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Pathogenic microorganisms and their chronic pathogenicity are significant concerns in

biomedical research. Biofilm-linked persistent infections are not easy to treat due to

resident multidrug-resistant microbes. Low efficiency of various treatments and in vivo

toxicity of available antibiotics drive the researchers toward the discovery of many

effective natural anti-biofilm agents. Natural extracts and natural product-based anti-

biofilm agents are more efficient than the chemically synthesized counterparts with lesser

side effects. The present review primarily focuses on various natural anti-biofilm agents,

i.e., phytochemicals, biosurfactants, antimicrobial peptides, and microbial enzymes

along with their sources, mechanism of action via interfering in the quorum-sensing

pathways, disruption of extracellular polymeric substance, adhesion mechanism, and

their inhibitory concentrations existing in literature so far. This study provides a better

understanding that a particular natural anti-biofilm molecule exhibits a different mode

of actions and biofilm inhibitory activity against more than one pathogenic species.

This information can be exploited further to improve the therapeutic strategy by a

combination of more than one natural anti-biofilm compounds from diverse sources.

Keywords: microbial biofilm, therapeutic strategies, phytocompounds, multidrug resistance, antimicrobial

peptides, biosurfactant

BACKGROUND

The antimicrobial tolerance of biofilms has emerged as a significant challenge to medical scientists
across diverse healthcare sectors. Synthetic drugs, combinational therapy, and antibiotic hybrids
could not achieve and deliver the desired results during the treatment. The hunt for novel
antimicrobials in drug resistance emergency insists on the scientific society to search novel
natural anti-biofilm agents. The focus of the present review is to revisit various natural products
to overcome the biofilm-forming microorganisms and provide concise information on existing

Abbreviations: AHL, acyl-homoserine lactone; AMP, anti-microbial peptide; BFC, biofilm-forming capacity; CLSM,
confocal laser scanning microscopy; CSH, cell surface hydrophobicity; eDNA, extracellular DNA; EPS, extracellular
polymeric substances; GA, ginkgolic acid; HSL, homoserine lactone; MBIC, minimum biofilm inhibitory concentration;
MFC, minimal fungicidal concentration; MIC, minimum inhibitory concentration; PMNs, polymorphonuclear leukocytes;
QS, quorum sensing; SEM, scanning electron microscopy; TEM, transmission electron microscopy.
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confines and recent developments in the modification of
different natural anti-biofilm agents to make them effective drug
candidates for clinical exploitation.

The Biofilms
The concept of biofilm was first developed by Marshall et al.
(1971) and further described by Fletcher, Characklis, and
Costerton, “Biofilm is the unique pattern of growth in the life
cycle of microbes that provides specific properties, advantages
and higher level of organization to the free living bacterial cells
during colonization” (Characklis, 1973; Fletcher and Floodgate,
1973; Geesey et al., 1978; Flemming and Wuertz, 2019). The
description of biofilm is much more clarified by Flemming and
Wuertz (2019) that biofilms are aggregates of microorganisms
with distinct sessile cells followed by cell division to form small
clusters, microcolonies, and larger sums. The film underneath
the biofilm is only in direct contact with the substratum
in a multilayered heterogeneous microbial mat. Biofilms are
extensively used in various biotechnological applications, for
example, biofuel production, degradation of wastewater, and
filtration of drinking water (Flemming et al., 2016b). The
negative impact of biofilm includes bio-fouling (Flemming,
2011), corrosion (Little and Lee, 2015), and deterioration of
the drinking water quality (Wingender and Flemming, 2011).
All higher eukaryotes, including humans, are populated by
microorganisms that form biofilms (De Vos, 2015). Human
dental plaque, skin, and gut represent one of the dominant
biofilms in eukaryotic habitats. The widespread uses of medical
devices create several new niches for bacterial biofilm formations
(Qvortrup et al., 2019).

Cells in biofilm survive harsh growth conditions as biofilms
are surrounded by high molecular weight extracellular polymeric
substances (EPS) that attach cells (Branda et al., 2005; Flemming
and Wingender, 2010). The EPS are composed of proteins,
lipids, polysaccharides, and extracellular DNA and play an
essential function in the pathogenesis of the numerous microbial
infections (Ch’ng et al., 2019). It has also been reported that
microbial cells inside the biofilms are found to be resistant
against UV, metal toxicity, acid exposure, desiccation, pH
gradients, etc. (Costerton et al., 1999; Hall-Stoodley et al.,
2004). In accretion to various physical and chemical tolerances,
EPS confers immune resistance to many resident pathogenic
microbes within biofilms by inhibiting neutrophil-mediated
phagocytosis (Gunn et al., 2016). Izano et al. (2009) reported
that the eDNA and intercellular adhesins of EPS act as a
barrier for the penetration of a variety of antimicrobials. The
eDNA present within the EPS chelate human antimicrobial
peptides (AMPs) and lessen the antimicrobial activity of
these peptides (Jones et al., 2013). So far, many studies
have been carried out to identify the method of biofilm
formation and subsequent preventive strategies to strike the
challenges, especially the drug resistance due to biofilm formation
(Roy et al., 2018).

The presence of glycocalyx, outer membrane structure,
and efflux pumps; and heterogeneity in growth rate, genetic
adaptation, metabolic state, and metabolism of cells within a
biofilm are the leading causes of biofilm that acquire resistance

against antimicrobials (Singh et al., 2017). The mode of biofilm
establishment in several human pathogens, as well as its drug
resistance mechanism, is well documented and reviewed by
different researchers and plotted (Figure 1). This figure explains
the shared mechanism of biofilm tolerance under three sections.
(1) Physical tolerance: the excess production of EPS restricts the
penetration and diffusion of antimicrobials; as a result, cells in the
biofilm get more time to become tolerant. Similar observations
found that EPS production augments antimicrobial tolerance;
an isogenic 1csgD mutant of Salmonella Typhimurium (EPS-
deficient mutant) is much susceptible to hydrogen peroxide
(MacKenzie et al., 2017) and ciprofloxacin (Tabak et al., 2009).
Therefore, therapeutic strategies that destabilize and inhibit
EPS are the best anti-biofilm approaches to inhibit biofilms
and reduce significant problems of antimicrobial resistance.
A similar observation has been recorded by Deokar and
Kadam (2020) and Dieltjens et al. (2020) that EPS inhibition
reduces cell adhesion as well as drug tolerance in biofilms.
(2) Passive tolerance: enzymes present in the biofilm matrix
inactivate the antimicrobial molecules. The mechanism for the
neutralization of antimicrobials through the biofilm matrix
components have also been reported (Fux et al., 2005),
and there are reports that catalase enzymes present in the
biofilm matrix are responsible for tolerance of Staphylococcus
epidermidis biofilm against various physicochemical agents
(Olwal et al., 2019). (3) Physiological tolerance: metabolically
inactive cells in the deeper layers of biofilm exhibit adaptive
stress responses that regulate the tolerance of biofilms to
various antimicrobials. Persister cells become more tolerant of
a variety of antibiotics after phenotypic and reversible changes
induced by starvation, ecological factors, and several other
adaptive responses such as SOS and stringent response (Harms
et al., 2016; Ciofu and Tolker-Nielsen, 2019; Soares et al.,
2019).

Persister cells are slow-dividing bacteria, less susceptible
to antibiotics, and they have an essential role for biofilm re-
establishment (Dawson et al., 2011). Persister cells upregulate
the expression of various toxin–antitoxin genes that blocks
translation which leads to lessen cellular metabolism and
eventually guarantees their survival in the presence of
antibiotics (Lewis, 2005). These cells revive to vegetative
dividing cells to reoccur infection after the end of antibiotic
action (Lewis, 2010). Persister cells have been confined from
antibiotics because these cells express the toxin-antitoxin
system where the antibiotic target is blocked by the toxin
module (Lewis, 2005). Oxygen scarcity and little metabolic
activity in biofilms provide P. aeruginosa greater tolerance to
many antibiotics (Wilkins et al., 2014). Sudden changes in pH
between layers in a biofilm play a role to accumulate organic
acids, thus deactivating the penetrating compounds (Wilkins
et al., 2014). The development of gradients of oxygen, pH,
nutrients, and electron acceptors all over the biofilm makes
microenvironments where cells respond by altering their gene
expression (Spormann, 2008; Stewart and Franklin, 2008).
Complex (polymicrobial) biofilm made up of many species is
generally more resistant to antibiotics than biofilm made up of a
single species (Van der Veen and Abee, 2011). Cell diversity and
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FIGURE 1 | The general mechanism of biofilm tolerance to various antimicrobials. (A) Physical tolerance: biofilm matrix limits the diffusion of antimicrobials (Tseng

et al., 2013). (B) Passive tolerance: matrix enzymes inactivate the penetrated antibiotics molecules (Fux et al., 2005). (C) Physiological tolerance: persister cells in the

deeper layer of biofilm induce adaptive SOS response and thus become more tolerant (adapted from Ciofu and Tolker-Nielsen, 2019).

metabolic conditions play the most important role in antibiotic
tolerance of biofilms.

