ}, 2(2 X, F 12.3), 6 \mathrm{H} \mathrm{OZ}, 2(2 \mathrm{H}, \mathrm{F} 12.31\),
 + 1JH FK,SPROD,212X,F12.31\%
 C
© DEFIMITICN OF O日STACEE ELENENTS
C ba - angle between element and rorizuntal
c
OA(1)=SLUPE
OA12) $=0$.
OA(3) $=$ SLCPE+GANG
(0A(4) =ど。
OA(5)=SLOPE
OA $(6)=0$.
OA(7)=SLCPE-OANG
OA(8) $=6$.
OA(9)=SLOPE
C
C definition uf hue elements ey quadeatic
i
DU $2300 k=1,5$
IFIK.GT. NSUSP.ANC.NVEHI.NE.A) GCTO 2300
IFIK.EO.3.AND.NUNITS.EG.1) GOTO 2300
KK=EFFRAE(K)
DU $228 \mathrm{I}=1,9$
IFAHFL(K, II.EQEx. 1 GCTO 2220
IFOFLIIJ.EQ.D. 1 GOTE 2250
ι
C blement ls line segment
c
$H A(K, I)=.x^{\prime}$.
HB(K.I) $=0$.
HC(K,I $=0$.
HU(K,I) $=\mathrm{HZ}(K, I+1)-H Z\left(K_{i n} I\right)$
HE(K,I) $=$ - $(H X(K, I+1)-H X(K, I))$
HF(K,I) $=$ - 3 HD(K,I) * HX(K,II + HE\{K,II * HL:K,II)
GOTO $228 x$
c
C ELEMENT IS PCINT
C
$2<20 \quad H A(K, I I=E$.
$\operatorname{HB}(K, 1)=0$.
$H C(K, I)=Q$.
HD (K,I) $=0$.
HE(K,I)=6.
HF(K,I) $=0$.
guto 228®
し
C ELEMENT IS ARC
C
$2250 \quad H A(K .1)=1$.
HE(K,I) $=6$.
HC(K,I) $=1$ 。

```
    HD(K.I)= - 2.* OX(I)
    HE(K.I)= - 2.*CZ\I)
    HF(K.I)=OXII)* OX(1* CZ(I)* OZIIt - RK* RK
    <280
    2300
    + ((HFL(K,I),I=1,9),1&A(K,1),I=1,9);0&HB(K,I),I=1,9),
        +(HC\K,I),I=1,9),(HC4K,I),I=1,91,(HE{K,I),I=1,9),
        + (HF(K,d), L=i,91,K=1,5)
    25UL FURMAT19F10.3)
C
C CALCULATION OF STEP SIZE
C
    STEP=10E6.
    DO 240k K=1,NSUSF
    DO<400 I=1.9
    IF(HFL(K,I),EG.K.1 CETC 240W
    IFYSTEP.LE.HFL\K,I*I GOTO 2400
    STEP=HFL(K,I)
    2400 CGNTINUE
    STEP =AMAX1(.4y % STEF.1.0.
    IFILCUT.GE.1) WRITEINUNG,2550: STEP
    FORMATI12H STEP SIZE& ,F10.3/*
    KETUFN
    END
i
C
    SUBRCUTINE CLEAK ICAW1,CAW2,CRW1,CRW2,IOX,
    + LOUT,LUNG,NINCLR,NPTSC1.NPTSC2,NUNITS,OX,UZ.THETA,
    + XH,ZH)
```



```
    * CRW1{151, CRW2(15),EX410),OZ110),THETA(2).
    * XPV1(20),XPV2(20),2FV1(20),ZPV2(20.
    KEAL MINCLR
C
C lCCATE vehicle pCints
C
110 CONTINUE
    IF{LCUT.GE.1G)WRITE\UUNG,111) {XPV1AI!*I=I,NPTSC1|
    IF&LCUT.GE.1隹WITE{LUNG,111) (ZPV11It,I=1,NPTSC1)
    FURMATI7H CLEARG.13F50.3)
    IFINUNITS.LE.IN COTC 13E
    DU 120 I=1,NPTSC2
    XPV2(II=XH+CRW2II#CESIVPAZ+CAW2II|
    ZPV2\I:= ZH+CRW2III*SIN(VPAZ+CAW2(II)
120 CONTINUE
    IF(LCUT.GE.1E)WRITE{LUNG.111) (XPVZ(IN.I=1,NPTSC2)
    IF(LCUT.GE.1U)WRITE(UUN6.111)(ZPV 2(I),I=1,NPTSC2)
C
                        113
```

```
    k-2658. VGlune I I
c calculate clearance aecve cestacle pgints
```C
 130 DC < < D IO=1,10
 lLO(10)=1000.
 x=0\times(10)
 L=OZ(10)
i
C test if vehicle is abcve obstacle point
c
 IF(XFVIA1).LT.X) GOTC 20E
 IF(XI.LE.X) GUTO 180
 IFINUNITS.LE.1) GCTC 200
 IF(XFVZ(NPTSLC).GE.X* GCTG 200
C
C Tkailer above point
C
 IF(XPVZ(1).GE.X) GCTC 150
```



```
 CLO(1O)=VPZ-Z
 IF(LCUT.GE.IDIWRITE{LUNG,141) IO,Xi,Z,VPZ,CLO\IOU.
 141 FOKMAT(7H CLEAR1,I3,4FIR.3)
 GUTO 2%0
 150 DU 170 IV=2.NPTSC2
 IF(XFVZ\IV).GE.X) GCTG 174
 VPZ=2PV<(LV)+(ZPV2(IV-1)-ZFV2(IV))*{X-XPV2&IV\)/
 * (XPVZ{IV-1)-xpV2(IV):
 CLOLIOI=VPZ-Z
 IF(LCUT.GE.IWIWRITEGUNG.1E1) IC.X,R,VPZ,CLO&IO)
 161 FURMAT(7F CLEAR2,I3.4F18.3)
 gOTO 206
 170 CONTINUE
 WRITE(LUNI,176) IO,*.Z
 170 FURMAT(6F OERR1,13,2F10.3)
 CALL EXIT
C
C vehicle abcVe point
C
 180 DC 150 IV=1,NPTSC1
 IF(XFVI(IVI.GF.X) GCTC 190
 VPZ=2PVI(IV)+(ZPV1(IV-1)-ZFV1(IV))*(X-XPV1(IVI)/
 + {XPVIlIV-II-XPVI\IVI*
 CLO(10)=VPL-L
 TFILCIS.GE. IVI
 + WRITE:LUNO,186) IL,X,Z,IV,VPZ,CLCIICB
 180 FOKMAT(7H CLEAR3,I3,2F10.3,13,2F1\ell.3)
 GOTO 2kG
 196 CONT INUE
 VPZ=ZH+(ZPV1(NPTSC1)-2H)*(X-XH)/(XPV\&NPTSC1)-XH)
 CLO(IO)=VPL-Z
 IF(LCUT.GE.IEOWRITEANUNG.196) IC,X,Z,VPZ,CLOAIO)
 196 FCKMAT(3H 04,I3,4F1R.3)
 2DD CONTINUF
C
C calculate clearance below vehicle pgints
```

```
R-2058, vOLUME II
PAGE A-22
LISTING GF PKOGRAM OBS78B
C
 nO 24* TV=1,NPTSCl
 CLV1!IVI=150%.
 x=XP\veeI(IV)
 Z=ZPVI(IV)
 IF(X.GE.CX(1)] GCTG 220
 OPZ=CZ(1)+10Z(2)-CZ(1):*(X-EX(1):1(OX(2)-0x(1))
 CLV1(IV)=<-0PL
 IF(LCUT.GE.IDIWRITENEUNG.216) IV,X,Z,OPZ,CLVIIIVI
 a
 DO 270 10=2,10
 IFIXF.GE.CXIICD) GOTO 270
 CPZ=CZ(10-1)+(0Z(10)+CZ(10-1)*(XH-OX(100-1):ANOX(10)-0X(10-1))
 CLH=ZH-OPL
 IFILCUT.GE.IWIWRITE(&UNG,266) XH,ZH,IO,OPZ,CLH
206 FORMAT(3H H2,2F1&.3.13,2F1&.3)
 GOTO 280
270 CUNTINUE
```



```
 CLH=ZH-OPZ
 IF(LCUT.GE.10)WRITEALUN6;276) XH,2H,OPL,CLH
 270 FORMAT(3H H3,4F1E.3)
C
l
C
286
```

```
 guTo 240
 DC <30 10=2,10
 IFIX.GE.CX(ION) GOTG 23E
 OPZ=CZ(IU-1)+(CZ(10)-CZ(10-1))*(X-0X(10-1).)/10x(10)-0\times(10-1)!
 CLV1(IV)=Z-OPZ
 IFILCUT.GE.10)
 * WKITE(LUNG,226) IV,\lambda,X,IO.[FZ,CLVI(IV)
 FOKMAT(3H V2,I3,2F1R,3,13,2F1G.3)
 GOTO 246
 CONTINUE
 UPZ=CZ(9)+(0Z(10)-0249)-) #(x-CX(9)1/(CX110)-0X(9))
 CLVI(IV)=Z-CPZ
 IFILOUT. GE.10IWRITEIEUNE,236) IV,X,Z,OPZ,CLV,IIIVI
 FOKMAT(3H V 3,13,4F1E.3)
 CONTINUE
 calcllate clearance belcw fitch
 CLH=2000.
 IF(Xt.GE.OX(1)) GOTC 26&
```



```
 CLH=ZH-OPZ
 IF{LCUT.GE.1OIWRITEILUNG,256) XF,ZH,OPZ,CLH
 FORMET(SH H1,4F18.3:
 GUTU 280
 calcllate clearance belcw trailer points
 IFINUNITS.LE.1) GCTC 325
 DG 320 IV=1,NPTSC2
 CLVz(IV)=2500.
 x=xPV2&IVI.
```

```
 Z=ZPV2(IV)
 IF(X.GE.CX(1)) GCTO 300
 OPZ=CZ(1)+(UZ(2)-CZ(1):3(X-OX(1)1)/(0X(1,2)-OX(1):
 CLV2(IV)=Z-CPZ
 IFILCUT.GE.IDIWRITEIEUNG.291'IV,X,Z,OPZ,CLV2:IV)
 291 FORMFT(3HT1,13,4F1\ell,3)
 GOTO 320
 30% DO 310 10=2,10
 IF{X.GE.OX(IUJ: GCTC 31%
```



```
 CLV2:IVI=Z-OPZ
 IFILCUT.GE.10I
 + WRITE!LUNo,306) IV,X,Z,IC,(PZ.CLV2dIVI
 FOKMAT(3H T<,I3,<́F1E,3,I3,<F10.3)
 GOTO 32%
 cgntinue
```



```
 CLVZ(IV)=Z-OPZ
 IF(LCUT.GE.1RIWRITEAUUN6,316) I V,X,Z,OPZ,CLV2IIVI
 FOKM&T(3HT3,13,4F1&,3)
 CONTINLE
 minimun clearance
 325 MINCLR=CLO(1)
 I DX=1
 DC 330 IC=2.10
 IFICLO(ICI.GE.MINCLFA GOTO 330
 MINLLR=CLO(IO)
 I DX= 10
 33% CONTINUE
 OO 34% IV=1,NPTSCl
 IF(CLVI(IV).GE.NINCLEI GOTC 340
 MINCLR=CLVI(IV)
 IDX=1300%4IV
 340 CONTINUE
 IF!CLH.GE.MINCLRI GCTO 35*
 MINCLR=CLH
 IDX=1111
 350 IFINUNITS.LE.11 GOTC 370
 DC 360 I V=1,NPTSC2
 IFICLVZ(IVI.GE.NINCLRI GCTC 36&
 MINCLR=CLV2(IV).
 I DX=190*IV
 360 CONTINUE
 370 IF!LCUT.GE.91 WRITEILUN6,371) MINCER
 371 FGKMAT(4H MIN,F1E.3.1101
 RETURN
 END
C
C
```

SUBKCIJTINE FURCES (XA, MAXC, NTOTAL,SSG,XPh, ZPh)
DIMENSIUN AJINV(6, 61,W(11世1,XN(6),FI6)
DIMEASION ALPHC(1,2), BETAD (3),FX(3,2),FZ (3,2),RF(3,2),TF(3,2)

