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Natriuretic peptides are a family of structurally related but
genetically distinct hormones/paracrine factors that regulate
blood volume, blood pressure, ventricular hypertrophy, pul-
monary hypertension, fat metabolism, and long bone growth.
The mammalian members are atrial natriuretic peptide, B-
type natriuretic peptide, C-type natriuretic peptide, and pos-
sibly osteocrin/musclin. Three single membrane-spanning na-
triuretic peptide receptors (NPRs) have been identified. Two,
NPR-A/GC-A/NPR1 and NPR-B/GC-B/NPR2, are transmem-
brane guanylyl cyclases, enzymes that catalyze the synthesis
of cGMP. One, NPR-C/NPR3, lacks intrinsic enzymatic activity
and controls the local concentrations of natriuretic peptides
through constitutive receptor-mediated internalization and

degradation. Single allele-inactivating mutations in the pro-
moter of human NPR-A are associated with hypertension and
heart failure, whereas homozygous inactivating mutations in
human NPR-B cause a form of short-limbed dwarfism known
as acromesomelic dysplasia type Maroteaux. The physiologi-
cal effects of natriuretic peptides are elicited through three
classes of cGMP binding proteins: cGMP-dependent protein
kinases, cGMP-regulated phosphodiesterases, and cyclic nu-
cleotide-gated ion channels. In this comprehensive review,
the structure, function, regulation, and biological conse-
quences of natriuretic peptides and their associated signaling
proteins are described. (Endocrine Reviews 27: 47–72, 2006)
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I. Introduction and Historical Background

ALTHOUGH PHYSIOLOGICAL EXPERIMENTS had
long predicted a humoral link between the heart and

kidneys (1), De Bold et al. (2) reported the first direct evidence
for such a substance in 1981. They found that the iv injection
of atrial, but not ventricular, homogenates into rats elicited
a rapid decrease in blood pressure that was accompanied by
increased renal sodium and water excretion. After this sem-
inal observation, several groups purified peptides of varying
sizes from atrial tissue that possess both natriuretic and
smooth muscle-relaxing activity (3–6). These peptides were
given a number of different names such as atrial natriuretic
factor, cardionatrin, cardiodilatin, atriopeptin, and atrial na-
triuretic peptide (ANP); the latter description is most often
used today. B-type natriuretic peptide (BNP), which was
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originally called brain natriuretic peptide (7), and C-type
natriuretic peptide (CNP) (8) were subsequently purified
from porcine brain extracts based on their ability to relax
smooth muscle. All three members contain the conserved
sequence CFGXXXDRIXXXXGLGC (Fig. 1) where X is any
amino acid. The flanking cysteines form a 17-amino-acid
disulfide-linked ring that is required for biological activity
(3).

In 1984, ANP was shown to elevate cGMP concentrations
in rat tissues, primary cell cultures, and urine (9). During the
same year, ANP was reported to activate particulate, but not
soluble, guanylyl cyclase activity in various rat tissue ho-
mogenates (10, 11) in a manner that correlated with vascular
smooth muscle relaxation (11).

Initial photoaffinity labeling and/or chemical cross-link-
ing of 125I-labeled ANP to whole cells or membranes revealed
proteins of 60 and 120–140 kDa as estimated by reducing
SDS-PAGE (12–15). Purification of the smaller protein (16)
and subsequent cloning of its cDNA (17) predicted a disul-
fide-linked homodimeric receptor with a large extracellular
binding domain, a single membrane-spanning region, and
only 37 intracellular amino acids. This receptor is generally
referred to as the natriuretic peptide clearance receptor,
NPR-C or NPR3. Purification of the higher molecular weight
protein revealed that the ANP binding activity cofraction-
ated with guanylyl cyclase activity (18–21). Cloning of the
cDNA for this receptor, known as natriuretic peptide recep-
tor-A (NPR-A), guanylyl cyclase A (GC-A) or natriuretic

FIG. 1. Natriuretic peptide expression, pro-
cessing, and structure. ANP, BNP, and CNP
are expressed in the indicated tissues as pre-
pro-hormones. The signal sequences are
cleaved to form pro-ANP, -BNP, and -CNP.
The peptides are further proteolytically pro-
cessed to form mature peptides. ANP is
cleaved by corin. The enzyme responsible for
BNP cleavage has not been definitively iden-
tified. Cleavage of pro-CNP by furin in vitro
results in a 53-amino-acid peptide. An un-
known enzyme further processes CNP to a 22-
amino-acid form as well. All three mature pep-
tides contain a conserved 17-residue disulfide-
linked ring structure that is required for
activity. The disulfide bond is shown in black,
and invariant residues within the ring are
shaded.
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peptide receptor 1 (NPR1) was obtained by probing a rat
brain cDNA library with a sea urchin receptor guanylyl
cyclase homolog (22, 23). Surprisingly, sequence analysis
suggested that the hormone binding and guanylyl cyclase
domains resided within the same polypeptide. This was con-
firmed when cells transfected with the NPR-A cDNA, but not
with empty vector, displayed marked 125I-ANP binding and
ANP-dependent cGMP elevations. As a result of the same
library screen, a second guanylyl cyclase-linked natriuretic
peptide receptor was identified and was called guanylyl
cyclase B (GC-B), natriuretic peptide receptor-B (NPR-B), or
natriuretic peptide receptor 2 (NPR 2) (24, 25). The specificity
of the ligand-guanylyl cyclase receptor interaction was de-
termined in transfected cells. ANP and BNP stimulate
NPR-A, whereas CNP stimulates NPR-B (26, 27) (Fig. 2).

II. Natriuretic Peptides

In mammals, there are generally three natriuretic peptides:
ANP, BNP, and CNP, although CNP does not stimulate
“natriuresis” at physiological concentrations. Teleosts have
a novel family member called ventricular natriuretic peptide
instead of BNP, whereas only CNP is expressed in sharks
(28). Evolutionary analysis indicates that ANP and BNP
evolved from CNP gene duplication events (29). Hence, CNP
is the most ancient family member.

A. Atrial natriuretic peptide

All natriuretic peptides are synthesized as preprohor-
mones (Fig. 1). Human preproANP is 151 amino acids in
length. Cleavage of the amino terminal signal sequence re-
sults in the 126-amino-acid proANP, which is the predom-
inant form stored in atrial granules. ProANP is rapidly
cleaved upon secretion by the transmembrane cardiac serine
protease called corin to form the biologically active carboxyl-

terminal 28-amino-acid peptide (30). Mice lacking corin have
undetectable levels of the mature form of ANP in heart tissue
and are hypertensive (31). Alternative processing of proANP
by an unknown protease in the kidney generates a 32-residue
peptide called urodilatin, which may be important in regu-
lating renal sodium and water excretion (32).

ANP is primarily expressed and stored in granules in the
atria, although it is present at lower concentrations in other
tissues such as the ventricles and kidney (Fig. 1). The primary
stimulant for ANP release is atrial wall stretch resulting from
increased intravascular volume (33, 34). Once secreted, ANP
perfuses into the coronary sinus, which facilitates distribu-
tion to its various target organs in a true endocrine manner.
In addition, hormones such as endothelin (35), angiotensin
(36), and arginine-vasopressin (AVP) (37) stimulate ANP
release (38), as do water immersion (39) and head down tilt
(40). Plasma levels of ANP in normal patients are approxi-
mately 10 fmol/ml and are elevated 10- to 30-fold in patients
with congestive heart failure (41, 42) (Table 1).

The human ANP gene is found on chromosome 1p36.2
(Table 1). The mouse gene is located on chromosome 4 (43).
The ANP gene, like the BNP and CNP genes, contains three
exons. Disruption of the murine ANP gene (Nppa) results in
marked hypertension, which was initially suggested to be
salt-sensitive (Table 2) (44). However, a subsequent report
from the same laboratory found that blood pressures in ANP-
deficient animals are not influenced by dietary salt intake
(45).

B. B-type natriuretic peptide

BNP was initially purified from porcine brain extracts and
given the name brain natriuretic peptide (7). However, it was
subsequently found in much higher concentrations in cardiac
ventricles from patients or animals undergoing cardiac stress
such as congestive heart failure or myocardial infarction (42).

FIG. 2. Natriuretic peptide receptor topology and ligand
preferences. Natriuretic peptides bind three proteins,
NPR-A, NPR-B, and NPR-C. NPR-A and NPR-B are
membrane-bound guanylyl cyclases consisting of an ex-
tracellular ligand binding domain, a single hydrophobic
transmembrane region, and intracellular kinase homol-
ogy, dimerization, and carboxyl-terminal guanylyl cy-
clase domains. The catalytic domain is hypothesized to
form a dimer in a head-to-tail arrangement that contains
two active sites. NPR-C is approximately 30% identical
to NPR-A and NPR-B in the extracellular ligand-binding
domain but contains only 37 intracellular amino acids.
Red horizontal line indicates an intermolecular disulfide
bond.
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For this reason, it is currently referred to as BNP or “B-type
natriuretic peptide,” but not “brain natriuretic peptide.” Hu-
man BNP is synthesized as a preprohormone of 134 residues
containing a signal sequence that is cleaved to yield a 108-
amino-acid prohormone (Fig. 1). Additional cleavage by an
unknown protease results in an inactive 76-residue amino-
terminal (nt) fragment and a 32-residue carboxyl-terminal
biologically active peptide. Fully processed BNP length var-
ies between species. Human, pig, and dog BNP is 32 amino
acids (46, 47), whereas rat and mouse BNP is 45 amino acids
(48, 49).

Although BNP is stored with ANP in atrial granules, BNP
is not stored in granules in the ventricles. Instead, ventricular
BNP production is transcriptionally regulated by cardiac
wall stretch resulting from volume overload. The nuclear
transcription factor, GATA 4, plays a dominant role in reg-
ulating this process (50, 51). Healthy individuals have
plasma BNP concentrations of approximately 1 fmol/ml (3.5

pg/ml) or about one tenth that of ANP (Table 1). In contrast,
plasma BNP concentrations of patients with congestive heart
failure are elevated between 200- and 300-fold. The enor-
mous range of plasma BNP concentrations between normal
and sick individuals makes it an ideal indicator of cardiac
stress (42). Several studies indicate that elevated BNP levels
correlate with poor prognoses (see Section XI).

The human BNP gene is only 8 kb upstream of the ANP
gene on chromosome 1p36.2 (Table 1). The mouse gene is
located on chromosome 4. Disruption of both alleles of the
murine BNP gene (Nppb) yields normotensive animals that
develop pressure-sensitive ventricular fibrosis (Table 2) (52).
Hence, at least in mice, BNP is not an endocrine regulator of
blood pressure but rather a paracrine regulator of the heart.