However, with the advance of sequencing technology, a ton
of genomic data have been generated, which allows further
illustration of the unknown molecular mechanism in the
association of biofilm formation and drug resistance. The RNA-
seq transcriptome analysis identified arsenic resistance operon
genes (arsR and arsD), sporulation regulatory gene (paiA),
ABC drug transporter classes, and penicillin-binding proteins
associated with the Enterococcus faecalis biofilm formation and
drug resistance (Seneviratne et al., 2017). They found higher-
level expression of arsD in biofilm mode to avoid cell toxicity
and suggested that arsD gene knockout could be a possible way
of inhibiting biofilm formation. Similarly, they also observed
the reduced level of expression of the paiA gene in biofilms.
Padhi et al. (2016) reported that Mtb Rv0024 protein expression
plays a significant role in the biofilm formation and subsequent
resistance against anti-tuberculosis drugs in non-pathogenic
Mycobacterium smegmatis strain.

The present tendency of antifungal tolerance is also a
significant area of concern; therefore, direct research in
a direction of novel antifungal compounds with targeted
mechanisms of action are required (Sharma and Bisht, 2020).
Many studies reported that the biofilm of Candida albicans
is tolerant to many antifungal drugs as compared with the
planktonic yeast cells. Moreover, the formation of mannan–
glucan complex promoted by the extracellular vesicles (EVs)

is also linked to drug resistance and reported in C. albicans,
C. glabrata, C. tropicalis, and C. parapsilosis (Mitchell et al.,
2015; Dominguez et al., 2018; Zarnowski et al., 2018). It has also
been reported that overexpression of efflux pumps, a mutation
in the target site of the drug, persisted cells, the interaction
between biofilm and host immunity system as well as proteins
associated with the filamentation process were involved in the
biofilm-associated resistance mechanism of fungi (Borghi et al.,
2016). Analyzing the transcriptional network regulating biofilm
growth of C. albicans illustrates six major transcription regulators
such as Efg1 and Tec1 for cell morphology regulation; Bcr1,
Brg1, and Ndt80 for biofilm formation; and Tec1 and Rob1
which controls the normal process of biofilm formation (Fox
and Nobile, 2012; Uppuluri et al., 2018). Thus, an in-depth
understanding of the molecular pathway involved in the biofilm
formation and subsequent antibiotic resistance is essential to
formulate the preventive measures. This review aims to focus
on the natural anti-biofilm agents effective against a broad
range of microbial biofilms and strategies related to recent
biofilm treatments.

Anti-biofilm Agents Based on Natural
Products
The formation and development of biofilms is a complicated
procedure involving different stages which can be the target
of natural anti-biofilm agents for the prevention of biofilm
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development. Some of the well-studied stages of biofilm
development include (1) attachment of bacterial cells to a suitable
biotic/abiotic surface, (2) development of biofilm structure,
(3) maturation of biofilm, and (4) dispersion (Boles and
Horswill, 2008). The first two stages are highly critical in the
development of biofilms and targeting one or both of these
stages seems to be the ideal strategy for inhibition of biofilm
formation. The attachment stage involves cytoskeletal elements
(predominantly flagella, fimbriae) and lipopolysaccharides as
key players. Surface signaling/communication of a group of
bacteria, also termed as Quorum Sensing is a key player in the
formation of biofilm. The natural anti-biofilm agents either act
solely or synergistically by diverse mechanisms, as illustrated in
Figure 2.

Phytochemicals
There are broadly five classes of natural compounds that have
high anti-biofilm properties. Those are phenolics, essential oils,
terpenoids, lectins, alkaloids, polypeptides, and polyacetylenes
(Yong et al., 2019). Phenolics are a group of compounds. It
has seven subclasses which include phenolic acids, quinones,
flavonoids, flavones, flavonols, tannins, and coumarins, out of
which tannins, specifically condensed tannins, have anti-biofilm
activity (Trentin et al., 2011). These entire compounds act on
biofilm by six main mechanisms like substrate deprivation,
membrane disruption, and binding to adhesin complex and cell
wall; bind to proteins; interact with eukaryotic DNA; and block
viral fusion (Cowan, 1999; Lu et al., 2019).

Several solvents, i.e., water, methanol, ethanol, chloroform,
ether, dichloromethanol, and acetone, were used for the
extraction of natural compounds from various sources for
anti-biofilm activity. Various experiments carried out by
researchers found that water extracts anthocyanins, sugars like
tannins, saponins, terpenoids, polypeptides, and lectins. Ethanol
extracts compounds, i.e., tannins, polyphenols, polyacetylenes,
flavonol, terpenoids, sterols, alkaloids, and propolis whereas
methanol extracts anthocyanins, terpenoids, saponins, tannins,
xanthoxyllines, quassinoids, totarol, flavones, lactones, phenones,
and polyphenols (Cowan, 1999). Extraction with chloroform
yields terpenoids and flavonoids; dichloromethanol yields only
terpenoids (Cowan, 1999); ethers when used as solvent results
in the extraction of terpenoids, alkaloids, fatty acids, and
coumarins whereas acetone isolates flavonols. Hydroquinone
and caffeic acid methyl ester, isolated from Cnestis ferruginea
Vahl ex DC. aqueous extract, showed promising results against
S. aureus (Kouakou et al., 2019). Many researchers worked on
bioactive compounds from medicinal plants for the discovery
of novel natural anti-biofilm compounds. The anti-biofilm
properties of Indian medicinal plants have been exploited
and found that Cinnamomum glaucescens (Nees) Hand.-Mazz,
Syzygium praecox Roxb. Rathakr. & N. C. Nair, Bischofia
javanica Blume, Elaeocarpus serratus L., Smilax zeylanica
L., Acacia pennata (L.) Willd., Trema orientalis (L.) Blume,
Acacia pennata (L.) Willd., Holigarna caustica (Dennst.) Oken,
Murraya paniculata (L.) Jack, and Pterygota alata (Roxb.)
R. Br. extracts have promising anti-biofilm activity against
S. aureus (Panda et al., 2020). 12-Methoxy-trans-carnosic acid

and carnosol identified from the methanolic extract of Salvia
officinalis L., an Algerian medicinal plant, have shown anti-
biofilm activity against Candida biofilm in in vitro conditions
(Kerkoub et al., 2018).

Phytochemicals inhibit the quorum sensing mechanism
mainly by blocking the quorum sensing inducers like AHL,
autoinducers, and autoinducers type 2 (Ciric et al., 2019).
Garlic extracts play a vital role in the inhibition of quorum
sensing signaling molecules of Pseudomonas and Vibrio spp.
biofilms (Harjai et al., 2010; Lu et al., 2019). Emodin helps
in the proteolysis of transcription factors associated with
the quorum sensing and acts as its potent inhibitor (Ding
et al., 2011). Quorum quenchers, along with antibiotics,
are the best alternative anti-biofilm agents, as discussed by
many researchers (Paluch et al., 2020). Phytochemicals also
play a significant role in inhibiting bacterial adhesions and
suppression of genes related to biofilm formation (Adnan
et al., 2020). Biofilm development at the initial stages can
be outlawed by interfering with the forces (Van der Waals
force of attraction, electrostatic attraction, sedimentation and
Brownian movements) which are responsible for the support
of bacterial attachment to various surfaces (Roy et al., 2018).
Phytocompounds have the potential to interfere with the
extension along with the capability to stop the accessibility
to nutrients essential for adhesion and bacterial growth
(Sandasi et al., 2010).

There are reports on the anti-adhesive properties of ethanolic
and acetone extract of Psidium guajava L. (Razak and Rahim,
2003) and extracts from various Eugenia spp. on C. albicans
(Sardi et al., 2017). An alkaloid (norbgugaine) has shown a
significant effect on P. aeruginosa biofilm by preventing adhesion
due to loss of cell motility (Majik et al., 2013). A very recent study
on Adiantum philippense L. crude extract has shown a promising
role in decreasing the content of biofilm exopolysaccharides
(Adnan et al., 2020). They observed that Adiantum philippense
L. crude extract restrains biofilm at the initial stages by
targeting adhesin proteins, deforming the pre-formed biofilms,
and obstructing EPS production. Various researchers identified a
different group of phytocompounds especially polyphenols such
as 7-epiclusianone, tannic acid, and casbane which prevent cell
surface attachment (Murata et al., 2010; Carneiro et al., 2011;
Payne et al., 2013; Adnan et al., 2020).

Members of Enterobacteriaceae express curli, an amyloid
fiber on the cell surface that helps in the attachment to
characters and cell aggregation and enhances biofilm formation
as well as cellular invasion (Tursi et al., 2020). Cegelski et al.
(2009) found that pyridones affect the expression of the CsgA
curli subunit and hamper curli biogenesis. Phloretin, ginkgolic
acid, and phytocompounds from Malaysian plants help in the
regulation of curli and pilli genes (Lee et al., 2011, 2014a,b;
Johari et al., 2020). Vikram et al. (2013) reported that a citrus
sterol β-sitosterol glucoside inhibited E. coli O157:H7 biofilm
formation and motility by suppressing flagellar operon flhDC.
The phytocompounds of curlicide and pilicide nature can be
exploited in therapeutic strategies of Enterobacteriaceae biofilm
prevention (Johari et al., 2020). Phytocompounds having fewer
side effects can be a better therapeutic agent for biofilm-related
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FIGURE 2 | Workflow of the portrayed natural anti-biofilm agents based on their mode of actions.

infections, but recent reports suggest a combined approach which
is always better than the individualistic approach. Few plant-
based antimicrobials with the potential of anti-biofilm activity are
summarized in Table 1.