```
K-2058, VCLUME II
K-2058, VCLUME II
C
C
+ BaLMCI3),BALMU(3),
```



```
+ COSA(3,2),COSB(3),C(SG13,2),CGFX(2),CGFZ(2),
* Cux(2).CGZ(2), CGMY(2),CFR(3,2),CTF(3,21.
* EFFRAD(5),ELL(51,
+ FHX,FHZ,FN(3,2),
+ HA(5,9),HB(5,9),HC(5,9),HD(5,9),HE(5,91,HF45,9),
+ HFL:5,91,HX(5,16),H205,1.4).
* gamMAI 3,2l,
* IB(5.2).IP(5.24,IH(5.2).
* LOUT.LUNG.
+ NSUSF,NUNITS,NH(5),NW2(5),
+ OA(9),OFL(9),CX(16),OZ(10),
+ PM(3),PUWERR(5,2),FX63),FXPCG(3),PZ(3),PIPCG(3),
+ KBC1,RBC2,RR(3,2).
+ SCALE(6),SFLAG(5),SIAA(3,2),SINE(3A,STEP,
+ THETE1,THETB2.
+ X(5),XPBC(5),XPW15.2%
* 2:51,ZPBC(51,ZPRCF(5.21,ZPMS5.21
C
C
 INTEGER SFLAG
 EXTEKNAL CALFUN
 DSTEP=.0001
 DMAX=1&゙も.
 ACC=1.
 MAXFLN=500
 RACI AN=57.29577951
 OO 1 Q0 I=1.NSUSP
 SINB(I)= SLNIBETAFIII:
 CUSBII)= COS\BETAP(I)*
 DO 1 ## J=1,2
 SINA(I,J)=SIN(ALFHȦ(1,J)
 CUSA(I,J)=COS\ALFHA\INJ!
 IF(Nh2(J).NE.D:ANC.NWIJ),EGOE) XNA1)==*1
1d. CONTINUE
 IF(NLNITS .EQ. 1) NEE=3
 IFINLNITS .EQ. 2) NEG=6
 N=i
 SALPHA=0.
 OC 150I=1,NSUSP
 IFINWITI.EQ.2IGCTC 130
 N=N+1
 SALPHA=SALPHA+SIMAII*II-CRFII,1)
 IF(SFLAG{I).EG-&.CR.AN(I).EG.1:GCTO 150
150 N=N+1
 SALPHA=SALPHA+SIMAII*Z)-CRR(I.2:
150 CONTINUE
 IF\N.EQ.OI GOTO 18D
 SCALE(1)=1.
 XN(1)=SALPHA/FLCAT(N*
```

    GOTO 14k
    180 WKITEILUNG.IB1)
    i&1 FORMAT:31H FORCES: EFROF IN NO. CF WHEELS)
    CALL EXIT
    1YW CGNTINUE
        DU 2QU L=L,NEO
        IF(-.01.LT.XN(L).ANC&XN(L).LT..011 XN{LI=.O1
        IFAXN(L).EQ.D.) SCALEOL\=1.
        IF(XN(L).NE.&.1 SCALG\L)=1x.**IFIX(ALOG1D|ABSIXN(L)))
        XN(L)=XN(L)/SCALEIL!
    CONT INUE
    I PKINT=LOUT-10
    CALL EGSCL (NEG,XN:F,AJINV,CSTEF,DMAX,ACC,MAXFUN,
    + W,MAXC,LUNG,IFRINT, (ALFUNI
    NTOT AL=NTOTAL+NAXC
    DO 3&Q L=1,NEQ
    XN(L)=XN(L)*SCALESL:
    SSO=Q.
    00 4#0 K=1,NEQ
    4dQ SSQ=SSD+F(K)*F(K)
IFISSQ.GT.1EQ.1 mRIIEALUN5,GBQA XN,F,SSQ
IF(LCUT.LT. ID) KETNRA
DC 5\&\& I=1,NSUSP
BETA[\IJ=8ETAP{I)*RACIAN
DO 5(% J=1,2
TFII,J)=FN(I,J)*CTF(I,J)
RF(I, J)=-FN(I,J) =CKRAl,J)
TFFiF=TF(I,JI+RF(I;J)
FX(I,J)=-FN(I,J)*SINA(L,J)+TFRF*COSA(I%J)
FZ(I,J)= FN(I|J)*CCSAII,J) *TFRF*SINA{I,J)
ALPHCII;JI=ALPHAII,JA*RADIAN
5wG CONTINUE
G
HORMAT(16H SSQ OYER LIMIT ./.5H XN=.612X.F12.3../5HF=
+6(2X.F12.31.1.6H SSG=,2X,F12.3)
WRITEILUNG.9vEN SSG. HAXC.NTCTAL
IFISSQ.GT.10x.1 *RITEILUN6,9101 XN,F
WFITEILUNG.920! XFH.ZFH

```

```

    WFITF(LUNG.940) (ZNIt,I=1, NSUSP)
    WRITE(LUNG,95D) (ICEXIII,CCZ(II),I=1,2)
    WKITE(LUNG.96D) (\ALFHD(I,J),j=1,<),I=1,NSUSP)
    WRITE(LUN6.976) ((CEEX(I).CGFZ:I)|,I=1,<*
    WRITEILUNG.98.91 fHX,FHZ
    WRLTE:LUNO,GG:) (SFLAG(I),I=1,NSUSP)
    WKITE\LUNG,1DDA\ {NW%IM,I=1,NSUSP\
    WKIIE{LUNG,1,DIO) ({FR(I,J),J=1,<l,I=1,NSUSP)
    OO 70. I=1,NSUSP
    IF(SFLAGII). EG.1) GCTO 800
    7%j CUNTINUE
GOTO 850
80% WRITEILUNG.102C1 (EETACII).I=1.NSUSP:
WKITE(LUN6,1025) (BhWOTHII:,I=1,NSUSP)
WRITE(LUNG.10.a) {BNHI),I=1,NSUSP)
WRITE(LUNG,1040);(AEIUI,N);J=1,2|,I=1,NSUSP)

```

850

940
910
+ \(6(2 \times, F 12.31)\)
FURMAT16H XPH
93 FORMATIGHX , i0. \(2 \mathrm{X}, \mathrm{F10.211}\)
940 FORMATIGH Z , 101 \(2 \mathrm{X}, F 10.211\)
950 FURMAT14H CGX(I),CGZ1L1,8\{2X,F10.211
960 FLRMATIGK ALPHA, 10(<K.,FIE. く)
970 FORMAT(17H CGFX(1).CGFZ(I), 10(2X.F10.1)1
900 FORMAT (33H FHX, FHZ FRRCES AT TRAILER HITCH
950 FORMAT(6H SFLAG, 10(2x, I10.)
100 E FORMAT(OH NW , 12 (2x, L10)
1016 FORMATIoH KR , 16d \(2 x, F 10.21)\)
1020 FORMATigH BETAP, 10:2x,Fi0.211
1025 FOKMAT17H BWICTH,10(EX, F10.21)
103 FOKMAT:6H BN , l60 \(2 x, F 16.21)\)
1640 FORMATIGH BT , 1012X,F10.31)
105 FORMATIGH CRR .10(\(2 x_{*}\) F10.2)
IW60 FGRMATYGH CTF \(.10(2 x, F 10.211\)
1076 FORMAT(6H FN , 121 \(\angle X, F 10.211\)
1080 FORMATIOHRF , 16i<x,Fik. 211
1690 FURMAT16HTF , 18(2x.F10.21)
1100 FURMAT \(66 \mathrm{HFX}, 16\left(2 \mathrm{~K}_{4} \mathrm{~F} 10.211\right.\)
1110 FORMAT(6HFZ *101EX;F10.2)
1120 FLRMAT(6HPX , 16 (2x, F10.21)
1130 FOFMAT16HPZ , 1012X.F10.211
1140 FGRMAT16HPM ,18(EXioF10.1)
RETURN
END
\(c\)
C
c
SUBRCUTINE NFORCE \(\{\times X, X X T, X Z M, X Z M T, Z Z, Z Z T)\)
c
```

    CGMMEN ALPHA(5,2%,
    + BALMC(3),BALMU(3),

```

```

* COSA(3,2),COSB(3A,CCSG(3,2),CGFX12),CGFZ(21,
* CGX(2),CGZ(2),CGNY(zt.CRR(3,2),CTF.(3,2),
+ EFFP,AD(5),ELL(5).
* FHX,FHZ,FN(3,2),
* HA(5,9),HB(5,9),HC\5,94,HD(5,9),HE\5,9),HF\5,9),
* HFL(5.9).HX(5.101.H245.10).

```
```

    GAMMA(3.2),
    + IB(5,2),IP(5,2),IH(5,z),
    + LQUT.LUNG.
    * NSUSF,NUNITS,NW15i,Nm2(5).
    * UA(Y),OFL(91,0X(10.),C2\10).
    * PM(3),POWEKR(5.2).PX63),PXFCG(3),P2(3).PZPCG(3).
    + hBCl,PBC<,KR(3,2),
* SCALE(6),SFLAG(5),SINA(3,2),SINE(3),STEP.
* THETP1,THETB2.
+ X(5),XPBC(5),XP*15,2),
* 2(5),ZPBC(5),ZPRCF\5.2d,ZPh(5,2)

```
C
C
- DU be \(1=1\).NSUSP
 SET TU \(\angle E R O\)
 \(B N(I)=0\).
 BT(I.1) =
 BTII.21=と。
 \(\operatorname{FORCE}(I, i)=0\).
 FORCE \(I, 2)=0\).
C IF SINGLE WHEEL ASSEMBLY GCTC IE

 IF BCGIE ASSEMBLY IS SUFPCRTEO CN EOTH WHEELS GOTO 20
 IF(ISFLAGII).EQ. 1 . AND. INWIII. EQ. DII GOTO \(20 ~_{20}\)
 IF BCGXE ASSEMBLY IS SUFPOFTED CN ONE WHEEL ONLY GOTO 30

 WRITEALUN5.5) I,SFLAGULI, NW(I)
 FURMATI \(42 H\) ERKOR IN WFEEL SUPPORT SPEC: I. SFLAG,NW= ,
 \(+\quad 3(\langle X, 13)\)
C
 10
 \(J=1\)
 CTF (I, 2) =0.
 CTR=CTFII, J)-CRR(I,N
 IF(Fへ(I;J).LE.G.) CTR=Q.
 \(P X(I)=F N(I, J) *(C C S A A O J) \neq C T R-S I N A I I * J):\)
 PL(I)=FN(I,J) \(=(C\) CSA(IOd) SINA(L, J) \(\#\) CTRI

 GOTO 40
C. BUGIE ASSENBLY SUFFEFTEC GA BOTH wreELS
 OU \(<5 \mathrm{~J}=1.2\)
 ANGLE OF THE VECTOR ATTACHEE AT WHEEL CENTER
 ANGLE(I,JI=GANNA(I,Jt+BETAFII)-ALPHAII,J)
 SINANG(I,J)=SIN(ANGLE(I.J))
 \(\operatorname{COSANG}(I, J)=\operatorname{CGS}(A N G L E I I, J \%)\)
 CONTINUE
 \(J=1\)
 IF(Nh2 (I).EQ.21 FN(Is1)=.5*FN(I.1)
 FURCE(I,J)=FN(I,JJノCCSG\&I,JJ

C. NCRMAL FORCE CN EOEIE EEAM(EQ. FCR BOTH WHEELS)

BN(I)=FORCE(I,J)*CCSADG(I,J)
C TANGENTIAL FORCE ON ECGIE EEAM BT(I, J)=FGRCE(I,J)*SINANG(I,J)
C NORMAL FORCE TC THE GROUND UNDER WHEEL \(J=2\)
\(J=2\)
FORCE(I, J)=BN(I)/COSANG(I, J)
FN(I, J)=FCRCE (I, J) \(\#\) CESG(I, J)
TANGENTIAL FORCE UNCER WHEEL \(j=2\)
BT \((1, J)=\) FUKCE \((I, J H\) © \(\operatorname{INANG}(I, J)\)
C FURGES ACTING ON FIVET
\(\mathrm{BN} 2=\mathrm{EN}(\mathrm{I}) * 2\).
c total tangential fofce
\(\mathrm{BIT}=\mathrm{BT}\left(1,1 h+\mathrm{BTG}_{\mathrm{I}}^{\mathrm{I}}, 2\right)\)
C COMPCNENTS OF THE PIVCT FORCE
\(P \times(I)=-B N 2 * S I N B(I)+E I T * \operatorname{COSB}(I)\)
PZ(I)=BN2*COSE(I)+BTE*SINB(I)
C MCMENT AT PIVDT

GUTO 40
\(i\)
 bGGIE ASSENBLY SUFPCATEC ON ONE WHEEL ONLY I ON OBST.)
 \(J=N W\) (I)
 \(B W=.5 * B W\) IDTHI II
 IF(J.EQ.1) \(K=2\)
 IF(J.EQ. 2) \(K=1\)
 FNA \(1, J=F N(I, 1)\)
 \(F N(I, K)=0\).
 \(\operatorname{CTF}(I, K)=0\).
 IF(J.EQ. 2) \(\forall W=-B\) in
 ANGLE(I, J)=GANMARI, Jl+BETAF(I)-ALPHAII, JI
 SINANG(I,J)=SIN(ANGLE(I,J))
 COSANG(I, J) \(=\operatorname{CCS}(\operatorname{ANGLE}(1, \mathrm{~d}) \prime\)
 FORCE: \(L, j)=F N: L, j)(C E S G(I, J)\)
 IF(FN(I,J).LE. ©. FCACE (I,J)=FN(I,J)
 NGRMAL FOKCE ON ELGIE BEAMIEG. FCR BOTH WHEELS*
 \(B N(I)=F O R C E(i, j) * \operatorname{CGSANG}(I, J)\)
 TANGENTIAL FORCE CA RCGIE EEAM
 BT \((1, J)=\) FORCE \((I, J) \neq \operatorname{SNANG}(1, J)\)