C. C-type natriuretic peptide

CNP is the most highly expressed natriuretic peptide in the
brain and is found in high concentrations in chondrocytes
(53, 54) and cytokine-exposed endothelial cells (55). It is not
stored in granules. In cultured endothelial cells, its secretion
is up-regulated by TNF-� (56), TGF-� (55), IL-I (56), and sheer
stress (57) and suppressed by insulin (58). CNP is the most
conserved natriuretic peptide. For instance, both 22- and
53-amino-acid versions of CNP are identical in humans, pigs,
and rats. Human proCNP contains 103 residues, and the
intracellular endoprotease furin has been shown to process
proCNP to the mature 53-amino-acid peptide in vitro (Fig. 1)
(59). In some tissues, CNP-53 is cleaved to CNP-22 by an
unknown extracellular enzyme. Although CNP-22 and
CNP-53 elicit similar if not identical functions (60, 61), their
tissue expression differs. CNP-53 is the major form in the
brain (62), endothelial cells (63), and heart (64), whereas
CNP-22 predominates in human plasma (63) and cerebral
spinal fluid (65). Normal plasma CNP concentrations (both
forms) are in the low femtomole per milliliter range (63) and
are minimally (66), if at all (67), elevated in patients with
congestive heart failure.

TABLE 2. Phenotypes of mice and humans with inactivation
mutations in genes that code for natriuretic peptides and their
receptors

Gene Mouse knockout phenotype Human diseases

ANP Hypertension
Cardiac hypertrophy

BNP Ventricular fibrosis
CNP Dwarfism
NPR-A Hypertension Hypertension

Ventricular fibrosis Ventricular fibrosis
Cardiac hypertrophy

NPR-B Dwarfism, seizures Dwarfism (AMDM)
Female sterility
Decreased adiposity

NPR-C Giantism
Hypotension

Knockout mice for each of the natriuretic peptides and receptors
have been generated. The characteristic phenotype of each knockout
animal is listed. Human genetic mutations have been identified for
two of the receptors as shown. AMDM, Acromesomelic dysplasia, type
Maroteaux.

TABLE 1. Human natriuretic peptide gene locus, plasma concentration, and half-life

ANP BNP CNP

Gene name NPPA NPPB NPPC
Gene locus 1p36.2 1p36.2 2q24-qter
Plasma half life (min) �2 �20 2.6 [331]

(1.7 –3.1) [328, 329] (19.5 –22.6) [330]
Plasma concentration (pmol/liter)

Normal 6.4 � 0.9 [42] 0.9 � 0.007 [42] 1.4 � 0.6 [332]
(1.1 –13.7) [42, 332–334] (0.9 –6) [42, 332–335] (1.4 –1.9) [332, 336, 337]

In congestive heart failure 87 � 12 [321] 87 � 11 [321] 1.4 � 0.2 [332]
(26 –164) [42, 321, 332] (3.9 –267) [42, 321, 332, 335] (1.4 –1.85) [332, 338]

In myocardial infarction 33.4 � 6.1 [321] 60 � 9.4 [287] N.D.
(33.4 –55.3) [321, 337, 339] (26.6 –62.2) [321, 337, 339]

In pulmonary arterial hypertension 14.0 [260] 15.3 [260] N.D.
(8.8 –20.5) [260] (9.2 –49.4) [260]

In chronic renal failure 43 � 11 [332] 130 � 37.4 [332] 3.0 � 0.4 [332]
(43 –48) [321, 332] (28 –130) [321, 332, 335, 340]

In subarachnoid hemorrhage 5.9 � 1.0 [341] 15.1 � 3.8 [341] 2.0 –2.6 [343]
(5.46 –10.5) [341, 342] (0.64 –23.2) [341, 342] (0.91 –9.1) [342, 343]

In cirrhosis 27.98 � 3.71 [333] 16.0 � 1.91 [333] 1.36 � 0.18 [336]
(1.2 –43.1) [333, 335]

The gene loci for each human natriuretic peptide are shown. The approximate plasma half-life and plasma concentration of each natriuretic
peptide in normal and various disease states also are shown. Values represent the mean patient value from a representative study. Values in
parentheses represent the range of mean values from several studies. Reference numbers are in brackets. N.D., Not determined.
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The human CNP gene is located between 2q24 and the 2q
terminus (Table 1) (68, 69). The mouse gene is located on
chromosome 1 (69). Disruption of the murine CNP gene
(Nppc) results in normotensive mice that display severe
dwarfism and undergo early death as a result of impaired
endochondral ossification (Table 2) (see Fig. 9) (70).

D. Osteocrin/musclin

Using signal-trap strategies, two different groups identi-
fied a peptide with limited similarity to natriuretic peptides.
Interestingly, one group found it primarily in bone and
named it osteocrin (71), whereas another group found it
primarily in muscle and named it musclin (72). In a paper
presented at the American Society of Bone and Mineral Re-
search Conference in 2004 (73), the osteocrin group reported
that osteocrin binds with high affinity to NPR-C, but not to
NPR-A or NPR-B, in a manner that is competitive with ANP.
When NPR-A and NPR-C were expressed in the same cells,
osteocrin increased ANP-dependent cGMP elevations, pre-
sumably by blocking NPR-C mediated ANP degradation.
Transgenic expression of osteocrin under the bone specific
collagen type I promoter resulted in mice with elongated
bones and marked kyphosis, which is similar to the pheno-
type of mice transgenically overexpressing BNP (74) or CNP
(75) or lacking NPR-C (76, 77). These data suggest that os-
teocrin increases local CNP levels in the growth plate by
blocking binding to NPR-C (see Section X.L).

III. Natriuretic Peptide Receptors

There are three known natriuretic peptide binding pro-
teins in mammals: NPR-A, NPR-B, and NPR-C (Fig. 2). They
are also known as GC-A, GC-B, and the clearance receptor,
or as NPR1, NPR2, and NPR3, respectively. NPR-A and
NPR-B represent two of the five transmembrane guanylyl
cyclases found in humans (78). The other members of the
family are GC-C, the receptor for the intestinal peptides
guanylin and uroguanylin, and Ret-GC-1 and Ret-GC-2, ret-
inal enzymes that regulate the photoreceptor dark cycle. The
third natriuretic peptide receptor, NPR-C, does not possess
any known intrinsic enzymatic activity.

A. Natriuretic peptide receptor A

Human and rat NPR-A mRNA are highly expressed in
kidney, adrenal, terminal ileum, adipose, aortic, and lung
tissues (Table 3) (23, 25, 79). In situ hybridization analysis of
rhesus monkey tissues indicated that NPR-A mRNA is prev-
alent in the kidney, adrenal glomerulosa, adrenal medulla,
pituitary, cerebellum, and endocardial endothelial cells (80).
In the brain, NPR-A mRNA was observed in the mitral cell
layer of the olfactory bulb, medial habenula, subfornical or-
gan, and area postrema (81, 82). It was also observed in
forebrain white matter tracts, suggesting synthesis in glial
cells. Western blot analysis detected high NPR-A protein
levels in rodent lung, kidney, adrenal, testis, and liver tissue
(Table 3) (83, 84). NPR-A was purified to apparent homo-
geneity from rat lung (18) and bovine adrenal cortex (19, 85).
In cultured cells, NPR-A is readily found in primary vascular

smooth muscle and kidney mesangial cells. Its expression
decreases dramatically with continued propagation (86). In
fact, we are not aware of any immortalized cell line that
expresses high levels of this receptor, although low expres-
sion is observed in some human embryonic kidney 293 (87)
and rat PC-12 pheochromocytoma (88) cell lines (Table 3).

The guanylyl cyclase-linked natriuretic peptide receptors
have a growth factor receptor-like topology consisting of an
extracellular ligand-binding domain of approximately 450
amino acids, a 20- to 25-residue single hydrophobic mem-
brane-spanning region, and an intracellular domain of ap-
proximately 570 amino acids (Fig. 2). The latter is made of a
250-amino-acid kinase homology domain, a roughly 40-res-
idue coiled-coil dimerization domain, and approximately
250-amino-acid carboxyl-terminal guanylyl cyclase catalytic
domain (78). The rank order of NPR-A activation by natri-
uretic peptides is ANP � BNP �� CNP (26, 27).

The extracellular domain of rat NPR-A contains three in-
tramolecular disulfide bonds between Cys-60/Cys-86, Cys-
164/Cys-215, and Cys-423/Cys-432 (see Ref. 89 for graphic
depiction of disulfide bonds), but no intermolecular disulfide
bonds (90). When fractionated by SDS-PAGE, NPR-A exhib-
its considerable size heterogeneity, which is primarily due to
differential N-linked glycosylation. Sequencing of the amino
termini of human natriuretic peptide receptor-IgG fusion
proteins purified from Chinese hamster ovary cells indicated
that Asn-2 and Asn-13 of NPR-A are glycosylated (91). A
soluble extracellular domain of rat NPR-A purified from Cos
cells is glycosylated on Asn-13, Asn-180, Asn-306, Asn-347,
and Asn-395 (92). The role of glycosylation in the regulation
of NPR-A is controversial. Some investigators found that
terminal glycosylation affects ligand binding (93, 94),
whereas others did not (92, 95, 96).

Under basal conditions, NPR-A is phosphorylated on four
serines (Ser-497, Ser-502, Ser-506, and Ser-510) and two
threonines (Thr-500 and Thr-513) within a stretch of 17 amino
acids at the amino-terminal portion of its kinase homology
domain. Conversion of any phosphorylated residue to ala-
nine decreases receptor-associated phosphate, changes tryp-
tic phosphopeptide mapping patterns, and reduces hor-
mone-dependent guanylyl cyclase activity. The mutation of
four or more phosphorylation sites to alanine yields a hormon-
ally unresponsive receptor, indicating that phosphorylation of

TABLE 3. Natriuretic peptide receptor tissue and cell line
expression

Receptor Tissue expression Cell line expression

NPR-A Adrenal, brain, VSM,
lung, kidney,
adipose, heart

Primary VSMC
Primary renal mesangial
PC-12
Some 293 cell lines

NPR-B Chondrocytes, brain,
lung, VSM, uterus

Primary VSMC
Smooth muscle (A10, A7R5)
Fibroblast (NIH3T3, Balb3T3)
Chondrocyte (ATDC5)

NPR-C Most tissues A10 VSMC
3T3 fibroblast

The tissue expression pattern of each natriuretic peptide receptor
is shown. Natriuretic peptide receptor expression in commonly stud-
ied cell lines also is listed. VSM, Vascular smooth muscle; VSMC,
VSM cell.
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NPR-A is absolutely required for hormonal activation (87).
Whether NPR-A contains additional phosphorylation sites is
currently unknown but remains a possibility because sea urchin
homologs have stoichiometries of 15–17 moles of phosphate per
mole of receptor (97, 98).