Biosurfactants
Biosurfactants (BS) hinder biofilm formation by varying the
cell adhesion ability through less cell surface hydrophobicity,
membrane disruption, and inhibited electron transport chain,
thus restricting cellular energy demand (Satpute et al., 2016).
Biosurfactants of different classes are produced by various
microorganisms that exhibit antibacterial, antifungal, and
anti-biofilm activities (Paraszkiewicz et al., 2019). The effect of
biosurfactants from Lactobacillus plantarum and Pediococcus
acidilactici on quorum sensing signaling molecules and
expressions of biofilm-linked genes in Staphylococcus aureus was
evaluated (Yan et al., 2019). They reported that biosurfactants
reduce the growth of S. aureus biofilm by regulating the
expression of biofilm-related genes dltB, icaA, cidA, etc. BS
from Lactobacillus plantarum significantly reduced cidA gene
expression at 12.5 mg/ml (Yan et al., 2019). Biosurfactant from
Pediococcus acidilactici downregulates the gene expression
of autoinducer-2 (AI-2) signaling molecules, accessory gene
regulator (agr A), and staphylococcal accessory regulatory (sar
A) at 50 mg/ml (Yan et al., 2019). Previous studies reported
that the anti-biofilm activity of Lactobacillus-derived BS loaded
liposomes had greater ability than free BS to inhibit S. aureus
(MRSA) biofilm formation and elimination (Giordani et al.,
2019). Few biosurfactants along with their consequence on

biofilm growth, development, and dispersal are summarized in
Table 2.

Ohadi et al. (2020) identified an anionic lipopeptide from
Acinetobacter junii which self-aggregates to form β sheet–rich
biosurfactant vesicles. This biosurfactant is thermostable and
less toxic, so it can be used as an anti-biofilm agent. Biofilms
that are developed by dermatophytes are very difficult to
eradicate. A lipopeptide biosurfactant obtained from Beauveria
bassiana, which is an insect-attacking fungus, plays an important
role as an anti-biofilm agent in ex vivo conditions for
M. canis (Abdel-Aziz et al., 2020). It acts by disrupting
cell membrane integrity and interfering with cell membrane
permeability. The biosurfactant from B. bassiana overcome
the disadvantage of expensive production as it was produced
from steep corn liquor. This can be a promising biosurfactant
for recalcitrant dermatophytosis. Surfactin, a cyclic lipopeptide,
was found to be very effective along with its metal complex
against C. albicans biofilm-related infections. This biosurfactant
also controls the expression of hyphal specific genes and
mainly act by decreasing cellular surface hydrophobicity
(Janek et al., 2020).

Rhamnolipids produced from Pseudomonas aeruginosa MN1
have higher anti-adhesive and anti-biofilm activity than that
of surfactin (Abdollahi et al., 2020). Glycolipid isolated from
Burkholderia sp. WYAT7, an endophyte of Artemisia nilagirica
(Clarke) Pamp, has anti-biofilm activity against S. aureus
(Ashitha et al., 2020). A broad-range glycolipoprotein, rich in
Leu-His-Trp amino acids identified from Acinetobacter indicus
M6 has low toxicity and removed 82.5% of biofilm at a
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TABLE 1 | Anti-biofilm activity of phytocompounds with their mechanism of action.

Compound Source Experimental details Pathogenic species Molecular mechanism Inhibitory concentration References

Ajoene Allium sativum

L.

In vitro (PMNs killing

assays) and in vivo

(pulmonary infection mice

model)

Pseudomonas

aeruginosa

P. aeruginosa

Staphylococcus

aureus

Downregulates rhamnolipid production

Inhibits small regulatory RNA molecules (rsmY,

rsmZ, and rnaIII) that operate in the later phase of

QS signaling

20 µg/ml ajoene reduces

rhamnolipid production by 1/3

IC50 for

rsmY = 2.5 µg/ml

rsmZ = 2.3 µg/ml

Jakobsen et al.,

2012

Jakobsen et al.,

2017

Allicin Allium sativum

L.

In vitro

(1pqsABCD knockout

strain)

Pseudomonas

aeruginosa

Decreases the bacterial adhesion in the initial

stages of biofilm formation as it reduces EPS

formation

It controls the expression of virulence factors hence

interfere with the QS system

250 µM inhibit production of

virulence factors such as

pyocyanin, elastase, and

pyoverdine and rhamnolipids

Xu et al., 2019

Carvacrol

(monoterpenoid)

Origanum

vulgare L.

In vitro

(qPCR for relative

expression of lasI/lasR

genes) and docking

modeling of proteins LasI

and LasR

Pseudomonas

aeruginosa

Post-translational inhibition against lasI, which

effects AHL production. It mainly acts on QS

machinery

C6-AHL production reduced up

to 80% with 1.9 mM of

carvacrol

Tapia-

Rodriguez

et al., 2019

Emodin

(anthraquinone)

Polygonum

cuspidatum

Siebold & Zucc.

and

Rheum

palmatum L.

In vitro

(crystal violet biofilm assay

and SEM analysis)

Staphylococcus aureus Decreases the release of eDNA and downregulates

the expression of biofilm-forming related genes like

cidA, icaA, dltB, agrA, sortaseA, and sarA

MIC = 8 µg/ml Yan et al., 2017

Emodin

(anthroquinone)

Rheum

palmatum L.

In vitro (microdilution assay,

kinase assay) and

molecular docking for

emodin in CK2 (Autodock

Vina)

Candida albicans

Candida krusei

Candida

parapsilosis

Candida tropicalis

Biofilm formation is inhibited by targeting cellular

kinase signaling

It acts on planktonic cells by reducing hyphal

formation. It acts as a competitive inhibitor of CK2

MIC = 12.5 µg/ml

MFC = 25 µg/ml

MIC and MFC = 25 µg/ml

MIC and MFC = 50 µg/ml

Janeczko et al.,

2017

Aloe-emodin Rheum

officinale Baill.

In vitro

(CLSM assays and Congo

red assay)

Staphylococcus aureus Reduce the production of extracellular proteins and

polysaccharide intercellular adhesin

Inhibited biofilm formation on

polyvinyl chloride surfaces at

32 µg/ml

Xiang et al.,

2017

Hordenine Hordeum

vulgare L.

(sprouting)

In vitro

(SEM and CLSM assays,

qPCR for QS-related

genes)

Pseudomonas

aeruginosa

Decreases AHL production

Virulence factors (proteases, elastase, pyocyanin,

rhamnolipid, alginate, and pyroviridine) production

decreased significantly. Inhibit swimming and

swarming activity

Down-regulates the expression of lasI, lasR, rhlI and

rhlR genes.

1 mg/ml of hordenine along

with 0.4 µg/ml of netilmicin

reduced

biofilms by 88%

C4-HSL production decreased

up to 69% at 0.5 mg/ml

Zhou et al.,

2018

Pulverulentone

A

Callistemon

citrinus (Curtis)

skeels leaves

In vitro

(broth microdilution assay,

CLSM, TEM analysis)

Methicillin-resistant

Staphylococcus aureus

Reduces styphyloxanthin production, thus inhibiting

biofilm formation

Disrupts the cell membrane

MIC = 125 µg/ml

Production of the virulence

factor decreased by 65.9%

Shehabeldine

et al., 2020

(Continued)
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TABLE 1 | Continued

Compound Source Experimental details Pathogenic species Molecular mechanism Inhibitory concentration References

Vitexin (flavon) Vitex species In vitro (safranin staining,

microscopy methods, EPS

quantification)

In vivo murine model

(catheter-associated infection),

molecular docking

Pseudomonas aeruginosa Attenuates formation of

EPS, QS-associated

factors (swarming motility,

production of protease,

pyoverdin and pyocyanin)

Molecular docking studies

confirmed it attnuates Las

A, Las B, and Lux R

MIC = 260 µg/ml

39.04% decrease in Las A

protease and 37.54% Las

B elastase

Das et al., 2016

5-Hydroxymethylfurfural Musa

acuminata

Colla.

