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ABSTRACT

Different chemical and mutational processes within genomes give rise to sequences with different compositions and perhaps
different capacities for evolution. The evolution of functional RNAs may occur on a ‘‘neutral network’’ in which sequences with
any given function can easily mutate to sequences with any other. This neutral network hypothesis is more likely if there is
a particular region of composition that contains sequences that are functional in general, and if many different functions are
possible within this preferred region of composition. We show that sequence preferences in active sites recovered by in vitro
selection combine with biophysical folding rules to support the neutral network hypothesis. These simple active-site
specifications and folding preferences obtained by artificial selection experiments recapture the previously observed purine
bias and specific spread along the GC axis of naturally occurring aptamers and ribozymes isolated from organisms, although
other types of RNAs, such as miRNA precursors and spliceosomal RNAs, that act primarily through complementarity to other
amino acids do not share these preferences. These universal evolved sequence features are therefore intrinsic in RNA molecules
that bind small-molecule targets or catalyze reactions.

Keywords: SELEX; in vitro selection; nucleotide composition; self-organization

INTRODUCTION

Studies of RNA have long provided a fruitful paradigm for

the evolution of complex traits (Eigen and Schuster 1977;

Fontana and Schuster 1998), in part because the RNA

molecule itself embodies both genotype and phenotype.

Experimental studies of the evolution of functional RNAs

through in vitro selection (Ellington and Szostak 1990;

Robertson and Joyce 1990; Tuerk and Gold 1990) to recap-

ture known activities (Salehi-Ashtiani and Szostak 2001) or
enhance new activities (Lehman and Joyce 1993; Johnston

et al. 2001) have demonstrated that many RNA sequences

have the capacity to acquire new functions with only small

changes in the primary sequence. It is even possible to

traverse the path from one arbitrarily chosen functional

RNA molecule to another by single mutations that preserve

function right up to the ‘‘intersection sequence’’ that links

the neutral networks of sequences that embody each

function (Schultes and Bartel 2000; Held et al. 2003).

A second tradition in studies of RNA evolution examines
compositional biases, primarily in naturally occurring

RNAs in cells. Many functional RNA molecules show

a preference for purines (Elson and Chargaff 1955; Lao

and Forsdyke 2000), and there is far more variation along

the GC axis (i.e., the axis where the compositions of G and

C are the same, as well as of A and U) than along the two

other orthogonal axes of composition (Schultes et al. 1997,

1999; Smit et al. 2006). These patterns are replicated in
both ribosomal RNA subunits from all three domains

of life, although these key features may be due to self-

organization of RNA during secondary structure assembly

rather than due to selection for specific compositions (Smit

et al. 2006). Interestingly, RNAs can be artificially selected

for functions using as few as three of the four standard

nucleotides (Rogers and Joyce 1999) or as few as two
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nonstandard nucleotides (Reader and Joyce 2002), albeit

with reduced efficiency. Within genomes, it is known that

different mutational patterns can have large impacts on

overall composition (Sueoka 1962, 1988). However, no

large-scale comparison of naturally selected RNAs (from

modern organisms) to artificially selected RNAs (from in

vitro selection in the laboratory) has yet been performed.

Such a comparison is essential for understanding whether
the preferences found in RNAs within organisms are ac-

cidents of biology or universal features of functional RNAs.

In the current study, we have taken artificially selected

RNAs from the literature and determined their distribu-

tions within composition space using computational tech-

niques that we previously used to show that the hammer-

head ribozyme and the isoleucine aptamer have different

regions of preferred composition (Knight et al. 2005).
However, with a sample size of two sites, we were unable

in that previous work to draw general conclusions about

the preferred compositions of artificially selected RNAs.

Comparing the distributions of artificially selected RNAs

to those of naturally occurring RNAs from cells provides

important insights into explaining observed compositional

biases, designing efficient in vitro selection experiments, and

furthering our understanding of RNA evolution.

RESULTS

To compare the distributions of naturally and artificially

selected RNAs, we plotted their nucleotide compositions

using a 3D projection that preserves all the information

about the nucleotide composition (Schultes et al. 1997;

Knight et al. 2005; see also Materials and Methods). Spe-
cifically, we define three orthogonal axes for pairwise com-

binations of nucleotides, so that all possible sequences lie

within a tetrahedron where the vertices represent 100%

composition of each of the 4 nucleotides (nt). We can then

plot the location of each sequence within this space, and

define regions of composition space where particular kinds

of RNAs appear or, in the case of classes of RNAs con-

taining specific motifs, are likely to be found.