The crystal structure of the glycosylated, unliganded,
dimerized extracellular domain of rat NPR-A was solved at
2.0 Å resolution (99). The monomer contains a type I periplas-
mic binding protein fold and consists of two interconnected
subdomains with each containing a central �-sheet flanked
by �-helices. An apparent chloride ion is buried within the
amino portion of each monomer. Chloride was reported to
be absolutely required for ANP binding to NPR-A (100);
however, this observation has not been confirmed. Although
originally proposed to adopt a tail-to-tail V-shaped dimer
with the apex being closest to the membrane, the crystal
structure of the extracellular domain bound to a truncated
form of ANP revealed that the receptor forms a head-to-
head, A-like dimer with a stoichiometry of one molecule of
ANP to two molecules of receptor (101). Data from studies
where the proposed dimerization interfaces were mutated
are consistent with an A-shaped, not V-shaped, model (102,
103). Because ANP has no internal symmetry, binding of
ANP to NPR-A is asymmetric.

NPR-A has been shown to associate with a limited number
of partners. NPR-A expressed in 293 cells interacts with heat
shock proteins 70 and 90 (HSP70 and HSP90), molecular
chaperones required for proper protein folding and/or traf-
ficking (104). HSP90 is hypothesized to bind within the
NPR-A kinase homology domain because deletion of the
intracellular or the kinase homology domains disrupts the
interaction. Inhibition of HSP90 activity decreases ANP-
stimulated cGMP production, presumably due to decreased
processing and/or folding of NPR-A (104). Additionally, the
kinase homology domain of NPR-A was shown to associate
with protein phosphatase 5 (105) and cGMP-dependent pro-
tein kinase I� (106) in two-hybrid screens. To date, neither
interaction has been reported in mammalian cells. cGMP-
dependent protein kinase I� was suggested to phosphorylate
and activate NPR-A in a feed forward mechanism (106).
However, we find that neither overexpression nor lack of
expression (null animals) of cGMP-dependent protein kinase
I� has any effect on the phosphorylation status or guanylyl
cyclase activity of NPR-A (344).

The human NPR-A gene is approximately 16 kb, contains
22 exons and 21 introns, and is located on chromosome
1q21–22 (23, 107). The rat NPR-A gene (Npr1) spans about
17.5 kb and also contains 22 exons and 21 introns (108). It
lacks a definitive TATA box but contains three putative Sp1
binding sites. The murine NPR-A gene has been disrupted by
two separate laboratories (109, 110). The null animals have
high blood pressure, cardiac hypertrophy, and ventricular
fibrosis (Table 2) (109, 110). One group also found that male
mice lacking NPR-A died at 6 months of age due to a cat-
astrophic cardiovascular event (110), but this was later at-
tributed to the genetic background of the mice (111). In
humans, a single allele mutation was identified in the pro-
moter of the NPR-A gene that decreases receptor expression
by about 70% (112). Interestingly, of the eight Japanese pa-
tients identified with this mutation, seven had hypertension

and one had congestive heart failure. Hence, every time a loss
of function mutation was identified in the NPR-A gene, it
was associated with disease. In contrast, a separate study
involving 498 New Zealand patients failed to observe this
mutation, suggesting that it may be rare outside of Japan
(113).

B. Natriuretic peptide receptor B

NPR-B mRNA was found in lung, brain, adrenal, kidney,
uterus, and ovary tissue (Table 3) (25, 79, 114). In situ hy-
bridization studies found detectable NPR-B mRNA in the
adrenal medulla, pituitary, cerebellum, and skin (80). NPR-B
is the predominant natriuretic peptide receptor in the brain.
NPR-B mRNA was detected throughout the neuroaxis, being
abundantly expressed in the limbic cortex, neocortex, olfac-
tory bulb, hippocampus, and amygdala (81). Intense staining
was found in preoptic-hypothalamic neuroendocrine circuits
and in motor nuclei of cranial nerves. In a separate study,
high levels of NPR-B mRNA were found throughout the
hypothalamus and the neural lobe of the pituitary (82).
NPR-B protein has been found at relatively high concentra-
tions in fibroblasts (Table 3) (115–117).

NPR-B has the same overall topology as NPR-A (Fig. 2).
The disulfide-bonding pattern of NPR-B has not been chem-
ically determined, but mutagenesis-based studies are con-
sistent with intramolecular disulfide bonds between Cys-53
and Cys-79, Cys-205 and Cys-314, as well as Cys-417 and
Cys-426 (118). Similarly, the glycosylation sites of NPR-B
have not been chemically determined, but mutagenesis stud-
ies suggest that five of the seven extracellular asparagines are
glycosylated (119, 120). The mutation of Asn-24 to Asp re-
sulted in a 90% loss in CNP binding, which is probably due
to improper folding or cellular targeting of the receptor (120).
NPR-B is phosphorylated on Thr-513, Thr-516, Ser-518, Ser-
523, and Ser-526 (121). Similarly to NPR-A, mutating any of
these residues to alanine reduces hormone-dependent gua-
nylyl cyclase activity. Whether additional unidentified phos-
phorylation sites exist is unknown. No crystal structure has
been reported for any domain of NPR-B. Multiple splice
variants of NPR-B have been identified, including a species
lacking enzymatic activity that can function in a dominant-
negative manner (122, 123). Whether these truncated variants
participate in CNP signaling is unknown. The rank order of
activation of NPR-B by natriuretic peptides is CNP ��
ANP � BNP. To date, studies on purified NPR-B have not
been reported.

Two loss of function mouse models exist for NPR-B (Table
2). Targeted deletion of exons 3 through 7, which encode the
carboxyl-terminal half of the extracellular domain and trans-
membrane segment of NPR-B, by homologous recombina-
tion results in dwarfism and female sterility (124). The
heterozygous animals were significantly shorter than the
wild-type animals as well. A spontaneous mutation resulting
from a T to G transversion, which causes the substitution of
a highly conserved leucine with an arginine in the guanylyl
cyclase domain of NPR-B, also results in dwarfism in mice
containing two defective alleles (cn/cn) (125). Female infer-
tility was not noted in this mouse model. Interestingly, the
targeted deletion of CNP or NPR-B resulted in mice that had
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significantly higher mortality rates than the single mutation-
containing cn/cn mice. One possible explanation for these
seemingly disparate results is that CNP binding to NPR-B
signals through another mechanism in addition to cGMP
synthesis.

The human NPR-B gene spans about 16.5 kb, contains 22
exons, and is located on chromosome 9p21–12 (126). Similar
to NPR-A, the NPR-B promoter lacks a defined TATA box
but contains multiple putative Sp1 binding sites. The mouse
gene, Npr2, is found on chromosome 4. Homozygous loss of
function mutations in human NPR-B have been identified in
patients with a rare form of short-limbed dwarfism called
acromesomelic dysplasia, type Maroteaux (Table 2) (127).
Sterility was not noted in these patients. Similarly to the
“knockout” mice, patients with a single mutated NPR-B al-
lele were statistically shorter than the average person from
their respective populations (127).

C. Natriuretic peptide clearance receptor

NPR-C mRNA is found in atrial, mesentery, placenta,
lung, kidney, and venous tissue (79, 128) and in aortic smooth
muscle and aortic endothelial cells (Table 3) (17). In situ
hybridization studies found detectable NPR-C mRNA in kid-
ney, adrenal, heart, cerebral cortex, and cerebellum tissue
(80). NPR-C protein was purified to apparent homogeneity
from bovine lung (129) and vascular smooth muscle cells
(16).

The extracellular domain of NPR-C is about 30% identical
to NPR-A and NPR-B (130). However, unlike the cyclase-
linked receptors, it contains only 37 intracellular amino acids
and no guanylyl cyclase activity (17) (Fig. 2). The extracel-
lular domain of human NPR-C is glycosylated on Asn-41,
Asn-248, and Asn-349 and contains two sets of intramolec-
ular disulfide bonds between Cys63-Cys91 and Cys168-
Cys216 that are conserved in NPR-A and NPR-B (131). One
intermolecular bond was identified in bovine NPR-C at
Cys469 (132), whereas in human NPR-C two intermolecular
disulfide bonds were found at Cys-428 and Cys-431 (131).
Hence, unlike NPR-A and NPR-B, NPR-C is a disulfide-
linked homodimer (Fig. 2). NPR-C is phosphorylated on
serine residues when overexpressed in hamster cells (133).

The crystal structures of the unbound and CNP-bound
versions of the NPR-C extracellular domain indicate a ligand
to receptor stoichiometry of 1:2 with a membrane distal
dimerization interface or A-shaped dimer (134). Hormone
binding was found to induce a 20-Å closure of the membrane
proximal domains of the dimer.

The affinity of NPR-C for natriuretic peptides is ANP �
CNP � BNP in both humans and rats (27, 91). Dissociation
constants range from 10 to 140 pm (27). The differential
affinity of NPR-C for the cardiac family members may con-
tribute to the longer serum half-life of BNP compared with
ANP (Table 1). NPR-C, but not NPR-A or NPR-B, also binds
the synthetic ANP analog, c-ANF (ANP 4–23), which is miss-
ing the carboxyl-terminal tail and a portion of the disulfide
ring structure (135). Hence, functions that are stimulated by
c-ANF, but not ANP, have been suggested to result from
NPR-C-dependent signaling. However, caution is advised
when interpreting these experiments because c-ANF indi-

rectly increases NPR-A-dependent responses by blocking
NPR-C-dependent ANP degradation (135).

Loss of function mutations in mice indicate that the major
function of NPR-C is to clear natriuretic peptides from the
circulation or extracellular milieu through receptor-medi-
ated internalization and degradation (76, 77). Like many
nutrient type transmembrane receptors, such as the trans-
ferrin or low-density lipoprotein receptors, the internaliza-
tion of NPR-C is constitutive. In other words, it is indepen-
dent of ligand binding (136). NPR-C internalization is
abolished by hypertonic sucrose treatment, which causes
clathrin disassembly, suggesting that the endocytosis is me-
diated by clathrin-coated pits (137). 125I-ANP hydrolysis also
is disrupted by cellular treatment with NH4Cl or chloro-
quine, suggesting that NPR-C-bound ligand undergoes ly-
sosomal hydrolysis followed by receptor recycling to the cell
surface (136, 138).