In vitro

(biofilm, Las B elastase,

protease, and rhamnolipid

quantification assays)

Pseudomonas aeruginosa Inhibits the production of

biofilm proteins, EPS, and

cell surface hydrophobicity

productions

Downregulates the

expression of QS-regulated

virulence genes

MBIC = 400 µg/ml

Reduces production of

biofilm proteins, biofilm

adherence, EPS and CSH

to the level of 79, 82, and

77%, respectively

Inhibits the production of

LasA protease, LasB

elastase, pyocyanin,

alginate, and rhamnolipid

77, 75, 68, 80, 78, and

69%, respectively

Vijayakumar and

Ramanathan, 2020

Phytol Piper betle L. In vitro

(microscopic analysis,

transcriptional analysis of

QS-regulated genes)

Serratia marcescens Inhibits the swarming

motility and hydrophobicity

Downregulates QS genes

Significantly inhibits the

production of biofilm and

EPS to the level of 65 and

43%

Srinivasan et al., 2016

Isolimonic acid and

ichangin

Citrus species In vitro

(Caco-2 cell adhesion and

survival assay, AI-3 reporter

assay)

Enterohaemorrhagic

Escherichia coli

Vibrio harveyi

Decreases the adherence

Downregulates flagellar

genes, ler (transcriptional

regulator of LEE)

Represses the expression

of the flagellar master

regulator (flhC and flhD)

Regulates luxO expression,

thus acting as potent

modulators of bacterial

cell–cell signaling

IC25 (isolimonic

acid) = 19.7 µM

IC25 (ichangin) = 28.3 µM

ler repressed by 5-fold, flhC

and flhD repressed by 4.6

and 6.9, respectively

IC50 (isolimonic

acid) = 94.18 µM

Vikram et al., 2012

Vikram et al., 2011

(R)-Bgugaine Arisarum

vulgare

O. Targ. Tozz.

In vitro

(static biofilm

inhibition assay)

Pseudomonas

aeruginosa

Affects flagella related

functions, inhibits

pyocyanin pigmentation,

LasA protease, rhamnolipid

production.

Reduces biofilm density by

83% at 1.8 mM

Majik et al., 2013

(Continued)
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TABLE 1 | Continued

Compound Source Experimental details Pathogenic species Molecular mechanism Inhibitory concentration References

Zingerone Zingiber officinale Roscoe In vitro

(microtiter plate assay,

motility assay, quorum

sensing signal molecules

quantitative assay) and

molecular docking of TraR,

LasR, and PqsR proteins

Pseudomonas aeruginosa

PAO1

Reduces swimming,

swarming, and twitching

motility. Suppresses

pyocyanin, hemolysin,

rhamnolipid, protease and

elastase

Molecular docking analysis

proved that it could bind

with all the quorum sensing

receptors and stops

receptor–ligand interaction,

suppresses QS-dependent

gene expression

Sub MIC = 10 mg/ml

Reduces the BFC of

P. aeruginosa PAO1 as

A570 from 1.1 to 0.5

Kumar et al., 2015

Baicalin Scutellaria baicalensis

Georgi

In vivo

(mouse peritoneal implant

infection model)

Pseudomonas aeruginosa Inhibits LasA protease,

LasB elastase, pyocyanin,

rhamnolipid, motilities and

exotoxin A virulence factors

Decreases the expression

of lasI, lasR, rhlI, rhlR,

pqsR, and pqsA genes and

reduces the QS signaling

molecule 3-oxo-C12-HSL

and C4-HSL

MIC > 1024 µg/ml

C4-HSL levels decreased

77.2% at 64 µg/ml baicalin

Luo et al., 2017

Curcumin Curcuma longa L. In vitro

(crystal violet biofilm assay,

pellicle formation assay,

surface motility assay,

mixed culture biofilm assay)

In vivo (Caenorhabditis

elegans model organism,

C. elegans

killing assay)

Acinetobacter baumannii,

C. albicans

Inhibits pellicle formation,

Pilli motility, and ring biofilm

formation

Molecular docking analysis

proved that curcumin

interacts with the biofilm

response regulator BfmR

MIC > 500 µg/ml for

A. baumannii ATCC 17978

planktonic cell

Reduces A. baumannii

ATCC 17978 biofilm

production by 93% at

100 µg/ml

Raorane et al., 2019

Epigallocatechin-3-gallate

(EGCG)

Camellia sinesis (L.) Kuntze

(green tea)

In vitro

(growth assay, CR-binding

assay, TEM analysis)

Escherichia coli BW25113 Suppresses curli

production and expression

of curli-related proteins

csgA, csgB, and csgD

Enhances the degradation

of sigma factor (RpoS) by

ClpXP protease

IC50 = 5.9 ± 0.8 µM Arita-Morioka et al., 2018

Ginkgolic acid (GA) and

hydroginkgolic acid

Pistacia lentiscus L. (fruit) In vitro, in vivo (human lung

A549 infection model,

C. elegans infection model)

Pseudomonas aeruginosa

H103

Decreases virulence factor

production

Modifies the membrane

fluidity

Regulates virulence through

the ECFσSigX

IC50 of pyocyanin

inhibition = 6.3 µg/ml

100 µg/ml GA reduces

pyocyanin production by

82%

Tahrioui et al., 2020

(Continued)
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TABLE 1 | Continued

Compound Source Experimental details Pathogenic species Molecular mechanism Inhibitory concentration References

7-Epiclusianone Rheedia brasiliensis

(Mart.) Planch. & Triana

In vivo

A rodent model of dental

caries

Streptococcus mutans Increases cariostatic activity

by disrupting insoluble

exopolysaccharides and

intracellular

polysaccharides

70–80% less severe

smooth-surface lesions and

50–70% less severe

sulcal-surface lesions than

the vehicle control

treatment

50–70% reduction of

exopolysaccharides

Murata et al., 2010

Branco-de-Almeida et al.,

2011

Tannic acid Not specified In vitro

(crystal violet microplate

biofilm assay, Congo red

binding assay)

E. coli BW25113 Efficiently killed bacteria in

pgaA mutant biofilms by

inhibiting the formation of

polysaccharide in the matrix

Affects intracellular SOS

response and decreases

the expression of genes

involved in this pathway

MIC = 1 mg/ml Samoilova et al., 2019a

Samoilova et al., 2019b

Diterpene derivative

(C31H50O3)

Myrmecodia pendens Merr.

& L.M. Perry

In vitro

(broth microdilution assay,

MBIC analysis by Perumal

method)

Streptococcus mutans

ATCC 25175

Not specified MBIC = 50 ppm and

MIC = 40 ppm

Gartika et al., 2018

Chelerythrine Bocconia cordata Willd. In vitro

(broth microdilution assay,

crystal violet assay)

and

in vivo (mono- and dual

species culture models)

Candida albicans and

Staphylococcus aureus

Inhibits hyphae formation

Reduces biofilm formation

by decreasing eDNA,

polysaccharide, and protein

levels

The MICs

(monospecies) = 4 µg/ml

and MBIC90S

(monospecies) = 2 µg/ml

MICs (dual

species) = 6 µg/ml and

MBIC90S (dual

species) = 3 µg/ml

Qian et al., 2020

Hyperforin Hypericum perforatum L. In vitro

(quorum sensing inhibition

assay, human plasma

protein-coated assay, static

microtiter plate crystal violet

assay)

Staphylococcus aureus

AH1872

Exhibits anti-biofilm activity

and a moderate amount of

quroum quenching activity,

but a detailed mechanism

is not specified

MIC50 (flowering aerial

part) = 0.512% v/v

Exhibit moderate inhibition

of quorum sensing

(QSIC50 = 0.064–0.512%

v/v)

Lyles et al., 2017

Warburganal, polygodial,

alpha-linolenic acid (ALA)

Warburgia ugandensis

Sprague subsp.

ugandensis

In vitro

(tetrazolium reduction

assay, checkerboard assay)

Candida albicans

Candida glabrata

S. epidermidis

S. aureus

α,β-unsaturated

1,4-dialdehyde in

polygodial and warburganal

is responsible for the potent

antifungal activity on

developing biofilms

Polygodial affects

mitochondrial ATPase and

leads to reduced ergosterol

levels

BIC50

(warburganal) = 4.5 ± 1 µg/ml

and BIC50 (polygodial)

10.8 ± 5 µg/ml

BIC50

(warburganal) = 37.9 ± 8 µg/ml

BIC50 (ALA) = 25 µg/ml

Kipanga et al., 2020

NS, not specified.
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TABLE 2 | Biosurfactants reported recently with anti-biofilm activities.