Artificially selected and naturally occurring RNAs
have similar compositional preferences

The regions of composition space occupied by naturally

occurring aptamers and ribozymes from cells, obtained

from Rfam release 9.1 (Gardner et al. 2009), match the

regions that our calculations predict to have high proba-

bilities of containing artificially selected aptamer and

ribozyme motifs (Fig. 1; for details, see Materials and

Methods). In both cases, the distributions are significantly

biased toward purines (P < 10�6, t-test) and more spread
out along the GC axis than along the other axes (P < 0.001,

Monte Carlo). Overall, the probability that the two distri-

butions match as well as they do by chance is P � 0.001

(Monte Carlo). This result shows that the distribution of

natural aptamers and ribozymes is likely governed by

intrinsic properties of functional RNA that are recaptured

in artificial selection experiments in the laboratory. Inter-

estingly, miRNA precursors and guide RNAs (spliceosomal
RNAs and snoRNAs) do not share these biases (Fig. 3, see

below). These structural identities are therefore character-

istic of RNAs that perform catalytic and binding tasks,

rather than RNAs that act primarily through complemen-

tarity to other sequences.

Differential effects of sequence and folding

To isolate the source of the observed compositional biases,

we separated the effects of active-site composition and of

folding on the overall abundance of each motif (Fig. 2).

Specifically, at each location in composition space, we

FIGURE 1. Striking similarities between distributions of (a) natural aptamers (green) and ribozymes (blue), and (b) artificial aptamers and
ribozymes colored by function (nucleotide binding, red; antibiotic binding, blue; amino acid binding, yellow; self-cleaving ribozyme, gray; other,
green); (c) the superposition of the two. Results for artificial sequences shown here and in Figure 2 are for 100-nt sequences; sequence length had
little effect (Fig. 7). Summing the individual motif probabilities, rather than calculating motif overlaps, gave similar results (Fig. 8).
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calculated the probability of observing a sequence compat-

ible with all the active-site elements (stems and unpaired

regions, in the correct order), and then summarized the
results for each motif as an ellipsoid as in Figure 1b (Fig. 2,

left panels; see Materials and Methods for more details on

this calculation and the other calculations in this section).

We then calculated the probability that, once generated, the

sequences with each composition would fold into the

correct structure by testing whether the minimum free

energy structure produced by RNAfold contained all the

base pairs required by the motif and also left unpaired all
the bases that the motif specified as unpaired. We used

a binary measure (compatible/incompatible) for each se-

quence rather than summarizing probabilities from parti-

tion function folding because the latter is considerably

slower, and small-scale initial tests indicated that the results

were comparable (data not shown). The ellipsoid for each

motif summarizing where the sequences compatible with

the motif, once generated, are most likely to fold is shown
in the middle panels of Figure 2. The overall probability

that a sequence compatible with active site motifs identified

by in vitro selection will occur is highest in moderately

purine rich regions of composition space, especially for

sequences that are more biased toward G than toward A.

However, the probability that a compatible sequence, once

generated, will fold into the motif correctly is highest in

sequences that are biased toward A, perhaps because of the
unique contribution of A to base stacking (Gutell et al.

2000). The combination of these two factors explains the

overall compositional bias in the region in which randomly

generated sequences are most likely to be functional, and

suggests that the biases stem from rules of RNA self-

assembly (Schultes et al. 1999) rather than selection (Lao

and Forsdyke 2000). Note that part of the contribution to

self-assembly is that the sequences contain regions com-
patible with stems, which we count under the ‘‘sequence re-

quirements’’ rather than the ‘‘folding requirements’’ in this

study. Because our artificial RNAs have never been inside

a cell and are independently folded through computer

simulation, specific biological features or intermolecular

interactions cannot explain the compositional preferences.