In contrast, a number of laboratories have reported sig-
naling functions for NPR-C (139). The NPR-C selective ag-
onist c-ANF (ANP 4–23) reduces adenylyl cyclase activity in
membranes or cAMP concentrations in whole cells (140).
This effect is inhibited by pertussis toxin treatment, which is
consistent with a requirement for Gi- or Go-protein activa-
tion (141). The inhibition was blocked with an antibody spe-
cific for the intracellular domain of NPR-C (142), whereas
small peptide fragments of the NPR-C intracellular domain
mimic the inhibition (143). Similarly, the ability of CNP to
inhibit catecholamine efflux from pheochromocytoma cells is
dependent on NPR-C protein levels and is inhibited by an
antibody against the intracellular portion of NPR-C (144,
145). NPR-C has been shown to stimulate phospholipase C
in a G protein-dependent manner as well (146–148).

The human NPR-C gene is located on chromosome 5p14-
p13, spans more than 65 kb, and contains eight exons and
seven introns (149). The mouse NPR-C gene, Npr3, is located
on chromosome 15. Multiple loss of function mouse models
exist for NPR-C (Table 2). Targeted inactivation of both al-
leles of the NPR-C gene by homologous recombination re-
sults in animals that have a reduced ability to clear 125I-ANP
from their circulation (two thirds longer half-life), reduced
ability to concentrate urine, and long bone overgrowth (77).
However, circulating levels of ANP and BNP in the knockout
animals are similar to those in wild-type animals, suggesting
the existence of a feedback mechanism for ANP and BNP
synthesis. In addition to the targeted deletion model, three
different strains have been identified that contain recessive
loss of function mutations in the gene for NPR-C (76). Long-
john mice contain a 36-bp in-frame deletion between posi-
tions 195 and 232 that results in a 12-amino acid deletion.
Longjohn2 animals contain a C to T transition at position 283
that results in a premature stop codon. The strigosus strain,
which is Latin for long and emaciated, has a C to A trans-
version at position 502 that results in an Asp to His substi-
tution. All mutations are found in the extracellular ligand-
binding domain and presumably disrupt ligand binding,
although this has not been formally demonstrated. Like the
animals with the targeted deletion, these animals exhibited
marked skeletal overgrowth. A lack of body fat deposits also
was noted upon necropsy. Interestingly, none of the animals
with homozygous loss of function NPR-C mutations were
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impaired in any known natriuretic peptide response. On the
contrary, these animals display phenotypes associated with
exaggerated NPR-A and NPR-B actions, for example, hypo-
tension and gigantism, respectively. These data suggest that
NPR-A or NPR-B mediates the known effects of natriuretic
peptides that have been identified to date, at least in mice.
However, it is possible that NPR-C mediates some yet to be
discovered natriuretic peptide function. In our opinion, the
demonstration of natriuretic peptide functions that are intact
in NPR-A- and NPR-B-expressing animals, but absent in
animals lacking functional NPR-C, is essential to support a
signaling role for NPR-C in mice.

IV. Activation of NPR-A

In the basal state, NPR-A is a higher-ordered oligomer, and
its guanylyl cyclase activity is tightly repressed (Fig. 3). Ev-
idence for dimers, trimers, and quatramers exists (150–152)
(Fig. 3). Unlike growth factor receptors, ligand binding does
not lead to further oligomerization (150, 152). Analysis of the

crystal structure of NPR-A indicates that one molecule of
ANP binds per two molecules of NPR-A and causes a Ferris
wheel-like translocation of the two juxtamembrane domains
with little change in interdomain distance (101). However,
these data are not consistent with a report showing that a
version of NPR-A containing a mutant unpaired juxtamem-
brane cysteine forms a disulfide dimer upon hormone bind-
ing, suggesting that ANP binding decreases the distance
between the juxtamembrane regions of the monomers (153).
Through an unknown mechanism, this activation signal is
transmitted across the plasma membrane, which initiates a
series of subsequent events. First, the normal repression ex-
erted by the kinase homology domain is relieved. The kinase
homology domain is thought to repress NPR-A because re-
ceptors lacking this domain are constitutively active (154,
155). At this point, it is hypothesized that the guanylyl cy-
clase domains come together in a head to tail arrangement to
form two active sites per dimer. This idea is based on the
crystal structure of adenylyl cyclase, not guanylyl cyclase,
because the latter does not exist. However, a similar structure
is likely between the two cyclases because a surprisingly few
number of amino acid changes were shown to convert a
guanylyl cyclase to an adenylyl cyclase (156) and vice versa
(157). Second, the affinity of the hormone-binding domain
for ligand decreases, which increases the dissociation rate
(158, 159). Finally, the regulatory phosphorylation sites on
the kinase homology domain are dephosphorylated, which
desensitizes the receptor (Fig. 3) (160). Quantitation of thio-
phosphate incorporation into active and desensitized forms
of NPR-A suggests that the dephosphorylation is primarily
the result of reduced receptor phosphorylation, with only
slight increases in receptor dephosphorylation (161). Cur-
rently, the identities of these regulatory enzymes are un-
known. However, NPR-A is dephosphorylated by two sep-
arate phosphatase activities in crude membranes. One is
inhibited by microcystin and does not require a metal co-
factor for activity. The other requires magnesium or man-
ganese for activity but is not inhibited by microcystin (162).

ANP was originally shown to increase guanylyl cyclase
activity in crude membranes in the absence of ATP (10).
However, a few years later, several groups observed that
including ATP in the reaction mixture dramatically increased
ANP-dependent cyclase activity (163–165). Because AMP-
PNP, a nonhydrolyzable ATP analog that presumably cannot
substitute for ATP in protein kinase reactions, also increased
ANP-dependent activity, it was suggested that ATP directly
binds and activates NPR-A (164). Subsequent reports found
that ATP was absolutely required for NPR-A activation (166–
168). Similar data were reported for NPR-B (169). This led to
a two-stage activation model for natriuretic peptide recep-
tors where natriuretic peptide binding to the extracellular
domain facilitates ATP binding to the kinase homology do-
main, which ultimately brings the catalytic domains together
to form an active site.

More recent studies suggest that the ATP-dependent reg-
ulation of the kinase homology domains of NPR-A and
NPR-B also involves changes in their phosphorylation state,
a process that is required for natriuretic peptide receptor
activation (87, 121). For instance, mutations that disrupt the
putative ATP regulator module in NPR-B reduce the phos-

FIG. 3. Hypothetical model for NPR-A and NPR-B activation and
desensitization. Three states of receptor activation are labeled
“basal,” “active,” and “desensitized.” In the basal state, NPR-A and
NPR-B are higher ordered oligomers (shown here as dimers for sim-
plicity). In the basal state, they are phosphorylated on five (NPR-B)
or six (NPR-A) known sites within the kinase homology domain (pur-
ple). Phosphates are indicated by the small yellow spheres. It is hy-
pothesized that phosphorylation “licenses” the receptor for hormonal
activation. The rate of phosphorylation or dephosphorylation is in-
dicated by the thickness of the respective arrows. Natriuretic peptide
(NP; blue) binding to the highly phosphorylated, inactive basal re-
ceptor induces a conformational change that brings the juxtamem-
branes regions of the extracellular domain together. This activation
signal is transduced across the membrane, which is hypothesized to
relieve the repression of the kinase homology domain on the guanylyl
cyclase domain (green). This allows the cyclase domains to dimerize.
Each dimer is envisioned to contain two active sites. Prolonged ligand
exposure stimulates receptor dephosphorylation, which results in
reduced activity via a process called desensitization. The dephos-
phorylation primarily results from inhibition of the phosphorylation
process. Release of ligand and rephosphorylation returns the enzyme
to its basal state.
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phate content of the receptor (121). Additionally, ATP�S was
found to sensitize NPR-A to subsequent activation by ANP
and AMPPNP, indicating that in broken cell assays ATP is
serving as a substrate for the protein kinase that phosphor-
ylates NPR-A (170). Recently, we reported that NPR-A or
NPR-B in membranes prepared in the presence of phospha-
tase inhibitors is activated up to 200-fold in the absence of
ATP (171). Importantly, the addition of ATP did not increase
initial enzymatic rates, but did increase activities measured
at longer time periods. These data indicate that ATP stabi-
lizes, but does not activate, natriuretic peptide receptors.
Whether ATP binds directly to the receptors or to other
regulatory proteins is not known.

V. Desensitization of NPR-A and NPR-B

Hormone-dependent guanylyl cyclase activities of both
NPR-A and NPR-B are reduced due to chronic exposure to
ligand, a process known as homologous desensitization. In-
cubation of HEK293 cells stably expressing NPR-A or NPR-B
in the presence of ANP or CNP, respectively, leads to a
time-dependent reduction in ligand-dependent guanylyl cy-
clase activity (desensitization) that correlates with receptor
dephosphorylation (95, 160, 161, 172). In vitro treatment of
membranes with a purified protein phosphatase also results
in NPR-A dephosphorylation and inhibition (160). Tryptic
phosphopeptide analyses of NPR-A or NPR-B isolated from
cells treated in the presence or absence of hormones are
qualitatively similar (172, 173). Thus, the dephosphorylation
cannot be attributed to the loss of a specific phosphopep-
tide(s) despite a clear decrease in receptor-associated phos-
phate. One explanation for this apparent contradiction is that
ligand exposure results in complete dephosphorylation of a
receptor population subset, whereas the rest of the receptor
population is not dephosphorylated. Another possibility is
that a specific site(s) is dephosphorylated in response to
ligand binding, but the phosphopeptide that contains this
site is lost during the purification process. Hence, this phos-
phopeptide does not appear on the tryptic phosphopeptide
maps of NPR-A or NPR-B from either control or desensitized
cells.

To test the absolute requirement of dephosphorylation in
hormone-dependent NPR-A desensitization, a mutant ver-
sion of NPR-A was constructed where the known NPR-A
phosphorylated residues were replaced with glutamate to
mimic the negative charge of phosphate. This mutant was
approximately one fifth as hormonally responsive as the wild
type but was resistant to the effects of microcystin and ANP-
dependent desensitization (174). These data indicate that
dephosphorylation is a mechanism of NPR-A and NPR-B
desensitization.

Classic heterologous desensitization, i.e., the ability of
other cGMP-elevating enzymes to desensitize NPR-A, does
not seem to occur (175). These data suggest that cGMP ele-
vations are not sufficient for homologous desensitization,
which are consistent with studies showing that whole cell
exposure to cGMP analogs does not affect NPR-A activity
(173).