 PZ(I)=BN(I)*COSB(It+ET(I,J)*SINE\{I)
 PM(I)=FN(I,J)*RR(I*J\#FTF(I,J)+EN(I)*BW
 CONT INUE
 CONT INUE
 SIGN CONVENTICN fCR EENETH CF THE MOMENTS ARMS
 + FRCM HITCH TO THE RIGHT SIDE, + IN UP DIRECTION
 + FUR MMMENTS CCW.
 กO \(\angle 8 \mathrm{E}=1=2\)
 \(x x=x x+P x(L)\)
 \(Z Z=Z Z+P Z(1)\)
 \(X Z M=X Z M+P X(I) * Z(I)+F A G I) *(1)+P N(I)\)
 cont inve
 IFINSUSP EQQ 21 GOTG 200
 FCKCE SUMMATION fOK TRALLER
 XXT=PX(3)+FHX+CGFX(2A
```

                Z\angleT=FZ(S)+FHZ+CGFZ&2*
                XZNT=-PX(3)*Z(3)+PZ(3)*X(3)*CGFZ(2)*CGX(2)*PM(3)-CGFX(2)*CGZ(2)
            * +CGMY(2)
                KETURN
    \angleWE XXT=0.
            ZZT=E.
            X\angleMT=0.
            RETURN
            END
    ```
じ
し
C
 SUdRCUTINE CALFUM(N, XN,F)
 INTEGEK SFLAG
C
C
 COMMCN ALPHA(5,2),
 * BALMC(3). BALMU(3).
 * beTA (3), BETAP(3), BNA31, RRAKEK(5,2). BT(3,2, BWIDTH(3),
 + CUSA(3,2), COSB131,CCSG(3,2), CGFX(え), CGFZ(2),
 + CGX(2), CGZ(2), CGMY(2),CれR(3,2),CTF, (3,2),
+ EFFRAD(5),ELL(5),
- FHX,FHZ,FN(3,21.
\(+\operatorname{HA}(5,9), \operatorname{HB}(5,9), H C(519), \operatorname{HO}(5,9)\) HE \(\operatorname{HE}(5,9), \operatorname{HF}(5,9)\),
+ HFL(5.9), HX(5,10),HZ45,10),
* GAMMA(3.2).
* IB(5,2),IP(5, 2), IHI5, 2),
+ LUUT.LUNG.
+ NSUSF.NUNITS.NW(5).NH2151.

+ PM(3). POWERK(5,2), PX(3), PXFCG(3), PZ(3), PZPCG(3),
* KBCi,RBC2,KR(3,2).
+ SCALE(6).SFLAG(5).SINA(3.2),SINE(3), STEP.
+ THETEL,THETBZ.
- X(5), XPBC(5), XPW(5, 2)
\(+\quad 2(5), Z P B C(5), Z P R L F A 5,21, Z P h(5,2)\)
C
C
 DIMENSIUN XN(6), F(6)
 CTFR=XN: 1) CSCALE (11
 FN(1,1) \(=X N(2) * S C A L E(2)\)
 FN(2.1) =XN(3) \(\operatorname{CSCALE}(3)\)
 FN(3.1)=XN\{4)*SCALE\{4)
 \(F H X=X N(5) * S C A L E(5)\)
 \(F H Z=X N(6) * S C A L E(6)\)
 OO \(100 \mathrm{I}=1\), 3
 FN(I, 2) \(=0\).
 (D) \(1 \in J J=1,2\)

 GAMMA(I,J)=ATAN(CTF(I,J)-CFR(I,J))
 \(\operatorname{COSG}(I, J)=\operatorname{COS}(\) GANNAII, J) \()\)
16 CUNT INUE
CALL NFOKCE (XX, XXT, XZN, XZNT, ZZ, ZZT)
\(F(1)=X X\)
\(F(2)=2 Z\)
\(F(3)=X 2 M\)
\(F(4)=X X T\)
\(F(5)=Z Z T\)
\(F(6)=X Z M T\)
RETURN
END
SUBRCUTINE MOVEB ICSLOPE, NEGL,
+ NVEHI,RBC,KEFHT1, KHTCH.FWLIN, SSLOPE,SSQM, THETA, THETAO,THETOH,
+ TWLIM, XPCG, XPH,ZFCG,ZFHI

INTEGER SFLAG
DIMENSION AJINV 6,61 ELENA5).
+ KGC(5), RHTCH:2), RWLIM(3.21, THETA(2t,THETAR15).
+ THETEH(2), TWLIM(3,2),WI110),XL(5), XPCG12\%,ZPCG(2)
EXTERNAL ELEVAT
DO 1Q \(I=1,5\)
NW2(1)=Nwill)
USTEF \(=.0001\)
DMAX \(=100\).
\(A C C=.1 * S T E P\)
MAXFUN=50.
PXPCG(1) =XPCO(1)
\(P \angle P C G(1)=\angle P C G(1)\)
PTHETA=THETA11)
NEQL \(=3\)
NAGA IN = \(=0\)
NW(1)=0
\(N W(2)=6\)
```

            THETE1=THETAZ\1)
            THETEC=THETAD(2)
            KBCl=RBC(1)
            F. BC 2 =RBC(2)
            IF(SFLAG(1).EQ.G) GCTC 2&
            NEGL=4
            XL(4)=BETA(1)
    2# IFISFLAG(2).EQ.0) GCTC 30
            NEGL=NESL+1
            XL(NEQL)=BETA(2)
            XL(1)=PXPCG(1) +STEP*CSLQPE
            XL(2)=PZPCG(1)+STEF多SSLGPE
            XL(3)=PTHETA
            IFILCUT.GE.1OI WRITEALUN6.401 NEGL,
            * THETE1,FBC1,THETE2,REC2,(XL(L),L=1,NEQLI
            FGKMAT\6H MOVE1, [4,14F8.3%
            LOUT=LOUT+1
            CALL ELEVAT (NEQL,XI.ELEV)
            LOUT = LOUT-1
            IPRINT=LOUT-1D
            CALL EQSOL (NEQL,XL,ELEV,AJINV,CSTEP,
            * DMAX,ACC,MAXFUN,W,MAXC, LUNO,IPRINT, ELEVAT:
            LCUT=LOUT+1
            CALL ELEVAT (NEQL.XL|ELEVI
            LCUT=LUUT-1
            SSQM=D.
            DU 5& L=1,NEQL
            SSGM=SSOM+EL EVIL***2
            XPCG(1)=XL(1)
            \anglePCG(1)=XL(2)
            THETA(1)=xL(3)
            IF(LCUT.GE.10) WRITE&LUNG,61) XFCG(1), ZPCG\11,THETA:11,
            + XPBC(1),ZPBC(1),XPW(L,1),ZFW(1,11,1H(1,11,XPBC(21,ZPBC(2),
            + XPW:<,1),2PW(2,11,itiz,1)
            61 FORMATIOH MOVE2,7F10.3,I3,4F10.3.13)
            IF:SSQM.GT.10.1 WRITE{LUN5,661 SSGM,MAXC
            FORMAT\23H SSQN GVEF LIMIT: SSQN=,E15:7,
            + oH, MAXC=,IoI
            IF(NEOL.EQ.3) GOTO 340
    c
C UNE SUSPENSIGN ON UNLT I IS A bCgIE
C
IF(SFLAG(1).EQ.1.ANEAAW(1).EQ.EI GOTO
70
BETA(2)=XL(4)
GOTO 8N
7% BETA11I=XLA4)
IF(LCUT.GE.10) WRITEILUNO*71) EETA\1t.,XPW:1,21,ZPW(1,2),
+ IHIl,2)
71 FURMAT(6H MOVEs,3F1Eb3.13)
IF(SFLAG(2).EQ.O.CR.NW(2).NE.0) CCTO }8
BETA!2)=XL(5)
80) IF(LCUT.GE.10) WRITE4LUNG.8i) BETA421,XPW(2.21,ZPH(2,2),
+ IH(2,2)
FORMAT (6H MOVE4,3F1R.4,1.3)

```
```

R-2058. VCLUNE II

```
C
```

C
C CHECK FIRST SUSPENSION RGGIE CUT OF LIMIT
C CHECK FIRST SUSPENSION RGGIE CUT OF LIMIT
C lF single axlé ck bugIE ci both wheels leave
C lF single axlé ck bugIE ci both wheels leave
C THETBI AND RBC1
C THETBI AND RBC1
C
C
85 IFISFLAG(1).EQ.D.CR.AWIIH.NE.DO GOTO 190
85 IFISFLAG(1).EQ.D.CR.AWIIH.NE.DO GOTO 190
IF!BETA!it.GE.BALMU{1)\ NW(1)=1
IF!BETA!it.GE.BALMU{1)\ NW(1)=1
IF(BETA(1H.LE.BALMD(LH) NW(I)=2
IF(BETA(1H.LE.BALMD(LH) NW(I)=2
IF(SFLAG(1).EQAD.GR.ASFLAG(1).EG.1.ANC.
IF(SFLAG(1).EQAD.GR.ASFLAG(1).EG.1.ANC.
+ NW(1).EQ.01) GOTC 15.4
+ NW(1).EQ.01) GOTC 15.4
IFISFLAG(I).EQ.1.ANCGNW(1).EQ.1) GOTO 150
IFISFLAG(I).EQ.1.ANCGNW(1).EQ.1) GOTO 150
C
C
C FLRST SUSPENSION BOGIE CN FEAP WHEEL CNLY
C FLRST SUSPENSION BOGIE CN FEAP WHEEL CNLY
C
C
C
C
THETBI=ThLIME1,2%
THETBI=ThLIME1,2%
PBC1=RWL IM: 1,2)
PBC1=RWL IM: 1,2)
BETA(1)= BALMO(1)
BETA(1)= BALMO(1)
GOTO 170
GOTO 170
C
C
C FLRST SUSPENSICN BOGLE CN ERGNT WHEEL' CNLY
C FLRST SUSPENSICN BOGLE CN ERGNT WHEEL' CNLY
C
C
150 THETEI=TWLIMI1.11
150 THETEI=TWLIMI1.11
RBC1=KWLIMA1,ith
RBC1=KWLIMA1,ith
BETA(1)= BALMU(1)
BETA(1)= BALMU(1)
170 IFINEQL.EQ.5) XL(4)=XL(5)
170 IFINEQL.EQ.5) XL(4)=XL(5)
NEQL =NEQL-1
NEQL =NEQL-1
NAGA IN =1
NAGA IN =1
C
C
C CHEUK SECOND SUSPENSION ECGIE CUT CF LIMIT
C CHEUK SECOND SUSPENSION ECGIE CUT CF LIMIT
C If single axle ck bGgie ca bcth wheels leave
C If single axle ck bGgie ca bcth wheels leave
C THETB2 AND RBCZ
C THETB2 AND RBCZ
C
C
190 IFISFLAG(2).EQ.O.OK.NW(2).NE.0) GOTC 280
190 IFISFLAG(2).EQ.O.OK.NW(2).NE.0) GOTC 280
IF(BETA(2).GE.BALNU(2)+NW(2)=1
IF(BETA(2).GE.BALNU(2)+NW(2)=1
IF(BFTA(2),LE.BALMD(2)) NW(2)=2
IF(BFTA(2),LE.BALMD(2)) NW(2)=2
IFISFLAG(2).EQ.g.OR.*SFLAG(2).EG.1.AND.
IFISFLAG(2).EQ.g.OR.*SFLAG(2).EG.1.AND.
* NW(21.EQ.0.) GCTC 280
* NW(21.EQ.0.) GCTC 280
IFISFLAG(2).EQ.1.ANCANW(2).EQ.1: GCTO 250
IFISFLAG(2).EQ.1.ANCANW(2).EQ.1: GCTO 250
C
C
C SECOND SUSFENSION EOGIE CN REAR WHEEL ONLY
C SECOND SUSFENSION EOGIE CN REAR WHEEL ONLY
C
C
THETE2=TWLIM(2.2)
THETE2=TWLIM(2.2)
KBC2=RWL LM: 2,21
KBC2=RWL LM: 2,21
BETA{2:= BALMDS21
BETA{2:= BALMDS21
GUTO 276
GUTO 276
C
C
l SECGNL SUSPENSION BGGIE CA FRCNT WHEEL ONLY
l SECGNL SUSPENSION BGGIE CA FRCNT WHEEL ONLY
C
C
250 THETE2=TWLIM(2,11
250 THETE2=TWLIM(2,11
\kappaBC2=RWLIM(2.1)
\kappaBC2=RWLIM(2.1)
BETA(2)= BALMU(2)
BETA(2)= BALMU(2)
<7D NEGL =NEGL-1
<7D NEGL =NEGL-1
NAGA IN=1

```
 NAGA IN=1
```

```
C
 280 IFINAG:AIN.EQ.O) CUTL 3Dx
 NAGAIN= %
 GOTO 3D
C
C
C UNIT I POSITIONED CN WHEELS - CHECK FCK
`SPKUCKET/ICLEK INTERFERENCE IF TRACKEC
C
 3x% IFINVEH1.NE.B) GOTC 600
C
C TRACkEO vericle
C
C 4.4*s*& IDLER ANC SPKOCKET SUFFORT CHECK HERE ******
C
 XSF=XPCG(1)+KBC(4)*CCS(THETAQ(4)+THETA11*)
 2SF= 2PCG(1)+\piBC(4)*SIN(THETAB(4)*THETA(1))
 CALL WHEEL 3 (E,HA,HC,HE,HF,HX,IH{4,1),4,LOUT,LUNG.
 * XSF, 2SF,IPRGF(4,11.)
 IF:LCUT.GE.1DI WFITEILUNG,311) XSF,ZSF,ZPROF{4,1,,IHI4,1:,E
 311 FCRMATG7H MOVES4,3F1.Q.3,I5,F10.31
 IF(E.GE.-.11 GOT[4&&
C
C FRONT SPROCKET/ICLER INTEFEERENCE
C゙
 THETBL=THETAC(4)
 KBCI=RBC(4)
 IF(SFLAG(1).EG-K.OR.AW(1).NE.OA,GOTO 320
 IF(NEQL.EQ.5) XL(4)=XL(5)
 NEGL=NEQL-1
 320 NAGAIN=1
 NW(1)=3
C
 400 XSK=XPCG(1)+RBC(与)暞CS(THETAD(5)+THETAN1))
 ZSK= ZPCG(1)+KBC(5)&SZN(THETAJ(5)+THETA\11)
 CALL WHEELS (E,HA,H[#HE,HF,HX,IH(5,1),5,LOUT,LUN6,
 * XSF,2SF.ZPROF(5.1))
 IFILCUT.GE.10) WRITEELUNG,411: XSK,ZSR,ZPROF\5,1:,IHI5,11,E
 FORMAT(7H MOVES5.3F1W.3,15,F10.3)
 IF(E.GE.-.1) GUTC 5&4
C
l MEAR SPROCKET/IDLER LNTERFEFENCE
C
 THETB2=THETA&\5;
 RBC2 = RBC(5)
 IF(SFLAG(2).EQ.U.CR.NW(2).NE.D) GOTO 420
 NEGL =NEGL-1
 42Q NAGAIN=1
 NW(C)=3
C
 500 IFINAGAIN.EQ.OI ECTC 6DE
 NAGALN=D
 GOTO 30
```