Effect of RNA function

We found no association between particular functions and

location in composition space: four general categories of

motifs (amino acid aptamers, antibiotic aptamers, self-

cleaving ribozymes, and miscellaneous other motifs) did not

FIGURE 2. Separate components of active-site composition and folding preferences. (Left) Active-site sequence requirements; (middle) folding;
(right) combined. Although more of the effect comes from the active-site requirements than from folding, the effects of folding shift the overall
position of the distribution.
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occupy statistically distinct regions of sequence space. A

label permutation test (see Materials and Methods) showed

no overall clustering of the means of these distributions

relative to chance expectations (P > 0.05). These results

suggest that there are not specific regions of composition

space that are especially enriched for individual RNA

functions. Instead, there are overall compositional prefer-

ences that all functional RNAs share. However, it is not
simply the case that all biological RNAs automatically follow

these same preferences. Figure 3 presents plots of several

different kinds of biological RNAs. Although naturally

occurring RNAs that are aptamers (e.g., in riboswitches) or

ribozymes follow the patterns observed for artificially selected

RNAs; other types of RNAs that are functionally important,

such as miRNAs, snRNAs, and snoRNAs, do not. These latter

RNAs, which function primarily by complementarity to
another nucleic acid target, follow their own characteristic

distributions of composition that are markedly different and

may be related to their different modes of action.

DISCUSSION

Previous work on the subtle interplay between sequence

composition and molecular function (Schultes et al. 1997;
Knight et al. 2005) has been extensive and informative, but

limited either in the number of functions studied or the

range of compositions examined. The availability of a prin-

cipled method for estimating the probabilities of each active

site, and the application of this method to a large number of

motifs throughout the full range of sequence composition,

has allowed for the first time the identification of general

biases due to active site preferences and to folding that hold
across many motifs. The new approaches for assessing the

probability that a given sequence contains the elements

required for a specific molecular function allow us to place

guaranteed upper bounds on the results we obtained.

Our results have broad implications for evolution both

in the RNA World and in the laboratory today: they suggest

that the purine bias is universal to all functional RNAs, not

just to biological ones, and explain the empirically observed

ease of evolution from one active site to another. The

implications for searches for functional RNAs in genomes
and for the design of pools for in vitro selection are that

introducing generalized purine biases may be useful. For

genome searches, introducing compositional preferences

that include covariation in compositions across homolo-

gous sequences could provide more power than existing

approaches based on GC content or homology alone. For

SELEX pools, purine biases could potentially improve the

overall probability of function from 0.00093 for unbiased
sequences to 0.0014 at an approximately optimal compo-

sition of 30% A, 15% C, 30% G, and 25% U; a 50%

increase in overall probability of function. In contrast, tun-

ing the composition of random-sequence pools for specific

activities (Kim et al. 2007) may not provide an additional

advantage over tuning the pools for activity overall. This

interpenetration of regions where function is abundant

suggests that there are many pathways and many chemis-
tries by which an RNA World (Gilbert 1986) could have

started: that is, evolution of one functional RNA would

automatically predispose to the production of others.

Although the final bridge (the probability that a motif

that is predicted to fold correctly has biochemical activity,

as validated by laboratory experiments) remains to be

crossed, the fact that independent simulated folding of

RNAs containing small active-site motifs recaptures uni-
versal features of aptamers and ribozymes in organisms

indicates that the physical models underlying predictions

FIGURE 3. miRNA precursors and guide RNAs (spliceosomal and snRNAs, whose functionality is governed by complementarity to a target) do
not follow the same compositional distribution as do RNAs that are themselves functional (i.e., aptamers and ribozymes). Only natural ribozymes
and aptamers (riboswitches) follow the patterns shown by the high-probability regions of the artificially selected motifs.
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of RNA secondary structure (Jaeger et al. 1989) are reason-

able approximations to the truth and can inform us about

universal principles of self-assembly of RNA active sites.

MATERIALS AND METHODS

Methods overview

To determine the optimal regions of composition space for

occurrence of functional RNAs, we performed the following

procedure: for each sequence composition, we calculated the

probability of sequences matching a given active site, estimated

the probability of correct folding given that the sequence elements

were found, then multiplied these two probabilities to obtain

the joint probability of the sequence elements and the correct

secondary structure (Fig. 4; Knight et al. 2005). We collected from

the literature active-site specifications for 23 non-redundant RNA

motifs isolated by in vitro selection (Table 1; Ellington and

Szostak 1990; Robertson and Joyce 1990; Tuerk and Gold 1990).