VI. Inhibition of NPR-A and NPR-B (Receptor
Cross-Talk)

In general, hormones or growth factors that stimulate va-
soconstriction or promote cellular growth or proliferation
antagonize the actions of natriuretic peptides. Examples of
factors that inhibit NPR-A and/or NPR-B are: angiotensin II,
AVP, lysophosphatidic acid, sphingosine-1-phosphate,
platelet-derived growth factor, basic fibroblast growth fac-
tor, and endothelin (115–117, 176–180). These agents bind
either a tyrosine kinase or serpentine receptor that activates
phospholipase C, converting phosphotidylinositol 1,4-bisphos-
phate to diacylglycerol and inositol 1,4,5-trisphosphate (IP3).
Diacylglycerol is a direct activator of the classical and novel
protein kinase C (PKC) isoforms, whereas IP3 binds receptors
on the sarcoplasmic or endoplasmic reticulum to increase in-
tracellular calcium concentrations.

Initially, PKC was implicated in the mechanism of heter-
ologous desensitization because treatment of cells expressing
NPR-A or NPR-B with phorbol 12-myristate 13-acetate
(PMA), a pharmacological PKC activator, markedly de-
creased whole cell hormone-dependent cGMP elevations
and membrane-associated guanylyl cyclase activity but did
not alter receptor numbers (173, 181). Subsequently, the
PMA-dependent decrease in NPR-A activity was correlated
with receptor dephosphorylation, and a relatively specific
PKC inhibitor was shown to block both the PMA-dependent
desensitization and dephosphorylation (173). The specific
PKC isozyme involved in natriuretic peptide receptor inhi-
bition has not been reported. In contrast to tryptic phos-
phopeptide maps associated with natriuretic peptide-depen-
dent (homologous) desensitization, PKC activation results in
the dephosphorylation of a single or small subset of the total
phosphorylation sites (173, 181). Tryptic phosphopeptide
mapping analysis of NPR-B isolated from HEK293 cells
treated with or without PMA indicated that Ser-523 is de-
phosphorylated and that the phosphorylation of Ser-518 is
increased in response to PKC activation (181). The mutation
of Ser-523 to glutamate prevented the inhibition, indicating
that dephosphorylation was required for PKC-dependent
desensitization of NPR-B (181).

Evidence for a PKC-independent NPR-B desensitization
pathway also exists. Incubation of A10 vascular smooth mus-
cle cells that endogenously express NPR-B with AVP causes
a decrease in intracellular cGMP synthesis and a reduction
of guanylyl cyclase activity (115). These effects are indepen-
dent of PKC because neither the PKC inhibitor, GF-109203X,
nor the chronic down-regulation of PKC was able to block the
desensitization. These observations suggest that, in addition
to the diacylglycerol-PKC arm of the phospholipase C path-
way, the inositol triphosphate-calcium arm also plays a role
in the desensitization of NPR-B. In fact, AVP exposure ele-
vates intracellular calcium concentrations in these cells (115).
Furthermore, ionomycin, a calcium-ionophore, mimics the
effects of AVP; and a cell-permeable calcium-chelator blocks
the AVP-dependent desensitization. Together, these data
suggest that calcium elevations, not PKC activation, are re-
quired for the AVP-dependent inhibition of NPR-B. Inter-
estingly, calcium-dependent NPR-B desensitization has also
been observed for the serum components lysophosphatidic
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acid (182) and sphingosine-1-phosphate (176) as well as in
response to hyperosmotic stimuli (182). In the latter scenario,
calcium elevations were shown to stimulate NPR-B dephos-
phorylation (182).

The mechanisms for PKC- and calcium-dependent desen-
sitization of NPR-B are unique. The former results from
reduced phosphorylation of a known site and primarily af-
fects the affinity of NPR-B for CNP and GTP (183). The latter
is associated with reductions in maximal velocities by a
mechanism that does not involve inhibition of NPR-B phos-
phorylation and requires a process in addition to the de-
phosphorylation of the known sites (183). Growth factor-
dependent inhibition of NPR-B is also correlated with
receptor dephosphorylation, but the involvement of indi-
vidual phosphorylation sites in this process has not been
reported (117).

VII. Internalization of NPR-A and NPR-B

Ligand-mediated internalization and degradation are also
mechanisms for terminating surface receptor-mediated sig-
naling. For natriuretic peptide signaling, there is some con-
troversy as to whether internalization and degradation of
NPR-A and NPR-B occur, whereas it is widely accepted that
NPR-C internalizes and recycles back to the plasma mem-
brane (see Section III.C). Early studies conducted on PC-12
pheochromocytoma cells suggested that both NPR-A and
NPR-C internalize ANP and that both receptors are recycled
back to the cell surface (184). Pandey and colleagues (185–
188), using Leydig, Cos, and 293 cell lines, reported that ANP
binding to NPR-A stimulates its internalization, which re-
sults in the majority of the receptors being degraded with a
smaller portion being recycled to the plasma membrane. In
contrast, Maack and co-workers (159, 189) reported that
NPR-A in primary kidney or stably expressing Chinese ham-
ster ovary cells is a constitutively membrane resident protein
that neither undergoes endocytosis nor mediates lysosomal
hydrolysis of ANP. Similarly, Jewett et al. (158) found that 293
cells expressing NPR-A bound less ANP over time but con-
cluded that the reduced binding was due to a diminished
affinity of NPR-A for ANP and not to decreased amounts of
NPR-A at the cell surface. Finally, Fan et al. (138) failed to
observe internalization of NPR-A, recycling of NPR-A, or
significantly degraded ANP products in the media bathing
NPR-A-expressing 293 cells. Only one study has addressed
the receptor trafficking properties of NPR-B; it found no
evidence for receptor internalization or recycling (138).

VIII. Degradation of Natriuretic Peptides

All three natriuretic peptides are degraded through two
accepted processes: 1) NPR-C-mediated internalization fol-
lowed by lysosomal degradation as discussed above; and 2)
enzymatic degradation by neutral endopeptidase 24.11 (ne-
prilysin), a zinc-dependent enzyme expressed on the plasma
membrane that has broad substrate specificity and tissue
distribution. In sheep, the enzymatic and receptor-mediated
processes contribute equally to the degradation of ANP and
BNP (190). Human BNP is more resistant to hydrolysis by

neprilysin than ANP (191). Phosphoramidon, a potent in-
hibitor of this neutral endopeptidase, blocked the degrada-
tion of ANP in 293 cells expressing NPR-A but not NPR-C,
indicating that NPR-C and neutral endopeptidase employ
different degradation mechanisms (138). Addition of phos-
phoramidon to murine kidney slices increased the EC50 for
ANP-dependent, but not BNP-dependent, activation of
NPR-A, suggesting that ANP is a better neutral endopepti-
dase substrate than BNP (192). Targeted deletion of neutral
endopeptidase 24.11 (193) does not lead to skeletal over-
growth like the targeted deletion of NPR-C (77), which sug-
gests that CNP concentrations in the growth plate are pri-
marily controlled by NPR-C in mice.

IX. Receptor-Specific Agonists and Antagonists

ANP, BNP, and CNP bind NPR-C and NPR-A or NPR-B.
In an effort to identify a specific ligand for the guanylyl
cyclase receptors, a phage library was screened for ANP
variants that preferentially bind human NPR-A over human
NPR-C (194). A variant was identified that has 1,000- to
10,000-fold greater affinity for NPR-A than for NPR-C. This
analog was used to demonstrate that NPR-A, not NPR-C, is
required for ANP-dependent inhibition of aldosterone syn-
thesis in a human glomerulosa cell line (195). A similar ap-
proach was used to identify an ANP variant that had a
200-fold binding preference for rat NPR-A over rat NPR-C.
Infusion of this analog into rats resulted in greater renal
effects than the same concentration of natural ANP, presum-
ably due to its reduced ability to be degraded through the
NPR-C internalization pathway (196).

The best-studied antagonist of natriuretic peptides is a
microbial polysaccharide known as HS-142-1 (197, 198). It
inhibits ligand binding and activation of both NPR-A and
NPR-B through a novel allotopic (allosteric), not simple com-
petition, mechanism (199). It has no effect on natriuretic
peptide binding to NPR-C (198). Current availability of HS-
142-1 is unknown. Two other peptide-based antogonists to
NPR-A, A71915 (200) and A74186 (201), also have been re-
ported. The effect of these peptides on NPR-B activity is not
known. To our knowledge, there is no specific antagonist that
completely blocks the guanylyl cyclase activity of either
NPR-A or NPR-B.

X. Physiological Effects of Natriuretic Peptides

Natriuretic peptides are often described simply as pep-
tides involved in the regulation of blood pressure and vol-
ume. However, the effects of these peptides are widespread,
and their levels change in response to a variety of patholog-
ical conditions (Table 1). The changes shown in Table 1 may
be due to changes in intravascular volume or cardiac adren-
ergic tone as a result of the disease state or may be due to
compensatory mechanisms causing increased production of
the peptides. The levels of each peptide—ANP, BNP, or
CNP—are also regulated by receptor activity, which can be
altered by genetic mutation. Therefore, the downstream ef-
fects of each natriuretic peptide and the regulation of their
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circulating levels is likely to be much more complex than
originally anticipated.

ANP and BNP have overlapping functions when admin-
istered iv to mammals, including humans. However, studies
in murine knockout models clearly demonstrate separate
functions for ANP and BNP. Nevertheless, their roles in
human physiology remain to be definitively defined. This
section will describe in more detail where and how the na-
triuretic peptides are acting in the body as well as describe
some of the implications of these actions (Fig. 4).

A. Cyclic GMP binding effectors

Natriuretic peptides elicit their physiological responses
through the synthesis of cGMP, a classic intracellular second
messenger that was originally identified in rat urine in 1963
(202). There are three known cGMP binding proteins: cGMP-
dependent protein kinases (PKG), cGMP binding phos-
phodiesterases (PDEs), and cyclic nucleotide-gated ion chan-
nels (Fig. 5). The best-studied cGMP signaling effects occur
through PKGs, serine and threonine kinases that are acti-
vated by cGMP binding (203, 204). There are two PKG genes.
The PKGI gene is alternatively spliced to produce � and �
isoforms that differ in their amino termini. Both PKGI
isozymes are mostly cytosolic and are highly expressed in
platelets, smooth muscle, cardiomyocytes, and brain. Dele-
tion of functional PKGI by homologous recombination in
mice results in loss of cGMP-dependent vascular smooth
muscle relaxation and juvenile (205), but not adult (204),
hypertension. PKGII is myristoylated at glycine-2, and there-
fore, mostly membrane bound. It is found in high concen-
trations in the intestine, kidney, brain, chondrocytes, and

bone (206). Deletion of functional PKGII in mice (207) or rats
(208) results in normotensive animals with dwarfism and
resistance to infection by heat-stable enterotoxin from Esch-
erichia coli.