C

C ANGLE UNDER WHEELS
$c$
Oby IF(NuII).EQ. 2 ) GCTO 610
CALL WHEELI (ALPHAC1,1H,HA,HC,HE, IH(1, 1), 1,0X,OL,
$+\quad$ XPW(1.1),2PW(1.1)1


+ IH(1,1),ALPHA:1,1)
-DB FORMATITH MOVE11,2F14.3.14,F10.3)
IF(Nh: 1).EQ.1.CR.SFLAG(1).EG.E: GOTO $620^{\circ}$
CALL WHEELI (ALPHAS 1,2), HA,HC,HE, IHA1,21,1,OX, UL,
$+\quad$ XPW(1,2),2PW(1,2H
IF(LCUT.GE.1J) WRITEILUNG.616) XFW(1.2), ZPW(1.2),
+ IHIl, 2), alpha(1, < )
tol6 FLRMATITH MOVE12,2F14.3,14,F10.3:
62B IF(NH(2).EQ.2) GCTE 630

- XPW(2,1),2PW(2,1)

IF(LCUT.GE.1g) WRITELLUN6.6261 XPW:2,11,2PW: 2,1),

+ [H(2.1), ALPHAl2,1)

638 IF(NWI2).EQ.1.OK.SFLACI21.EQ. 10 GI GTO 640
CALL WHEELI (ALPHAS 2:21,HA,HD,HE,IH(2,2), $2,0 \mathrm{O}, \mathrm{OZ}$,
+ XPW(2.2).ZPWI2.21)
IF(LCUT.GE.10) WRITEMEUNG,6361 XPWA2,21, ZPWは2,21,
- IH(2,2), ALPHA(2,2)

036 FUKMAT17H MOVE2Z,2F1日,3,14,F10.31
640 CUNTINUE
C
c locate hitch
C

C
C SECOND UNIT
c
IFISFLAG(3).EQ.1: GOTO 670
C
C single axle trailer.
KSQ=FWLIM(3,1)**2
LALL WHEELZ (EFFRAD,HA,HD,FE,HF,HX,HZ,IHI2,1),IH(3,1),

+ 3.LGLT,LUNG,OX,GZ,ALFHA13,11,RWLIM:3,11,RSQ,XPH,
+ XPw(3.11,2PH,2PW43.11)
$X P B C(3)=X P W(3,1)$
$2 P B C(3)=2 P W(3,1)$
$A=A T N 2!Z P B C!3)-Z F H, X \neq B C(3)-X P H)$
THETA(2)=A-TWLTM(3,1*

ZPCG (2) $=\angle P H+K H T C H(2) * S L N(T H E T \otimes H(2)+T H E T A(2):$
IF(LCUT.GE.10) WRITEEUUN6,656) XFH, ZPH,XPW(3,11,ZPW(3,1).

650
FURMAT(7H MOVEA3.11FID.3)
RETURN

```
 K-<058, VOLUNE II
 LISTING UF PRUGKAM OBS78E
 C
 C BOGIE AXLE TKAILER - TEST IF CN FRONT WHEEL ONLY
C
 670 KSQ=RWLIN(3,11**2
 CALL WHEEL2 (EFFRAD,HA,HC,HE,HF,HK.,HZ,IHC2,1),IH(3,1),
 * 3,LOLT,LUNG,CX,CZ,ALRHA\3,13,RWLIM43,11,RSQ,XPH.
 + XPW(3,1),2PH,2PW13,111
 A=ATN2(ZPW(3, 1:- ZPH,XPW(3,1)-XPH)
 T=A-TwLiM(3,1)
 XPW(3, <) =XPW(3,1)-EnICTh(3) =COS(BALMU(3)+T)
 ZPW(3,< = ZPW(3,1)-BkNOTH(3)*SIN(EALMU(3) कT)
 CALL WHEEL3 (ELE,HHA,HD,HE,HF,HX,IH!3,2 %%3,LUUT LUNG.
 + XPW(3.2), 2PW(3,2), LFRCF(3.21)
 IF:ELE.LE.BO.1 GOTC 69%
C
C TRAILFH BGGIE GN FGGNT WHEEL CNLY
C
 NW(3)=1
 BETA (3)=BALMU(3)
 XPEC(3)=XPW(3.1)-5*BWIOTH(3)*CCS{EALMU:3)+T)
 ZPBC(3)= 2PW(3,1)-.5*EWICTH(3)*SIN&EALMUI3).NT)
 THETA(2:= r
 XPCG(Z)=XPH+RHTCF(2)*COS(THETDH(2)+T)
 ZPCG(2)= LPH+RHTCH(2)*SINTTFETQH(2)+T)
 IFILCUT.GE.1EJ WKITEALUNG,686) XPH.ZPH6XPW43.1., 2PW13.1:.
 + ALPHA(3,i),XPEC(3),ZEBC(3),A,T,XPCG(2), ZPCG(2),NWA3)
 680 FORMAT(7H MOVEA4,11F10.3.213)
 KETURN
C
C TKAILER BOGIE NCT LN FFCNT WHEEL CNLY - TEST IF ON REAF WHEEL ONLY
C
 690 RSS=FWLIMA 3,2)**2
 CALL WHEEL2 1EFFFAD,HA,FC,FE,HF,HX,HZ,IH(2,1),IH(3,2).
 + 3,LOLT,LUNG,CX,GZ,ALPHAN3,2%,RWLIM\3,2),RSQ,XPH,
 * XPW(3,2),ZPH,<PW(3,2))
 A=ATN2(LPW(3,21-2FH,X+W13,21-XPF1
 T=A - TWLIM(3, 2)
 XPW(3,1)=XPW(3,2)+BW]OTH{3)*COS(EALM[(3)+T)
 LPW(3,1)= 2PW(3,2)+BMIDTH{3)*SIN(BALMC(3)+T)
 CALL WHEEL3 (ELE,HA,HD,HE,FF,HX,IH(3,1%,3,LOUT,LUN6,
 * XPW(3,1),\anglePW(3,1), LFPCF(3,11)
 !F(FLE.LE.D.) GGTC:72D
C
C TKAILER BUGIE CN REAK %HEEL ONLY
C
 NiN3)=2
 BETA (3)=BALMD(3)
 XPBC 13)=XPW(5.2) + % * EWICTH(3)*COS(EALMC(3)*T1
 ZPBC(3)=LPW(3,L)+5 * BWIDTH(3)*SIN(EALMC(3) +T)
 THETA(2)=T
 XPCG(2)=XPH+RHTCH(2) #COS(THETGH(2)+T)
 \anglePCG(2)=\anglePH+RHTC+12)&SIN(THETOH(2)+T)
 YFILCUT.GE.IOI wRITEULUNG,716) XPH,ZPH,XPW\3,21,ZPW(3,2),
 + ALPHA(3,2),XPBC(3),\angleEBC(3),A,T,XPCC(2),ZPCG!2),NW!3)
```

710 FORMAT(7F MOVEAS.11F20.3.2I31 KETUFN
L

し
C TRAILER BOCIE CN BGTH WHEELS - SEARCH CN BOGIE ANGLE $C$ UNTIL BOTH WHEELS ARE CN HUE FROFILE TC WITHIN TOLERANCE $i$

$B C C=.5 *$ OnICTHS 1
BETA(3)=BALMD(3)
IF(LCUT.GE. 11 WRITESLUN6.721 ELE.BC2.BETA(3)
FOKMAT\{8+ MOVEA5A, 3 F1E. 31
OELTE=ATN2(-ELE, BO21
bETA(3)=BETA(3h+CELTB
$\times 2=E L L(3)-B O 2 * C O S\{B E T A(3):$
$22=-$ REFHT1 $+E F F R A C 13 *-B C 2 * S$ IN $\operatorname{EETA} 3 H 1$
QH2SG=X $\angle *=2+Z 2 * Z 2$
$\mathrm{RH} \angle=\mathrm{SORT}$ (RH2SO):
THET 2=ATN2: $22 \times 21$
1F1THET2.GT. D.1 THEJ2=THET $2-6.283185$ د

$+3, L U U T, L U N G, O X, O Z, A L P H A T B, \angle 1, R H Z, R H \angle S O, X P H$,

+ XPW(3.21,ZPH,ZPW(3,2)
$A=A T A 2(\angle P W(3,2)-2 P H, X P W(3,2)-X P H)$
IF(A.GT. 1.1 A $A=A-6 .<831853$
THETA $21=A-$ THET 2
$X \operatorname{PW}(3,1)=X \operatorname{PW}(3,2)+B 41 \mathrm{CTH}(3) * \operatorname{COS}(T H E T A(2) * B E T A(3))$
ZPW(3,1)=ZPW(3,2)+8WIDTF(3)*SIN:THEFA:2)+BETA:31)
CALL WHEEL 3 (ELE,HA,HC,FE,FF,HX,IH(3,1),3,LOUT,LUN6,

IFILCUT.GE. 111 WRITE\{LUNG,751) CELTB, BETA431, X2,22,RH2SO.
+ RH2, THET2,XPWa 3,21, 2RW13,21,A,THETA:21,XPW13,11,ZPW33,11,ELE
751 FURMAT (8H MOVEA5E, 7f40. $3 / 8 \times, 7 F 1 \mathrm{~K} .3$ )
IF(ABSIELEI.GT...I) GETC 725
C
C BOTH WHEELS ON HUB PROFILE TO WITHIN -I INCH
C
©OU CALL WHELL (ALPHAIB.II,HA,HC,HE,IHI3, $1: 3, O X, O L$,
* XPh13.1), ZPW(3.1))

NW(3) $=0$
XPBC(3) $=.5$ (XPW(3.1) (XPW13,2)
ZPBC(3) $=.5 * 12$ PW $(3,1142 \mathrm{PW} 13,21)$
$X P C G(2)=X P H+R H T C H(2)$ \#CCSATHETOH(214THETA12)
ZPCG(Ci = ZPH+RHTCHA2) \&SINATHETUH(2)+THEIA (2):
XTEMF = XPW 13,11-XFW13;2)
LTEMF $=2$ PWd $3.11-2$ FW(3.2)
BETA(3) =ATN2 (ZTEMF, XTEMF)
IF(LCUT. GE.I6) WRITE(LUN6, 811) XPCG(LI, ZPCG(2).THETA(2).
$+\quad \times P B C(3), Z P B C(3),(X P h y, j), Z P W(3, J), A L P H A(3, J)$,
$+J=1,21, X P H, Z P H, \operatorname{NW}(3)$
811
FOKMAT(7H MOVEA6,5F10.3/L(ifie.j),2F10.3,131
RETUFN
END
C
C

```
SUBKCUTINE ELEVAT(NEGL;XL,ELEV)
```

c
C
integer sflag
DIMENSIUN XL(S), ELEV(5),XLL(5)
XIII) $=x$-PCSITICN OF CG OF UNIT 1
XL(2) $=\mathrm{Z}$-PCSITIUN UF CC OF UNIT 1
XL(3) $=$ PITCH ANGLE OF LNIT 1 wat gRCUNC cocrdinates
גL(4) $=$ PITCH ANGLE CF FCRWARC MUST BOCIE
ASSEMBLY ON UNIJ 1 GRT VEFICLE CGCRDINATES
$X L(5)=$ PITCH ANGLE CF SECCAC PCGIE
ASSEMBLY ON UNIT I MRT VEFICLE COCRDINATES
ELEV(1)= Distance of Ce frem last equilitrium
PCSITICN MINUS SIEP
ELEV(2) = ELEVATICN OF FIRST WFEEL WRT
ITS HUB pRCFILE
ELEV(3) = ELEVATION OF SECCAC hhEEL WRT
Its hub PROFILE
ELEV(4) = ELEVATIGN CF ThLHC htEEL (WHEN PRESENT) WRT
ITS HUB PRCFILE
ELEV(5) = ELEVATION UF FOURIF WHEEL (WHEN PRESENT) WRT
ITS hub profile
UL 18 L=1,NEQL
$10 \quad$ XLLALI $=$ XLSLI
XSQ = STEP*STEP-(XLLA 2 )-PZPCC(1) *:2
FLEV (1: =XLL(1)-PXPCGA)-SQKT(ABS(XSQ)

```
 THET=XLL(3)
 C=COS\THETB1 +THET)
 XPBC(1)=XLL(1)+RBC1*C
 S=SIN(THETBI + THET)
 \anglePBC(1)=xLL\<)+REC1*S
 C=COS\THETB2+THET)
 XPBC(2)=XLL(1)+KBC2*G
 S=SIN(THETB2+THET)
 ZPBC(2)=XLL(2)+REC2*S
 IF(LCUT.GE.11) WRITENLUNG.2F) C.,S,XPEC(1Hy
 + ZPBC(1),XPBC(2),ZPBC}$2),1\timesLLII, I=1,NEQL:
 FORMAT(8H ELEVAT1,1.1F10.3)
 IFISFLAG(1).EQ.1.ANC&NW(1).EQ.0. GOTO 30
L
C FIRST ASSEMBLY LS UN SINGLE WHEEL
C
IF(SFLAG(1).EQ.1 . ANC.NWI1).NE.31 GOTO 23
CALL WHEEL3 (ELEVI2J&A,HD,HE,HF,HX,IHI1,1t, 1,LOUT,LUNG.
 + XPBC(1),2PBC(11,2FRCF(1,1)1
 XPW(1,1)=XPBC(1)
 ZPW(1.1)=2PBC(1)
 GOTO 5%
<3 IF(NW111.EQ.<# GCTC 27
 XPW(1,11=XPBC111
 ZPW(I,1)=ZPBC(1)
 CALL WHEEL3 (ELEV(21:FA,HD,HE,HF,HX,IH,1,1),1,LOUT,
 + LLNG,XPW(1,1), ZPW11,1%,2FRCFF1,1)%
 BETA(1)= BALMU(1)
 XPEC(1)= XPW(1,1)-.5*BWICTH(1)*CCSAEALMU&1)*THET)
 ZPBC(1)=ZPW(1,1)-.5 &BWICTh(1) =SIN(EALMU(1)*THET)
 GOTO 50
27. XPW(1,2)=XPBC(1)
 ZPW(1,2)=ZPBC(1)
 CALL WHEEL3 (ELEV\2J,HA,HD,HE,HF,HX,IH&1,21,1,LOUT,
 + LUNO,XPW11,2),ZPWIL,21,ZPROF:1,2%1
 DETA:1%= BALMO:1)
 XPBC(1)=XPW(1,21+.5*EWICTH(1)*CCS(BALMO(1)+4THET)
 \anglePBC(1)=\anglePW(1,2)+.5*EWICTH(1)*SIM(EALMD(1)+THET)
 GGTO 50
C
C FIRST ASSEMOLY IS BCGIE
C
3% KWl=.5*BWIDTh(1)
 C=COS\ XLL(4)+THET)
 XPW(1.1)=XPBC(1)+RW1%C
 S=SIN(XLL(4) +THET)
 LPW(1.1)=ZPBC(1)+EW1*S
 CALL WHEEL3 (ELEV{2;,HA,HD,HE,HF,HX,IHK1,1%,1,LOUT,LUNG,
 * XPW(1,1),ZPW(1,11,ZPROF(1,1H
 XPW(1,2)=XPBC(1)-RW1*C
 ZPW(1,C)=ZPBC(1)-FWI*S
 CALL WHEEL3 (ELEV{3;,HA,HD,FE,HF,HX,IH(1,2,,1,LOUT,LUNG,
 + XPW(i,2),ZPW(1,2),ZPRCF(1,2)
 IFILCUT.GE.II) WRITEILUNO,4il C,S.NXPWII,J.ty