Even though the probability of occurrence of small motifs can be

calculated exactly using finite-state automata (Lladser et al. 2008),

the actual motifs are sufficiently large to require approximations

(Kennedy et al. 2008). Although the Poisson approximation gives

FIGURE 4. Overall workflow. (a) Motifs were identified from sequences in the literature. (b) We included all motifs where both a secondary
structure diagram and a multiple sequence alignment of the corresponding sequences were available to us. We used RNAfold to predict the
folding of the sequences corresponding to each motif, and excluded motifs where none of the sequences for that motif folded into a secondary
structure compatible with the published secondary structure diagram (four of 33 motifs examined overall). (c) For each location in sequence space
where the frequencies of each nucleotide were an even multiple of 5% (e.g., 55% A, 15% C, 20% A, 10% U), we calculated the probability of each
motif using the new upper-bound method (see Materials and Methods). (d) At the same locations, we also calculated the conditional probability
of folding correctly, given that the motif was present, by sampling 10,000 sequences drawn from the distribution of sequences containing the
motif, folding each sequence with RNAfold, and calculating the fraction of sequences for which the calculated minimum free energy structure was
compatible with the motif. (e) Finally, we multiplied these two probabilities together to obtain the joint probability that a randomly chosen
sequence of a given length and composition both contains the sequence elements required for the motif and folds correctly. We repeated this
procedure for each of the 969 5% interior composition intervals in the space of possible compositions (i.e., compositions that have at least 5% of
each base and an even multiple of 5% of all bases). ( f ) We then modeled the probability distribution of each motif as a multivariate normal
distribution, showing ellipsoids at 1 standard deviation from the mean. Superimposing all these ellipsoids allowed us to determine the regions at
which each function, or combination of functions, was most likely to occur. (g) Finally, we downloaded biological aptamer and ribozyme
sequences from Rfam, plotted their compositions (so that each point corresponds to an individual aptamer or ribozyme sequence), and
superimposed them on the distribution of artificial motifs.
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results that match empirical data well over many orders of

magnitude (Knight et al. 2005; Kennedy et al. 2008), it does not

provide a guaranteed bound on the estimates. We therefore con-

sidered an approximation that does provide a guaranteed upper

bound, which also gives negligible average error (<1% over several

thousand simulated motifs) (Fig. 5). We calculated (by compu-

tationally predicting the structure of each RNA) the conditional

probability of correct structure given that the sequence elements

were found by sampling from the distribution of sequences that

contained the active-site specifications, including base pairing, at

each of 969 points of composition (multiples of 5% of each of the

4 nt containing at least 5% of each of the 4 nt, e.g., 80% A, 10% G,

5%C, and 5% U). We then compared the regions at which each

artificially selected motif was likely to be found, was likely to fold

correctly, and we compared the joint probability of both to the

corresponding regions for other artificially selected motifs, and to

naturally occurring functional RNAs from cells.

Probabilistic model

Our probabilistic model for the composition of a random

sequence of n nucleotides assumes that the RNA bases occur with

frequencies pA, pC, pG, pU $ 0 (pA + pC + pG + pU = 1), and that

matches with a base at a given position are independent from

matches at the other positions. This is reasonable for sequences

from in vitro selection because extensive effort is expended,

ensuring that the coupling efficiencies are equal during chemical

synthesis, so that the base at each position does not affect the

probability of seeing each of the four bases at the next position.

Poisson versus upper-bound approximation

For a given motif m let W be the number of matches with this

motif in a random sequence of length n. Define l as the length of

the shortest random sequence in which m has a strictly positive

probability of occurring, and let p be the probability that there is

a match in a random sequence of length l. If l is well-defined (i.e.,

it does not depend on the values assigned to the degenerate bases

nor the correlations both within and across modules) and N de-

notes all the different positions in which the motif could be matched

in a random sequence of length n, then P[W$ 1] � 1 � e�pN, due

to the Poisson approximation heuristic (Knight et al. 2005).

General error-bounds for this approximation are known only

for motifs consisting of a single module as long as no version of

the motif is a proper sub-word of another version of it (Roquain

and Schbath 2007); in particular, bounds for the error are

unknown for motifs with two or more modules with unbounded

gaps. However, due to Markov’s inequality (Durrett 2004), for an

arbitrary motif m we have P[W $ 1] # E(W), where E(W)

denotes the expected value of W. But, due to the stationarity of

our probabilistic model and the linearity of the expectation

operator, E(W) = Np, and hence P[W $ 1] # Np. We will refer

to Np as the Upper-Bound approximation. Notice that

1� e�pN = pN � ðpNÞ2 �

ð1
0

ðt
0

e�Np�sds dt;

where t is a variable of integration ranging from 0 to 1 (i.e., it has

no biological interpretation). As a result, (1 � e�pN)# Np and the

difference between the Poisson and the Upper-Bound approxi-

mation is at most (Np)2/2, which is negligible when Np is small.