Cyclic nucleotide PDEs are crucial regulators of cyclic
nucleotide signaling because they degrade cyclic nucleotides
into inactive 5�-nucleotide monophosphates. Hence, PDEs
regulate concentrations of intracellular second messengers.
There are 11 different families of PDEs, containing at least 25
different mammalian proteins (209, 210). The families are
organized according to their substrate specificity (whether
they degrade cAMP, cGMP, or both) and how they are ac-
tivated or inhibited. For example, PDE1, -2, -3, -10, and -11
degrade both cGMP and cAMP; PDE4, -7, and -8 specifically
hydrolyze cAMP; whereas PDE5, -6, and -9 only degrade
cGMP (211). Some PDEs are regulated allosterically by
cGMP. For instance, cGMP binding to PDE5 (the target of
Viagra, Levitra, and Cialis) increases its activity and accel-
erates cGMP degradation in a feed-forward mechanism (Fig.
5). Alternatively, allosteric activation can facilitate cross-talk
between the cGMP and cAMP pathways. For example, cGMP
binding activates PDE2, which results in decreased intracel-
lular cAMP concentrations, whereas cGMP binding inhibits
PDE3 activity, resulting in increased cAMP levels.

cGMP mediates cellular responses through the regulation
of cyclic nucleotide-gated (CNG) ion channels, a family of
nonselective cation channels containing a carboxyl-terminal
cyclic nucleotide-binding domain that binds cAMP or cGMP
(212). They are most noted for their ability to control the dark
cycle in photoreceptor cells, but they are also found in che-
mosensory cells, brain, airway epithelial cells, and the kid-
ney. There are six known human genes encoding CNG chan-
nels, which can be broken into two groups designated A and
B. The former group is comprised of those subunits that can
form functional channels on their own, whereas the latter
group cannot. To our knowledge, data linking CNG channels
to specific natriuretic peptide functions have not been
reported.

B. Effects of the ANP/NPR-A system on blood pressure

Mice completely lacking ANP (44) or NPR-A (109, 110)
have blood pressures 20 to 40 mm Hg higher than normal,
whereas animals transgenically expressing higher than nor-
mal amounts of ANP (213) or BNP (48) have blood pressures
20–30 mm Hg lower than normal. These data clearly indicate
that the ANP/NPR-A system regulates basal blood pressures
in mice. Some of the most striking data on this issue come
from members of Smithies’ group (214) who demonstrated
that ANP-dependent guanylyl cyclase activities and blood
pressures are directly proportional to NPR-A gene dosage
over a range of 0 to 4 alleles. Although ANP was initially
suggested to regulate blood pressure in a salt-sensitive man-
ner, more recent data suggest that this is not the case (45, 109).
Its combined effects on intravascular volume, vasorelax-
ation, natriuresis, and diuresis mediate the hypotensive na-
ture of ANP as discussed below.

FIG. 4. Physiological consequences associated with NPR-A activa-
tion. See Section X for detailed description of physiological processes
that are regulated by NPR-A.
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C. Effects of ANP/NPR-A on endothelium permeability and
intravascular volume

In the original article of De Bold et al. (2) describing the
discovery of ANP, vascular atrial extract injections were
shown to increase hematocrit levels (2). Subsequent studies
indicated that the ANP-dependent vascular volume contrac-
tion does not require the natriuretic or diuretic effects of ANP
because it precedes urination and occurs in nephrectomized
animals (215–217). Additional experiments indicated that
ANP increased capillary hydraulic conductivity (218) and
permeability of the endothelium to macromolecules like al-
bumin (219) (Fig. 4). However, data from cell culture-derived
models are conflicted on this latter issue, with some reports
suggesting that cGMP increases (220) and other reports sug-
gesting that it decreases permeability (221). Consistent with
ANP increasing cell permeability, mice specifically lacking
NPR-A in their vascular endothelium are slightly hyperten-
sive (10–15 mm Hg) and are volume expanded by 11–13%
(222). This suggests that NPR-A in the endothelium accounts
for about one third of the total hypotensive effects of ANP
because animals completely lacking NPR-A are severely hy-
pertensive (30–40 mm Hg) and volume expanded by 30%.
Wild-type mice cleared radioiodinated serum albumin from
their circulation in an ANP-dependent manner, whereas an-
imals deficient in endothelial NPR-A did not (222). Strik-
ingly, ANP increased the hematocrit levels in wild-type but
not mutant animals, indicating that the ability of ANP to
increase hematocrit levels absolutely requires endothelial
NPR-A. Together, these data suggest that ANP regulates
chronic transvascular fluid balance by increasing microvas-
cular permeability. The mechanism for this phenomenon is
currently unknown.

D. Effects of ANP and BNP on cardiac hypertrophy
and fibrosis

ANP and BNP have direct effects on the heart. Mice lack-
ing ANP (44) or NPR-A (110, 223) have enlarged hearts,

whereas animals overexpressing ANP (213, 224) have
smaller hearts. Initially, it was unclear whether the cardiac
hypertrophy observed in the knockout animals resulted from
prolonged exposure to systemic hypertension or from the
loss of a local inhibitory effect on heart growth; it is likely that
both processes lead to cardiac hypertrophy. The first evi-
dence supporting a local effect involved NPR-A knockout
mice that were treated with antihypertensive drugs from
birth (111). These animals were normotensive but still had
cardiac hypertrophy. In a separate study, the selective trans-
genic replacement of NPR-A in the heart of NPR-A knockout
animals reduced cardiomyocyte size without affecting hy-
pertension (225). Conversely, in a third elegant study, the
selective deletion of NPR-A from the heart using Cre/lox
technology resulted in mice with decreased blood pressure
but mild cardiac hypertrophy (226). The reason for the re-
duced blood pressures in these animals likely results from
elevated cardiac and plasma levels of ANP and BNP, which
provides evidence for a local NPR-A-dependent feedback
regulatory system for cardiac natriuretic peptide synthesis
and/or secretion.

Early studies indicated that BNP inhibits the proliferation
of cardiac fibroblasts in culture (227). This observation was
validated in vivo when mice lacking BNP were shown to
display pressure-sensitive ventricular fibrosis (52). The
mechanism involved in the BNP-dependent regulation of
fibroblasts is controversial. One group using a BNP trans-
gene model system suggested that BNP attenuates angio-
tensin II-dependent fibrosis by inhibiting MAPK activity
(228) whereas another group found that BNP inhibits trans-
forming growth factor �-dependent fibrotic processes by
activating MAPKs (229). Recent evidence suggests that the
cardiac fibrosis involves matrix metalloproteinases (MMPs)
because both ANP and BNP regulate MMP levels (229–231).
Mice lacking NPR-A (Npr1�/�) have increased expression
and activity of MMP-2 and MMP-9. Furthermore, increased
activity correlates with increased expression of nuclear fac-
tor-�B (NF-�B) (232). Several reports indicate that the ANP/

FIG. 5. Cyclic GMP effectors. cGMP mediates its effects by
binding three known classes of proteins: cGMP-gated ion
channels, cGMP-dependent protein kinases (type I�, I� or
type II) and phosphodiesterases (PDEs). Binding of cGMP
to the different families of PDEs can induce degradation of
cGMP (PDE5, the target of Viagra, Cialis, and Levitra),
activate degradation of cAMP (PDE2), or inhibit degrada-
tion of cAMP (PDE3B), thereby regulating both cGMP and
cAMP levels in cells.
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BNP/NPR-A system inhibits pressure-induced cardiac re-
modeling as well (111, 226, 233). Hence, drugs that activate
this pathway or block the inactivation of this pathway may
be of significant clinical benefit to patients with failing hearts.

E. Effects of ANP on natriuresis and diuresis

In the kidney, ANP increases glomerular filtration rate,
inhibits sodium and water reabsorption, and reduces renin
secretion (Fig. 6). ANP-dependent diuresis and natriuresis
are mediated exclusively by NPR-A in mice because these
effects are completely lost in NPR-A knockout animals (234).
ANP increases the glomerular filtration rate by elevating the
pressure in the glomerular capillaries through coordinated
afferent arteriolar dilation and efferent arteriolar constriction
(235). In addition to these hydraulic effects, ANP inhibits
sodium and water reabsorption throughout the nephron. In
the proximal tubules, ANP inhibits angiotensin II-stimulated
sodium and water transport (236). In collecting ducts, it
reduces sodium adsorption by inhibiting an amiloride-sen-
sitive cation channel (237). The effect of ANP on both trans-
port processes is cGMP-dependent.

F. Effects of ANP and CNP on vascular relaxation
and remodeling

The ability of the cardiac natriuretic peptides to relax pre-
contracted aortic rings requires NPR-A because preparations
from animals lacking this receptor are unresponsive to ANP
and BNP (238). CNP relaxes aortic rings by a process that
does not require NPR-A, presumably by activating NPR-B
(238, 239). Unlike wild-type animals, mice selectively lacking
NPR-A in vascular smooth muscle cells as a result of Cre/lox
technology do not undergo an acute reduction in blood pres-

sure in response to a bolus injection of ANP (240). However,
resting blood pressures in these Cre/loxed mice do not differ
from their wild-type littermates, indicating that NPR-A-stim-
ulated vasorelaxation is important for acute, but not chronic,
blood pressure regulation.

The mechanism of ANP-dependent vasorelaxation has
been well studied (Fig. 7). Consistent with the requirement
of PKGI in this pathway, PKGI knockout mice do not vaso-
dilate in response to cGMP-elevating agents like ANP or
nitric oxide generators (205). Interestingly, the adult animals
are normotensive (204), which suggests that the hypertensive
phenotype of the ANP or NPR-A knockout animals must
result from a PKGI-independent effect. PKGI stimulates vas-
cular smooth muscle cell relaxation by decreasing intracel-
lular calcium levels and by decreasing the calcium sensitivity
of the contractile system. To lower calcium concentrations,
PKGI acts on several calcium channels. PKGI� directly phos-
phorylates and activates (opens) calcium-activated potas-
sium channels (241, 242), which increases potassium efflux
and causes membrane hyperpolarization. The hyperpolar-
ization then inhibits calcium influx through nearby voltage-
gated calcium channels. PKGI is also thought to directly
inhibit the voltage-gated calcium channels through phos-
phorylation of the channel or an associated regulatory pro-
tein. At the endoplasmic reticulum, PKGI directly phosphor-
ylates the inositol (1, 4, 5) trisphosphate receptor (243) and
the inositol (1, 4, 5) trisphosphate receptor-associated PKGI
substrate to inhibit calcium release from this storage vesicle
(244). PKGI also activates the calcium/ATPase membrane-
associated pump via an unknown mechanism to pump cal-
cium out of the cell, thus reducing intracellular calcium lev-

FIG. 6. ANP regulation of the kidney. Renal function is modulated by
ANP in at least three ways. First, ANP increases the glomerular
filtration rate by differentially regulating the tone of glomerular af-
ferent and efferent blood vessels. Second, it decreases sodium reab-
sorption in the proximal tubules and collecting duct through cGMP-
dependent modulation of sodium channels and transporters. Third, it
decreases renin secretion from the juxtaglomerular cells via a PKGII-
dependent process. Together, these processes reduce natriuresis, di-
uresis, and renin secretion.