```

    41 FURMAT(8H ELEVAT2,2Fia0.312(3F10.3,131)
    5& IFGSFLAG(Z).EQ.1.ANC.NW(2).EG.D) GOTC 70
    C
C SECONC asSembly is on single wheel
C
IFISFLAG(2).EQ.1.ANC.NWI2I.NE.3) GOTO 53
CALL WHEEL3 (cLEVINEQL),HA,HD,HE,HF,HX,IH(2, 1), 2,LOUT,LUNG,
* XPBC(2),ZPBC{2),ZPRCF(2,1))
XPW12,11=XPEC(2)
ZPW(2.1)=ZPBC(2)
GUTO 60
53 IFINH(2).EQ.2) GCTC 50
XPW(2,1)=XPBC(2)
ZPW(2,1)=ZPBC(2)
CALL WHEEL3 (ELEVINEGL),HA,HD,HE,HF,HX,IH(2,1),2,LOUT,
+ LLNG,XPW(2,1),2Ph(2,1),ZPRCF(2,1))
BETA(2)=BALMU(2)
XPBC(21)=XPW(2,1)-.5 tBWICTH(2)*CCS(EALMU\&(2)+THET)
ZPBC (2)=2PW(2,1)-.5*BWICTH(2)*SINIBALMU(2)+THET:
goro 60
57 XPW(2.2)=XPBC(2)
ZPW(2.2)=ZPBC(2)
CALL WHEEL3 (ELEVINEGL),HA,HD,HENHF,FX,IH:2,2),2,LOUT,
* LUNG.XPW(2,2I,ZPWI2,2\#,ZPRCF,12,2%1
DETA (2)= BALMD{2)
XPBC(21=XPW12,2) +.5*EWIDTH(2)*CCS(BALMD(2)*THET)
ZPBC(2)=ZPW(2,2)*.5*⿴囗ICTH(2)*SIM(BALMD(2)+THET)
60 IF(LCUT.GE.11) WFITEGLUNG.61) {ELEV(IH,I=1.NEQL)
61 FORMAT(8H ELEVAT 3.5F10.3)
RETUFN
C
C SECONl asSEmbly bugie
C
70 NM1=NEGL-1
RW2=.5*BWIOTH(2)
C=COS(XLL(NECL)+THETI
XPW(2.1)=xP8C(2)+KW2新
S=SIN(XLL(NEQL) +THET*
2HW(2.1)=2PBC(2) +RW2\&S
NEGLNI=NEGL-1
CALL WHEEL3 (ELEV\NEGLM1),HA,HC,HE,HF,HX,IH(2,11,2,
* LCUT,LUNG.XPWI2.11,2RW(2.11,2PRCF(2.1)1
XPW12.21=XPBC(2)-RW24C
ZPW(2,2)=ZPBC(2)-RW2*S
CALL WHEEL3 (ELEVINEGL),HA,HD,HE,HF,HX,IH(2,2),2,LOUT,LUNG.
+ XPin(2,2),LPW(2.2),ZFFEF(2.21)
IF(LCUT.GE.11) WRITEALUNG,61) (ELEV(Id, I=1,NEQL)
IFILCUT.GE.111 WRITEILUNG.81) C,S,(XPW(2.j).
+ LPW(2,J),ZQROFI2,J%,Iti,2,J!,J=1,2)
81 FORMAT/8H ELEVAT4.pFig.3/2(3F10.3,13)t
RETURN
ENO

```

SUBRCUTINE WHEEL 1 ,AACLE,HA,HC, HE, IHUB,K,OX,OZ, XW,ZWI
C
DIMENSIUN HA(5.91, H \([15,91, \operatorname{HE}(5,91,0 \times 1101,021101\)
\(c\)
C Subroutine to find angle lacer wheel at Xw, ZW.
C MF SLSPENSION K ON HUB fRCfile ELEMENT LHUB
IFIHA(K, IHUBI.EQ.1:1 GOTU 188
C
C hub froflle elenent a line
\(c\)
ANGLE=ATN2 (HDSK, IHUEA,-HE KK,IHUE:)

KETURN
\(c\)
C hub frofile element an arc
C

IF(AESIA).LE.. Di: \(A=\|\).
\(A N G L E=A-1.5707903\)
RETUFN
END
C
c
し
SUBKCUTINE WHEEL 2 (EffRAD, \(A A, H D, H E: H F\), HX,
+ HZ,IHUB,IH2,K,LCLT,LUNG,EX,OZ,PSLP2,R12,R12SQ,XP1,XP2,ZP1,ZPLI
DIMENSION EFFRAC (5), tA 5,91, HD: 5,9), HE 5,91, HF\& 5,91, HX
- (5.10). H2(5,10), CX (101, CZ110)

C
C subroutine to locate secunc wheel given gne
C WHEEL AT XFI,ZPI
C
DO \(140 \quad 1=1\), 1 HUB

IFILCUT.EO. 11 : WRITENLUNG,90) I, CSG,R12SQ, HX(K, II, HZ (K, I)
96 FURMAT(8H WHEELS\&, IC\&4FlE.3)
IF(OSO. LE. K 1256 GGTO 110
10. CONTINUE

C
c
secono axle on hub frgfile element lhub
C
\(I H_{C}=I H U B\)
GOTO 115
\(110 \quad 1 \mathrm{H}_{2}=\mathrm{I}-1\)
IF (IHZ.LT.1) IH2=1
115 \(\quad 0=\) SQKTIOSOI
IF (HACK,IHC) EEG. 1. 1 GCTO 16 E
\(i\) ELEMENT \((K, I H Z)\) IS ALINE
```

    \(S=-H C(K, I H 2) / H E(K, I r i)\)
    ```
 \(T=-H F(K, I H C) / H E(K, I+2)\)
 \(A=S * 2+1\).
 \(B=S *(T-Z P 1)-X P 1\)
 \(C=(T-2 P 1) * 2+X P 1 * 2-N 12 S G\)
 \(80 A=E / A\)
 \(C O A=C / A\)
 IFI-ROA -GE. \(\downarrow \cdot 1 \times 1=4 B O A+S Q R T\) (ELA*ROA-COA)
 IF:-BOA .LT. \(0.1 \times 1=-B O A-S G R T(E C A \neq E O A-C O A)\)
 \(X 2=C[A / X 1\)
 \(Z 1=S * X_{1}+T\)
 \(Z 2=S * \times 2+T\)
 IF:X1.GT. XP1: \(X F_{2}=\times 2\)
 \(I F I X<G T \cdot X P 1 \mid X F 2=X 1\)
 IFIXI GT. XP1 . [R. 2. . GT. XP1) GGTC 150
 \(1 H 2 P 1=I H 2+1\)

 IF (X1.GT.HX(K,IH2P1).CF. X2.GT.HX(K.IH2P1)) GOTO 150
 \(I F I 21 . G F \cdot 221 \times F 2=\times 1\)
 \(\operatorname{IF}(Z \overline{2} \cdot G T \cdot Z 1) \times F Z=X \dot{C}\)
 \(150 \quad \angle P 2=5 * \times P 2+T\)
 PSLP \(2=A T N 2: H O(K, I H 2):-H E(K, I H 2)\)
 IF(AESIPSLP2) \(L E \cdot \cdot 11\) PSLP2 \(=0\).
 IF(LCUT.EQ.11) WRITEULUNO, 156) IH2, C, S, T, A, B, C, BOA, COA ,
 - \(\quad\) (1, X \(-21,22, \times P 2, Z P 2, F S L F 2\)
 156 FCRMATA8HOWHEELSI.I3.7F10.3/8F1E.31
 RETUKN
C
C ELEMENT \(K K, I+21\) IS AA AFC
C

 - -HZ(K.IH2D1**21
 \(A=2 . * A S I N(.5 * C H C R D / E F F R \mu D K K)\)
 \(B=A T \wedge 2(H Z(K, I H 2)-C Z(I F 2), H X(K, I F 21-O X(I H 2):\)
 IF(AES(B) .LE. . 1 (\(\mathrm{E}=\mathrm{D}\).
 IF (B.LE. - \(1.5707963 \times 67) E=B+0.283185367\)
 \(A H G H=B\)
 \(A L O W=B-A\)
 DO \(180 \quad I=1.6\)
 \(A M I C=-5 \div(A H G H+A L C W)\)
 \(H X M=C X(I H 2)+E F F R A C(K)=C C S(A M I C)\)
 \(H Z M=C Z(I H Z)+E F F R A C: K) \neq S I N: A M I D)\)
 \(k M 2=(H X M-X P 1) *=2+\left(H Z N-Z P_{i}\right) * 2\)
 IF!RM2 -LE. K12SG: GCTO 17 Q
 \(A H G H=A M I D\)
 GOTO \(18{ }^{\circ}\)
170 TFIKM2.EQ. R12SGF EETC 190
 \(A L O W=A M I D\)
18 CONTIIVUE
\(193 \quad X P 2=H X M\)
 \(\angle P Z=1 \angle M\)
 KKANG=ATN21ZP2-GZ(Ità) XP2-GX(IH2))

IF（AES（RKANG）．LE．． 41 ）RK ANG＝0．
PSLP 2 \(=\) KKK ANG－1．5727963267
195 CONTINUL
IFILCUT．EQ．111 WRITE\＆LUN6．196）IH2．D．CHORD．A．B．
－XP2，2PL，PSLPZ
190 FORMAT（BHOWHEELSZ．i三，7F10．3）
RETURN
END
C
c
SUBRCUTINE WHEEL 3 fELEV，HA，HC，HE，HF，HX，IH，K，LOUT，
－LUNO，XP，ZP，ZPROFI
DIMENSLON HA 5,9\(), \operatorname{H}(45,9), \operatorname{HE}(5,9), \operatorname{HF}(5,9), H X(5,10)\)
C
C SUBRCUTINE TO FLND ELEVATIGN CF WHEEL CENTER
C AT XF．ZP．WFT HUE PROFILE
C
OO \(2 E I=1,10\)
IFIHX（K，I）．GT．XP）GCTO 30
CONTINUE
IH＝9
GOTO 40
IH＝I－1