Furthermore, because Np is a guaranteed upper-bound for the

probability of interest, the approximation P[W $ 1] � Np seems

more suitable when very small values of Np are considered (for

which numerical instability may become an issue).

Comparison of Poisson and upper-bound
approximations

Motifs were generated randomly as follows. Each parameter was

chosen uniformly from the following distributions: background

sequence composition, all compositions with 5%–85% of any

given base; length of each module, 1–20; number of correlated

base pairs, 0 to half the sequence length; degenerate bases, 0–4. All

calculations assumed that degenerate positions could be filled by

any one of the four bases.

The exact probability of occurrence of each motif in a specified

random background was calculated using a deterministic finite

automaton (Lladser et al. 2008). This probability was then

approximated using the Poisson method (Knight et al. 2005)

and the Upper-Bound approximation described above. Poisson

and Upper-Bound approximations were compared with the exact

probabilities by calculating the average relative error and co-

efficient of determination of the log-scaled data using PyCogent

(Fig. 5; Knight et al. 2007).

Folding calculations

The folding calculations reported in this paper required consider-

able computational resources. We performed folding experiments

for 23 motifs using RNAfold in the Vienna Package (Hofacker

et al. 1994). For each motif we folded 38,760,000 molecules, which

means that we folded a total of z1.3 3 109 molecules, or about

1.3 3 1011 nucleotides. Approximately 10,000 CPU hours were

needed for these computational foldings. The computational

folding runs were performed on clusters provided by the Shared

FIGURE 5. Fit between exact and upper-bound calculations. Red
points indicate conditions that failed inclusion criteria (i.e., proba-
bility of an individual module >0.01, or probability over all mod-
ules >0.001: these criteria were set such that all examined motifs were
included). The same motifs were used for both sets of calculations, so
the graphs are nearly identical. Correlations and relative errors are as
follows. Upper-Bound: r2 = 0.998, r2 for filtered points only =
0.999999, mean relative error = 12.9, mean filtered relative error =
0.0093. Poisson: r2 = 0.997, r2 filtered = 0.999999, mean relative
error = 12.8, mean filtered relative error = 0.00076. For numerical
stability we approximated 1 � e�x by its second-order Taylor series
when 0 < x <10�8. Thus the two methods perform similarly and
provide excellent agreement with exact calculations over the range of
motifs examined.
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Hierarchical Academic Research Computing Network (SHARCNET;

https://www.sharcnet.ca/my/front/).

We used the GridBASE framework (De Sterck et al. 2007, 2008)

for distributing the folding tasks over a collection of clusters, and

for organizing the tasks and their input and output. GridBASE is

a framework for database-driven grid computing, and was de-

veloped to make it easy to grid-enable a certain class of (task-

farmable) applications. Industry-strength database technology

plays a key role in the design of the framework. The database is

used as a scalable, reliable, and remotely accessible component

both for storing and organizing the configuration information of

the grid, and for managing information related to the grid users

and the jobs and tasks they submit for execution.

Other system components are worker nodes, a simple resource

broker, a grid operator console, and application clients (see Fig.

6). The broker matches available workers with unprocessed tasks,

and the workers then pull the tasks from the database superqueue.

This mechanism offers decoupling in space, as components may

be distributed over geographically distributed machines, and

decoupling in time, as tasks may wait in the database until

workers become available. In analogy with electrical power grids,

a clear distinction is made in our design between the role played

by grid users on the one hand, who develop and submit ap-

plication code but are otherwise mostly isolated from resource

deployment and selection, and the role played by the grid operator

on the other hand, who is responsible for providing computing

resources and assuring system availability and maintenance.

Application code can be written in any language, and simple

workflow support is provided. Code delivery and input and

output file delivery also occur via the database component. Our

approach is based on decentralization and implemented in Java,

leading to a lightweight, portable, and scalable grid computing

solution that is especially suited for parallel bioinformatics.

GridBASE can be downloaded from http://www.math.uwaterloo.

ca/groups/SSC/software/gridbase/index.shtml.

Association between motif function and spatial
location

The test statistic used was the average difference between the

means of the centroids of the ellipsoids for each pair of functional

categories. The association between each motif and its function

was randomized and the test statistic was measured. This pro-

cedure was repeated 10,000 times, and the P-value reported is the

proportion of times that the test statistic of the randomized

associations exceeded the test statistic of the correctly labeled

motifs. This test thus indicates whether functions are more

localized than we would expect by chance.