FIG. 7. Natriuretic peptide-dependent smooth muscle relaxation.
ANP and CNP stimulation of their cognate receptors, NPR-A and
NPR-B, respectively, increases intracellular cGMP concentrations.
cGMP activates protein kinase GI (PKGI), which phosphorylates tar-
get proteins. PKGI inhibits the IP3 receptor and stimulates the
plasma membrane calcium/ATPase, the sarcoplasmic reticulum cal-
cium/ATPase (SERCA), and the potassium/calcium channel (BKCa) to
decrease intracellular calcium concentrations. PKGI phosphorylation
and activation of myosin light chain phosphatase (MLCP) increases
the calcium levels necessary for contraction, which lowers calcium
sensitivity.
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els. PKGI phosphorylates phospholamban, which activates
the calcium/ATPase (SERCA), resulting in calcium seques-
tration into the sarcoplasmic reticulum (245). However, mice
lacking phospholamban vasodilate normally in response to
cGMP-elevating agents (246). Finally, PKGI� decreases the
calcium sensitivity of the contractile system by phosphory-
lating and activating myosin light chain phosphatase (247),
which decreases myosin light chain phosphorylation. To-
gether, these effects stimulate vascular smooth muscle re-
laxation (Fig. 5) (reviewed in Refs. 248 and 249).

CNP also is a vasodilator and is released in response to
vascular injury (56). NPR-B is present in aortic vascular
smooth muscle and mediates CNP relaxation of precon-
tracted rat aorta (239). Furthermore, CNP inhibits vascular
smooth muscle proliferation (250) and oxidized low-density
lipoprotein-induced migration of cultured human coronary
artery smooth muscle cells (251) in a cGMP-dependent man-
ner. In recent years, the therapeutic potential of CNP-de-
pendent regulation of vascular tone has been explored. CNP
is expressed in rat carotid neointimal but not medial vascular
smooth muscle cells (252), suggesting that it may act in a
paracrine fashion to regulate neointimal formation. Consis-
tent with this idea, CNP suppresses intimal growth caused
by several types of arterial injury (253–255). Finally, recent
reports suggest that CNP is the long sought after “endothe-
lium-derived hyperpolarizing factor” (256) and that it inhib-
its myocardial ischemia/reperfusion injury (257) as well as
platelet-leukocyte interactions (258). Interestingly, these pro-
cesses were suggested to require signaling through NPR-C,
not NPR-B.

G. Effects of natriuretic peptides in the lung

All three natriuretic peptide receptors are highly ex-
pressed in the lung. ANP stimulates the dilation of pulmo-
nary airways and blood vessels. Infusion or inhalation of
ANP stimulates bronchodilation in normal and asthmatic
patients (reviewed in Ref. 259). ANP and BNP are elevated
in patients with pulmonary hypertension and are indicative
of increased right ventricular strain (260–262). Mice overex-
pressing ANP are resistant to hypoxia-induced hypertension
(263), whereas ANP-deficient mice exhibited increased pul-
monary hypertension in response to chronic hypoxia (264).
CNP also reduces pulmonary hypertension (265) and fibrosis
(266).

H. ANP-dependent antagonism of the renin-
aldosterone system

ANP regulates blood pressure, in part, through the inhi-
bition of the renin-angiotensin II-aldosterone system (Fig. 6).
Renin is a protease secreted from renal juxtaglomerular cells.
It cleaves angiotensinogen to angiotensin I, which is subse-
quently converted to angiotensin II by angiotensin-convert-
ing enzyme in the pulmonary vascular endothelium. Angio-
tensin II then stimulates vasoconstriction and the release of
aldosterone, the major hormone responsible for regulating
sodium reabsorption in the renal cortical collecting ducts.
High doses of ANP do not reduce renin levels in humans,
presumably because of compensatory responses associated

with the dramatic decreases in arterial blood pressure. How-
ever, physiological doses of ANP suppress both renin and
aldosterone levels (267). In dogs, intrarenal ANP infusion
markedly inhibits the renin secretion rate (268). Inhibition of
cAMP-stimulated renin secretion requires PKGII (269). Mice
lacking PKGII, but not PKGI, have higher renin expression
than their wild-type littermates and are resistant to 8-bromo-
cGMP-dependent inhibition of basal and forskolin-induced
renin secretion (270). At birth, NPR-A null mice have ele-
vated kidney renin and angiotensin II levels, which is con-
sistent with the known antagonizing effects of ANP and
NPR-A on the renin-angiotensin-aldosterone system (271).
However, in the adult male NPR-A�/� mice, the renal and
systemic levels of renin are decreased, whereas adrenal renin
activity and aldosterone levels remain elevated, suggesting
that the reduced renal and systemic renin levels result as a
compensatory mechanism to increased blood pressure.

In addition to inhibiting renin secretion, ANP directly
inhibits aldosterone production in the adrenal gland (Fig. 8).
In the adrenal glomerulosa, ANP reduces ACTH-stimulated,
angiotensin II-stimulated, and basal aldosterone levels (272–
276). The involvement of cGMP in ANP-dependent inhibi-
tion of aldosterone production has been controversial be-
cause in some studies the ANP effect was mimicked by a
cell-permeable cGMP analog (277), but in other studies,
cGMP analogs were ineffective (278). Additional experi-
ments indicated that the ability of ANP to reduce aldosterone
levels could be mimicked with a NPR-C-specific ligand and
blocked by the Gi/Go inhibitor, pertussis toxin. However,
recent reports employing a natriuretic peptide variant that

FIG. 8. ANP regulation of the adrenal gland. ANP-dependent de-
creases in aldosterone secretion from the adrenal gland require re-
ductions in cAMP concentrations. There are two proposed mecha-
nisms for this effect. One involves ANP-dependent activation of
NPR-A, which produces cGMP and stimulates cAMP-hydrolyzing
PDE2, whereas another involves NPR-C-dependent inhibition of ad-
enylyl cyclase via a pertussis toxin-sensitive G protein-dependent
pathway. P.T., Pertussis toxin.
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has a 1000-fold higher binding constant for NPR-A compared
with NPR-C (195) or catalytically active or inactive guanylyl
cyclase C receptors (279) suggests that NPR-A is responsible
for the ANP-dependent reductions in aldosterone levels.
Consistent with this assessment, mice lacking NPR-A have
plasma aldosterone levels about 2-fold higher than wild-type
littermates (271). The mechanism for the ANP-dependent
reductions in aldosterone may involve PDE2, a cGMP-acti-
vated PDE that is highly expressed in the glomerulosa layer
of the adrenal gland (Fig. 8) (280). In this scenario, ANP binds
to NPR-A causing intracellular cGMP elevations and PDE2
activation. Activated PDE2 then degrades cAMP, which is
the major intracellular determinant for aldosterone synthe-
sis. An alternative possibility involves the steroidogenic
acute regulatory protein because ANP inhibits the synthesis
(281) and phosphorylation (282) of the steroidogenic acute
regulatory protein in adrenal glomerulosa cells as well.

I. Effects of ANP on fat metabolism

Many studies have shown an association between obesity
and hypertension; however, the effect of natriuretic peptides
on fat tissue is only now beginning to emerge. In the late
1980s, ANP-dependent cGMP elevations were measured in
rat mammary gland fat cells (283) and rat brown adipose
tissue (284). However, in both studies, scientists were unable
to demonstrate ANP-stimulated lipolysis. In a later study,
ANP-stimulated lipolysis was demonstrated both in isolated
human fat cells and in vivo by peptide infusion (285). Sub-
sequently, it was determined that ANP-stimulated lipolysis
is specific to primates (286) presumably because primates
contain a higher NPR-A to NPR-C ratio.

The mechanism and the pathophysiological relevance of
these observations are beginning to be elucidated. ANP stim-
ulation of lipolysis is mimicked by 8-bromo-cGMP and is
independent of PDE3B, the main enzyme involved in the
degradation of cAMP in the adipocyte (285). This suggests
that ANP-stimulated lipolysis involves cGMP, but not cAMP
elevations as is required for epinephrine-induced lipolysis. A
recent study suggested that PKGI is the cGMP effector in the
ANP-dependent lipolytic response because pharmacological
inhibition of PKGI decreases ANP-dependent lipolysis in
primary human preadipocytes (287). Similar to cAMP-de-
pendent lipolysis, the ANP/NPR-A/cGMP-dependent path-
way stimulated the phosphorylation of hormone-sensitive
lipase, the major regulated enzyme in fat responsible for the
hydrolysis of triglycerides into free fatty acids. Increased
phosphorylation of lipid droplet-binding protein, perilipin,
in response to ANP was also observed. Whether the same
sites are phosphorylated on these enzymes in response to
cGMP as are phosphorylated in response to cAMP is not
known.

Recent papers have examined the metabolic role of ANP-
dependent lipolysis to establish a possible link between obe-
sity and hypertension. Unlike catecholamine-dependent
dysregulation of lipolysis, which is associated with obesity,
the lipid-mobilizing effects of ANP are not related to obesity
in young men (288). However, obese women have increased
ANP- and isoproterenol-dependent lipolysis when fed a low-
caloric diet (289).

J. Neurological effects of natriuretic peptides

All natriuretic peptides and natriuretic peptide receptors
have been found in the brain, although CNP and NPR-B
appear to be particularly abundant. Consistent with the sys-
temic volume-depleting effects, injection of ANP into the
third ventricle of the hypothalamus inhibits water intake
induced by overnight dehydration or angiotensin II exposure
(Fig. 4) (290). Intracerebroventricular infusion of ANP sup-
presses salt appetite (291) as well as AVP release from the
hypothalamus (292). ANP-dependent suppression of sym-
pathetic activity in the brain stem also has been observed
(293, 294). Specifically, ANP was shown to sensitize vagal
afferents and dampen the arterial baro receptor response
(293, 295, 296). Finally, CNP and cell permeable cGMP an-
alogs have been reported to stimulate GH release in rat
anterior pituitary cells (297) and pituitary-derived GH3 cells
(298).