IF（IH．LT．1）IH＝1
じ
\(\because\) FIND POINT ON PROFILE
C
40 IF（HA（K，IH）．EQ．1．）CCTO 60
C
－pkCFILE ELEMENT a LINE
C
\(S=-H C(K, I H) / H E(K, I H)\)
\(T=-H F(K, I H) / H E(K, I H)\)
ZPROF \(=S * X P+T\)
IFILCUT．GE．III WRITEGLUN6，561 IH．S．T．ZPROF
56 FORMAT（9H WHEEL3／1．13．3F10．3）
GOTO 80
C
C PROFILE ELEMENT AN ARC
c
\(0 \mathrm{C} \quad B=.5\) tHE（K，IH）
\(C=X P * X P+H D(K, I H I \neq X P+H F: K, I H)\)
\(D=B-E-C\)
\(I F(-E \cdot G E \cdot D .1 \quad Z 1=-B+S G R T(D)\)
IFI－E．LT．D． \(121=-B-S G R T(D)\)
22＝C／21
IF（Z1．GE．Z＜）ZPRCF＝21
IF：Z1．LT．22： 2 PRCF＝22
IFILCUT．GE． 113 WRITEILUNG，71）IH，B，C，C， 21 ，
＋22．ZFROF
71 FORMAT19H WHEEL \(3 / 2.13 .0\) F10．31
C
C ELEVATIUN
```

2-<wう%. VOLUNE II
C
%v ELEV=ZP-ZPROF
IF:LCUT.GE.11, WKITE\&IUNO,86) XF,ZP,K,IH,
* ELEV,LPROF
86 FUKMAT/9H WHEEL3/3.2F10.3.2I3,2F10.31
RETUKN
END
C
C
SUBKCUTINE MINV\A,N,E,L,M)
GIMFNSIUN A(II,L\1%,M(1)
C
C
MATRIX INVERSICN WITH FIVOTING
SEAKCF FCF LAFGEST ELEMENT
O=1.6
NK=-N
DO 8, K=1.N
NK=NK+iv
L(K) =K
M(K)=K
KK=NK+K
BIGA=A(KK)
DO 2\& J=K,N
IL=N*(J-1)
00 20 I=K,N
I J=I Z+I
1:1 IF(ABS(BIGAI-ABS\A\IJ\:1) 15,<0,20
15 BIGA=A(IJ)
L(K) = I
M(k)=J
20 CUNTINUE
INTERCHANGE RCWS
C
C
J=L(K)
IF\J-K\ 33.35,25
KI=K-N
nO 3k I=L,N
K I=KI+N
HGLO=-A(KI)
J'=KI-K+J
A(KI)=A(JI)
A(JI)=HOLD
INTERCHANGE CCLUNAS
L
\iota
35 I=M(K)
IF(I-K) 45.45.33
JH=N*(I-1)
0心 4Q J=1.N

	$J K=N K+J$
	$J!=J F+J$
	HOLO $=-A(J K)$
	$\mathrm{A}(\mathrm{JK})=\mathrm{A}(\mathrm{JI})$
43	A( JI) = HOLD
c	
$i$	divide columa ey minus pivot ivalue cf pivot element
$\checkmark$	is Containec in eigal
C	
45	TF(BIGA) 48.46 .48
40	$D=6 . \mathscr{L}$
	KETURN
48	DO $55 \quad \mathrm{I}=1, \mathrm{~N}$
	IF(I-K) 50.55 .50
50	$\mathrm{I} k=\mathrm{NK+!}$
	$A(I K)=A(I K) /(-B I G A)$
55	continue
c	
C	reduce matrix
C	
	OU $65 \quad 1=1 . N$
	IK=NK+I
	HOLD=AIIK)
	$\mathrm{I} \mathrm{J}=\mathrm{I}-\mathrm{N}$
	DU $65 \mathrm{~J}=1, \mathrm{~N}$
	$1 \mathrm{~J}=1 \mathrm{~J}+\mathrm{N}$
	IF (I -K) 60,65,60
60	IF (J-K) 62,65,62
62	$K J=I J-I+K$
	$A(1 J)=H O L D * A(K J) * A(1 d)$
05	cont inue
c	
C	Divioe row by fivet
$i$	
	$\mathrm{K} J=K-N$
	OC $75 \mathrm{~J}=1 . \mathrm{N}$
	$k J=K J+N$
	IF (J-K) 70.75,70
78	A (KJ) =A(KJ)/BIGA
75	continue
c	
c	phoduct of pivges
c	
	$\mathrm{D}=\mathrm{L} * \mathrm{BI}$ I $\mathrm{A}^{\text {a }}$
$c$	
c	REPLACE PIVCT by feciprical
c	
	$A(K K)=1 . U / B I G A$
86	continue
c	
c	FINAL ROW ANC COZUNN INTERCHANGE
$\downarrow$	
	$K=N$
10n	$k=(k-1)$

```
K-2.58. VOLUNE II
PAGE A-45
LISTING OF PRUGRAM GES78B
 IF(K) 150.150.125
 105 I=L(K)
 IF (I-K) 120,120.108
 148 JG=N*(K゙-1)
 JR=N*(I-1)
 OC 110 J=1.N
 JK=JG+J
 HOLD=A(JK)
 JI= Jk+J
 A(JK)=-A(JI)
 110 A(JI)=HOLO
 123 J=M(K)
 IF\J-K) 100,100.125
125 KI=K-N
 OD 1.3# !=1.N
 KI=KI+N
 HOLD=A(KI)
 JI=KI-K+J
 A(KI:=-A(JI)
 13x A(JI)= HOLC
 GO TC 1ux
 15D KETUFN
 END
i
C
 FUNCTIUN ATNZ(X,Y).
 ATN2=D.
 IF(X.NF.O..OR.Y.NE.Z.'ATN2=ATAN2(X,Y)
 RETURid
 END
C
C
L
C
 NT=N+4
 NTEST=NT
 'NT' ANL 'NTEST' CALSE AN ERKQR RETURN IF F(XI DOES
 NOT CECKEASE
 DTEST=FLOAT(N+N)-0.g
C 'DTEST' lS USED TG AafatalN llNEAR lNCEPENDENCE

\(N X=N+N\)
\(N F=N X+N\)
\(\mathrm{NW}=\mathrm{NF}+\mathrm{N}\)
\(M W=N h+N\)
NOC \(=\mathrm{N}_{\mathrm{w}}+\mathrm{N}\)
\(N D=N C C+N\)
AKKAY W
FM Liv=0.
usually 'fmin'ls the least calculatec value of fixi.
ANC THE BEJT \(X\) IS In W(NX+1) TD W(NX+N
DO=i).
usually do is the sguare of the current step length
DN=DNAX\#DMAX
DMM \(=4\). . CM
' IS' CONTKOLS a 'gC TC' STATEMENT FOLLOWING A CALL OF
CALFUN
TINC=1.
'tinc' is used in the chitekicn to increase the step
LENGTH
Stakt a NEw page fif frinting
IF(IPRINT)1,1,85
WRITE(LUNó,86)
FORMAT(1FI)
call the subrcut ine calfun
CALL CALFUN (N,X,F)
TEST FOR CONVERGENCE
FSO = w .
UO \(2 \mathrm{l}=1 \mathrm{~N}\)
FSG=FSQ*F(I)*FII)
CONTINUE
IF (FSQ-ACCI 3,3.4
PROVIDE PRINTING CF FINAL SCLUTION If REQUESTED
CUNTINUE
WRITFI LUNO.7IMAXC
FORMAT (///8H\% EGSCLis
1 bX,3 SHTHE FINAL SOLUIION CALCULATEC BY EQSOL
WRITE(LUNG, 8) (I, X(I),F(I),I=1,N)
FORMAT (//4X,1HI, 7X,4HX(I),12X,4HF(It///I \(5,2 E 17,81)\)
WRITE(LUNG,9) FSG
FOKMAT (/3X,21HTFE SUM CF SGUARES IS,EI7.8)
RETURN
test for ekror retura because fax does not decrease
GO TC ! \(1 \mathrm{~L} \cdot 11,11,1 \mathrm{E}, 11 \mathrm{H}\), IS
FIFSQ-FNINI \(15,2 \mathrm{ln} 2 \mathrm{l}\)
IF,UC-DSS 12.12.11
(F:NTEST)13.14,11
WRITEALUNO,16INT
```

K-Zシ5%. VOLUNE II
LISTING LF PFOGRAM UES78E
10 FORMATA///8H %EQSOL:/5X,31FEKROR RETURN FROM EQSOL BECAUSE,I5,
1 47HCALLS OF CALFUN FAILEC TC IMFFCVE THE RESICUALS)
0O 18 I=1,N
NXI=NX+I
NFI=NF+I
X(b)=w(NXI)
F(I) =W(NFI)
CONTINUE
FSG=FMIN
GO TC 3
C EKROR RETUPN BECAUSE A NEW JACOEIAN IS UNSUCCESSFUL
13 WKITE(LUNO.19)
19 FORMATI///8H% EOSOL:/
1 5X.3GHEKRUK RETUFN FPON EQSCL BECAUSE F(X).,
2 39HFAILEC TO DELREASG USING A NEW JACOBIANI
GOTC }1
NTEST=NT
TESI WHFIHER THERE FAVE BEEN MAXFUN CALLS OF
CALFLN
IF(MAXFUN-MAXC)21,21%22
WRITEGLUNG,23)MAXC
FOKMAT(///8H% EGSCL:\&
1 SX,3IHEKROR RETUFN FACM EGSOL BECAUSE
2 16HTHERE HAVE BEEN , 15,15HCALLS OF CALFUNI
IF(FSO-FNINI3,17,17
C PKLVIDE PKLNTING IF KEGUESTEC
22 IF (IPKINT)24,24.25
25 WRITEILUNO.26) MAXC
\angle6 FUKMAT////8H% EQSCL:%
1 SX,OHAT THE,I5,25HTH CALL CF CALFUN WE HAVEI
WKITE(LUNG,8)(I,X(I),F(I),I=1,N)
WFITE:LUNG,9)FSQ
GOTC\27.<8,<9,87,3\&N:IS
Stche the result cf the initial call cf calfun
FMIN=FSO
DU د1 I=1,N
NXI=NX+I
NFL=NF+1
W(NX!)=X(I)
W(NFI)=F(I)
CONTINUE
CalCllate a new jacceian affroximation
IC=它
1S=3
IC=IC+1
XIIC)=X(LC)*DSTEF
GU TO1
K=LC
UC 34 I=1.N
NFI=NF+l
w{K\ ={FIID-N\NFItI/ESTEP
K=K+\Lambda
CONTINUE
NXIC=NX+IC

```
```

R-2v58. VULUME II
LISTING OF pROGkAM UES7\&E

```
```

    X(1C)=W(NXIC)
    ```
 X(1C)=W(NXIC)
 IF(IC-N) 33.35.35
 IF(IC-N) 33.35.35
C CALClLATE THE bNVERSE OF THE JACGBIAN ANL SET THE
C CALClLATE THE bNVERSE OF THE JACGBIAN ANL SET THE
C OIRECTIUN MATEIX
C OIRECTIUN MATEIX
 3 5
 3 5
 1 SX,3 3HEKROR RETUFN FRCM EGSEL BECAUSE A.
 1 SX,3 3HEKROR RETUFN FRCM EGSEL BECAUSE A.
 2 44HNEARBY STATICNARY FCINT OF FIXI IS PREDICTED:
 2 44HNEARBY STATICNARY FCINT OF FIXI IS PREDICTED:
 GO TC 17
 GO TC 17
 NTEST=0
 NTEST=0
 OO 40 I=1,N
 OO 40 I=1,N
 NXI=NX+I
 NXI=NX+I
 XIII =WINXI:
 XIII =WINXI:
 46 CONTINUE
 46 CONTINUE
 GU TC 32
 GU TC 32
 TEST WHETHEK TC AFPLY THE FULL MEWTON CORRECTION
```

    TEST WHETHEK TC AFPLY THE FULL MEWTON CORRECTION
    ```
PAGE A-48
```

    K-2058, VL&UNE II
    ```
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{41} & \(1 \mathrm{~S}=2\) \\
\hline & IF(DN-DC)47,47.48 \\
\hline \multirow[t]{4}{*}{47} & UD=AMAXIIDN, DSS: \\
\hline & US \(=10.25 * 0 \mathrm{~N}\) \\
\hline & TINC=1. \\
\hline & !F(DN-DSS)49.50.58 \\
\hline \multirow[t]{2}{*}{49} & \(15=4\) \\
\hline & GG TC 80 \\
\hline C & calculate the lengtr cf the steepest descent step \\
\hline \multirow[t]{7}{*}{48} & \(K=屯\) \\
\hline & DMLLT 5 - \\
\hline & DU \(51 \mathrm{I}=1 . \mathrm{N}\) \\
\hline & DW=0. \\
\hline & DO \(52 \mathrm{~J}=1 . \mathrm{N}\) \\
\hline & \(\mathrm{K}=\mathrm{K}+1\) \\
\hline & \(D W=0 n+w(K)+x(J)\) \\
\hline \multirow[t]{2}{*}{52} & CONTINUE \\
\hline & OMULT \(=\) CMULT + LW* CW \\
\hline \multirow[t]{3}{*}{51} & continue \\
\hline & OMLL T=DS /DMULT \\
\hline & OS = DS*DMULT*DMULT \\
\hline \(c\) & test whether to use bhe steepest descent direct ion IFIUS-CDI53,54,54 \\
\hline \multirow[t]{5}{*}{C
54
25} & test whether the inital value ff co has been set \\
\hline & I FIDCIS5,55.56 \\
\hline & UC=ANAXI(DSS, ANIMI:CN, DS) \\
\hline & DJ=0S/(DNULT*DMULT). \\
\hline & GC TC 41 \\
\hline \multirow[t]{4}{*}{i 56} & Sed the multipliek le the steepest descent direction \\
\hline & ANMULT=U. \\
\hline & DMUL \(\mathrm{T}=\) OMULT*SGRT(CD/CS) \\
\hline & go TC 98 \\
\hline C & intefpolate eetween tre steepest descent and the \\
\hline \(\checkmark\) & NEWTCN DIKECTICNS \\
\hline \multirow[t]{4}{*}{53} & \(S P=S F * D M L L T\) \\
\hline & \\
\hline & * (DU-DS)d.t \\
\hline & OMULT \(=\) DMULT* (1.-ANMGLT) \\
\hline \(\bigcirc\) & calcliate the change in xanc its angle with the \\
\hline c & FIRST DIKECTICA \\
\hline \multirow[t]{7}{*}{90} & \(D N=0\). \\
\hline & \(S P=0\). \\
\hline & DO \(57 \mathrm{I}=1, \mathrm{~N}\) \\
\hline & FII \(=\) OMULT* \(\times(1)+\) ANMUET*FAI \\
\hline & \(\mathrm{UN}=\mathrm{O} \Lambda+\mathrm{FI}\) I! \(4 \mathrm{~F}(\mathrm{I})\) \\
\hline & \(\mathrm{NCI}=\mathrm{NOMI}\) \\
\hline & SP=SP+FIIt \#WINDI) \\
\hline \multirow[t]{2}{*}{57} & CONTINUE \\
\hline & DS \(=6.25 \sim \mathrm{DN}\) \\
\hline \({ }^{c}\) & test whethek an extfa step is needed fuk \\
\hline C & \NDEFENDENCE \\
\hline & IF(W(NDC +1)-DTEST) \(58,58,59\) \\
\hline 54 & IFSSPWSP-DS) \(60.58,5 \mathrm{E}\) \\
\hline & take the extra step and upgate the dikection matrix \\
\hline
\end{tabular}

H-2058. VOLUNE II
LISTING OF PFOGRAM UES78E
```