Class Source microorganism Pathogen strains Effect on biofilm Dose References

Lipopeptide biosurfactants

(LPBs)

Acinetobacter junii Biofilm of Staphylococcus

aureus, Proteus mirabilis,

and Pseudomonas

aeruginosa

Biofilm disruption 35, 10,

and 32%, respectively

Biofilm disruption 52, 31,

and 70%, respectively

1250 µg/ml

2500 µg/ml

Ohadi et al., 2020

Lipopeptide Beauveria bassiana Microsporum canis 25.76% biofilm eradication 1.95 µg/ml Abdel-Aziz et al., 2020

Lipopeptide surfactin-C15 B. subtilis #309 Candida albicans 85% inhibition to biofilm

formation

960 µg/ml Janek et al., 2020

Lipopeptide surfactin Bacillus safensis F4 Staphylococcus

epidermidis

80% anti-adhesive activity 6.25 mg/ml Abdelli et al., 2019

Lipopeptide pontifactin Pontibacter korlensis strain

SBK-47

Bacillus subtilis,

Staphylococcus aureus,

Salmonella typhi, and Vibrio

cholerae

99% anti-adhesive activity 2 mg/ml Balan et al., 2016

Lipopeptide Bacillus subtilis AC7 Candida albicans Reduced adhesion up to

67–69% and biofilm

formation up to 56–57%

2 mg/ml Ceresa et al., 2016

Glycolipoprotein Acinetobacter indicus M6 Methicillin-resistant

Staphylococcus aureus

82.5% removal of biofilm 500 µg/ml Karlapudi et al., 2020

Glycolipid Burkholderia sp. WYAT7 Staphylococcus aureus 41% inhibition to biofilm

formation

79% inhibition to biofilm

formation

1 mg/ml

2 mg/ml

Ashitha et al., 2020

Rhamnolipids Pseudomonas aeruginosa

MN1

Streptococcus mutans Dissociation of 67% of the

preformed biofilm

12.5 mg/ml Abdollahi et al., 2020

Rhamnolipids Burkholderia thailandensis

E264

Streptococcus oralis,

Actinomyces naeslundii,

Neisseria mucosa, and

Streptococcus sanguinis

90% inhibition of

S. sanguinis biofilm

70% inhibition of S. oralis

biofilm

70% inhibition of

N. mucosa biofilm

50% inhibition of

A. naeslundii biofilm

0.39 mg/ml

0.78 mg/ml

6.25 mg/ml

12.5 mg/ml

Elshikh et al., 2017

Exopolysaccharides Pandorea pnomenusa MS5 Burkholderia cepacia Inhibit Burkholderia cepacia

biofilm formation

0.25 mg/ml Sacco et al., 2019
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Mishra et al. Natural Anti-biofilm Agents

concentration of 500 µg/ml (Karlapudi et al., 2020). The EPS
from Pandoraea pnomenusa MS5 serves as an anti-biofilm agent
against Burkholderia cepacia (Sacco et al., 2019). This surfactant
is a heteropolysaccharide, with two functional carbonyls and
hydroxyl groups, and has oil-emulsifying capacity.

Biosurfactants are appropriate coating agents for medical
implants such as urinal catheters, bone implants, etc. to inhibit
biofilms originated from pathogenic organisms without using
synthetic drugs. Rhamnolipids and sorphorolipids are reported
to be potential agents for the inhibition of biofilms formed by
Gram-negative and Gram-positive microbes (Sharahi et al.,
2019). Few studies reported that cell-associated biosurfactant
from Lactobacillus acidophilus inhibits biofilm formation
of Proteus vulgaris and S. aureus on polydimethylsiloxane
(PDMS)-based implants (Satpute et al., 2019). L. rhamnosus–
derived biosurfactants cause cell lysis by disrupting the
membrane structure, thus can be used as an anti-biofilm
agent for multispecies biofilms on silicone devices, i.e., voice
prostheses in case of laryngectomy (Tan et al., 2017). The
anti-biofilm activity of biosurfactants can augment extensively in
combination with caprylic acid that inhibits biofilm formation
of P. aeruginosa, E. coli, and B. subtilis (Diaz De Rienzo et al.,
2016); amphotericin B (AmB) or fluconazole synergistically
acts against biofilm formation and preformed biofilm of
C. albicans (Haque et al., 2016); and surfactants such as
SDS led to the destruction of P. aeruginosa PAO1 biofilms
(Nguyen et al., 2020).

Antimicrobial Peptides
AMPs are broad-acting antimicrobial agents widely used in the
treatment of both fungal and bacterial biofilms (Pletzer et al.,
2016). These peptides disrupt biofilms developed on medical
devices such as catheters, artificial valves, stents, dentures,
etc. occupied in hospital-acquired infections by S. aureus,
Klebsiella pneumoniae, P. aeruginosa, Enterococcus faecium,
Acinetobacter, and Enterobacter spp. (ESKAPE), and non-
ESKAPE pathogens (Rajput and Kumar, 2018). AMPs are
substitute to traditional antibiotics that are less vulnerable to
bacterial resistance by attacking the bacterial cell membrane
(Hirt et al., 2018). AMPs occur naturally in humans, animals,
plants, and microbes and act on bacterial cell membranes
by interacting with membrane phospholipids electrostatically,
followed by insertion into membrane, thus killing bacteria. There
are reports of synergizing AMPs with antimicrobial compounds
to suppress various molecular pathways of biofilm formation
(Shahrour et al., 2019).

Amphibian skin is a source for many AMPs effective against
various biofilm-causing microorganisms. Yuan et al. (2019)
isolated an AMP Japonicin-2LF from Fujian large-headed frog
skin secretion (Limnonectes fujianensis) that inhibits MRSA
biofilms by membrane permeabilization. Japonicin-2LF behaves
like a detergent and eradicates both planktonic and sessile
pathogens in biofilms. This property can be exploited to use this
peptide as a promising drug candidate in cystic fibrosis patients
for the cure of MRSA infection. The main drawback of using
AMPs to treat biofilm-based infections is that they are very much
prone to degradation by various bacterial proteases.

An AMP from frog skin named esculentin-1a, i.e., Esc (1-
21), and its D-amino acid–containing diastereomer Esc (1-21)-1c
inhibited P. aeruginosa biofilm formation by its membrane-
perturbing activity. Previous studies reported that Esc (1-21)-
1c showed potential activity against chronic lung Pseudomonas
infections of cystic fibrosis patients (Casciaro et al., 2019). The
introduction of D-amino acids at Leu14 and Ser17 into the AMP
(esculentin-1a) sequence increases the AMP stability (Casciaro
et al., 2019); decreases P. aeruginosa swimming, swarming, and
twitching motility; and finally inhibits biofilm formation. The
peptide inhibits the P. aeruginosa biofilm formation by three
mechanisms. First, it downregulates the fleN gene that controls
the number of flagella in P. aeruginosa inhibiting flagella-
mediated swimming. Second, it decreases the mRNA level of
type IV pili biosynthesis genes at very low concentration, i.e., 1/8
MIC, and inhibits the twitching motility of P. aeruginosa that is
very much essential for micro-colony formation and colonization
during biofilm development. Third, it downregulates lasI gene
encoding for the quorum-sensing molecule acyl-homoserine
lactone (AHL) synthase as well as lasB gene encoding the
virulence factors elastase LasB.

In summary, Esc (1-21)-1c lowers the expression of virulence
genes and bacterial motility genes, and ultimately prevents
biofilm formation. These two anti-pseudomonal peptides
esculentin-1a (1-21) and its diastereomer Esc (1-21)-1c have
shown promising results in bronchial epithelium repair of cystic
fibrosis patients. Cappiello et al. (2019) observed that esculentin
repairs bronchial epithelium in cystic fibrosis patients by
promoting bronchial cell migration, activating epidermal growth
factor receptors, and also increases the secretion of IL-8 for the
re-epithelialization process. Besides, the peptide esculentin-1a
lowers the expression of mRNA encoding rhamnosyltransferase
subunits, i.e., RhlA and RhlB, key enzymes in the biosynthesis of
bacterial surfactant rhamnolipids. A recent study by Parducho
et al. (2020) reported a specific mode of action of the AMP
human Beta-Defensin 2 that increases the roughness of the
bacterial surface, alters outer membrane protein profile, and
interferes with the transfer of biofilm precursors into the
extracellular space (Figure 2).

The melittin peptide of bee venom exhibit antibacterial
activity, prevents MRSA systemic infections and initiates the
wound healing process in MRSA-infected mice model (Choi
et al., 2015). Khozani et al. (2019) studied the efficiency ofmelittin
and found that it degraded about 90–95% of P. aeruginosa
biofilm biomass at 50 µg concentrations during 24 h. Human
cathelicidin LL-37 inhibits bacterial adhesion and biofilm mass
of S. epidermidis ATCC 35984 at a very low concentration
(Hell et al., 2010). In addition to anti-biofilm activity, LL-37
exhibits immunomodulatory activity such as cellular recruitment
(Tjabringa et al., 2006), enhances host adaptive immune
responses (Diamond et al., 2009), and modulates inflammatory
responses (Mookherjee et al., 2006). The dual property of AMPs
to counter bacterial biofilms as well as modulating the host
immune system can be exploited to design a novel strategy to
combat drug-resistant microbial biofilms.

Parducho et al. (2020) reported the inhibitory property of
human Beta-Defensin 2 in P. aeruginosa biofilm by inducing
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structural changes, altering outer membrane protein profile
and interfering with the transfer of biofilm precursors into
the extracellular space. Few natural peptides with anti-biofilm
activity and their disadvantages are listed in Table 3. A peptide
DRAMP ID: DRAMP18417 derived from the venom of scorpion
(Tityus obscurus) has shown promising anti-biofilm activity
against Candida spp. and Cryptococcus neoformans strains
(Guilhelmelli et al., 2016). These peptides inhibit fungal biofilms
at initial adhesion and mature stages, and exhibit minimal
hemolytic and cytotoxic activity on erythrocytes and murine
peritoneal macrophages.