K. Immunological effects of natriuretic peptides

Natriuretic peptides and their receptors are found in many
immune cells; however, the significance of these peptides in
the immune system is only now emerging. Current evidence
suggests a role for ANP in the allergen response of asthma
and in immune-related postischemic damage.

The most-studied role of natriuretic peptides in the im-
mune response has been observed in macrophages and den-
dritic cells. ANP elicits its antiinflammatory effect by reduc-
ing production of proinflammatory cytokines (TNF-� and
IL-12) while enhancing production of IL-10 (299, 300). ANP
increases neutrophil migration in vitro (301), and NPR-A
knockout mice exhibit decreased neutrophil infiltration to
cardiac tissue after injury compared with wild-type mice by
decreasing activation of the transcription factor NF-�B (302).
Excessive neutrophil infiltration after ischemia can lead to
further tissue damage, thus lending a cardioprotective func-
tion to blocking ANP signaling after ischemia. NPR-A knock-
out mice also exhibit decreased eosinophil accumulation in
the lungs after allergic challenge with ovalbumin (303), sug-
gesting that ANP signaling may play a role in asthma.

L. The CNP/NPR-B/cGMP/PKGII system and long
bone growth

The most obvious physiological effect of CNP is to stim-
ulate long bone growth (Fig. 9). It regulates many types of
bone cells, but its major target appears to be the chondrocyte
as described below. In a mouse osteoclast model, 1,25-dihy-
droxyvitamin D3 stimulated CNP expression, cGMP eleva-
tions, and osteoclast bone resorptive activity (304). In osteo-
blasts, CNP elevated differentiation markers like alkaline
phosphatase and increased the mineralization of nodules
(305). In chondrocytes, CNP elevated cGMP concentrations
(53), and in fetal mouse tibia cultures, CNP induced endo-
chondrial ossification (306).

The genetic data supporting the CNP/NPR-B/cGMP bone
growth system in mice are striking. Inactivating mutations in
the genes coding for CNP (70) or NPR-B (124, 125) cause
dwarfism, whereas superphysiological levels of natriuretic
peptides resulting from transgenic overexpression (74, 75,
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307) or reduced clearance (76, 77) cause skeletal overgrowth.
No growth abnormalities are observed in any of these mutant
animals at birth, suggesting that the CNP/NPR-B/cGMP
system only stimulates postpartum bone growth. Growth
plates from animals lacking functional CNP or NPR-B (70,
124) are thinner due to reductions in the proliferative and
hypertrophic zones, whereas growth plates in the transgenic
mice are expanded (74, 307).

Targeted deletion of PKGII by homologous recombination
in mice (207) or spontaneous loss of function mutations of
PKGII in rats (208) also causes dwarfism. However, unlike
the CNP and NPR-B knockout animals, the growth plates of
these animals are expanded. One explanation for the growth
plate differences is that other cGMP effectors besides PKGII
also are required for normal CNP-dependent long bone
growth, but this remains to be determined. The substrate(s)
of PKGII that mediate its bone growth-promoting properties
is not known. However, a recent report suggests that the
“master” inhibitor of chondrocyte differentiation, SOX9, is a
reasonable candidate because PKGII expression inactivates
SOX9 by causing its translocation from the nucleus to the
cytoplasm (208). Neither the sites of phosphorylation nor the
identity of the kinase (PKGII or other) that phosphorylates
SOX9 has been determined.

Multiple putative loss of function mutations in the gene
encoding NPR-B were recently identified in human patients
with the autosomal recessive disease, acromesomelic dys-

plasia, type Maroteaux (127). The frequency of this disease is
rare (1/2000,000); but because carriers are shorter than
matched controls, the effect of these mutations on the stature
of the general population is significant. The most common
form of human dwarfism, achondroplasia, results from au-
tosomal dominant mutations in the gene coding for fibroblast
growth factor-3 (FGF3) receptor, which causes constitutive
activation of the signal transducer and activator of transcrip-
tion 1 and MAPK pathways in chondrocytes (308). Mice
expressing constitutively active FGF3 receptors are dwarfed,
and their growth plates resemble those of mice lacking CNP
or NPR-B (309). In contrast, mice lacking a functional version
of the FGF3 receptor exhibit skeletal overgrowth, similarly to
mice overexpressing CNP (309). Transgenic overexpression
of CNP in growth plates partially reverses the dwarfism
phenotype of mice expressing a constitutive active FGF3
receptor (75). The ability of CNP to stimulate bone growth in
mice expressing the constitutively active FGF3 receptor mu-
tant may result from its ability to inhibit MAPK signaling
because mice expressing the CNP transgene had reduced
MAPK kinase, but not signal transducer and activator of
transcription 1, phosphorylation (75). The mechanism in-
volved in the CNP-dependent MAPK inhibition is unknown.

XI. Therapeutic Applications of Natriuretic Peptides

As hormone/paracrine factors that regulate intravascular
volume, blood pressure, natriuresis, diuresis, and long bone
growth, the potential use of the natriuretic peptides for ther-
apeutic benefit is promising. A search of the literature yields
a list of over 100 reviews discussing the therapeutic use and
potential of these peptides. Initial studies tested the use of
ANP and BNP as potential therapeutic agents for the treat-
ment of congestive heart failure, hypertension, and renal
failure. The infusion of synthetic ANP, clinically known as
anaritide and by the trade name Carperitide, into patients
with hypertension (310) or chronic heart failure (41, 311)
resulted in elevated sodium and water excretion and de-
creased blood pressure. Long term (48 h) anaritide infusions
of patients with acute heart failure resulted in beneficial
hemodynamic responses without tolerance, suggesting that
ANP injections may be a clinically useful treatment for heart
failure (312).

Anaritide was also used to treat patients with acute renal
failure. However, data from these trials has proven contra-
dictory. An early report found that ANP treatment did not
improve the dialysis-free survival rate in critically ill patients
with acute tubular necrosis (313). In fact, it was associated
with decreased survival. However, a subsequent report
found that administration of ANP to patients with acute
ischemic renal failure resulting from complicated cardiac
surgery significantly increased renal function and decreased
the need for dialysis (314).

Human recombinant BNP, clinically known as nesiritide
and by the trade name Natrecor, mimics the actions of en-
dogenous BNP and has been shown to cause potent vasore-
laxation accompanied with increases in natriuresis and di-
uresis, as well as decreases in plasma aldosterone and
endothelin levels in patients with acute heart failure (re-

FIG. 9. CNP-dependent long bone growth. CNP-dependent long bone
growth requires CNP binding and activation of NPR-B, cGMP bind-
ing, and activation of PKGII and PKGII-dependent increases in the
proliferation of hypertrophic chondrocytes. The substrate(s) for
PKGII in this process has not been identified. One possible substrate
is the chondrocyte differentiation factor, Sox9.
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viewed in Ref. 315). Thus, BNP has emerged as a new tool
to manage heart failure (261, 316, 317). The U.S. Food and
Drug Administration approved the use of BNP (nesiritide)
for the treatment of acutely decompensated heart failure in
2001. Because the half-life of nesiritide (BNP) is significantly
longer than that of anaritide (ANP), it is thought to be the
better of the two drugs (Table 1). Unfortunately, the wide-
spread use of nesiritide has recently come under scrutiny due
to the increased risk of renal dysfunction and mortality in
patients undergoing BNP treatment (318, 319). Additional
clinical trials are necessary to evaluate this situation and to
more narrowly define the benefits, risks, and parameters
required for optimal BNP treatment in humans.

The other clinical benefit of natriuretic peptides comes
from their diagnostic use. ANP and BNP levels are increased
in patients with heart failure and in many patients with
hypertension and chronic renal failure (320–322). Because
BNP plasma levels correlate more closely than ANP levels
with left ventricular function, a common indicator of heart
disease, BNP is considered a better diagnostic marker of
heart failure. Immunoassays that measure the level of BNP
or pro-BNP are commonly used clinically (322). The mea-
surement of BNP levels in both emergency and primary care
settings has been used to rule out or confirm a heart failure
diagnosis in patients. In emergency care, patients presenting
shortness of breath were evaluated for BNP level, and its
correlation with heart failure was used to rule out heart
failure vs. other pulmonary causes of dyspnea (323). Elevated
BNP levels correlate with poor prognoses from other dis-
eases as well. For example, BNP levels have been successfully
used to predict poststroke mortality (324), postcardiac sur-
gery atrial fibrillation (325), as well as the risk of death in
patients with heart failure (326). Finally, based on its ability
to effectively measure the benefit of various treatments in
patients with right ventricular overload and pulmonary hy-
pertension, BNP has been suggested to be a better guide for
optimal treatment of heart failure than classical clinical mea-
surements (261, 322).

Although many of the clinically therapeutic roles for na-
triuretic peptides have been centered on the current and
potential uses of ANP and BNP, the therapeutic uses of CNP
have yet to be explored. One potential use for CNP therapy
is in the treatment of dwarfism, especially acromesomelic
dysplasia type Maroteaux, which is the result of loss of func-
tion mutations in NPR-B. Activation of the CNP/NPR-B
pathway downstream of the mutation could stimulate the
expansion of the growth plates as was seen in the transgenic
mice models. Another potential use of the CNP pathway may
be to speed the healing of bone fractures, because the bones
of rats lacking functional PKGII heal much slower than those
from wild-type animals (208). Finally, CNP may hold prom-
ise as a cardiovascular drug because recent evidence indi-
cates that it can prevent cardiac remodeling after myocardial
infarction in mice (327).

XII. Concluding Comments and Future Directions

Over the past 25 yr, natriuretic peptides and their cognate
receptors were discovered and purified, and the genes en-

coding these proteins were cloned and “knocked out.” Ad-
ditional studies investigated the structure and regulation of
the individual participants in these signal transduction path-
ways; ultimately yielding a tremendous body of literature on
natriuretic peptide-dependent regulation of physiological
and pathophysiological processes as well as at least two
drugs, anaritide and nesiritide.

During the next decade, we anticipate that further discov-
eries will be made regarding the molecular nature of these
pathways as well as their clinical applications. Regarding the
former, structural information on the guanylyl cyclase and
kinase homology domains of NPR-A and NPR-B would be
informative, as would be the identity of molecules such as
kinases and phosphatases that regulate these receptors. Iden-
tifying downstream participants in ANP-dependent lipolysis
and CNP-dependent bone growth pathways also will be of
extraordinary importance, as would be the identification of
physiological events that are specifically regulated by
NPR-C. On the clinical side, we anticipate the discovery of
small molecule activators or inhibitors (antagonist) of these
pathways that may be used to treat diseases like systemic
hypertension, obesity, pulmonary hypertension, heart fail-
ure, and skeletal growth disorders as well as diseases yet to
be associated with these pleiotropic signaling systems.
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