    I \(S=2\)
    DO \(61 \quad I=1, N\)
    NXI \(=N X+I\)
    \(\mathrm{NCL}=\mathrm{ND}+\mathrm{I}\)
    NDCI \(=\mathrm{NDC}+1\)
    \(X(I)=W(N X I)+D S T E F W W(A C I)\)
    \(W(N D C I)=W N C C I+i+1\).
    El CONTINUE
    \(W(N D)=1\).
    OC \(02 \quad 1=1 . N\)
    \(K=N D+I\)
    \(S P=W(K)\)
    \(0063 \mathrm{~J}=2 . \mathrm{N}\)
    \(K N=K+N\)
    \(W(K)=W(K N)\)
    \(K=K N\)
    ©3 LONTINUE
        \(W(K)=S P\)
    CONTINUE
    GO TO 1
    C FXPKESS THE NEW [IREGTIEN IN TERMS OF THOSE OF THE
C DIRECTIUN MATRIX,ANC UPCATE THE COUNTS IN W(NDC+I)
$C$ ETC.
$53 \quad S P=0$.
$K=N D$
DU $64 I=1, N$
X (I) $=0$ w
$D w=0$.
DO $65 \mathrm{~J}=1, N$
$K=K+1$
$O W=D h+F(J) * W(K)$
65 CONTINUE
GOTO (60.06), IS
NOCI =NDC +1
W(NDCI) $=W($ NDCI $)+1$.
$S P=S P+O W * D W$
IF (SP-DS) $64,64,67$
$I S=1$
$K K=1$
$x \mid 11=D W$
GU T C 69
$X(I)=D W$
$09 \quad N D C I=N D C+i$
$W(N D C I)=W(N D C I+1)+1$.
64 LUNTINUE
N(NO)=1.
KECKCER THE DIKECTICNS SC THAT KK IS FIRST
IF (KK-1)7v.7v, 71
$K S=N C C+K K+N$
10 $72 \mathrm{I}=1, \mathrm{~N}$
$K=K S+I$
$S P=h(K)$
$0073 \mathrm{~J}=\boxed{2} \mathrm{KK}$
$K N=K-N$

```
```

        \(W(K)=W 1 K N)\)
        \(K=K N\)
        73 CONTINUE
        \(W(K)=S P\)
        CUNTINUE
        GENERATE THE NEW CRTHCGGNAL LIEECTION MATKIX
        OU 74 I=1.N
        \(N W I=N W+I\)
        \(W(N W I)=6!\)
        cont inve
        SP=X(1)*X(1)
        \(K=N D\)
        DC \(75 \quad I=2, N\)
        DS = SGRT(SH*(SP+X(I)**(I))
        DW \(=\) SP/DS
        \(D S=x(I) / D S\)
        \(S P=S F+X I I \neq X(I)\)
        DO \(76 \quad 1=1, N\)
        \(K=K+1\)
        \(N W J=N W+J\)
        \(K M=K+N\)
        \(w(N \min )=W(N W J)+X(I-1)\) \& \(W(K)\)
        \(W(K)=1) w ⿻ W(K N)-D S \hbar W(N W J)\)
        CONT INUE
        CONTINUE
        \(S P=1 . / S Q R T(D N)\)
        DO \(77 \mathrm{~L}=1\), N
        \(K=K+1\)
        \(W(K)=S P * F(L)\)
    77 CONTINUE
    C CALlGLATE the next vgCTCR $x$, anc predict the right
$C$ HAND SIDES
Bi F FNP $=\varnothing$.
$K=Q$
DU $78 \quad I=1 . N$
$N X I=N X+I$
$N F I=N F+I$
$N W I=N W+I$
$X(I)=W(N X I)+F(I)$
$W(N W I)=W(N F I)$
$0 \cup 7 y J=1, N$
$K=k+1$
$W(N W I)=W(N W I)+W(K) * F(J)$
CONTINUE
$F N P=F N P+W(N W I) * * Z$
78 CONTINUE
CALL CALFUN USING THE NEW VECTCR OF VARIABLES
GO TC 1
update tre step size

```

```

    IF 1 CMULTI 8 c. 8 i .81
    82 UC=ANAXI(CSS.0.25*0C1
TINC=1.
IF (FSO-FMIN:8د, 28,28

```
tá the test tu cecibe whether to increase the step
 LENGTH
 \(S P=0\) 。
 \(S S=0\) 。
 00 of \(I=1, N\)
 NWL \(=N W+I\)
 \(S P=S P+A B S I F I I:(F(I)-W(N W I) \|)\)
 \(S S=S S+(F(I)-W \mid N W I) \mid \neq 2\)
 CONTINUE
 \(P J=1 .+D M U L T / A S P+S G F L X S F * S P+D M U L T * S S: 1\)
 \(S P=A F I N I(4 \ldots, T I N C, P J)\)
 \(T / N C=P J / S P\)
 \(D D=A N I N L(B M, S P Q C C\)
 GO TC O \(^{3}\)
 If \(F(X)\) ImpRUVES STCRE THE NEW VALUE OF \(X\)
 IF(FSQ-FNTN)83,52.5R
 FMIN \(=\) FSO
 DC \(88 \quad I=1, N\)
 \(S P=X(I)\)
 \(N X I=N X+I\)
 \(N F I=N F+I\)
 \(N n I=N W+I\)
 \(X(I)=W(N X I)\)
 \(W(N X I)=S P\)
 \(S P=F(I)\)
 \(F \& I)=W(N F I)\)
 \(W: N F I)=S P\)
 W(NWI) \(=-n(N W I)\)
 CONT INUE
 IF(IS-1)28.28.50
 Calcllate the changes in \(F\) and in \(X\)
 DO 89 I=1. \(N\)
 \(N X I=N X+I\)
 \(N F I=N F+I\)
 \(X(I)=X(I)-W(N X I)\)
 \(F(I)=F(I)-W(N F I)\)
 CUNT INUE
 UPCATE THE APPRCXIMAIICNS TC J AND TC AJINV
 \(K=a\)
 DO QR \(I=1, N\)
 \(M n I=M N+I\)
 \(N W I=N W+I\)
 \(W(N W I)=X(L)\)
 \(W\{N W I)=F\{I)\)
 DO \(91 \mathrm{~J}=1\), N
 \(W\left(M_{W}!\right)=W(M W I)-A J I N V(I, J I \neq F(J)\)
 \(K=K+1\)
 \(W\left(N_{W} I\right)=W(N W I)-W(K) * X(J)\)
 CONT INUE
 CONT INUE
 \(S P=0\).
 \(S S=D\) 。
 DU \(92 \quad I=1 . N\)
 DS=0.
```

H-2058. VCLUNE II
LISTING UF PROGKAM OEST\&E
DC 93 j=1.N
OS=DS+AJINV(J,I)*X\J*
43 CONTINUE
SP=SF+OS\&F(I)
SS=SS+X(I)*X(I)
F(I)=0S
CUNTINUE
DMUL T=1.
IF (ABS\SP)-0.1%SS\S4.95.95
DMULT=0.8
PJ=ONULT/SS
PA=DNULT/:DMLLT*SP+(2.-LMULTI*SS)
K=0
OU 96 I=1,N
NWI=NW+I
MWI=NW+I
SP=P J*W\NWI)
SS=PA*W{MWTI
[)U צ7 J=1,N
k=k+1
W(K)=W(K)+SP*X(J)
AJINVII,J):=AJINV(I,**+SS*F(J)
CONTINUE
CONTIINUE
GU TC 38
END

```

APPENCIX E
vehicle infut files fur program Gbs 78 b

ModLimz
1201 4k. 6.
11
1111
1111
\(17.5 \quad 17.5\)
186.6 \(33.3 \quad 33.3\) 30. 7. \(-7 . \quad-37\). t1246. 47754.
53.02 .
\(144.2 \quad 53.62\)
id. 0 .
2 i
273.545.
10. 40.
(i) 11111
253.31 4k. \(\quad 17.62 \quad 23.6\)

NUNITS, ASUSP,NVEH,NFL
HITCH HEIGHT ANO LOAD
BOGIE INCICATORS
POWER INDICATORS
bRAKE INCICATORS
rolling racius
HITCH TC SUPPQRT CENTER
BGGIE WICTH
BCGIE LIMIT-UP
BOGIE LIMIT-COWN
aXLE LOAC-EMPTY
VEt. CG atove ground
LCAD CG WRT GROUNC
LDAC
VEH BUTTCM PGINTS NPTSCl, NPTSC2
\(X C L C 1(1), Y C L C I(1), I=1, N P T S C 1\)
SFLAGIII,IP(I,11,18(I,11,I=4,5
41.25 14.62 ELLII, 2S (I),EFFRADII), \(\mathrm{I}=4,5\)
```

R-2050, VOLUNE II


AFPENDIX C
Sample terrain infut file for frogram obs78b

63

| $\dot{\square}$ |  |  |
| :---: | :---: | :---: |
| L 8 | 03 | 13 |
| 3.15 | 112.80 | 5.88 |
| 15.75 | 112.05 | 5.88 |
| 33.46 | 112.00 | 5.88 |
| 3.15 | 142.04 | 5.88 |
| 15.75 | 142.00 | 5.88 |
| 33.46 | 142.08 | 5.88 |
| 3.15 | 154.00 | 5.88 |
| 15.75 | 154.68 | 5.88 |
| 33.40 | 154.003 | 5.108 |
| 3.15 | 164.09 | 5.88 |
| 15.75 | 164.00 | 5.88 |
| 3 3 .46 | 164.000 | 5.88 |
| 3.15 | 146.00 | 5.88 |
| 15.75 | 190.06 | 5.8.8 |
| 33.46 | 196.00 | 5.88 |
| 3.15 | 206.00 | 5.888 |
| 15.75 | 206.00 | 5.88 |
| 33.46 | 206.00 | 5.88 |
| 3.15 | $<18.00$ | 5.88 |
| 15.75 | 219.00 | 5.88 |
| 33.46 | 218.00 | 5.88 |
| 3.15 | 248.00 | 5.88 |
| 15.75 | 248.00 | 5.88 |
| 33.46 | 448.06 | 5.88 |
| 3.15 | 112.00 | 29.88 |
| 15.75 | 112.00 | 29.88 |
| 33.46 | 112.00 | 29.48 |
| 3.15 | 142.06 | 29.88 |
| 15.75 | 142.00 | 29.88 |
| 33.46 | 142.00 | 29.88 |
| 3.15 | 154.00 | 29.68 |
| 15.75 | 154.80 | 27.88 |
| 33.46 | 154.00 | 29.88 |
| 3.15 | 164.00 | 29.88 |
| 15.75 | 164.00 | 29.88 |
| 33.46 | 164.00 | 29.*8 |
| 3.15 | 196.00 | 29.88 |
| 15.75 | 190.00 | 29.88 |
| 33.46 | 196.08 | 29.88 |
| د.15 | 266.00 | 29.88 |
| 15.75 | 206.00 | 29.48 |
| 33.46 | 246.00 | 29.88 |
| 3.15 | 218.00 | 29.88 |
| 15.75 | 218.00 | 29.88 |
| 33.46 | 216.00 | 29.88 |
| 3.15 | 248.00 | 29.88 |
| 15.75 | 248.30 | 29.88 |
| 53.46 | 248.00 | 29.38 |
| 3.15 | 112.00 | 141.60 |
| 15.75 | 112.00 | 141.60 |
| 33.46 | 112.06 | 141.100 |


| 3.15 | 142.00 | 141.68 |
| ---: | ---: | ---: |
| 15.75 | 142.00 | 141.60 |
| 33.46 | 142.00 | 141.60 |
| 3.15 | 154.00 | 141.60 |
| 15.75 | 154.00 | 141.60 |
| 31.46 | 154.00 | 141.60 |
| 3.15 | 104.00 | 141.60 |
| 15.75 | 164.00 | 141.60 |
| 33.46 | 164.00 | 141.60 |
| 3.15 | 196.00 | 141.60 |
| 15.75 | 190.00 | 141.60 |
| 33.46 | 196.00 | 141.60 |
| 3.15 | 406.00 | 141.02 |
| 15.73 | 266.00 | 141.60 |
| 33.46 | 466.00 | 141.60 |
| 3.15 | 218.06 | 141.60 |
| 15.75 | 218.00 | 141.60 |
| 33.46 | 218.00 | 141.60 |
| 3.15 | 248.00 | 141.60 |
| 15.75 | 248.00 | 141.60 |
| 33.46 | 248.00 | 141.60 |