Association between the spatial location of real
aptamers/ribozymes and the ellipsoids representing
artificially selected motifs

The test statistic was the fraction of aptamers/ribozymes taken

from the Rfam database that are within at least a single one-

standard-deviation ellipsoid of any of the artificially selected

motifs. Random sequences equal to the number of Rfam

aptamers/ribozymes were generated from equal base frequencies

with sequence lengths drawn from the distribution of actual Rfam

sequences. This procedure was repeated 10,000 times. The P-value

reported is the proportion of times that the number of points

from the null model that were within at least one ellipsoid ex-

ceeded the number of real Rfam sequences that were within at

least one ellipsoid. This gives an indication of whether actual se-

quences overlap the high-probability region of artificially selected

motifs more than would be expected for random sequences with

the same lengths.

Functional overlap

For each functional category, the top 5% of points in composition

space with the highest probability for any motif having that

function were selected. The number of points in composition

space that occurred in the top 5% of zero to five of the functional

categories was recorded. By chance, we would expect any given

point to occur in n functional categories according to a binomial

distribution with parameters n = 5, P = 0.05. The P-value reported

compares these two models using a x
2 goodness-of-fit test. This

gives an indication of whether the high-probability regions of

different functions overlap more than we would expect by chance.

Purine bias

The mean of the centroids of all motifs was projected onto the

AG/CU axis and tested for purine bias using a one-sample t-test.

The same test was performed for purine bias among Rfam

aptamers/ribozymes.

Spread along GC axis

The test statistic was: Var(GC axis)/max[Var(GU axis), Var(GA

axis)]. A set of points with the same number of sequences as the

FIGURE 6. GridBASE deployment diagram. Rectangular boxes rep-
resent different machines. The thick solid lines represent connections
to the database. The thin solid lines represent direct control in-
teractions initiated by the operator component. The dashed lines
represent notification of workers by their associated brokers (multiple
brokers may be employed, for instance, to handle firewall restric-
tions).
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Rfam ribozyme/aptamers was created using a composition the

same as that of the average Rfam ribozyme/aptamer and a se-

quence length drawn from the same length distribution as the

Rfam sequences. This was repeated 10,000 times. The reported

P-value is the proportion of times that the test statistic of the

random sequences was greater than that of the real Rfam

sequences, and thus gives an indication of whether the excess

spread along the GC axis as compared to the two axes orthogonal

to it is greater than we would expect by chance.

Overlap of Rfam sequences and artificially selected
motifs

The high-probability regions corresponding to the one-standard-

deviation ellipsoids that were fit to the probability distributions of

each motif and the three-standard-deviation ellipsoid that was fit

to the Rfam aptamers/ribozymes were tested for significant overlap.

First, a randomly placed ellipsoid with the same volume as the

ellipsoid fit to the Rfam sequences was produced using the

following procedure.

A covariance matrix was generated by sampling standard

deviations for the x-, y-, and z-axis uniformly on [0,0.5] and

sampling correlation coefficients for each pair of axes uniformly

on [�1,1]. These values were converted into variance and co-

variance, respectively, to create a covariance matrix. The matrix

was scaled by the cube root of the desired volume divided by the

current volume of the one-standard-deviation ellipsoid so that the

resulting one-standard-deviation ellipsoid had the desired vol-

ume. A random mean was selected within the simplex, and the

ellipsoid was tested for whether it extended outside the simplex by

using the inverse of the square root of the covariance matrix as

a linear transformation applied to each of the bounding planes of

the simplex after they had been shifted so that the ellipsoid was

centered at the origin; if the transformed planes intersected

a sphere with radius 1 centered at the origin then the covariance

matrix was rejected and the procedure was repeated.

The volume shared between the randomly generated ellipsoid

and the set of ellipsoids of all motifs was calculated by sampling

50,000 points within the simplex and multiplying the proportion

of these points that were shared by the volume of the simplex

tetrahedron. This procedure was repeated 10,000 times. The

P-value reported is the proportion of times that the estimated

shared volume between the motif ellipsoids and the random

ellipsoid with the same volume as the Rfam ellipsoid exceeded the

shared volume associated with the actual Rfam ellipsoid. This

gives an indication of how likely it is that we would see the ob-

served amount of overlap between real and artificial sequences in

composition space if the ellipsoids had been randomly distributed

in the simplex (see, also, Figs. 7, 8).

SUPPLEMENTAL MATERIAL

Supplemental material can be found at http://bayes.colorado.edu/

SupplementaryMaterial/Kennedy09RNA/.
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