Pathogens which form the biofilms on the implanted
medical devices, human skin, gut, and oral cavities generally
communicate through quorum sensing (QS) signals. The quorum
sensing inhibiting potential of AMPs from natural sources offers
an alternative antibiotic-free approach to overcome biofilm-
associated infections. To date, more than 3000 AMPs have been
discovered, but only seven of them have been approved by the
FDA (Chen and Lu, 2020). There is a severe scarcity of clinical
studies on natural AMPs due to their poor performance, cytotoxic
and hemolytic activities, unpredicted side effects such as kidney
injuries, damage to central nervous systems, etc. The futility of
natural AMPs in pre-clinical stages may be due to variations
between the clinical setting and their resident conditions. So,
clinical research needs to be exaggerated and optimized for the
use of these natural anti-biofilm agents against various drug-
tolerant biofilms. It is essential to exploit the structure of different
naturally occurring AMPs to develop novel therapeutic peptides
with improved stability and activity in comparison with their
natural counterparts.

Efforts have been made to design novel specifically targeted
multi-domain AMPs composed of a species-targeting peptide
linked to a broad-spectrum antimicrobial killing peptide domain
(Sztukowska et al., 2019). C16G2 is one of the first functional
specifically targeted AMPs designed by fusion of a 16−mer region
of the Streptococcus mutans competence−stimulating peptide
(CSP) as the targeting domain, flexible triglycine linker and G2
AMP, a 16−residue fragment of novispirin G10 (Steinstraesser
et al., 2002), and a derivative of ovispirin-1 (N-terminal 18
residues of the sheep cathelicidin SMAP29). C16G2 inhibits the
biofilm growth of S. mutans effectively both in pure culture and
in a multispecies community (Guo et al., 2015). This peptide
not only kills S. mutans but also reduces other species that
are metabolically dependent on S. mutans and mediates the
re-establishment of oral microbiome. This specifically targeted
AMP avoids the loss of natural microflora by selectively
targeting the pathogens and leaving commensal Streptococci
undamaged. C16G2 has completed a single-blind, open-label
phase II clinical trial in various varnish and strip formulations
(ClinicalTrials.gov Identifier: NCT03196219) among female and
male dental subjects.

Similarly, attempts have been made to target only the
pathogenic organisms of the biofilm without influencing the
normal microflora (Xu et al., 2020). They designed peptides by
fusing species-specific enterococcal pheromone cCF10 with a
broad-spectrum AMP C6. They proved that incorporation of
cCF10 at the N terminus of C6 drastically increased antimicrobial

activity against E. faecalis comparative with C6 alone. They also
reported that the hybrid peptides stimulated negligible hemolysis
against human RBCs at antimicrobial levels, demonstrating that
these fusion peptides could be exploited as potential anti-biofilm
agents for clinical implementation.

Therapeutic Strategies Using Natural
Products
The failure of conventional antibiotic therapies indicates that
biofilm treatments need auxiliary upgradation (Zhang et al.,
2020). Natural anti-biofilm agents selectively exterminate the
persistent biofilms and allow the diffusion of antimicrobials into
the biofilm matrix. These natural products target various phases
of biofilm cycle to degrade the biofilm matrix and finally kills the
released cells (Figure 3). A better understanding of the disruption
and dispersal mechanism of biofilms will help researchers to
design improved anti-biofilm strategies.

A recent study reported that elasnin (an anti-biofilm
compound from an actinobacteria Streptomyces mobaraensis
DSM 40847) destroyed the matrix in a multispecies biofilm
and making them more vulnerable to antibiotics (Long et al.,
2020). To improve the current strategies of biofilm inhibition, the
concern of the present review is to exploit natural agents for the
development of an effective and safe strategy. This review aims
to cover some current systems that are being put into practice
to disintegrate EPS, quench QS networks, inhibit adhesion, and
interrupt biofilm formation (Figure 4).

Extracellular Polymeric Substance
(EPS)–Targeting Strategies
Microbial EPSs secreted by a large variety of microorganisms
mainly composed of polysaccharides, structural proteins, and
extracellular DNA. The EPS matrix supports microbial adhesion
to a surface, aggregation in multilayered biofilms, and functions
as a three-dimensional scaffold that provides hydration, digestive
capacity, and protection against antimicrobial compounds,
antibiotics, and host effecter molecules (Flemming et al., 2016a).
The EPS matrix can actively alter nutrient gradients and portray
pathogenic environments that contribute to tolerance and
virulence traits. So, many therapeutic strategies are designed to
target the EPS matrix to eliminate biofilms, disaggregate bacteria,
and interrupt the pathogenic environment. Many bacterial
enzymes and secondary metabolites interfere with the quorum
sensing mechanisms of pathogenic bacteria, thus disrupting
the biofilm formation (Khan et al., 2019). Biofilm matrix-
degrading enzymes such as beta-N-acetylglucosaminidase
and dispersin B secreted by the Gram-negative periodontal
pathogen Actinobacillus actinomycetemcomitans disintegrate
mature biofilms of Staphylococcus epidermidis. Cocktail
of two EPS-degrading enzymes, DNase I and dispersin B,
has been found to inhibit staphylococcal skin colonization
and remove pre-attached S. aureus cells from the skin and
enhance their povidone-iodine susceptibility in an in vivo
pig skin colonization model (Kaplan et al., 2018). Hogan
et al. (2017) reported that lysostaphin was an effective anti-
staphylococcal agent and its therapeutic efficacy can be improved
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TABLE 3 | Sources and effects of AMPs.

Name of

AMPs

Amino acid sequence Net charge 3D structure Source Effects on biofilm Disadvantages References

Japonicin-2LF FIVPSIFLLK

KAFCIALKKC

4 Helix Frog skin secretion Eradicates the

methicillin-resistant

S. aureus biofilm matrix as

well as kills all the sessile

bacteria

Futile against P. aeruginosa biofilms.

The anti-biofilm activity concealed by

the changes in LPS contents and cell

wall structure of microorganisms

Yuan et al., 2019

Dermaseptin-

PT9

GLWSKIKDAAKT

AGKAALGFVNEMV

2 Helix Frog skin secretion Inhibits the biofilm

formation of S. aureus,

MRSA, and E. coli

More potent activity against

Gram-negative bacteria

Li et al., 2019

Phylloseptin-

PTa

FLSLIPAA

ISAVSALANHF

2 Helix Frog skin secretion More potent against

S. aureus biofilm

Anti-biofilm activity changed by the

hydrophobicity, charges and α-helicity

of the peptides

Liu et al., 2017

Moronecidin-

like

FFRNLWKGAK

AAFRAGHAAWRA

6 Unknown Seahorse Inhibits surface attachment

of S. aureus biofilm

More effectual against Gram-positive

bacteria than Gram-negative bacteria

The outer membrane proteins of

Gram-negative bacteria may hinder

translocation of AMPs through the

outer membrane

Mohammadi et al.,

2018

Mastoporan LNLKALL

AVAKKIL

4 Helix European hornet

venom

Suppresses biofilm

formation by S. aureus and

P. aeruginosa

Release histamine from mammalian

mast cells may lead to an immune

response

Chen et al., 2018

Melittin GIGAVLKVLTTG

LPALISWIKRKRQQ

6 Helix Honeybee venom Induce disintegration of the

MDR P. aeruginosa and

degrades the biofilm

The toxicity of melittin on normal cells is

a disadvantage for clinical applications

(in case of third-degree burn patients,

all three layers of skin are destroyed, so

cytotoxicity of melittin hardly limits its

applications)

Khozani et al., 2019

NA-CATH KRFKKFFKKLKNSV

KKRAKKFFKKPKVIGVTFPF

15 Helix Chinese cobra

(Naja atra)

Prevent biofilm formation of

Burkholderia thailandensis

The small size of the peptide restricts

its large-scale synthesis

Blower et al., 2015

de Barros et al.,

2019

Defensin

ZmD32

RTCQSQSHRFRGPCLRRS

NCANVCRTEGFPGG

RCRGFRRRCFCTTHC

12 Combine Helix

and Beta

structure

Corn, Zea mays Active against Candida

albicans biofilms

Anti-biofilm activity of many defensins

lost in the presence of salt

Kerenga et al.,

2019

Capsicumicine RSCQQQIQQ

AQQLSSCQQYLKQ

– Unknown Red pepper,

Capsicum

bacattum

Prevents the establishment

of S. epidermidis biofilm by

matrix anti-assembly (MAA)

mechanism

NS Von Borowski et al.,

2020

Rhesus theta

defensin-1

GFCRCLCRRGVCRCICTR 5 Beta Monkey leukocytes Active against established

C. albicans biofilms

Most of the host defense peptides

exhibit undesirable pro-inflammatory

properties and low bioavailability

Basso et al., 2019

NS, not specified.
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FIGURE 3 | The stages of biofilm formation and potential targets for anti-biofilm agents. The bacterial cells in humans attach to the matrix-forming proteins by

forming a covalent linkage with peptidoglycan structure or by non-covalent attachment. With attachment and aggregation of a sufficient number of cells, the

formation of EPS matrix takes place, and the attachment now becomes resistant to external repulsive forces. With the maturation of biofilm, the cells within the bulk

structure start further communication with each other and start secreting specialized proteins and DNA, and some of them are involved in the formation of the efflux

pump. At last, the dispersion of free planktonic cells from the formed biofilm further promotes the formation of new biofilms in the periphery. The natural anti-biofilm

compounds can attack at one or different stages of biofilm formation and development, thus inhibiting it.

in combination with antibiotics. Few biofilm-degrading enzymes
with their mechanism of biofilm inhibition are summarized in
Table 4.