APPENCIX C SAMPLE GLIPUT FRGM PRCGRAN GBS78B

| NLHGT |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NANG |  |  |  |  |  |
| 8 |  |  |  |  |  |
| NWCTt |  |  |  |  |  |
| 3 |  |  |  |  |  |
| LLRMIA | FCOMAX | FCC | HOVALS | AVALS | WVALS |
| I NCHES | PCUNDS | PGUNDS | INCHES | RADIANS | INCHES |
| 37.43 | 8448.5 | 372.1 | 3.15 | 1.95 | 5.88 |
| 24.42 | 27876.2 | 1842.00 | 15.75 | 1.95 | 5.88 |
| 6.57 | 89773.8 | 5211.1 | 33.46 | 1.95 | 5.88 |
| 37.83 | 0940.5 | 394.3 | 3.15 | 2.48 | 5.88 |
| 24.38 | 24473.2 | 1624.8 | 15.75 | 2.48 | 5.88 |
| 6.72 | 56134.8 | 3800.0 | 33.46 | 2.48 | 5.88 |
| 37.03 | 8948.5 | 399.0 | 3.15 | 2.09 | 5.88 |
| 24.56 | 18569.2 | 1398.5 | 15.75 | 2.69 | 5.88 |
| 11.43 | 32415.7 | 3616.3 | 33.40 | 2.64 | 5.88 |
| 30.98 | 8456.8 | 380.8 | 3.15 | 2.86 | 5.88 |
| 24.38 | 17646.6 | 1259.3 | 15.75 | 2.80 | 5.88 |
| 26.43 | 38844.5 | 4787.9 | 33.46 | 2.86 | 5.88 |
| 38.22 | 8281.7 | 707.0 | 3.15 | 3.42 | 5.88 |
| 21.27 | 18099.8 | 224 t. 3 | 15.75 | 3.42 | 5.88 |
| 2.87 | 30444.5 | 2696.2 | 33.46 | 3.42 | 5.88 |
| 39.64 | 4124.4 | 224.7 | 3.15 | 3.00 | 5.88 |
| 31.01 | 13744.6 | 1544.8 | 15.75 | 3.60 | 5.88 |
| $-1.30$ | 36816.3 | 2642.5 | 33.46 | 3.60 | 5.88 |
| 40.02 | 3757.7 | 174.5 | 3.15 | 3.80 | 5.88 |
| 56.03 | 13166.8 | 982.9 | 15.75 | 3.800 | 5.88 |
| <w. E ] 1 | 31078.1 | 2620.5 | 33.46 | 3.88 | 5.88 |
| 40.018 | 1612.7 | 3 E .6 | 3.15 | 4.33 | 5.88 |
| 39.54 | 4149.3 | 145.9 | 15.75 | 4.33 | 5.88 |
| 37.79 | 5566.1 | -125.5 | 33.46 | 4.33 | 5.88 |
| 37.13 | $y<72 .<$ | 484.4 | 3.15 | 1.95 | 29.88 |
| $<4 .<6$ | 12489.2 | -316.4 | 15.75 | 1.95 | 29.88 |
| 0.57 | 79647.8 | 4974.4 | 33.46 | 1.95 | 29.88 |
| 37.13 | 9272.2 | 5 ¢と.0 | 3.15 | 2.48 | 29.88 |
| <4. 42 | 20142.6 | 802.5 | 15.75 | 2.48 | 29.88 |
| 6.62 | 51346.5 | $434<.5$ | 33.46 | 2.48 | 29.88 |
| 37.13 | 9272.2 | 516.7 | 3.15 | 2.69 | 29.88 |
| 24.36 | 20378.8 | - 717.0 | 15.75 | 2.69 | 29.88 |
| 11.72 | 34887.7 | 3769.5 | 33.46 | 2.69 | 29.88 |
| 36.94 | 8456.8 | 527.7 | 3.15 | 2.86 | 29.88 |
| 24.57 | 15926.4 | 1465.5 | 15.75 | 2.86 | 29.88 |
| 26.55 | 30844.5 | 3131.9 | 33.46 | 2.86 | 29.88 |
| 37.17 | 0448.1 | 629.9 | 3.15 | 3.42 | 29.88 |
| 14.79 | 18895.7 | 1864.3 | 15.75 | 3.42 | 24.88 |
| 2.92 | 31444.5 | 3248.6 | 33.46 | 3.42 | 29.88 |
| 36.08 | $7<08.2$ | -219.2 | 3.15 | 3.60 | 29.88 |
| 22.08 | 31861.0 | $2<01.9$ | i5.75 | 3.60 | 29.88 |
| -11.5t | 34784.1 | 3152.8 | 33.46 | 3.60 | 29.88 |
| 36.71 | 9361.9 | 1021.2 | 3.15 | 3.86 | 29.88 |
| $<7.21$ | 40261.7 | 1637.8 | 15.75 | 3.80 | 29.88 |
| 3.49 | 48386.8 | 4522.6 | 33.46 | 3.80 | 29.88 |
| 38.68 | 5564.9 | 196.1 | 3.15 | 4.33 | 29.88 |
|  |  |  | 154 |  |  |

K-2058. VULUME I I
SANPLE CUTPUT FKCM PKCGRAN CES78E - VEHICLE:MGOAI TANK

| 37.64 | 7279.x | -102.0 | 15.75 | 4.33 | 29.88 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 35.61 | 12253.2 | 759.8 | 31.46 | 4.33 | 29.88 |
| 37.17 | 9272.2 | 231.1 | 3.15 | 1.95 | 141.60 |
| 24.77 | 20814.9 | 1042.4 | 15.75 | 1.95 | 141.60 |
| 6.59 | 79704.9 | 4401.1 | 33.46 | 1. 95 | 141.06 |
| 57.17 | 9<72.2 | 236.3 | 3.15 | 2.48 | 141.60 |
| 24.44 | 35968.2 | 1861.0 | 15.75 | 2.48 | 141.60 |
| 6.62 | 52815.6 | 3648.1 | 33.46 | 2.48 | 141.60 |
| 37.17 | 9272.2 | 241.8 | 3.15 | 2.69 | 141.60 |
| 44.40 | <7683.5 | 1707.9 | 1.5 .75 | 2.69 | 141.60 |
| 11.54 | 34888.9 | $33 \times 6.2$ | 33.46 | 2.69 | 141.60 |
| 36.93 | 8456.4 | 429.9 | 3.15 | 2.86 | 141.60 |
| 44.46 | 18740.7 | 1827.2 | 15.75 | 2.86 | 141.60 |
| cid. 55 | 30144.5 | 30.62 .1 | 33.46 | 2.86 | 141.60 |
| 34.73 | $\cup 495.3$ | 471.2 | 3.15 | 3.42 | 141.60 |
| 22.76 | 1912.4 | 2295.4 | 25.75 | 3.42 | 141.66 |
| 20.46 | 30844.5 | 3493.4 | 33.46 | 3.42 | 141.00 |
| 34.12 | 9326.8 | 741.4 | 3.15 | 3.68 | 141.60 |
| 10.75 | 32341.8 | 2497.8 | 15.75 | 3.60 | 141.60 |
| 9.38 | 34368.4 | 4266.5 | 33.46 | 3.60 | 141.60 |
| 33.89 | 9787.3 | 452.9 | 3.15 | 3.80 | 141.60 |
| 12.40 | 38383.1 | 2027.9 | 15.75 | 3.80 | 141.60 |
| -1.83 | 48528.4 | 3741.5 | 33.46 | 3.80 | 141.60 |
| 33.91 | 8474.2 | 608.1 | 3.15 | 4.33 | 141.60 |
| 16.94 | 18269.4 | 455.9 | 15.75 | 4.33 | 141.60 |
| - -3.03 | 79892.1 | 5167.6 | 33.46 | 4.33 | 141.60 |

NOHGT
NANG
8
NWDTH
3
CLRMIA
INCHES
6.05
-3.75

FCOMAX
PCUNDS

| FOO | HCVALS |
| :---: | :---: |
| POUNCS | INCFES |
| 31.2 | 3.15 |
| 127.1 | 15.75 |
| 237.5 | 33.46 |
| 35.6 | 3.15 |
| 110.7 | 15.75 |
| 16 W. 6 | 33.40 |
| 25.5 | 3.15 |
| 124.9 | 15.75 |
| 98.2 | 33.46 |
| 34.3 | 3.15 |
| 69.7 | 15.75 |
| 98.3 | 33.46 |
| 48.9 | 3.15 |
| 38.7 | 15.75 |
| 143.9 | 33.46 |
| 35.5 | 3.15 |
| 135.1 | 15.75 |
| 135.3 | . 3.46 |
| 16.3 | 3.15 |
| $18 x \cdot 3$ | 15.75 |
| 24k.0 | 33.46 |
| 4.8 | 3.15 |
| 43.5 | 15.75 |
| 146.0 | 33.40 |
| -2.8 | 3.15 |
| 49.1 | 15.75 |
| 154.9 | 33.46 |
| 29.3 | 3.15 |
| 98.4 | 15.75 |
| 149.8 | 33.46 |
| 24.7 | 3.15 |
| 69.2 | 15.75 |
| 116.9 | 33.46 |
| 28.8 | 3.15 |
| 5 k -1 | 15.75 |
| 105.0 | 33.46 |
| 31.1 | 3.15 |
| 57.6 | 15.75 |
| 100.6 | 33.46 |
| 34.8 | 3.15 |
| 119.2 | 15.75 |
| 137.0 | 33.46 |
| 34.9 | 3.15 |
| 145.1 | 15.75 |
| 193.9 | 33.46 |
| 4.9 | 3.15 |

AVALS
RADIANS INCHES

| 1.95 | 5.88 |
| :--- | :--- |
| 1.95 | 5.88 |
| 1.95 | 5.88 |
| 2.48 | 5.88 |
| 2.48 | 5.88 |
| 2.48 | 5.88 |
| 2.69 | 5.88 |
| 2.69 | 5.88 |
| 2.69 | 5.88 |
| 2.86 | 5.88 |
| 2.86 | 5.88 |
| 2.86 | 5.88 |
| 3.42 | 5.88 |
| 3.42 | 5.88 |
| 3.42 | 5.88 |
| 3.00 | 5.88 |
| 3.66 | 5.88 |
| 3.64 | 5.88 |
| 3.80 | 5.88 |
| 3.00 | 5.88 |
| 3.80 | 5.88 |
| 4.33 | 5.88 |
| 4.33 | 5.88 |
| 4.33 | 5.88 |

$1.95 \quad 29.88$
$1.95 \quad 29.68$
$1.95 \quad 29.88$
$2.48 \quad 29.08$
$2.48 \quad 29.88$
$2.48 \quad 29.88$
$2.69 \quad 29.88$
. 5 y $658 . x$
$.5<$
7.45
4.86
4.75
7.29
5.40
$4.9<$
6.03
.78
$-2.82$
6.71
$-2.46$
$-11.26$
1318.6
575.1

K-2お58, VOLUME II
PAGE D-5
SAMPLE CUTPUT FRCM PRGGRAN CHS78E - VEHICLE:MI51 JEEP

| -3.01 | 2401.0 | 157.0 | 15.75 | 4.33 | 29.88 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| -23.83 | 2551.4 | 228.7 | 33.46 | 4.33 | 29.88 |
| 6.85 | 541.3 | -6.6 | 3.15 | 2.95 | 141.60 |
| -. 5 x | 2428.4 | 87.4 | 15.75 | 1.95 | 141.60 |
| -11.46 | 2556.1 | 128.8 | 33.46 | 1.95 | 141.00 |
| 6.85 | 1893.9 | 18.1 | 3.15 | 2.48 | 141.60 |
| 2.84 | 1176.6 | 68.6 | 15.75 | 2.48 | 141.60 |
| -. 73 | 1304.9 | 145.9 | 33.46 | 2.48 | 141.60 |
| 0.85 | 78.7 .5 | 16.9 | 3.15 | 2.69 | 141.60 |
| 4.40 | 758.7 | 75.1 | 15.75 | 2.69 | 141.00 |
| 3.83 | 837.9 | 132.5 | 33.40 | 2.69 | 141.60 |
| 7.45 | 410.8 | 17.0 | 3.15 | 2.80 | 141.60 |
| 0.75 | 443.4 | 65.4 | 15.75 | 2.86 | 141.60 |
| 6.88 | 799.3 | 123.0 | 33.46 | 2.86 | 141.60 |
| 7.67 | 417.2 | 19.1 | 3.15 | 3.42 | 141.62 |
| 7.28 | 388.6 | 65.9 | 15.75 | 3.42 | 141.60 |
| 0.85 | 789.3 | 180.0 | 33.46 | $3.4<$ | 141.60 |
| 6.84 | 707.1 | 20.1 | 3.15 | 3.66 | 141.60 |
| 4.25 | 762.1 | 78.2 | 15.75 | 3.60 | 141.60 |
| 3.88 | 834.7 | 135.9 | 33.40 | 3.60 | 141.60 |
| 7.68 | 1294.0 | 18.6 | 3.15 | 3. $80{ }^{\circ}$ | 141.000 |
| 2.064 | 1168.7 | 83.3 | 15.75 | 3.86 | 141.00 |
| -. 600 | 1312.2 | 164.2 | 33.46 | 3.80 | 141.60 |
| 0.80 | 1131.4 | 36.3 | 3.15 | 4.33 | 141.60 |
| -.63 | 2397.2 | 88.3 | 15.75 | 4.33 | 141.60 |
| -15.46 | 2549.8 | 147.3 | 33.46 | 4.33 | 141.60 |

SECURITY CLASSIFICATION OF THIS PAGE (Whon Data Entarad)

16. DISTRIBUTION STATEMENT (of thfe Roport)

Approved for public release, distribution unlimited.
17. DISTRIBUTION STATEMENT (of the ebstract entered in Block 20 , if difforent from Roport)
13. SUPPLEMENTARY NOTES

Includes: Obstacle Module; App A: Program Listing; App B: Vehicle Input Files; AppC: Terrain Input Files; App D: Sample Output of Program
19. KEY WOROS (Continue on revorse mide I/ nocesaary and Idontify by block number)

Mobility
Vehicle Performance
Mobility Modeling
Computerized Simulation

Terrain
Obstacle Crossing

Instructions in the organization and use of the computer programs which implement the Initial NATO Reference Mobility Model (INRMM) are presented. Volume II is devoted to the INRMM Obstacle-Crossing Module. A brief description of the mathematical equations and computing algorithms which predict the speed of a vehicle over a variety of terrain, the input data required, and the outputs generated is included. Some aid to the interpretation of various output variables is given.


[^0]:    * This chapter is adapted from Jurkat, Nuttall and Haley (1975).

[^1]:    * Speed-made-good between two points is the straight-line distance between the points divided by total travel time, irrespective of path.

[^2]:    * Numbers in parentheses correspond to numbers in Figure I.E.1.

[^3]:    * the average speed, $V_{a v}$, is the harmonic average of the three speeds,i.e.
    $V_{\text {av }}=3 /\left[\left(1 / V_{\text {up }}\right)+\left(1 / V_{\text {across }}\right)+\left(1 / V_{\text {down }}\right)\right]$