The existing enzymes which have less catalytic activity
can enhance their catalytic properties against the biofilms
by modeling and engineering approach. The site-directed
mutational analysis is considered as another approach to
modulate the biofilm-inhibiting properties of the enzymes.
Thus, broad-spectrum enzymes/peptides, as well as secondary
compounds, must be isolated from bacteria for bioprospection,
which can target a broad range of QS signaling molecules
and structural part of the biofilms. The complete elimination
of heterogeneous biofilms needs amalgamation of hydrolytic
enzymes that can degrade proteins, polysaccharides, eDNA, and
QS molecules (Yuan et al., 2020). The application of matrix-
degrading enzymes in biofilm control is presently limited due to
cost, handling procedures, and low industrial accessibility (Nahar
et al., 2018).

Quorum Sensing Targeting Strategies
Prevention of cell-to-cell communication (quorum sensing) is
an efficient strategy to restrain biofilm formation (Sharahi et al.,
2019). It is reported that metalloprotein AHL-lactonase from
the cell-free extract of endophytic Enterobacter species causes
degradation of N- AHL, thus significantly inhibiting biofilm
formation by Aeromonas hydrophila (Shastry et al., 2019). The
result of a recent study reported that Lactobacillus crustorum

ZHG 2-1 as novel quorum-quenching bacteria degrade N-
3-oxododecanoyl-dl-homoserine lactone (3-oxo-C12-HSL) and
N-butyryl-dl-homoserine lactone (C4-HSL) and functions as an
anti-biofilm agent against P. aeruginosa (Cui et al., 2020). Several
quorum quenching (QQ) enzymes and compounds have been
reported. The majority of these QQ molecules have been isolated
from natural sources (LaSarre and Federle, 2013). The result of
a recent study revealed QS inhibitory potentials of ethyl acetate
extracts from cell-free supernatants and cells of Natrinemaversi
forme against P. aeruginosa biofilm (Başaran et al., 2020). Many
QS inhibitors from plant-based natural products have been
identified (Caceres et al., 2020; Zhong et al., 2020) and proposed
to be effective in future biofilm targeting strategies. The role of
natural anti-biofilm agents in the inhibition of quorum sensing
molecules is mentioned in the first part of the review. Here,
we attempted to explain their effect on the disruption of QS
mechanism. These anti-biofilm agents disrupt quorum-sensing
systems mainly in two ways: (1) inhibition and degradation of
signal molecules, and (2) mimicking the signal molecules for
inhibition of their binding to corresponding receptors (Kalia,
2013).

On the other hand, quorum quenchers are usually species
specific; therefore, a combination of quenchers is required to
eliminate mixed-species biofilms. Ajoene, a sulfur-rich molecule
from garlic, decreases the expression of small regulatory RNAs
(sRNAs) in both Gram-negative (P. aeruginosa) and Gram-
positive (S. aureus) bacteria. Ajoene is the first compound to
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FIGURE 4 | Graphical representation of anti-biofilm strategies covered in this review. EPS targeting: EPS matrix is targeted by matrix-degrading enzymes (DNaseI,

dispersin B, lysostaphin) that inhibit microbial adhesion to a surface. Quorum sensing targeting: This strategy focused on the use of natural agents that block cell–cell

communication in preformed biofilms and regulate virulence factor production (Shastry et al., 2019). Phage therapy: Engineered phages degrade the matrix

exopolysaccharide by producing polysaccharide depolymerase enzymes. Specially targeted AMPs: This novel strategy targets in a species-specific manner due to

the presence of species targeting peptides (Xu et al., 2020). Adhesin targeting: Phytocompounds target adhesin proteins and blocked biofilm formation at the

beginning (Adnan et al., 2020). Combination therapy: Natural anti-biofilm agents function effectively in a combined approach in comparison with its single use.

be identified to target broad-spectrum range quorum sensing
inhibitors, i.e., lowers the RNAIII expressions in S. aureus
(Scoffone et al., 2019) and RsmY and RsmZ in P. aeruginosa
(Jakobsen et al., 2017). Ajoene lowered expression of small
regulatory RNAs (rsmY and rsmZ) in P. aeruginosa as a
result of which it represses translation of biofilm matrix
polysaccharides Pel and Psl and the type VI secretion system
(T6SS). The T6SS in P. aeruginosa plays an essential role
in the expression of various virulence factors and greatly
concerned with the biofilm formation, pyocyanin production,
and pathogenicity of the organism (Li et al., 2020). These
findings suggest that T6SS may be a prospective therapeutic
target against P. aeruginosa infections. Jakobsen et al. (2017)
also found that ajoene lowers the expression of regulatory RNA
and RNAIII, and inhibits the expression of RNAIII-dependent
virulence factors such as lipase, protease, and α-hemolysinin in
S. aureus. Emodin (1, 2, 8-trihydroxy-6-methyl anthraquinone),
an anthraquinone derivative identified from Rheum palmatum
(Chinese rhubarb) and Polygonum cuspidatum (Asian knotweed),
effectively downregulated luxS gene in Streptococcus suis (Yang
et al., 2015) and icaA, sarA, and agrA genes in S. aureus
(Yan et al., 2017).

The anti-biofilm peptide Human Cathelicidin LL-37 affects
the bacterial cell signaling system and inhibits P. aeruginosa
biofilm formation at 0.5 µg/ml by downregulating genes of
the QS system (Di Somma et al., 2020). AMPs interact with
membranes of bacteria and, in turn, activate genes that are
regulated through QS. These QS autoinducers passed through

the plasma membrane with the help of membrane vesicles. This
process, in turn, activates the expression of virulence genes
associated with QS. Autoinducers help in interspecies signal
transduction; one interesting autoinducer is small autoinducing
peptide molecule (AIP) from Lactobacilli that inhibits the
viability of microbes and acts as a suppressor of bacteriotoxin
production. During the process of suppression of exotoxin
production, they interfere with the agr QS system (Vasilchenko
and Rogozhin, 2019). However, quorum quenchers can be rinsed
away during biofilm formation that makes limited uses of these
inhibitors confined to small areas of biofilm only (Koo et al.,
2017). Thus, combination approach of these inhibitors along with
other strategies leads to a novel therapeutic approach.

Phage Therapy
Lytic bacteriophages have been used as an effective therapeutic
strategy to remove biofilm cells. A recently published
study proved that two lytic phages vB_SauM_ME18 and
vB_SauM_ME126 are potential natural antimicrobials for
inhibiting biofilm ofMDR S. aureus (Gharieb et al., 2020). Recent
investigations have shown that (engineered) phage-derived
enzymes—polysaccharide depolymerase or peptidoglycan-
degrading enzymes—are promising therapeutic anti-biofilm
candidates (Reuter and Kruger, 2020). Phage therapy got its first
FDA approval in the year 2019 in which patients received phage
treatment at the School of Medicine, University of California
San Diego (UCSD) phage therapy center (Pires et al., 2020).
The administration of phage therapy is active only in a few
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TABLE 4 | Biofilm-degrading enzymes against various human pathogens.

Enzymes Source Pathogenic bacteria Molecular mechanism of biofilm

inhibition

References

Serine protease, Esp Staphylococcus epidermidis Staphylococcus aureus Esp degrades S. aureus surface

proteins and host receptors

Sugimoto et al., 2013

Lysostaphin Staphylococcus simulans Methicillin-resistant Staphylococcus

aureus (MRSA)

Cleaves the pentaglycine cross-bridges

of peptidoglycan and destroyed EPS

matrix

Algburi et al., 2017

Hogan et al., 2017

α-Amylase Bacillus subtilis S8-18 Methicillin-resistant Staphylococcus

aureus (MRSA)

Degrades the preform mature biofilm by

disrupting EPS matrix

Kalpana et al., 2012

Cellulase Penicillium funiculosum

Trichoderma reesei

Pseudomonas aeruginosa Decreases the adhesion of cells to the

surface and polysaccharide matrix

Loiselle and Anderson, 2003

Cellulase Aspergillus niger

Bacillus sp. DGV19

Burkholderia cepacia Degrades the exopolysaccharide Rajasekharan and Ramesh, 2013

Alginate lyase Bacillus circulans ATCC 15518 Pseudomonas aeruginosa Degrades the exopolysaccharide Alkawash et al., 2006

Hyaluronan Streptococcus equi Staphylococcus aureus NS Ibberson et al., 2016

Cysteine, histidine dependent

amidohydrolase/peptidase

CHAPK

Myoviridae staphylococcal Phage K Staphylococcus aureus Cleaves the peptide bond involving

D-alanine and the first glycine in the

pentaglycine cross-bridge of

Staphylococcal cell wall peptidoglycan

Fenton et al., 2013

Endolysin LysH5 Phage vB_SauS-phiIPLA88 Staphylococcus aureus,

Staphylococcus epidermidis

Anti-persister agents Gutierrez et al., 2014

DNase I Human stratum corneum Pseudomonas aeruginosa,

Staphylococcus aureus

Degradation of extracellular DNA

prevents the formation of biofilm

Eckhart et al., 2007

DNase I and Proteinase K NS Actinomyces oris, Fusobacterium

nucleatum, Streptococcus mutans,

Streptococcus oralis, and Candida

albicans

Affected the structural integrity of the

biofilms by removal of eDNA and

extracellular proteins

Karygianni et al., 2020

Trypsin Pancreatic serine endoprotease Pseudomonas aeruginosa Destroy the protein contents of the

biofilm matrix

Banar et al., 2016

NS, not specified.
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countries, and its clinical use faces many challenges such as the
establishment of phage banks with characterized phages; safety,
stability, and quality of phage preparations during production;
and the evolution of bacterial resistance to phages.

Combination Therapy
Natural anti-biofilm agents sensitize antibiotics and established
to be more effective when used in amalgamation (Zhang et al.,
2020). They also reported that the combined application of
sodium houttuyfonate and levofloxacin act in a better manner
to inhibit biofilm formation. Sodium houttuyfonate, a plant-
derived anti-neuropeptide, effectively disrupts biofilm dispersion
in P. aeruginosa (Wang et al., 2019). Naringin, a flavanone
glycoside extracted from citrus and grapefruits, was found to
be more effective against P. aeruginosa biofilms in comparison
with individual treatment of marketed antibiotics ciprofloxacin
and tetracycline (Dey et al., 2020). Naringin depletes biofilm EPS
and facilitates the diffusion of antimicrobials, reduces pellicle
formation, and decreases the flagellar movement of bacteria on
catheter surfaces.

Zhou et al. (2018) tested the effect of hordenine, a
polyphenolic compound from barley, on biofilm formation
individually as well as in combination with an aminoglycoside
antibiotic, netilmicin. The results were promising, showing up to
88% reduction in P. aeruginosa PAO1 biofilms by a combination
of hordenine and netilmicin, which was significantly better than
the effect of any of the individual treatments. It indicates that
the drug–herb combination therapy may be explored for effective
anti-biofilm formulation opportunities. The SEM study showed a
reduction in the thickness of the biofilm layer and the disruption
of its architecture. The results of the study also revealed
downregulation in the expression of quorum-sensing regulatory
genes, especially lasR, by hordenine as the possible mechanism
against biofilm development. Actinobacterial compounds from
different microbial species have also shown potential anti-biofilm
activity against different pathogenic bacteria by interrupting the
cell surface and interaction between cells (Azman et al., 2019).
Studies focusing on a combination of more than one natural anti-
biofilm compound/s from different sources or acting on different
stages of biofilm development will further help in developing
more effective agents targeting biofilms. Moreover, the selection
of a more effective compound is also necessary as the efficacy
of natural compounds against biofilm development is different
against different strains of bacteria.

Anti-biofilm Biomaterial Therapy
The adhesion of biofilm-associated pathogenic organisms on
implant surfaces restricts their clinical applications, so many
attempts have been made by various researchers to coat
biomaterial as a preventive strategy. Natural polymer-based
surface coatings, such as anti-adhesive coatings of algal
polysaccharide ulvan, dextran, and dermatan sulfate, and
antimicrobial-releasing polysaccharide coatings etc. have been
popularized during the last decade (Junter et al., 2016). A recent
report on anti-adhesive CyanoCoating (a coating from marine
cyanobacterium Cyanothece sp. CCY 0110) was exploited as
a defensive strategy against a broader range of microbes

(especially Proteus mirabilis, E. coli, and C. albicans biofilms)
in catheter-linked urinary tract infections (Costa et al., 2020).
The molecular mechanism to prevent the cell adhesion is
that the hydrophilic polysaccharides form a hydration layer
on the surface which acts as a physical barrier (Damodaran
and Murthy, 2016) and prevents cell adhesion to the surface.
Calcium phosphate cement and hydroxyapatite are the calcium
phosphate materials that are used as a bone coating to avoid
infections of biofilm, but they have various limitations in
clinical trials (Pan et al., 2018). Implant-related infections can
be avoided by chitosan hydrogel coatings which prevent bacterial
adhesion and biofilm formation due to membrane leaching (Pan
et al., 2018). A group of natural polymers were used as drug
transporters in various forms like fibers, strips, gels (Badam
gum, Karaya gum, chitosan), films (chitosan), nanoparticles,
and microparticles which help in delivering antibiotics to the
targeted site mainly for periodontal biofilm-forming pathogens
(Chi et al., 2019). Nisin, an FDA-approved AMP, acts as
anti-biofilm agent synergistically with conventional antibiotics
against methicillin-resistant Staphylococcus aureus, Streptococcus
pneumoniae, Enterococci, and Clostridium difficile (Shin et al.,
2016). A recent report stated that nisin in conjugation with gellan
gum, a biocompatible polysaccharide, shows promising results in
biomaterial research (Peng et al., 2020).

CONCLUSION AND FUTURE
DIRECTIONS

The occurrence of many biofilm-based human infections and
their multiple antimicrobial resistance is a major concern in
medicine and human health. The elevated rate of resistance to
antibiotics in biofilm leads to the discovery and characterization
of novel natural anti-biofilm agents. This review describes
different types of phytocompounds, antimicrobial peptides, and
biosurfactants that exhibit promising biofilm-inhibiting ability.
Natural anti-biofilm agents could be effectively used to deal
with certain surgeries and diseases where there is a possibility
of untraceable infection sites like bone, dental, eye lenses, and
breast implants. These agents of natural origin are structurally
and functionally more diverse in comparison with conventional
antibiotics. The structure and function of natural anti-biofilm
agents from various sources have been exploited to develop
numerous advanced therapeutic strategies showing increased
activity, stability, and reliability. Here, we continue to analyze
the efficacy of specially targeted AMPs against drug-tolerant
pathogenic biofilms without disturbing the natural microflora.

Natural products, mainly phytochemicals, as anti-biofilm
agents have been studied more in in vitro and in vivo conditions,
but not a single FDA-approved drug was developed despite huge
efforts. Most of them failed in phase II and phase III clinical
trials (Lu et al., 2019). The possible reason for this failure may be
the availability of the compound in humans after administration
which decreases the efficacy of the compounds. One possible
solution to this problem is a combination of strategies like
antibiotics, along with natural anti-biofilm agents for better
results. Combination therapy of natural agents with commercial
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antibiotics needs urgent exploitation in the future to advance
anti-biofilm activity. Quorum quenchers of natural origin
along with antibiotics can be a novel lead for species-specific
biofilm destruction, and it has a promising utilization aspect in
biomedical industries. More studies should be directed in this
regard for converting the novel anti-biofilm phytocompounds
into drugs. Most of the clinical studies on natural anti-biofilm
compounds as reported in http://clinicaltrials.gov/are focused on
oral biofilms, and very few are related to urinary tract infections
(Lu et al., 2019). Further studies in in vivo models and clinical
trials are needed to test the efficiency of natural anti-biofilm
agents in the future.

The review also explains the quorum quenching molecules
and EPS-degrading enzymes of natural origin along with their
mode of action on various biofilms. The mechanism of action of
various natural agents against biofilm remains unknown. More
studies on the mode of action may help to identify novel anti-
biofilm agents. Anti-adhesin strategy can be a novel strategy for
biofilm treatments on a broad range of bacteria as it targets
and prevents attachment of bacteria to the cell surface. Very
few studies have been made in this area, so future research
in targeting biofilm in the direction of adhesin proteins may
lead to the discovery of unique natural anti-biofilm agents.
Pili and curli gene expression regulating phytocompounds
can control biofilm formation. More work in these directions
or a combination of phytocompound which has anti-adhesin
properties may be a better therapeutic strategy for biofilm-
related ailments.

The failure of natural medicines in clinical trials can be
checked by rigorous quality control. The discovery of accurate
markers that are sensitive and stable can resolve the problem and

help in better quality control of natural anti-biofilm agents. It is
a significant challenge faced by natural product research for the
discovery of useful QCmarkers as natural compounds have a very
complex structural lattice (Zhang et al., 2020). Drug efficacy of
natural compounds is mainly based on network pharmacology
methods. As a result, more research in this direction can
enhance success rate in clinical trials at the final stage. Novel
natural anti-biofilm agents in therapeutics may be possible if
rigorous studies will be done in quality control, pharmacokinetic
and pharmacodynamic co-relationships (PK–PD), and PK–PD
interactions with metabolomics of host for evaluation of safety
and efficacy of the drug.
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